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A new family of 2-dimensional Laguerre planes
that admit PSL2.R/ � R as a group of automorphisms

Günter F. Steinke

We construct a new family of 2-dimensional Laguerre planes that differ from
the classical real Laguerre plane only in the circles that meet a given circle
in precisely two points. These planes share many properties with but are non-
isomorphic to certain semiclassical Laguerre planes pasted along a circle in that
they admit 4-dimensional groups of automorphisms that contain PSL2.R/ and
are of Kleinewillinghöfer type I.G.1.

1. Introduction

A 2-dimensional Laguerre plane is an incidence structure on the cylinder ZDS1�R

determined by a collection of graphs of continuous functions S1! R; see the fol-
lowing section for a definition of and facts about Laguerre planes. The collection of
all automorphisms of a 2-dimensional Laguerre plane is a Lie group of dimension
at most 7. All 2-dimensional Laguerre planes whose automorphism groups have
dimension at least 5 are known; see [Löwen and Pfüller 1987, Theorem 1]. The
classification of 2-dimensional Laguerre planes whose automorphism groups are
4-dimensional is almost complete except when the automorphism group fixes no
parallel class but is not transitive on the point set. Examples of 2-dimensional
Laguerre planes which exhibit such groups of automorphisms can be found in
[Steinke 1987; Löwen and Steinke 2007].

In this paper we contribute to the investigation of 2-dimensional Laguerre planes
whose automorphism groups are 4-dimensional, and construct a new family of such
planes that admit a group of automorphisms isomorphic to PSL2.R/�R. It shares
many circles with the classical real Laguerre plane (and the semiclassical Laguerre
planes of group dimension 4 from [Steinke 1987]; see Section 5 for a brief descrip-
tion). Its full automorphism group fixes a distinguished circle and is 3-transitive
on it. Derived projective planes at points on the distinguished circle are dual to
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the derived projective planes at corresponding points in the semiclassical Laguerre
planes of group dimension 4 pasted along a circle. However, our Laguerre planes
are not semiclassical. The new planes and the semiclassical Laguerre planes of
group dimension 4 will play a prominent role in the classification of 2-dimensional
Laguerre planes of group dimension 4 whose automorphism groups fix a circle.

Section 2 summarizes facts about 2-dimensional Laguerre planes. Section 3
describes the new family of 2-dimensional Laguerre planes. Section 4 proves that
these are indeed 2-dimensional Laguerre planes. In the last section we determine
isomorphism classes, full automorphism groups and Kleinewillinghöfer types of
our planes. We further show that the Laguerre planes are not semiclassical and
investigate the associated compact 3-dimensional generalized quadrangles.

2. Laguerre planes

A Laguerre plane L D .P;C; k/ is an incidence structure consisting of a point
set P , a circle set C and an equivalence relation k (parallelism) defined on the
point set such that

� three mutually nonparallel points can be joined by a unique circle,

� given a point p on a circle C and a point q not parallel to p, there is a unique
circle that contains both points and touches C geometrically at p, that is,
intersects C only in p or coincides with C ,

� each parallel class meets each circle in a unique point (parallel projection),
and

� there are four points not on a circle and there is a circle that contains at least
three points (richness);

compare [Groh 1968; 1969b].
In this paper we are only concerned with Laguerre planes whose common point

set is the cylinder Z D S1 � R (where the 1-sphere S1 usually is represented
as R[ f1g), whose circles are graphs of functions S1! R and whose parallel
classes of points are the generators of the cylinder. Notice that for an incidence
structure on the cylinder with circles and parallel classes like this, the axioms of
parallel projection and richness are automatically satisfied. In particular, we are
interested in 2-dimensional or flat Laguerre planes on the cylinder. These Laguerre
planes are characterized by the fact that all their circles are graphs of continuous
functions from S1 to R; cf. [Groh 1968; 1969b]. The axiom of joining and touching
show that the collection of circle-describing functions of a 2-dimensional Laguerre
plane solves the Hermite interpolation problem of rank 3.

The classical real Laguerre plane Lcl is obtained as the geometry of nontrivial
plane sections of a cylinder in R3 with an ellipse in R2 as base, or equivalently, as
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the geometry of nontrivial plane sections of an elliptic cone, in real projective three-
space, with its vertex removed. The parallel classes are the generators of the cylin-
der or cone. By replacing the ellipse in this construction by arbitrary ovals in R2

(i.e., convex, differentiable simply closed curves), we also obtain 2-dimensional
Laguerre planes. These are the so-called 2-dimensional ovoidal Laguerre planes.

Circles of a 2-dimensional Laguerre plane, as described above, are homeomor-
phic to the unit circle S1. When the circle set is topologized by the Hausdorff
metric with respect to a metric that induces the topology of the point set, then
the plane is topological in the sense that the operations of joining three points by
a circle, intersecting two circles, and touching are continuous with respect to the
induced topologies on their respective domains of definition. For more information
on topological Laguerre planes we refer to [Groh 1968; 1969b].

For each point p of L we form the incidence structure Ap D .Ap;Lp/ whose
point set Ap consists of all points of L that are not parallel to p and whose line
set Lp consists of all restrictions to Ap of circles of L passing through p and of
all parallel classes not passing through p. It readily follows that Ap is an affine
plane. We call Ap the derived affine plane at p. In fact, the axioms of a Laguerre
plane are equivalent to each derived incidence structure being an affine plane. For
example, each derived affine plane of an ovoidal Laguerre plane is Desarguesian.

Each derived affine plane Ap of a 2-dimensional Laguerre plane is even a topo-
logical affine plane and extends to a 2-dimensional compact projective plane Pp,
which we call the derived projective plane at p; see [Salzmann 1967], [Salzmann
et al. 1995] or [Polster and Steinke 2001, Chapter 2] for more information on topo-
logical 2-dimensional compact projective planes. Circles not passing through the
distinguished point p induce closed ovals in Pp by removing the point parallel to p

and adding in Pp the point ! at infinity of lines that come from parallel classes of L.
The line at infinity of Pp (relative to Ap) is a tangent to this oval. According to
[Polster and Steinke 1994, Proposition 2] there is a unique topology extending the
natural topology of the affine plane such that one obtains a 2-dimensional Laguerre
plane.

An automorphism of a Laguerre plane is a permutation of the point set such that
parallel classes are mapped to parallel classes and circles are mapped to circles.
Every automorphism of a 2-dimensional Laguerre plane is continuous and thus a
homeomorphism of Z. The collection of all automorphisms of a 2-dimensional
Laguerre plane L forms a group with respect to composition, the automorphism
group � of L. This group is a Lie group of dimension at most 7 with respect to
the compact-open topology; see [Steinke 1986]. We call the dimension of � the
group dimension of L.

