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Abstract

Connections are made between deficiency one α-flokki and Baer groups

of associated α-flokki translation planes, extending the theory of Johnson

and Payne–Thas. The full collineation group of an α-flokki is completely

determined. Many of the ideas are extended to the infinite case.
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1 Introduction

In this article, we are interested in extending the ideas of deficiency one flocks of

quadratic cones in PG(3, q) and the associated Baer group theory of translation

planes with spreads in PG(3, q) to their generalizations, α-flokki of cones Cα,

where Cα = {(x0, x1, x2, x3) | xα
0x1 = xα+1

2 } is a cone in PG(3, q) with vertex

(0, 0, 0, 1) with α ∈ Aut(K). An α-flokki is a ‘flock’ of this cone, that is, a set of

planes of PG(3, q) which partition the points of Cα except for the vertex. There

are corresponding translation planes here, as in the quadratic cone case, which

we will call α-flokki planes.

First, we mention the Payne–Thas extension theorem for partial flocks of a

quadratic cone.

Theorem 1.1 (Payne–Thas [13]). A partial flock of a quadratic cone of deficiency

one in PG(3, q) has a unique extension to a flock of a quadratic cone.

The theory of Baer groups of Johnson [7] connects such partial flocks with

translation planes admitting Baer groups.

Theorem 1.2 (Johnson [7]). Translation planes with spread in PG(3, q) that

admit Baer groups of order q are equivalent to deficiency one partial flocks of a

quadratic cone.
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In this setting, we have q − 1 planes of a partial flock of deficiency one of

a quadratic cone, which may be extended to a flock by the theorem of Payne–

Thas.

Therefore, we have:

Theorem 1.3. Let π be a translation plane of order q2 with spread in PG(3, q).

If π admits a Baer group of order q then the partial spread of degree q + 1, whose

components are off the Baer axis, is a regulus partial spread. Derivation of this

spread constructs a translation plane of order q2 with spread in PG(3, q), admit-

ting an elation group of order q whose orbits together with the elation axis are

reguli; a conical translation plane.

Therefore, translation planes of order q2 with spread in PG(3, q) admitting Baer

groups of order q are equivalent to flocks of quadratic cones in PG(3, q).

The Payne–Thas result in the odd order case involves the idea of derivation

of a conical flock, whereas the proof in the even order case used ideas from ex-

tensions of k-arcs. However, a proof of this result by Sziklai [14] is independent

of order. Here, it is realized that this proof may be adapted to prove the same

theorem for α-flokki. The Baer group theory that applies is then an extension of

the work of Johnson [7].

We also consider the cones Cq in PG(3, q2) and algebraically lifting the spreads

in PG(3, q). Such lifted spreads automatically give rise to q-flokki of the cones

Cq (also see Kantor and Penttila [12]). A bilinear flock is a flock in which each

plane passes through at least one of two distinct lines of PG(3, q); these lines

(called supporting lines) may either meet or be skew. A result of Thas [15] shows

that flocks of quadratic cones whose planes share a point must be linear in the

even characteristic case and either linear or Knuth–Kantor in odd characteristic

and hence bilinear flocks of quadratic cones with intersecting supporting lines

do not exist in the finite case. Also, no bilinear flocks of quadratic cones with

skew supporting lines are known in the finite case (see [4] for a more thorough

study of finite bilinear flocks). However, Biliotti and Johnson [1], show that

bilinear flocks can exist in PG(3,K), where K is a infinite field. In fact, the sit-

uation is much more complex for infinite flocks, for example, there are n-linear

flocks for any positive integer n (the planes share exactly n lines). Recently,

Cherowitzo and Holder [4], found an extremely interesting bilinear q-flokki us-

ing ideas from blocking sets. It might be suspected that the Cherowitzo–Holder

q-flokki might be algebraically lifted from a translation plane, and indeed, in

this article, we show that this is, in fact, the case.

We also show how work on extensions and Baer groups gives results that

allow a reverse procedure that identifies certain translation planes of order q4

that admit Baer groups of orders q2 and q + 1 as lifted and derived spreads.
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2 Elation groups and flokki planes

Let π denote a translation plane of order q2 with spread in PG(3, q) that admits

an elation group E such that some orbit Γ union the axis is a derivable partial

spread. We know from Johnson [8], that the derivable partial spread may be

represented in the form

{

x = 0, y = x

[

u 0

0 uα

]

; u ∈ GF(q)

}

,

where α is an automorphism of GF(q), and we have chosen the axis of E to

be x = 0 and Γ to contain y = 0 and y = x. Here, as usual, x = (x1, x2),

y = (y1, y2), for xi, yi ∈ GF(q), i = 1, 2 and vectors in the 4-dimensional vector

space over GF(q) are (x1, x2, y1, y2).

Since Γ is an orbit, this means that E has the form

E =























1 0 u 0

0 1 0 uα

0 0 1 0

0 0 0 1









; u ∈ GF(q)















.

Let y = x

[

g(t) f(t)

t 0

]

be a typical component of the spread of π for t ∈ GF(q)

and the (2, 2)-entry equal to zero, where g and f are functions on GF(q), with

g(0) = f(0) = 0. This is always possible by a basis change allowing that

y = 0 and y = x represent components of π. Hence, the action of E on

y = x

[

g(t) f(t)

t 0

]

produces components

y = x

[

u+ g(t) f(t)

t uα

]

; t, u ∈ GF(q).

Now assume that π is a translation plane with spread in PG(3,K), where K is

an infinite field, and π admits an elation group such that the axis and some orbit

Γ is a derivable partial spread. In this case, by Jha and Johnson [6], a derivable

partial spread has the form

{

x = 0, y = x

[

u A(u)

0 uα

]

; u ∈ GF(q)

}

,

where α is an automorphism of K and such that

{[

u A(u)

0 uα

]

; u ∈ K

}

is a

field. Also, if there are at least two Baer subplanes that are K-subspaces, then

A ≡ 0.
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Definition 2.1. A translation plane π with spread in PG(3,K), where K is a

field, is said to be an α-flokki plane if and only if there are functions g and f on

K so that f(0) = g(0) = 0, and

S =

{

x = 0, y = x

[

u+ g(t) f(t)

t uα

]

; t, u ∈ K

}

(1)

is the spread for π, and α is an automorphism of K.