The maximum dimension is attained precisely in the classical real Laguerre
plane. In fact, group dimension 6 does not occur. Furthermore, 2-dimensional
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Laguerre planes of group dimension 5 must be special ovoidal Laguerre planes;
see [Löwen and Pfüller 1987, Theorem 1].

We investigated 2-dimensional Laguerre planes admitting 4-dimensional point-
transitive groups of automorphisms in [Steinke 1993]. It was shown that such
planes must be classical. The 2-dimensional Laguerre planes admitting 4-dimen-
sional groups of automorphisms that fix a parallel class were completely deter-
mined in [Steinke 2015]. These planes are covered by the families of Laguerre
planes of generalized shear type, Laguerre planes of translation type and Laguerre
planes of shift type; see [Steinke 2015, Corollary 3.5] for details and references to
the various types of Laguerre planes.

The remaining open case is when a closed connected 4-dimensional group of
automorphisms fixes a circle but no parallel class. Then the automorphism group
contains a subgroup isomorphic to PSL2.R/ or its universal (simply connected)
covering group CPSL2.R/; compare [Steinke 1990, Theorem B]. Examples of 2-
dimensional Laguerre planes which admit such groups of automorphisms can be
found in [Steinke 1987; Löwen and Steinke 2007].

The collection of all automorphisms of L that fix each parallel class is a closed
normal subgroup of � , called the kernel of L. The kernel of a 2-dimensional
Laguerre plane has dimension at most 4. Furthermore, a kernel of dimension 4
characterizes the ovoidal Laguerre planes among 2-dimensional Laguerre planes,
that is, a 2-dimensional Laguerre plane L is ovoidal if and only if its kernel is
4-dimensional; see [Groh 1969a].

3. The new models of 2-dimensional Laguerre planes

We construct a class of 2-dimensional Laguerre planes that admit a 4-dimensional
group of automorphisms fixing a circle. This class depends on a real positive
parameter k. To begin with, it is readily seen that a multiplicative homeomorphism
of R is of the form

hk.x/D x jxjk�1;

where k > 0. Furthermore, hk is differentiable for all x ¤ 0 and has derivative
h0

k
.x/D kjxjk�1. We use hk also when k � 0. Of course, in this case, hk is not

defined at 0, but still multiplicative on R n f0g.

Description of the models Lk. We consider the following incidence structures Lk ,
where 0 < k < 2. For each such k we let k 0 D 2� k, so that 0 < k 0 < 2. The
point set is the cylinder Z D .R[ f1g/�R. Two points .x1;y1/; .x2;y2/ 2 Z

are parallel if and only if x1 D x2, and parallel classes in L are the sets fug �R

for u 2 R[f1g. Circles are of one of the following forms:

� Ca;b;c D f.x;y/ 2 R2 j y D ax2C bxC cg[ f.1; a/g, where b2 � 4ac; these
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are circles of the classical real Laguerre plane and precisely those that do not
meet C0 D C0;0;0 in exactly two points;

� D0;b;c D f.x;y/ 2 R2 j y D bhk.x� c/g[ f.1; 0/g, where b > 0;

� D0;b;c D f.x;y/ 2 R2 j y D bhk0.x� c/g[ f.1; 0/g, where b < 0; and

� Da;b;cDf.x;y/2R2 jyDahk.x�b/hk0.x�c/g[f.1; a/g, where a.b�c/>0.

We call a circle of the form Ca;b;c a C -circle and a circle of the form Da;b;c

a D-circle; see Figure 1 for the shape of D-circles. Note that unless k D k 0 D 1,
the graph of Da;b;c for a¤ 0 has a vertical tangent line at one of its points on the
x-axis.

The set of all circles (C - and D-circles as above) is denoted by Ck . Then
Lk D .Z;Ck ; k/ is the incidence structure with point set Z, set of circles Ck and
equivalence relation k on Z as given above.

Sometimes it will be more convenient to use a slightly different parametrization
of C -circles. We define

C 0a;b;c D f.x;y/ 2 R2
j y D a.x� b/2C cg[ f.1; a/g;

where ac � 0, a¤ 0. This uniquely covers all C -circles except the circles C0;0;c

where c 2 R, the circles that touch C0 at .1; 0/. (Extending the definition of
C 0

a;b;c
to include a D 0 would yield multiple descriptions of the latter touching

circles.) Note that when the parameter c tends to b in a D-circle Da;b;c one just
obtains C 0

a;b;0
. This is due to the fact that hk.x/hk0.x/D x2 for all x 2 R.

We show in the next section that Lk is indeed a Laguerre plane. C -circles are
the same as in the classical real Laguerre plane Lcl, which is obviously isomorphic
to L1. So only the circles meeting C0 in precisely two points have been replaced
in Lcl by the D-circles.

x

y

x

y

D0;�1;0

D0;1;1

D1;1;0

Figure 1. The circles D0;1;1, D0;�1;0 and D1;1;0 in L1=2.
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In [Polster and Steinke 1995, Proposition 6] it was proved that the set of circles
that meet a given circle in exactly two points can be exchanged by a corresponding
set of circles from a different 2-dimensional Laguerre plane so long as the two
planes share the circles that touch the distinguished circle. However, the planes Lk

are not examples for this construction as we do not have a 2-dimensional Laguerre
plane (other than Lk) that contains all D-circles of Lk and all circles touching C0.

It is readily verified that the permutations

a;b;c;d;r W .x;y/ 7!

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

�
axC b

cxC d
;
r.ad � bc/y

.cxC d/2

�
if x 2 R; cxC d ¤ 0;�

1;
rc2y

ad � bc

�
if c ¤ 0; x D�

d

c
;�

a

c
;
r.ad � bc/y

c2

�
if c ¤ 0; x D1;�

1;
rdy

a

�
if c D 0; x D1

of the cylinder Z, where a; b; c; d; r 2R, ad�bc¤ 0 and r > 0, are automorphisms
of Lk (i.e., take circles to circles). Indeed, since each a;b;c;d;r is an automorphism
of the classical real Laguerre plane, a C -circle is taken to a C -circle. For D-circles
it suffices to consider the generating transformations 1;t;0;1;1 with t 2 R, s;0;0;1;1

with s ¤ 0, 1;0;0;1;r with r > 0, and 0;�1;1;0;1. For example, in case a¤ 0 one
finds that

1;t;0;1;1.Da;b;c/DDa;bCt;cCt ;

s;0;0;1;1.Da;b;c/DDa=s;bs;cs;

1;0;0;1;r .Da;b;c/DDra;b;c ;

0;�1;1;0;1.Da;b;c/DDahk.b/hk0 .c/;�1=b;�1=c ;

where also bc ¤ 0 in the last case.
Let

� D fa;b;c;d;r j a; b; c; d; r 2 R; ad � bc ¤ 0; r > 0g:

Then � is a group of automorphisms of Lk . Obviously,

†D fa;b;c;d;1 j a; b; c; d 2 R; ad � bc ¤ 0g

is a subgroup of � . Furthermore, † is isomorphic to PGL2.R/ and � is isomorphic
to PGL2.R/�R. The action of † on C0 is equivalent to the standard action of
PGL2.R/ on R[f1g. In particular, † is sharply 3-transitive on C0. The subgroup
f1;0;0;1;r j r > 0g of � comprises the kernel of � . Moreover, † and � have two
orbits on Z, namely C0 and Z nC0. On the circle space, � has four orbits: fC0g,
fCa;b;c j b

2 D 4acg, fCa;b;c j b
2 < 4acg, and the set of all D-circles.
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We equip the cylinder Z with the natural Euclidean topology of S1 �R. On
R2 �Z, the usual Euclidean topology is induced. In our representation, a neigh-
bourhood of a point .1; a/ consists of all .x;y/ such that either x D1 and y

is sufficiently close to a, or x 2 R is of sufficiently large modulus and y=x2 is
sufficiently close to a. It is readily checked that in this topology, circles of Lk are
closed subsets of Z (in fact, are homeomorphic to S1) and that all transformations
in � are continuous.

4. The geometric axioms

Since � has precisely two orbits on Z it suffices to verify that the derived incidence
structures at .1; 0/ and .1; 1/ are affine planes in order to show that Lk is a
Laguerre plane.

We first deal with the derived incidence structure A0 at .1; 0/. The point set of
A0 is R2 and nonvertical lines come from C0;0;c , c 2 R, and D0;b;c , b ¤ 0. Hence,
nonvertical and nonhorizontal lines are given by

y D bhk.x� c/; b > 0; and

y D bhk0.x� c/; b < 0:

Lemma 4.1. The derived incidence structure A0 of Lk at .1; 0/ is an affine plane.
Furthermore, A0 is Desarguesian if and only if k D 1.

Proof. We make the coordinate transformation

R2
! R2

W .x;y/ 7! .h�1
k .y/;x/:

Then the nonvertical and nonhorizontal lines in the new .u; v/-coordinates become

v D BuC c; where B > 0 .B D 1=h�1
k .b//; and

v D Bhk=k0.u/C c; where B < 0 .B D 1=h�1
k0 .b//:

One also has the vertical and horizontal lines u D c and v D c, respectively.
Since hk=k0 is an orientation preserving homeomorphism of R, one sees that A0

is an affine plane; compare [Steinke 1985, Proposition 2.1]. In the notation of
[Steinke 1985] the plane described above in the .u; v/-coordinates is the affine
plane Ahk=k0 ;id. It is a plane over a Cartesian field — see [Salzmann et al. 1995,
Section 37] — the affine part of the plane P1;k=k0;1 in the notation of [Salzmann
et al. 1995, 37.3]. Such a plane is Desarguesian if and only if k=k 0 D 1; compare
[Steinke 1985, Corollary 3.2] or [Salzmann et al. 1995, 37.3 and Theorem 37.4].
However, k D k 0 implies k D 1. �

Before we consider the derived incidence structure A1 at .1; 1/, we deal with
the intersection of two general distinct circles in Lk .
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Lemma 4.2. Two distinct circles in Lk have at most two points in common.

Proof. The statement is obviously true for two distinct C -circles. Consider a C -
circle and D-circle. By applying the group � we may assume that the D-circle is
D0;m;t , where m¤ 0 and the C -circle is C1;0;c , where c � 0. The x-coordinates
of points of intersection are found from the equation

x2
C c Dmhk.x� t/: (1)

We apply h�1
k
D h1=k on both sides to obtain

h1=k.x
2
C c/DAxCB;

where A D h�1
k
.m/ ¤ 0 and B D �h�1

k
.m/t . However, the function fc W x 7!

h1=k.x
2 C c/ on the left-hand side is strictly convex. This can be seen from

the second derivative of fc given by f 00c .x/D
2
k
.x2C c/

1
k
�2
�

k0

k
x2C c

�
, which

is positive except possibly when x D 0. Hence, (1) has at most two solutions and
thus C1;0;c and D0;m;t have at most two points of intersection.

In the last case we consider two D-circles. By applying the group � and
Lemma 4.1 we may assume that one circle is D0;m;t , where m¤ 0 and the other
circle is D1;1;0. We first assume that m > 0. Then x-coordinates of points of
intersection are found from the equation

hk.x� 1/hk0.x/Dmhk.x� t/: (2)

We apply h�1
k

on both sides to obtain

.x� 1/hk0=k.x/DAxCB;

where AD h�1
k
.m/ > 0 and B D�h�1

k
.m/t . The function fC W x 7! .x�1/hl.x/,

where l D k 0=k, on the left-hand side of the above equation has derivative

f 0C.x/D hl.x/C l.x� 1/jxjl�1
D ..l C 1/x� l/jxjl�1

and second derivative

f 00C.x/D .l C 1/jxjl�1
C .l � 1/..l C 1/x� l/hl�2.x/

D hl�2.x/..l C 1/xC .l � 1/..l C 1/x� l//

D lhl�2.x/..l C 1/x� l C 1/:

Hence fC is strictly decreasing on .�1;xmin/, where xminD l=.lC1/ > 0, strictly
increasing on .xmin;C1/ and has an absolute minimum at xmin. Furthermore, fC
is strictly convex on the interval .xmin;C1/; compare the diagram on the left
in Figure 2. Since the restriction of fC to .xmin;C1/ (the increasing branch
of the graph of fC) is convex, a Euclidean line of positive slope can meet the
increasing branch in at most two points and the decreasing branch (the graph of



A NEW FAMILY OF 2-DIMENSIONAL LAGUERRE PLANES 61

x

y

y D fC.x/

x

y

y D f�.x/

Figure 2. The graphs of fC.x/D .x� 1/h2.x/ and f�.x/D .xC 1/h1=2.x/.

the restriction of fC to .�1;xmin/) in at most one point. If such a line meets
the increasing branch in two points, then because limx!C1 fC.x/=x DC1 the
point .xmin; fC.xmin// lies above this line, so that the line cannot meet the graph
of fC in any more points. In any case, we see that a Euclidean line of positive
slope intersects the graph of fC at most twice. This shows that (2) has at most two
solutions and thus that D0;m;t , where m> 0, and D1;1;0 have at most two points
in common.