We will also say that S is an α-spread.

Lemma 2.2. Let K be an infinite field. If there is a representation (1) of a partial

spread in PG(3,K), then this partial spread is a maximal partial spread.

Proof. To see that such a partial spread is maximal in PG(3,K), we assume

not, then there is a matrix M so that y = xM is mutually disjoint from the

other components, which means, since x = 0 and y = 0 are components that
[

u+ g(t) f(t)

t uα

]

− M is non-singular for all t, u in K. Letting M =

[

a b

c d

]

,

choose t = c and uα = d, this forces a = b = 0. �

A maximal partial spread as described in Lemma 2.2 will be said say to be

injective but not bijective. We will also mention α, as in α-partial spreads, when

reference to the automorphism α is needed.

Remark 2.3. The previous lemma cannot be extended to the case when K is

finite, as a set of matrices represented as in (1) would never yield a partial

spread.

The next theorem follows immediately from Lemma 2.2 and the discussion

before Definition 2.1.

Theorem 2.4. A translation plane π with spread in PG(3,K), for K a field, is

an α-flokki plane if and only if there is an elation group E one of whose orbits

is a derivable partial spread containing at least two Baer subplanes that are K-

subspaces.

Remark 2.5. It makes sense to believe that linear α-flokki should correspond to

Desarguesian α-flokki spreads. But this is not necessarily the case. For instance,

let α(x) = xq and consider the α-flokki spread in PG(3, q2) given by,

{

x = 0, y = x

[

u γsq

s uq

]

; s, u ∈ GF(q2)

}

,

q odd and γ a non-square. Then the associated α-flokki is given by

ρt : x0t− x1γ
qt− x3 = 0
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for all t ∈ K. This is a linear α-flokki with an associated translation plane that

is a semifield plane.

Example 2.6. Let K be any ordered (infinite) field and let α be an automor-

phism of K. Consider the α-partial flokki spread in PG(3,K):

S =

{

x = 0, y = x

[

u −t3α
−1

t uα

]

; t, u ∈ K

}

.

We first check that φu : t → uα+1t3, is injective. Now

(t− s) + uα+1(t3 − s3) = 0, for t 6= s,

if and only if

1 + uα+1(t2 + st+ s2) = 0, for t 6= s.

Consider the quadratic in t, t2+st+s2+u−(α+1) = 0, the discriminant of which

is s2 − 4(s2 + u−(α+1)) = −3s2 − u−(α+1). But in any ordered field, uα+1 > 1.

Thus, the discriminant is negative, which is never a square. Hence, S is an

α-partial spread, which because of Lemma 2.2 must be maximal.

Given any element r of K, the question is whether there is a solution to

t + uα+1t3 = r. Suppose that K is a subfield of the reals that does not contain

all cube roots of elements of K. Then by Cardano’s equations the roots will

involve cube roots of elements of K and so the t+uα+1t3 will not be surjective.

Hence, there are subfields K of the field of real numbers for which the maximal

partial spread is not a spread.

3 Maximal partial spreads and α-flokki

In this section, we connect α-flokki translation planes and maximal α-partial

spreads (which are injective but not bijective) with flocks of the cone Cα. The

ideas presented here originate from Cherowitzo–Holder [4], and Kantor–Penttila

[12], in the finite case.

Definition 3.1. Let K be any field and let α ∈ Aut(K). Considering homo-

geneous coordinates (x0, x1, x2, x3) of PG(3,K), we define the α-cone Cα as

xα
0 x1 = xα+1

2 , with vertex v0 = (0, 0, 0, 1).

A set of planes of PG(3,K) which partition the non-vertex points of Cα will

be called an α-flokki. The intersections are called α-conics.

The name α-flokki was coined (for K finite) by Kantor and Penttila [12].
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Now we show that there are maximal partial spreads in PG(3,K), associated

with α-flokki, which are called α-partial spreads or, if the context is clear, flokki

partial spreads. When K is finite, these partial spreads are the spreads arising

from α-flokki.

Theorem 3.2. Let K be any field, and f and g be functions from K to K such

that f(0) = g(0) = 0. Then

(1)(a)
{

x = 0, y = x

[

u+ g(t) f(t)

t uα

]

; t, u ∈ K

}

is a maximal α-partial spread if and only if

φu : t → t− uα+1f(t)α + ug(t)α,

is injective for all u ∈ K.

(1)(b)
{

x = 0, y = x

[

u+ g(t) f(t)

t uα

]

; t, u ∈ K

}

is injective if and only if

{

x = 0, y = x

[

u+ g(t) t

f(t) uα

]

; t, u ∈ K

}

is injective.

(2)(a) An injective maximal α-partial spread is equivalent to a partial α-flokki of

Cα, having defining equations for the planes as follows:

ρt : x0t− x1f(t)
α + x2g(t)

α − x3 = 0

for all t ∈ K.

(2)(b) The two sets of functions

F = {φu | φu : t → t− uα+1f(t)α + ug(t)α, for all u ∈ K}

F⊥ = {φ⊥
u | φ⊥

u : t → f(t)− uα+1tα + ug(t)α, for all u ∈ K}

both consist of injective functions if and only if either set consists of injective

functions.

(3) An α-flokki of Cα is obtained if and only if φu is bijective for all u ∈ K.

(4) When K is finite, the set of α-flokki planes is equivalent to the set of α-flokki

of Cα.

(5) If α2 = 1, g ≡ 0, and φu is bijective then, for any field K, this subset of

α-flokki planes is equivalent to the corresponding set of α-flokki of Cα.
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Proof. Consider Γu(t) = tuα+1−f(t)α+uαg(t)α, and note that uα+1Γu−1 = φu.

It is immediate to check that Γu is injective if and only if φu is injective. So, we

first show that Γu is injective for all u, if and only if

S =

{[

u+ g(t) f(t)

t uα

]

; u, t ∈ K

}

,

is a set of non-singular matrices or identically zero, whose distinct differences

are also non-singular. This will show that the injectivity of the functions φu will

prove that there are associated injective maximal partial α-flokki.

If we let tu = wα, we get

Γu(t) = tuα+1 − f(t)α + uαg(t)α

= t−α(wα+1 − tf(t) + wαg(t))α

= t−α

(

det

[

w + g(t) f(t)

t wα

])α

.