When m< 0 one similarly considers the equation

hk.x� 1/hk0.x/Dmhk0.x� t/; (3)

from which one obtains

.xC 1/hk=k0.x/DAxCB;

where AD h�1
k0 .m/ < 0 and BD h�1

k0 .m/.1� t/. A similar straightforward analysis
of the function f� W x 7! .xC 1/hl.x/ on the left-hand side, where now l D k=k 0,
shows that the decreasing branch is strictly convex, so that a Euclidean line of
negative slope intersects the graph of f� at most twice; compare the diagram on
the right in Figure 2. Therefore, (3) has at most two solutions and thus D0;m;t ,
where m< 0, and D1;1;0 have at most two points in common. This shows that in
any case two distinct D-circles intersect in at most two points. �

We are now ready to deal with the derived incidence structure A1 at .1; 1/. The
point set of A1 is R2 and nonvertical lines are induced by C1;b;c , where b2 � 4c,
and D1;b;c , where b > c. Explicitly, these lines are given by

y D x2
C bxC c; b2

� 4c; and

y D hk.x� b/hk0.x� c/; b > c:
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We call them C -lines and D-lines, respectively, as they come from C - and D-
circles of Lk .

Lemma 4.3. The derived incidence structure A1 of Lk at .1; 1/ is a linear space.

Proof. By Lemma 4.2 we know that two different lines in A1 intersect in at most
one point. This yields the uniqueness of a line joining two points if it exists.

Let pi D .xi ;yi/, i D 1; 2, be two distinct points of A1. If x1 D x2, then the
vertical line x D x1 (coming from a parallel class of the Laguerre plane) joins the
two points. We therefore assume that x1 ¤ x2. By the transitivity properties of
the stabilizer �.1;1/ we may assume that without loss of generality x1 D 0 and
x2 D 1. Finally, because A0 (and thus each A.u;0/ where u 2 R) is an affine plane
by Lemma 4.1, we may further assume that y1;y2 ¤ 0.

In case 2.y1C y2/ � .y2 � y1/
2C 1 there is a unique C -line through p1 and

p2. Indeed, the Euclidean parabola given by y D x2C .y2�y1� 1/xCy1 passes
through the two points, and this is a line of A1 if and only if

0� .y2�y1� 1/2� 4y1 D .y2�y1/
2
C 1� 2.y1Cy2/:

In this case, the two points cannot be on a D-line by Lemma 4.2.
So now assume that 2.y1C y2/ < .y2� y1/

2C 1. We must show that p1 and
p2 are on a D-line D1;b;c . The two parameters b > c satisfy the equations

y1 D hk.b/hk0.c/; y2 D hk.b� 1/hk0.c � 1/:

After application of h�1
k0 on both sides we obtain

v1 WD h�1
k0 .y1/D hl.b/c; (4)

v2 WD h�1
k0 .y2/D hl.b� 1/.c � 1/; (5)

where l D k=k 0. Hence

g.b/ WD hl.b/hl.b� 1/� v1hl.b� 1/C v2hl.b/D 0:

First note that g.b/D .hl.b/�v1/.hl.b�1/Cv2/Cv1v2. From this equation one
sees that limb!˙1 g.b/DC1.

When y2 < 0, then g.1/ D v2 < 0. Thus, by the intermediate value theorem,
there is a b > 1 such that g.b/ D 0. From (5) it follows that c < 1. Similarly,
when y1 < 0< y2, then g.0/D v1 < 0 and g.1/D v2 > 0 so that there is some b,
0< b < 1, such that g.b/D 0. From (4) it then follows that c < 0. Hence, in these
two cases, b > c and we have a D-line through p1 and p2.

We finally assume that y1;y2 > 0. We compute

vi D h1=k0.yi/D .yi/
1=k0

D .
p

yi/
2=k0

D .
p

yi/
.kCk0/=k0

D .
p

yi/
lC1
D
p

yi hl.
p

yi/;
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where i D 1; 2. Hence,

g.
p

y1/D hl.
p

y1/Œhl.
p

y1� 1/.1�
p

y1/C v2�

D hl.
p

y1/..
p

y2/
lC1
� j
p

y1� 1jlC1/:

One similarly obtains that

g.�
p

y1/D hl.�
p

y1/Œhl.�
p

y1� 1/.1C
p

y1/C v2�

D hl.�
p

y1/.
p

y2
lC1
� j
p

y1C 1jlC1/:

The inequality 2.y1Cy2/ < .y2�y1/
2C 1 can be rewritten as

.y2�y1� 1/2� 4y1 > 0

from which we see that either y2 > .
p

y1C1/2 or y2 < .
p

y1�1/2. In the former
case, g.�

p
y1/ < 0, and in the latter case, g.

p
y1/ < 0. Since g.0/ D v1 > 0

and limb!C1 g.b/ D C1, there must be a b 2 .�
p

y1; 0/ or b 2 .
p

y1;C1/,
respectively, such that g.b/D 0. Finally, because

y1 D .
p

y1/
2
D hk.

p
y1/hk0.

p
y1/;

one obtains from (4) that

hk0.c=
p

y1/D hk.
p

y1=b/:

Hence c < �
p

y1 < b when b < 0, and 0< c <
p

y1 < b when b >
p

y1. Hence,
in any case, b > c and we have a D-line through p1 and p2.

This proves that any two distinct points of A1 can be joined by a unique line,
that is, A1 is a linear space as claimed. �

Lemma 4.4. The derived incidence structure A1 of Lk at .1; 1/ is an affine plane.

Proof. By Lemma 4.3 it only remains to show that through each point there is a
unique line that is parallel to a given line. This is clearly the case for vertical lines.

For a nonvertical line we define its slope s by

s.C1;b;c/D�b and s.D1;b;c/D kbC k 0c:

We claim that two nonvertical lines of A1 are parallel if and only if they have the
same slope. To see this and where the definition of s comes from, we apply the co-
ordinate transformation induced by 0;1;�1;0;1, that is, .x;y/ 7! .�1=x;y=x2/ for
x real and nonzero, suitably extended to Z. Then C1;b;c and D1;b;c are described
by vD cu2�buC1 and vD hk.1Cbu/hk0.1C cu/, respectively. Differentiation
at uD 0 yields �b and kbC k 0c, that is, the slope of the corresponding line. Now,
if the slopes of two nonvertical lines are different, then after the above coordinate
transformation the resulting circles intersect transversally at .0; 1/. Hence these
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circles intersect in a second point in Z n f0g �R. Therefore the original lines meet
in a point of A1 and so are not parallel.

We now assume that two nonvertical lines of A1 have the same slope s. In case
of two C -lines C1;b1;c1

and C1;b2;c2
this means that b1 D b2 D �s, and the two

lines are clearly parallel.
A D-line of slope s is described by the function f .c;x/D hk.x�b/hk0.x� c/,

where b D .s� k 0c/=k. Differentiation with respect to c yields

@f .c;x/

@c
D k 0jx� bjk�1hk0.x� c/� k 0hk.x� b/jx� cjk

0�1

D k 0jx� bjk�1
jx� cjk

0�1.b� c/

D
k 0

k 0
jx� bjk�1

jx� cjk
0�1.s� 2c/:

But b > c if and only if s�2c > 0. Thus @
@c
f .c;x/ > 0, and c 7! f .c;x/ is strictly

increasing on
�
�1; s

2

�
for all x 2 R. It now follows that two D-lines D1;b1;c1

and
D1;b2;c2

of the same slope kb1C k 0c1 D kb2C k 0c2 are parallel.
Note that c < s

2
< b for a D-line of slope s. Furthermore, as c tends to s

2
, the

D-line D1;b;c , kb C k 0c D s, converges to D1;s=2;s=2 D C 0
1;s=2;0

. In particular,
C 0

1;s=2;0
and D1;b;c are parallel, and D1;b;c lies below C 0

1;s=2;0
. Finally, a C -line

C 0
1;s=2;c

, c � 0, of slope s lies above or coincides with C 0
1;s=2;0

. Hence, a C -line
and a D-line of slope s are parallel.

Finally, given a point p D .x0;y0/ and a line of slope s there is a unique line of
slope through p. Indeed, when y0 �

�
x0�

s
2

�2, the parallel through p must be a
C -line C 0

1;s=2;c
, and c is uniquely determined by

c D y0�

�
x0�

s

2

�2
� 0:

When y0<
�
x0�

s
2

�2, the parallel through p must be a D-line D1;b;c , kbCk 0cD s.
Since

lim
c!�1

.y0� hk.x� b/hk0.x� c//DC1 and

lim
c!s=2

.y0� hk.x� b/hk0.x� c//D y0�
�
x0�

s
2

�2
< 0;

there is a c such that D1;b;c passes through p.
This shows that A1 satisfies the parallel axiom and that A1 is an affine plane. �

The following is a direct consequence of Lemmata 4.1 and 4.4, together with
the transitivity properties of � and the fact that each derived plane of an ovoidal
Laguerre plane is Desarguesian.
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Corollary 4.5. The incidence structure Lk where 0 < k < 2 is a Laguerre plane.
Furthermore, Lk is ovoidal if and only if k D 1. In this case the Laguerre plane is
classical.

Since in the topology on Z circles of Lk are closed Jordan curves on Z we have
the following; compare [Groh 1969b, 3.10].

Theorem 4.6. Each Lk where 0< k < 2 is a 2-dimensional Laguerre plane.

5. Isomorphisms and other properties

Lemma 5.1. Let  be an isomorphism from Lk to Ll . If k ¤ 1, then  takes C0

in Lk to C0 in Ll .

Proof. Suppose that  .C0/¤ C0. Then  �k 
�1 is a group of automorphisms of

Ll that has Z n .C0/ and  .C0/ as orbits. However, �l has Z nC0 and C0 as
orbits, and it follows that the automorphism group of Ll must be transitive on Z.
Hence, Ll is classical by [Steinke 1993]. But then Lk is also classical and k D 1 —
a contradiction to our assumption. This shows that  .C0/D C0. �
Proposition 5.2. Two Laguerre planes Lk and Ll are isomorphic if and only if
l 2 fk; k 0g. In particular, each plane is isomorphic to exactly one plane Lk , where
0< k � 1.

Proof. Note that � WZ!Z given by �.x;y/D .x;�y/ is an automorphism of
the classical real Laguerre plane; circles Ca;b;c are taken to C�a;�b;�c . In fact, �
induces an isomorphism from Lk onto Lk0 : one has

�
�
D
.k/

a;b;c

�
DD

.k0/

a;c;b

when a¤ 0, and
�
�
D
.k/

0;b;c

�
DD

.k0/

0;�b;c
:

(Here the superscripts refer to the Laguerre planes the circles are from.) This
verifies that Lk and Lk0 are isomorphic.

Assume that Lk and Ll are isomorphic. If k D 1, then Lk is classical and so
is Ll . Thus l D 1, and l D k D k 0.

Suppose that k¤ 1. Let  be an isomorphism from Lk to Ll . By Lemma 5.1 we
know that  .C0/DC0. Using the transitivity properties of �l on Ll we may further
assume that  takes .1; 0/, .1; 1/ and .0; 0/ in Lk to the corresponding points
with the same coordinates in Ll . Hence the derived affine planes A.k/

0
and A.l/

0
are

isomorphic. As seen in the proof of Lemma 4.1 the projective extensions of A.k/
0

and A.l/
0

are isomorphic to cartesian planes P1;k=k0;1 and P1;l= l 0;1, respectively.
By [Salzmann et al. 1995, Theorem 37.3 and Proposition 37.6] we thus have that
l= l 0 D k=k 0 or l= l 0 D k 0=k. In the former case l

2�l
D

k
2�k

so that l D k. In the
latter case we similarly obtain l D k 0. �
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Proposition 5.3. The group � from Section 3 is the full automorphism group of
Lk when k ¤ 1.

Proof. Let k ¤ 1 and let ˛ be an automorphism of Lk . By Lemma 5.1 the au-
tomorphism leaves C0 invariant. The 3-transitivity of † on C0 implies that there
is a � 2 † such that �˛ fixes each of .1; 0/, .0; 0/ and .1; 0/. By using an
automorphism 1;0;0;1;r , r > 0, we can furthermore achieve that  D 1;0;0;1;r�˛

fixes .1; 0/, .0; 0/, .1; 0/ and takes .1; 1/ to .1; 1/ or .1;�1/. In the former
case  fixes each of the four points .1; 0/, .0; 0/, .1; 0/, .1; 1/. Hence  must
be the identity by [Steinke 1990, Lemma 2.10] or [Salzmann 1967, Corollary 3.6].
Thus ˛ D 1;0;0;1;1=r�

�1 2 � .
In the latter case there is an s > 0 such that 1;0;0;1;s

2 fixes each of the four
points .1; 0/, .0; 0/, .1; 0/, .1; 1/. Therefore 1;0;0;1;s

2 D id so that  2 acts
trivially on C0. But  fixes the three points .1; 0/, .0; 0/, .1; 0/ on C0 and thus is
an orientation preserving homeomorphism of C0. This implies that  is the identity
on C0.