Since u may be varied, and by looking at Γu(t)−Γu(s), we see that the matrices

in S are non-singular (or zero) and the differences of distinct pairs of matrices

are non-singular if and only if Γu is injective. This proves (1)(a).

Part (1)(b) is immediate as the determinants of a matrix and its transpose

are equal. Also, using an argument similar to that proving (1)(a), but now with

Γ⊥
u (t) = f(t)uα+1 − tα + uαg(t)α and φ⊥

u = f(t)− uα+1tα + ug(t)α one obtains

a ‘transpose’ analogue to (1)(a). This proves (2)(b).

Now let P = (x0, x1, x2, x3) (homogeneous coordinates) be a point on Cα∩ρt.

If x0 = 0, as xα
0x1 = xα+1

2 , then so is x2. So, we get P = (0, 1, 0,−f(t)α). If

x0 6= 0 then we get

0 = t− xα+1
2 f(t)α + x2g(t)

α − x3 = φx2
(t)− x3

and so P = (1, x1, x2, φx2
(t)). It follows that φu being injective, for all u, is

equivalent to all the intersections Cα ∩ ρt being disjoint. This proves (2)(a).

Now take a point (uα+1, 1, uα, 0) in Cα and form the line through (0, 0, 0, 1).

The point where this line intersects ρt is (uα+1, 1, uα, tuα+1 − f(t)α + uαg(t)α).

Therefore, tuα+1 − f(t)α + uαg(t)α is bijective, for each u in K, if and only if

we have an α-flokki of Cα, thus proving part (3). Since finite injective functions

are bijective, we also have the proof of part (4).

Finally, consider α2 = 1 and g(t) = 0 for all t. Then, we consider for x1x2 6= 0,

(x1, x2, y1, y2) is on y = x

[

u f(t)

t uα

]

, if and only if

x1u+ x2t = y1 and x1f(t) + x2u
α = y2.
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We now multiply the first equation by xα
2 , and apply the automorphism α to the

second followed by a multiplication times x1. We get,

x1x
α
2 u+ xα+1

2 t = y1x
α
2 and xα+1

1 f(t)α + x1x
α
2u = yα2 x1.

Therefore, subtracting and multiplying by x
−(α+1)
1 ,

(x−1
1 x2)

α+1t− f(t)α = (y1x
α
2 − yα2 x1)x

−(α+1)
1 ,

which may be rewritten as Γx−1

1
x2
(t) = (y1x

α
2 − yα2 x1)x

−(α+1)
1 . It now follows

that if the functions Γu are all bijective, we obtain a spread for an α-flokki

plane. The converse is similar and left to the reader. This proves all parts of the

theorem. �

Remark 3.3. Because of the previous theorem, when all the functions in F are

injective, we will say that F is an injective α-partial flokki.

We have seen that the set of functions F produces a maximal partial α-flokki,

but to ensure that these objects are equivalent we need the concept of a dual

spread. Given a spread S in PG(3,K), for K a field, applying a polarity ⊥ to

PG(3,K) transforms S to a set of lines S⊥, with the property that each plane

of PG(3,K) contains exactly one line of S⊥, which is the definition of a dual

spread. In the finite case, dual spreads are also spreads, which may be seen by

an easy counting argument. However, when K is infinite, there are spreads that

are not dual spreads and dual spreads that are not spreads.

Definition 3.4. Let K be a field and α an automorphism of K. Choose functions

f and g on K, with f(0) = g(0) = 0, and consider the set of functions

F = {φu | φu : t → t− uα+1f(t)α + ug(t)α, for all u ∈ K}.

Then we define the dual of F , F⊥, as follows:

F⊥ = {φ⊥
u | φ⊥

u : t → f(t)− uα+1tα + ug(t)α, for all u ∈ K}.

Assume that both F and F⊥ consist of bijective functions, then there are cor-

responding α-flokki by Theorem 3.2. In this case, because of Remark 3.3, we

shall say that F and F⊥ are α-flocks, and furthermore use the terminology that

the ‘dual of an α-flokki is an α-flokki’.

Remark 3.5. In the proof of Theorem 3.2, we used that uα+1Γu−1 = φu to get

that

{φu | φu : t → t− uα+1f(t)α + ug(t)α, for all u ∈ K}

is a set of bijective functions if and only if

{Γu | Γu : t → tuα+1 − f(t)α + uαg(t)α, for all u ∈ K}
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is a set of bijective functions. Similarly, one may prove that

{φ⊥
u | φ⊥

u : t → f(t)− uα+1tα + ug(t)α, for all u ∈ K}

is a set of bijective functions if and only if

{Γ⊥
u | Γ⊥

u : t → f(t)uα+1 − tα + uαg(t)α, for all u ∈ K}

is a set of bijective functions.

Applying a polarity to a spread in PG(3,K) will produce a dual spread, which

in the α-flokki case, may not be a spread. It turns out that the dual spread may

be coordinatized by the transpose of matrices defining the spread. In other

words, if

π =

{

x = 0, y = x

[

u+ g(t) f(t)

t uα

]

; u, t ∈ K

}

is an α-flokki spread, then the dual spread π⊥ is (isomorphic to)

π⊥ =

{

x = 0,

[

u+ g(t) t

f(t) uα

]

; u, t ∈ K

}

.

We call π⊥ the transposed spread of π to avoid confusion with the dual of a

projective plane. The connections are as follows.

Theorem 3.6. Let K be a field, F be an injective partial α-flokki, and πF be the

associated maximal partial α-flokki plane. Then, F is bijective and the dual flokki

is bijective if and only if πF is a spread and the transposed spread π⊥
F

is a spread.

Proof. Assume that F is bijective and the dual flokki is bijective. We first show

that

S =

{

x = 0, y = x

[

u+ g(t) f(t)

t uα

]

; t, u ∈ K

}

is a spread. Consider a vector (x1, x2, y1, y2). If x1 = 0 = x2 then x = 0 is the

unique 2-space containing the vector. If x1 is not zero but x2 = 0, then there are

unique t and u so that x1t = y1 and x2u
α = y2. Hence, we may assume that x2

is non-zero. Therefore, we need to solve the following simultaneous equations

uniquely for t and u.

x1(u+ g(t)) + x2t = y1, x1f(t) + x2u
α = y2.