Given a point p in the open upper half-cylinder ZC not parallel to .1; 0/, there
are exactly two circles through .1; 1/ and p that touch C0. Indeed, if pD .x0;y0/,
where y0 > 0, the two touching circles are C 01;x0C

p
y0;0

and C 01;x0�
p

y0;0
. Since

the point of touching on C0 is fixed by  and because  .1; 1/D .1;�1/, these
circles are taken to C 0�1;x0C

p
y0;0

and C 0�1;x0�
p

y0;0
, respectively. Therefore,

 .x0;y0/D .x0;�y0/.
Now, the trace of a D-circle D0;1;0 on ZC is taken by  to the set

f.x;�hk.x// j x > 0g;

which must be part of a D-circle through .1; 0/ and .0; 0/. Therefore, there must
be an m < 0 such that �hk.x/Dmhk0.x/ for all x > 0. When x D 1 we obtain
m D �1. But then xk D xk0

for all x > 0, so that k D k 0— a contradiction to
our assumption that k ¤ 1. This shows that the latter case cannot occur, and we
have ˛ 2 � . �

Kleinewillinghöfer [1979; 1980] classified Laguerre planes with respect to cen-
tral automorphisms, that is, automorphisms of the Laguerre plane such that at least
one point is fixed and central collineations are induced in the derived projective
plane at one of the fixed points. A subgroup of central automorphisms with the
same “centre” and “axis” is said to be linearly transitive if the induced subgroup
of central collineations of the derived projective plane is linearly transitive, that is,
transitive on the points of each central line except the centre and its intersection
with the axis. In [Polster and Steinke 2004], 2-dimensional Laguerre planes were
considered and their so-called Kleinewillinghöfer types were investigated, that is,
the Kleinewillinghöfer types with respect to the full automorphism group. The



A NEW FAMILY OF 2-DIMENSIONAL LAGUERRE PLANES 67

classification of those types that can occur in 2-dimensional Laguerre planes is
almost complete except for two open cases; see [Steinke 2012] and the references
to models of various types given there.

It turns out that the planes Lk constructed here are of type I.G.1 when k ¤ 1, the
same type as some semiclassical Laguerre planes pasted along a circle; see [Polster
and Steinke 2004, Section 6] and below for a description of these semiclassical
planes. This means that there is no circle for which the automorphism group of
Lk is linearly transitive with respect to Laguerre homologies (type I, a Laguerre
homology fixes a circle pointwise), that there is a circle C such that for each point p

on C the group of Laguerre translations fixing p and the bundle of circles touching
C at p is linearly transitive (type G, a Laguerre translation fixes a parallel class
pointwise and induces a translation in a derived projective plane at one of the fixed
points), and that there is no group of Laguerre homotheties that is linearly transitive
(type 1, a Laguerre homothety fixes two nonparallel points and each circle through
them). In type VII.K.13 all possible subgroups of central automorphisms with
given centre and axis are linearly transitive. We refer to [Kleinewillinghöfer 1979]
or [Polster and Steinke 2004] for a description of all types.

Proposition 5.4. The Laguerre plane Lk is of Kleinewillinghöfer type I.G.1 when
k ¤ 1 and of type VII.K.13 when k D 1.

Proof. When k D 1 we have the classical real Laguerre plane, which is of type
VII.K.13; see [Polster and Steinke 2004, Corollaries 3.2 and 4.2,] and [Hartmann
1982, Satz 7]. Assume that k¤ 1. Then every automorphism of Lk fixes C0, so that
C0 is the only possible axis of a Laguerre homology. Similarly, points on C0 are
the only possible centres of Laguerre homotheties, and Laguerre translations must
be in direction of a tangent bundle to C0. Hence, together with the 3-transitivity
of � on C0, only types I or II with respect to Laguerre homologies, types A or
G with respect to Laguerre translations and types 1 or 6 with respect to Laguerre
homotheties are possible as the types of Lk . See [Kleinewillinghöfer 1979] or
[Polster and Steinke 2004] for a full list of Kleinewillinghöfer types.

Now f1;t;0;1;1 j t 2 Rg is a linearly transitive group of Laguerre translations
in direction of the tangent bundle to C0 at .1; 0/. Conjugation by elements in �
then shows that Lk has type G with respect to Laguerre translations. The automor-
phisms of Lk that fix each point of C0 are a;0;0;a;r , where a¤ 0, r > 0. However,
the collection of these Laguerre homologies is not linearly transitive (because the
open upper half-cylinder ZC is left invariant). Thus Lk has type I with respect to
Laguerre homologies.

Similarly, the automorphisms of Lk that fix .1; 0/ and .0; 0/ are a;0;0;d;r ,
where ad ¤ 0, r > 0. Explicitly, these are the maps .x;y/ 7! .sx; rsy/ extended
to the parallel class at infinity, where 0 ¤ s.D a=d/, r > 0. A D-circle D0;b;0
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is taken to D0;rb=jsjk ;0 when b > 0 and D0;rb=jsjk
0
;0 when b < 0. However, a

Laguerre homothety with centres .1; 0/ and .0; 0/ must fix each circle through
the two centres, so that

r D jsjk D jsjk
0

for all s ¤ 0. This implies k D k 0— a contradiction to k ¤ 1. This shows that Lk

has type 1 with respect to Laguerre homotheties. �

In [Steinke 1987; 1988], semiclassical Laguerre planes were introduced. These
are 2-dimensional Laguerre planes which are composed of two classical half-planes.
By a half-plane we mean the closure of a connected component of the complement
of two parallel classes or of a circle. Such a half-plane is called classical if, with its
induced geometry, it is isomorphic to a half-plane of the same kind in the classical
real Laguerre plane.