Taking the α-automorphism of the first equation, multiplying the resulting equa-

tion by x2, multiplying the second equation by xα
1 and subtracting the two re-

sulting equations we obtain the following:

x2x
α
1 g(t)

α + xα+1
2 tα − xα+1

1 f(t) = yα1 x2 − xα
1 y2.
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Since x2 6= 0, divide by xa+1
2 , to transform this equation into

(

x1x
−1
2

)α
g(t)α + tα −

(

x1x
−1
2

)α+1
f(t) = yα1 x2 − xα

1 y2. (2)

Notice that
[

1 0

0 −1

] [

u+ g(t) f(t)

t uα

] [

1 0

0 −1

]

=

[

u+ g(t) −f(t)

−t uα

]

.

This means that we may use this transformed version of the maximal partial

α-flokki, which, letting v = x1x
−1
2 , turns equation (2) into

vα+1f(t)− tα + vαg(t)α = yα1 x2 − xα
1 y2. (3)

Recall that we are assuming the four sets in Remark 3.5 are all sets of bijective

functions. Therefore, there is a unique t so that equation (3) has a solution. It

is now easily verified that returning to our set of simultaneous equations, there

is a unique t and a unique u that solve these equations. This proves that S is an

α-flokki spread.

Now if we repeat the argument for the transposed maximal partial α-flokki

plane π⊥
F

, the assumptions on the α-flokki and its dual show that the transposed

maximal partial α-flokki plane is also an α-flokki plane.

Now assume that both πF and π⊥
F

are both α-flokki planes. Then by rereading

the previous argument, it is immediate that the fact that πF is an α-flokki plane

implies that the dual F⊥ of the injective partial α-flokki F is an α-flokki. Since

F⊥⊥ = F , and π⊥
F

is an α-flokki plane then also F is an α-flokki. This completes

the proof of the theorem. �

Corollary 3.7. Every α-flokki plane is isomorphic to an α−1-flokki plane. In

particular,

[

u+ g(t) f(t)

t uα

]

and

[

u+ g(t)α t

f(t) uα−1

]

give isomorphic flokki planes.

Proof. Note that

[

0 1

1 0

] [

u+ g(t) f(t)

t uα

] [

0 1

1 0

]

=

[

uα t

f(t) u+ g(t)

]

.

Now let u+ g(t) = v−1, so that uα = v − g(t)α, and obtain

[

uα t

f(t) u+ g(t)

]

=

[

v − g(t)α t

f(t) v−1

]

.
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A basis change by
[

−1 0

0 1

] [

v − g(t)α t

f(t) v−1

] [

−1 0

0 1

]

,

followed by replacing −v by w, gives
[

w + g(t)α t

f(t) wα−1

]

which has the desired form. �

For a given cone, a partial flock is a set of planes which do not intersect on

this cone. Any finite flock is a partial flock of q planes. A partial flock of q − 1

planes is said to be of deficiency one. The Payne–Thas theorem (Theorem 1.1)

states that for a quadratic cone, any deficiency one partial flock can be uniquely

extended to a flock. We extend this theorem to α-flokki, for when K is finite, by

noting that the proof of the result due to Sziklai [14] is valid in this situation as

well.

Theorem 3.8. Let K ∼= GF(q). A deficiency one α-flokki may be extended to a

unique α-flokki.

Proof. Let α ∈ Aut(K), and Cα be the α-cone with vertex v0 = (0, 0, 0, 1) given

by xα
0x1 = xα+1

2 . Consider a partial α-flokki of Cα of deficiency one consisting

of q − 1 planes of the following form:

ρt : x0t− x1f(t)
α + x2g(t)

α − x3 = 0,

for t in a subset λ of K of cardinality q − 1. So, the function

φu : t → t− uα+1f(t)α + ug(t)α

is injective in K, for each u in K. Therefore, we have q−1 of the elements of K

as images for each φu. Note that the point on the generator
〈

v0, (u
α+1, 1, uα, 0)

〉

on ρt is (uα+1, 1, uα, uα+1t− f(t)α + uαg(t)α). For q > 2, we see that −
∑

t∈λ t

is the missing element from K in λ. We note that the point
(

uα+1, 1, uα,−
∑

t∈λ

(uα+1t− f(t)α + uαg(t)α)

)

is the missing point on each generator other than 〈(0, 0, 0, 1), (1, 0, 0, 0)〉. The

points (1, 0, 0, t) on ρt are on the generator 〈(0, 0, 0, 1), (1, 0, 0, 0)〉 and the miss-

ing point is
(

1, 0, 0,−
∑

t∈λ t
)

. Now all of these points lie on the plane

x0

(

∑

λ

t

)

+ x1

(

−
∑

λ

f(t)α

)

+ x2

(

∑

λ

g(t)α

)

+ x3 = 0,

so the missing plane is determined. �
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4 The 2
nd-cone

An α-flokki is a flock of the cone Cα. There is a projectively equivalent cone

C′
α = {(x0, x1, x2, x3) | x0x

α
1 = xα+1

2 } with vertex (0, 0, 0, 1) and it is of interest

to ask if an α-flokki can simultaneously be a flock of this ‘2nd-cone’. Let an

α-flokki be given by the planes πt : x0t − f(t)αx1 + g(t)αx2 − x3 = 0, hence

φu : t → uα+1t− f(t)α + uαg(t)α is a bijective function. Note that for this set of

planes to be a flock of C′
α, we must have that ρu : t → t− uα+1f(t)α + uαg(t)α

is a bijective function. By changing all signs in this function we obtain the

bijective function τu : t → uα+1f(t)α − (tα
−1

)α + uα(−g(t))α. This means that

the associated α-flokki spread or maximal partial spread relative to the second

cone is given by
{

x = 0, y = x

[

u− g(t) tα
−1

f(t)α uα

]

; t, u ∈ GF(q)

}

.

This argument may be ‘reversed’ to prove that a given α-flokki plane produces

a flock in both cones as long as τu is bijective.

Note that when g = 0, if φu : t → uα+1t − f(t)α is a bijective function for

all elements u ∈ K, then for u non-zero, we can factor out uα+1 to obtain that

ρu−1=v : t → t− vα+1f(t)α is bijective.

Definition 4.1. Given an α-flokki plane relative to the functions (g(t), f(t), t),

the set (g(tα), f(tα)α, t) is called the ‘2nd-cone triple’.

Theorem 4.2. (1) Given an α-flokki plane relative to (g(t), f(t), t), the 2nd-cone

triple (g(tα), f(tα)α, t) corresponds to an α-flokki plane if and only if

φu : t → uα+1t− f(t)α + uαg(t)α

for all u is a bijective function implies

τu : t → t− uα+1f(t)α + uαg(t)α

is a bijective function, for all u ∈ K.

(2) If g = 0 then any α-flokki of Cα is a flock of C′
α.

We leave it as an open problem to show that if g is not zero then an associated

α-flokki of Cα is never a flock of C′
α.

5 Baer groups

The Baer group theory for translation planes with spreads in PG(3, q) of John-

son [7], shows that Baer groups of order q produce partial flocks of quadratic
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cones of deficiency one. Given any conical flock plane, there is an elation

group E, whose orbits union the axis form reguli in PG(3, q). Derivation of

one of these regulus nets, produces a translation plane with spread in PG(3, q)

admitting a Baer group of order q. Now consider any given α-flokki and cor-

responding α-flokki plane. Again, there is an elation group E (see Section 2),

whose orbits union the axis form derivable partial spreads. Derivation of one

of the derivable nets produces a translation plane admitting a Baer group of or-

der q, but now the spread for this plane π∗ is no longer in PG(3, q) (for α 6= 1).

The components not in the derivable net are still subspaces in PG(3, q), as are

the Baer subplanes of the derivable net of π∗. Therefore, we would expect that

Baer groups of order q in such translation planes might also produce deficiency

one partial α-flokki.

Theorem 5.1. Let π be a translation plane of order q2 that admits a Baer group

B of order q. Assume that the components of π and the Baer axis of B are lines of

PG(3, q).

(1) Then π corresponds to a partial α-flokki of deficiency one.

(2) Therefore, the Baer partial spread defined by the Baer group is derivable and

the Baer subplanes incident with the zero vector are also lines in PG(3, q).

The derived plane is the unique α-flokki plane associated with the extended

α-flokki.

Proof. Let q = pr, for p a prime. Let (x1, x2, y1, y2) represent points, where xi

are r-vectors over the prime field. We may also represent xi as an element of

GF(q). Choose the Baer axis to be (0, x2, 0, y2), and obtain the group in the form

〈[

A 0

0 A

]〉

,

where A =

[

I C

0 I

]

and C is in a field K. The Baer group of order q is elemen-

tary abelian and corresponds to a field by fundamental results of Foulser [5]. It

follows that the Baer axis together with any orbit of length q forms a derivable

partial spread. If the Baer axis and the components not on the Baer net are lines

of PG(3, q) and we choose the Baer axis to be x = 0, then by Johnson [7], we

have that the group B may be represented in the form























1 0 u 0

0 0 0 uα

0 0 1 0

0 0 0 1









; u ∈ GF(q)















,

where α is an automorphism of GF(q).
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It follows that the components not on the Baer net have the form

x = 0, y = x

[

u+ a b

c uα

]

,

for q − 1 values of c in GF(q). Let c = tα, then a and b are functions of c, say

g(t) and f(t), respectively. Then we have a partial spread of the form

{

x = 0, y = x

[

u+ g(t) f(t)

t uα

]

; t ∈ λ, u ∈ GF(q)

}

,

where λ ⊆ GF(q) has cardinality q − 1. Therefore, we have a partial α-flokki of

deficiency one with planes

x0t− x1f(t)
α + x2g(t)

α − x3 = 0

for all t ∈ λα−1

.

Since any partial α-flokki of deficiency one can be extended to a unique

α-flokki, we see that the Baer net must be derivable, the Baer group is the

elation group of the derived plane and the Baer subplanes of the Baer net are

lines of PG(3, q). This completes the proof of the theorem. �

6 q-Flokki and algebraic lifting

When α is the automorphism x 7→ xq of GF(q2), an α-flokki will be referred to

as a q-flokki. We have that a q-flokki in PG(3, q2) has an associated flokki plane

with spread

{

x = 0, y = x

[

u+ g(t) f(t)

t uq

]

; t, u ∈ GF(q2)

}

.

The following theorem tells us when an α-flokki plane has been algebraically

lifted from a plane with spread in PG(3, q).

Theorem 6.1 (Cherowitzo and Johnson [3]). A translation plane with spread

{

x = 0, y = x

[

u+G(s) F (s)

s uα

]

; s, u ∈ GF(q2)

}

,

is algebraically lifted if and only if there is a coordinate change so that G(s) = 0

and α = q.
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The bilinear q-Flokki of Cherowitzo and Holder [4] yield a flokki plane with

spread
{

x = 0, y = x

[

u γ(sq)(q
2+1)/2

s uq

]

; s, u ∈ GF(q2)

}

,

where q is odd and γ is a non-square in GF(q2) such that γ2 is a non-square in

GF(q). The flokki planes of Cherowitzo of order q4 may be lifted from regular

nearfield planes of order q2 (see [3]).

Remark 6.2. The semifield q-flokki plane in Remark 2.5 is lifted from a Desar-

guesian plane.

Now we consider an algebraically lifted translation plane of order q4. Because

of Theorem 6.1, we know that it has a spread of the form

{

x = 0, y = x

[

u F (t)

t uq

]

; t, u ∈ GF(q2)

}

.

Since
[

1 0

0 eq

] [

u 0

0 uq

] [

e 0

0 1

]

=

[

ue 0

0 (ue)q

]

,

the Baer group of order q + 1,

B =

〈









1 0 0 0

0 e 0 0

0 0 e 0

0 0 0 1









; eq+1 = 1

〉

maps y = x

[

u 0

0 uq

]

to y = x

[

ue 0

0 (ue)q

]

. If we now derive the associated net,

the Baer group B is still a Baer group of order q + 1, but the elation group of

order q2 is now a Baer group E of order q2 (see e.g. Johnson, Jha and Biliotti

[10, Theorem 35.18] for more details).