Some of the semiclassical planes also admit PSL2.R/�R as a group of automor-
phisms and are of Kleinewillinghöfer type I.G.1. These are the planes L.hm; id/,
where m> 0, in the notation of [Steinke 1987]. They are obtained by pasting along
a circle. According to [Steinke 1987, Theorem 4.8] in this case circles are of the
form

Ka;b;c D f.x;y/ 2 R2
j y D ax2

C bxC cg[ f.1; a/g;

where a; b; c 2 R, b2 � 4ac and

Ka;b;c D f.x;y/ 2 R2
j y D ax2

C bxC c � 0g

[f.x;y/ 2 R2
j y D .b2

� 4ac/.m�1/=2.ax2
C bxC c/� 0g[ f.1; Na/g;

where a; b; c 2 R, b2 > 4ac, m> 0 and

NaD

�
a; if a� 0;

.b2� 4ac/.m�1/=2a; if a< 0:

(In case mD 1 one just obtains the classical real Laguerre plane Lcl.)
These planes are semiclassical because the geometries and topologies on the

closed upper half-cylinder ZC D S1 � Œ0;C1/ and the closed lower half-cylinder
Z� D S1 � .�1; 0� are the same as on the corresponding subsets of the (topo-
logical) classical real Laguerre plane Lcl. The two classical geometries are pasted
together along the circle K0 WDK0;0;0.

Those permutations a;b;c;d;r of Z from Section 3 where ad �bcD 1 and r > 0

are in fact also automorphisms of L.hm; id/; see [Steinke 1987, 4.3 and Lemmata
4.4 and 4.5]. The collection of all these transformations is a group with respect to
composition and is isomorphic to PSL2.R/�R.

Note that the circles that do not meet K0 in precisely two points are the same
as in Lcl and thus as in our planes Lk . However, our planes are not semiclassical
except for the classical plane itself.
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Proposition 5.5. No Laguerre plane Lk , k ¤ 1, is semiclassical.

Proof. By [Steinke 1988, Proposition 5.1] an automorphism of a semiclassical
Laguerre plane pasted along two parallel classes leaves invariant the union of the
two parallel classes along which the pasting occurs, provided the Laguerre plane
is nonclassical. Since the automorphism group of Lk is transitive on the set of
parallel classes, Lk cannot be isomorphic to a semiclassical Laguerre plane of this
kind unless k D 1.

Regarding semiclassical Laguerre planes pasted along a circle, only the plane
L.hm; id/, where m> 0, pasted along the circle K0, needs to be considered because
other planes have lower group dimension; see [Steinke 1987, Theorem 4.8]. One
first notes as in the proof of Lemma 5.1 that an isomorphism  from L.hm; id/ to
Lk , where k ¤ 1, must take K0 as in the description above to C0.

As in the proof of Proposition 5.3 we may without loss of generality assume
that  fixes .1; 0/, .0; 0/, .1; 0/ and takes .1; 1/ to .1; 1/ or .1;�1/. In the
former case  fixes each of the four points .1; 0/, .0; 0/, .1; 0/, .1; 1/. Hence the
circles K1;0;0 and K1;�2;1, which pass through .1; 1/ and touch K0 at .0; 0/ and
.1; 0/, respectively, are taken to the corresponding circles in Lk , that is, to C1;0;0

and C1;�2;1. Therefore the point
�

1
2
; 1

4

�
in the intersection of K1;0;0 and K1;�2;1

is taken to the point
�

1
2
; 1

4

�
in the intersection of C1;0;0 and C1;�2;1. Moreover, the

circle K1;�1;0 through .0; 0/, .1; 0/, .1; 1/ is taken to the corresponding circle
D1;1;0 in Lk . Finally, there is a unique circle through .1; 0/ that touches K0

and K1;�1;0. The latter point of touching is calculated to be
�

1
2
;�1

4

�
. In Lk one

calculates that the unique circle through .1; 0/ that touches C0 and D1;1;0 is C0;0;c ,
where

c D�1
2
hk.k/hk0.k 0/;

and that the common point between the latter two circles is
�

k0

2
; c
�
. However,  

preserves parallelity of points so that�
1
2
; 1

4

�
D  

�
1
2
; 1

4

�   �1
2
;�1

4

�
D
�

k0

2
; c
�
:

This shows that k0

2
D

1
2

, that is, k 0 D 1 — a contradiction to our assumption k ¤ 1.
In the case that  takes .1; 1/ to .1;�1/, we may apply the isomorphism

� W Lk ! Lk0 from the proof of Proposition 5.2. Then the map � fixes each
of the four points .1; 0/, .0; 0/, .1; 0/, .1; 1/. Hence we conclude as before that
k D .k 0/0 D 1 — again a contradiction.

This proves that Lk , k ¤ 1, is not semiclassical. �
Remark 5.6. In the proof of Lemma 4.1 we already mentioned that the derived
projective plane of L.k/ at .1; 0/ is isomorphic to a cartesian plane P1;k=k0;1. It is
readily seen that the derived projective plane of a semiclassical plane L.hm; id/ at
.1; 0/ is isomorphic to a cartesian plane Pm;1;1. As mentioned in [Salzmann et al.
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1995, Proof of 37.6] the plane P˛;ˇ;c is dual to Pˇ;˛;c . Hence, when mD k=k 0,
the derived projective plane at .1; 0/ of a Laguerre plane L.k/ and of a semiclas-
sical plane L.hm; id/ are dual to each other. However, there does not seem to be
an extension of this duality to the level of the Laguerre planes (for example, via
associated generalized quadrangles, see below).

It is well known that 2-dimensional Laguerre planes correspond to certain com-
pact 3-dimensional generalized quadrangles, compare [Schroth 1993a], [Schroth
1993b] or [Schroth 1995b]. In a compact 3-dimensional generalized quadrangle the
point and line spaces are compact and 3-dimensional. These generalized quadran-
gles are also characterized by having topological parameter 1 (so that all lines and
line pencils are homeomorphic to the 1-dimensional sphere S1). More precisely,
the Lie geometry associated with a 2-dimensional Laguerre plane is an antiregu-
lar compact generalized quadrangle with topological parameter 1. Up to duality,
every compact 3-dimensional generalized quadrangle is the Lie geometry of a 2-
dimensional Laguerre plane; see [Schroth 1995b, Corollary 2.16 and Chapter 3].
Recall that the Lie geometry of a Laguerre plane L has as points the points of L plus
the circles of L plus one additional point at infinity, denoted by1. (The bar helps
distinguish this from other uses of the symbol1.) The lines of the Lie geometry
are the augmented parallel classes, that is, the parallel classes to which the point
1 is adjoined, and the augmented tangent pencils, that is, the collections of all
circles that touch a given circle at a given point p together with the point p, called
the support of the tangent pencil. Incidence is the natural one. So “collinear” in the
Lie geometry corresponds to “on the same parallel class or incident or touching”
in the Laguerre plane. The generalized quadrangle obtained from the classical real
Laguerre plane Lcl is the real orthogonal quadrangle Q.4;R/ over R. Points are
the 1-dimensional isotropic subspaces of R5, with respect to a symmetric form of
Witt index 2; lines are the 2-dimensional totally isotropic subspaces of R5.