Theorem 6.3. Let π be a translation plane of order q4 that admits a Baer group

E of order q2 and a non-trivial Baer group B such that [E,B] 6= 1. If the axis

of E and its non-trivial orbits are lines of PG(3, q2) then π is a derived q-flokki

translation plane; a translation plane that has been algebraically lifted and then

derived.

Proof. The plane is derivable since it corresponds to a partial α-flokki. Hence,

the derived plane has the following spread set

{

x = 0, y = x

[

u+G(t) F (t)

t uα

]

; t, u ∈ K

}

.
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The group E is now an elation group E and since B and E do not centralize

each other, it follows, as noted in Theorem 6.1, that the plane is an algebraically

lifted plane. Hence, α = q and G(t) = 0, that is, once we know that there is a

non-trivial Baer group, this group is forced to have order q + 1. �

7 Collineations and isomorphisms of α-flokki planes

We now want to study the full collineation group of a finite α-flokki plane π

with spread
{

x = 0, y = x

[

u+ g(t) f(t)

t uα

]

; t, u ∈ GF(q)

}

.

We will start by looking at the elation group

E =























1 0 u 0

0 1 0 uα

0 0 1 0

0 0 0 1









; u ∈ GF(q)















.

Let E′ be any elation group of π, different from E. Assume that E′ does not

have axis x = 0. Then, by the Hering–Ostrom theorem (see [10]), 〈E,E′〉 is

isomorphic to SL(2, pt), Sz(22e+1) and q is even, or SL(2, 5) and 3 divides q. In

the SL(2, pt) case by Johnson [9], the group is either SL(2, q) or SL(2, q2). In

the former case, the planes are Desarguesian, Ott–Schaeffer, Hering, Dempwolff

of order 16 or Walker of order 25. Since 22e+1 is at least q, the Sz(22e+1) case

does not occur by Büttner [2]. Assume that q > 4, then SL(2, 5) cannot occur.

The Dempwolff plane is not in PG(3, q). Hence, this leaves the Hering and Ott–

Schaeffer planes. The Hering planes are not derivable and the Ott–Schaeffer

planes admit reguli, so the plane is Desarguesian.

Therefore, assume that E′ does have axis x = 0. We now assume E′∩E 6= 〈1〉,

and get derivable nets sharing y = 0, and y = x

[

u0 0

0 uα
0

]

, for some u0 ∈ GF(q).

Note that a change of basis that allows us to represent this last component by

y = x does not change the general form of the derivable net
{

x = 0, y = x

[

u 0

0 uα

]

; u ∈ GF(q)

}

. (4)

Hence, by Johnson [8], we have two distinct derivable nets of π: the one in (4)

and
{

x = 0, y = x

[

v 0

0 vσ

]

; v ∈ GF(q)

}

, (5)
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where σ ∈ Aut(GF(q)). But, in this case, there are differences of matrices that

are non-singular, a contradiction. Hence, E′ ∩ E = 〈1〉.

First notice that if E is normal in Aut(π) then the α-derivable nets are per-

muted by Aut(π).

Now assume that E is not normal in Aut(π). Thus, there exists an element

φ ∈ Aut(π) such that the elation group E = φEφ−1 is different from E. Clearly

φ must fix x = 0, and thus representing a generic element of E by

[

E11 E12

0 I

]

we obtain E11 = I. It follows that E and E commute with each other and

belong to an elation group with axis x = 0. So, the group
〈

E,E
〉

contains the

set product EE, of order q2, which means that the α-flokki plane is a semifield

plane.

Now, having that EE has order q2 allows us to assume that φ fixes both x = 0

and y = 0, which then has the general form

(x, y) → (xρ, yρ)

[

A 0

0 B

]

,

where A,B ∈ GL(2, q) and ρ ∈ Aut(GF(q)). Then φ maps y = x to y = xA−1B.

Change basis by (x, y) → (x, yB−1A) to find a derivable net with components

x = 0, y = 0, and y = x. This net must be of the general form in equation (5)

by Johnson [8]. But the image of

y = x

[

u 0

0 uα

]

,

for u ∈ GF(q), under φ, and the posterior change of basis (x, y) → (x, yB−1A),

is

y = xA−1

[

uρ 0

0 uρα

]

A.

So, we get that either A =

[

a 0

0 d

]

, v = uρ and σ = α, or A =

[

0 b

c 0

]

, v = uρα

and σ = α−1.

Similarly, since φ maps y = x to y = xA−1B we change basis using the

transformation (x, y) → (xA−1B, y) to find a derivable net with components

x = 0, y = 0, and y = x. Then again, this net must be of the general form in

equation (5) by Johnson [8]. But the image of

y = x

[

u 0

0 uα

]

,
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for u ∈ GF(q), under φ, and the posterior change of basis (x, y) → (xA−1B, y),

is

y = xB−1

[

uρ 0

0 uρα

]

B.

So, we get that either B =

[

a 0

0 d

]

, v = uρ and σ = α, or B =

[

0 b

c 0

]

, v = uρα

and σ = α−1.

It follows that A−1B is either a diagonal or an anti-diagonal matrix. Since

A−1B being diagonal would yield a contradiction with φ not normalizing E we

get that

B−1A =

[

0 m

n 0

]

,

for some m,n ∈ GF(q)∗.

We now make the change of basis (x, y) → (x, yB−1A), to get a derivable net

in π of the form
{

x = 0, y = x

[

0 vm

vσn 0

]

; v ∈ GF(q)

}

.

Let t = v, and get the orbits of this net under the group E to obtain:

{

x = 0, y = x

[

u tm

tσn uα

]

, t, u ∈ GF(q)

}

.

Use tσn = sσ to transform the spread set into the form

{

x = 0, y = x

[

u fs

sσ uα

]

, s, u ∈ GF(q)

}

.

where f is a constant, and σ = α±1.

If σ = α then this is a Hughes–Kleinfeld semifield plane (see [10, 91.22]),

and if σ = α−1 then this is a dual/transposed Hughes–Kleinfeld semifield plane.

Since there are α-flokki spreads of this form, exactly when the flock is linear,

we obtain the following theorem. Note that the case where x = 0 is not left

invariant leads to the Desarguesian plane and α = 1.

Theorem 7.1. Let π be an α-flokki plane of order q2, where q > 5. Then one of

the following occurs:

(1) the full collineation group permutes the q α-derivable nets,

(2) α = 1 and the plane is Desarguesian or

(3) α 6= 1 and the α-flokki plane is a Hughes–Kleinfeld, or transposed Hughes–

Kleinfeld, semifield plane that corresponds to a linear flokki.
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Now assume that π1 and π2 are two isomorphic α-flokki planes of order q2,

for q > 5, neither of which are Hughes–Kleinfeld (transposed or not) or De-

sarguesian. Let σ be an isomorphism from π1 to π2, so we may assume that

x = 0 is left invariant and that the elation group E of order q is normalized by

σ. Initially, assume that πi has spread

{

x = 0, y = x

[

u+ gi(t) fi(t)

t uα

]

; t, u ∈ GF(q)

}

,

for i = 1, 2.

By following with an element of E, if necessary, we may assume that σ maps

y = x to y = x

[

1 + g2(t0) f2(t0)

t0 1

]

. Then, by changing the basis using the map









1 0 −g2(t0) −f2(t0)

0 1 −t0 0

0 0 1 0

0 0 0 1









, the resulting matrix spread set has the following

form:
{

x = 0, y = x

[

u+ g2(t)− g2(t0) f2(t)− f2(t0)

t− t0 uα

]

; t, u ∈ GF(q)

}

,

for i = 1, 2. Note that this spread, after a suitable selection of f2 and g2, main-

tains the form of the original matrix spread set.

By this recoordinatization we may assume that σ fixes x = 0 and y = x,

leaving invariant

{

x = 0, y = x

[

u 0

0 uα

]

; u ∈ GF(q)

}

. (6)

Since E is transitive on each derivable α-net, it follows that σ fixes x = 0 and

y = 0 (though not necessarily fixing y = x anymore), and is of the general form:

(x, y) → (xβ , yβ)

[

A 0

0 B

]

,

where β ∈ Aut(GF(q)), and the matrices A,B ∈ GL(2, q) with A−1B =

[

u0 0

0 uα
0

]

,

for some u0 ∈ GF(q)∗. Then, we must have

[

v + g2(s) f2(s)

s vα

]

= A−1

[

uβ + g1(t)
β f1(t)

β

tβ uαβ

]

B

= A−1

[

uβ + g1(t)
β f1(t)

β

tβ uαβ

]

A

[

u0 0

0 uα
0

]

.
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We let s = 0 and use that (6) is fixed by σ to get that A =

[

a 0

0 d

]

or

[

0 b

c 0

]

.

Thus, B = A

[

u0 0

0 uα
0

]

=

[

au0 0

0 duα
0

]

or

[

0 cuσ
0

bu0 0

]

, respectively. Moreover,

by applying a scalar mapping, we may assume that a = 1 or b = 1. In the first

situation,

[

v + g2(s) f2(s)

s vα

]

= A−1

[

uβ + g1(t)
β f1(t)

β

tβ uαβ

]

A

[

u0 0

0 uα
0

]

=

[

1 0

0 d−1

] [

uβ + g1(t)
β f1(t)

β

tβ uαβ

] [

u0 0

0 duα
0

]

=

[

(uβ + g1(t)
β)u0 f1(t)

βduα
0

tβd−1 uαβuα
0

]

.

Let u0 = wβ
0 . Then for v = (uw0)

β , s = tβd−1, we have

f2(s) = f1(s
β−1

dβ
−1

)βduα
0 and g2(s) = g1(s

β−1

dβ
−1

)βu0.

In the second situation, we have

[

v + g2(s) f2(s)

s vα

]

= A−1

[

uβ + g1(t)
β f1(t)

β

tβ uαβ

]

A

[

u0 0

0 uα
0

]

=

[

0 c−1

1 0

] [

uβ + g1(t)
β f1(t)

β

tβ uαβ

] [

0 cuα
0

u0 0

]

=

[

c−1uαβu0 tβuα
0

f1(t)
βu0 (uβ + g1(t)

β)cuα
0

]

.

We may assume that gi(0) = fi(0) = 0, for i = 1, 2 (this is not affected by

all the manipulations done to get that σ fixes y = 0). Therefore, taking s = 0,

we see that t = 0, implying that v = (c−1uαβu0), and vα = (uβcuα
0 ), which

implies that c−αuα2β = cuβ , for all u, thus α2 = 1 and cα+1 = 1. Letting

v = 0 implies u = 0, so that g2(s) = 0 and f2(s) = tβuα
0 , where s = f1(t)

βu0.

Therefore, t = f−1
1 ((su−1

0 )β
−1

), so that f2(s) = f−1
1 ((su−1

0 )β
−1

)βuα
0 . Moreover,

it also follows that g1(t) = 0. Assume that q is a non-square then α = 1, a

contradiction. Hence, q = h2, and α = h. Therefore, we have the spreads

{

x = 0, y = x

[

u fi(t)

t uh

]

; t, u ∈ GF(h2)

}

,

for i = 1, 2, where f2(t) = f−1
1 ((tu−1

0 )β
−1

)βuα
0 .

We now have the following theorem:
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Theorem 7.2. Two finite α-flokki planes, πi, for α 6= 1 and not Hughes–Kleinfeld

(transposed or not), with spreads

{

x = 0, y = x

[

u+ gi(t) fi(t)

t uα

]

; t, u ∈ GF(q)

}

,

for i = 1, 2, are isomorphic if and only if one of the following occurs:

(1) There is an automorphism β, a constant t0 and a constant u0 so that

f2(s+ t0)− f2(t0) = f1(s
β−1

dβ
−1

)βduα
0 ,

g2(s+ t0)− g2(t0) = g1(s
β−1

dβ
−1

)βu0.

(2) There is an automorphism β, a constant t0 and a constant u0 so that

f2(s+ t0)− f2(t0) = f−1
1 ((tu−1

0 )β
−1

)βuα
0 ,

g2(s+ t0)− g2(t0) = 0.

Furthermore, q = h2 and α = h.

Corollary 7.3. If α 6= 1 and π is a finite α-flokki plane that is not Hughes–

Kleinfeld (transposed or not), then the transposed α-flokki plane of π is isomorphic

to π if and only if there is an automorphism β and constants t0 and u0 so that

(1)

f−1
1 (s+ t0)− f−1

1 (t0) = f1(s
β−1

dβ
−1

)βduα
0 ,

g1f
−1
1 (s+ t0)− g1f

−1
1 (t0) = g1(s

β−1

dβ
−1

)βu0, or

(2)

f−1
1 (s+ t0)− f−1

1 (t0) = f−1
1 ((tu−1

0 )β
−1

)βuα
0 ,

g1(s+ t0)− g1(t0) = 0,

where q = h2 and α = h.

Proof. Note that g2 = g1f
−1
1 and f2 = f−1

1 , in the transposed plane. The parts of

the functions involving t0 simply ensure that an isomorphism leaves the deriv-

able net in (6) invariant. �

We finish this section by taking up the problem of determining when a finite

α-flokki plane π1 is isomorphic to a δ-flokki plane π2. Since we know (Corol-

lary 3.7) that this is always the case when δ = α−1, for g2(t) = g1(t)
α, and

f2(t) = f1(t), assume that δ is not α−1, that neither plane is Hughes–Kleinfeld



26 W. E. Cherowitzo • N. L. Johnson • O. Vega

(transposed or not), and that α and δ are both not equal to 1. The analogous

equations in the first situation (see proof of Theorem 7.2) are

[

v + g2(s) f2(s)

s vδ

]

= A−1

[

uβ + g1(t)
β f1(t)

β

tβ uαβ

]

A

[

u0 0

0 uδ
0

]

=

[

1 0

0 d−1

] [

uβ + g1(t)
β f1(t)

β

tβ uαβ

] [

u0 0

0 duδ
0

]

=

[

(uβ + g1(t)
β)u0 f1(t)

βduδ
0

tβd−1 uαβuδ
0

]

.

However, this implies that vδ = uαβuδ
0, v = uβu0, so that vδ = uδβuδ

0 = uαβuδ
0,

for all v, so that δ = α. In the second situation, the analogous equations are

[

v + g2(s) f2(s)

s vδ

]

= A−1

[

uβ + g1(t)
β f1(t)

β

tβ uαβ

]

A

[

u0 0

0 uδ
0

]

=

[

0 c−1

1 0

] [

uβ + g1(t)
β f1(t)

β

tβ uαβ

] [

0 cuδ
0

u0 0

]

=

[

c−1uαβu0 tβuδ
0

f1(t)
βu0 (uβ + g1(t)

β)cuδ
0

]

.

Then, similar to the previous arguments, vδ = uβcuδ
0, and v = c−1uαβu0, im-

plying that v = uδ−1βcδ
−1

u0 = c−1uαβu0. This implies that cδ
−1

= c−1 and

δ = α−1, contrary to our assumptions. Hence, we have the following theorem.

Theorem 7.4. Let π1 and π2 be α-flokki and δ-flokki planes respectively, of order

q2. If π1 and π2 are isomorphic then δ = α±1.

Proof. If π1 and π2 are isomorphic and one is a Hughes–Kleinfeld (or trans-

posed) semifield plane then the other is also a Hughes–Kleinfeld semifield plane

and the result follows (for example, from Johnson and Liu [11]). The other case

follows from our previous remarks. �

8 Comments on the open problems of Kantor and

Penttila

In Kantor and Penttila [12], there are eight open problems listed. We are able

to shed some light on a few of them.
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Problem (1) asks if the orbits of the group, leaving the cone Cα invariant, of

a linear flock determines the isomorphism classes of the associated Hughes–

Kleinfeld flokki planes. More generally, one could ask how to connect the group

of an α-flokki plane with the group of of the associated α-flokki.

If α = 1, the points of the flock correspond to the Baer subplanes of the

q-regulus nets of the associated conical flock plane. A collineation of a non-

Desarguesian conical flock plane of order q2, q > 5, must permute these q-regu-

lus nets and therefore, the set of Baer subplanes corresponding to the quadratic

cone are also permuted. Therefore, it is possible to connect groups of conical

flock planes with groups of the quadratic cone. However, when α 6= 1, the set

of Baer subplanes is not a set of GF(q)-subspaces and therefore, the associated

permutation of the Baer subplanes might not indicate how to define a point to

point collineation mapping of the cone Cα. There is a permutation of the as-

sociated planes, but without knowledge that any permutation of the associated

planes somehow is related to a collineation of the α-flokki plane, at present the

theory cannot be developed.

Problem (2) is answered in the negative by the in- and out-star bilinear flokki

of Cherowitzo and Holder [4] (e.g. Examples 1 and 2).

Problem (3) has also a negative answer in the case that g(t)2 = g(t). By Corol-

lary 3.7, and using α = 1/2, the following matrices
[

u+ g(t)2 f(t)

t u1/2

]

and

[

u+ g(t) t

f(t) u2

]

yield isomorphic flokki planes.

Problem (4). In Kantor and Penttila, it is noted that if g, f give a flokki plane

then gf−1, f−1 also give a flokki plane. The question is when this second pair

produces an isomorphic flokki plane.

We notice that this latter pair gives the transposed plane of the original flokki.

So, the answer is yes if and only if the original flock and the transpose are not

isomorphic.

For example, the 2-flokki plane of Kantor and Penttila (Theorem 11 in [12])

with spread
{

x = 0, y = x

[

u+ t5 t14

t u2

]

; t, u ∈ GF(2e)

}

,

where 3 does not divide e, has transpose isomorphic to (using Corollary 3.7)
{

x = 0, y = x

[

u2 + t10 t14

t u

]

; t, u ∈ GF(2e)

}

,
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where 3 does not divide e. These planes are isomorphic if and only if

f−1
1 (s+ t0)− f−1

1 (t0) = f1(s
β−1

dβ
−1

)βduα
0 ,

g1f
−1
1 (s+ t0)− g1f

−1
1 (t0) = g1(s

β−1

dβ
−1

)βu0,

where f1(t) = t14 and g1(t) = t5. This leads to the following equation:

(t14a+ b)5 = t5c+ d, for all t in GF(2e),

for constants a, b, c, d, where a, c are both non-zero. This, clearly, cannot hold

for 2e > 70.
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