Conversely, for every point p of an antiregular generalized quadrangle Q, one
obtains a Laguerre plane Q0p , called the derivation of Q at p, whose points are the
points of Q that are collinear with p except p itself and whose circles are of the
form p? \ q? for points q not collinear with p, where x? denotes the set of all
points collinear with the point x. See also [Joswig 1999, Theorem 3.1], where it is
shown that it suffices to have a strongly antiregular point of the generalized quad-
rangle in order to obtain a Laguerre plane as derivation at that point. Each derived
Laguerre plane of the real orthogonal quadrangle Q.4;R/ over R is isomorphic to
the classical real Laguerre plane.

Starting with a 2-dimensional Laguerre plane L one obtains an antiregular com-
pact 3-dimensional generalized quadrangle Q.L/. One can then derive at any point
p of Q.L/ to obtain another 2-dimensional Laguerre plane L0p D .Q.L//0p. In
[Schroth 1995a] and [Schroth 1995b, Chapter 6] this Laguerre plane L0p is called
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a sister of L. The process of going from L to its sister L0p can be completely
described within L without explicitly using the associated generalized quadrangle;
see [Schroth 1995a, Section 3]. In case one derives Q.L/ at a point that comes
from a circle K of L, the points of L0

K
are the circles of L that touch K and the

points of L on K. The parallel classes of L0
K

are obtained from the tangent pencils
with support on K.

Circles of L0
K

correspond to the points of L not on K (more precisely, such a
point q represents the collection of all circles of L through q that touch K) and
to the circles of L not touching K (more precisely, such a circle C represents the
collection of all circles of L that touch C and K), and the extra point1. Incidence
is the natural one; compare [Schroth 1995a, Section 3].

Note that an automorphism ˛ of L extends to an automorphism N̨ of Q.L/.
Furthermore, N̨ fixes 1. If ˛ fixes a point or circle of L, then N̨ induces an
automorphism in the derived Laguerre plane of Q.L/ at that point or circle.

We carry out the above procedure for the Laguerre planes Lk and the distin-
guished circle C0. Since C0 is fixed by � , this group is again a group of auto-
morphisms of .Lk/

0
C0

. Note that Lk shares many circles with the classical real
Laguerre plane Lcl and, in particular, all the circles that touch C0. So we expect
that .Lk/

0
C0

has many circles in common with Lcl, and looks like one of the La-
guerre planes constructed in this paper or a semiclassical Laguerre plane obtained
by pasting along a circle. In fact, we have the following.

Proposition 5.7. The Laguerre plane .Lk/
0
C0

obtained by deriving the generalized
quadrangle Q.Lk/ at C0 is isomorphic to Lk .

Proof. A circle of Lk touching C0 is C 0
a;b;0

, where a; b 2R, a¤ 0, or C0;0;c , where
c 2 R, c ¤ 0. We identify such a circle with

�
b; 1

a

�
2Z and

�
1; 1

c

�
, respectively.

A point .x; 0/ on C0 is identified with .x; 0/ 2Z. This coordinatization maps all
points of .Lk/

0
C0

onto the cylinder Z. Parallel classes are still the generators of Z.
The point1 gives rise to the set C0, which thus is again a circle of .Lk/

0
C0

. If
.x0;y0/, y0¤ 0, is a point not on C0, then for each b 2R, b¤ x0, there is a unique
circle through .x0;y0/ that touches C0 at .b; 0/; this circle is C 0y0=.x0�b/2;b;0,
which yields the point .b; .x0� b/2=y0/ according to the above rule. One further
obtains .x0; 0/ (from the parallel class through .x0;y0/) and .1; 1=y0/ (from the
circle C0;0;y0

touching C0 at .1; 0/). Put together we thus obtain all the points on
C 0

1=y0;x0;0
, so that this is again a circle of .Lk/

0
C0

.
Next consider a circle not meeting C0. Such a circle is of the form C 0

a;b;c
, where

ac > 0. The circle of Lk touching C0 at .u; 0/ and also touching C 0
a;b;c

is C 0
Qa;u;0

,
where u 2 R and QaD ac=.a.u� b/2C c. Hence we obtain the point�

u;
1

c
.u� b/2C

1

a

�
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in .Lk/
0
C0

. When uD1 we find the circle C0;0;c , which yields the point
�
1; 1

c

�
.

Thus we have recovered the C -circle C 0
1=c;b;1=a

as a circle of .Lk/
0
C0

.
Finally consider a circle meeting C0 in two points. Such a circle is a D-circle.

In this case the calculations are a bit more involved. To find the circle C 0
v;u;0

that
touches Da;b;c , a ¤ 0, and also touches C0 at .u; 0/, where u ¤ b; c;1, it is
necessary that the equations

v.x�u/2 D ahk.x� b/hk0.x� c/; (6)

2v.x�u/D a.hk.x� b/hk0.x� c//0

D a.2x� k 0b� kc/jx� bjk�1
jx� cjk

0�1 (7)

are satisfied. Dividing (6) by (7) one finds that

x D
u.k 0bCkc/�2bc

2u�kb�k 0c
:

Substitution into (6) then yields

1

v
D�

4

a.b�c/2hk.k/hk0.k 0/
hk.u� c/hk0.u� b/:

In the coordinates of .Lk/
0
C0

as introduced above the two points .b; 0/ and .c; 0/ of
intersection of C0 and Da;b;c yield the points .b; 0/ and .c; 0/ on the circle induced
by D?

a;b;c
. When uD1 one similarly obtains from .hk.x � b/hk0.x � c//0 D 0

that x D 1
2
.k 0bC kc/ and thus v D �1

4
a.b � c/2hk.k/hk0.k 0/. In total we have

recovered all the points of DQa;c;b , where

QaD�
4

a.b� c/2hk.k/hk0.k 0/
:

The cases when aD 0 are dealt with in a similar way. �

In case one derives the generalized quadrangle Q.L/ at a point that comes from
a point p of L then the points of L0p are the circles of L that pass through p, the
points of L on the parallel class jpj of p but not p itself, and the extra point1.
The parallel classes of L0p are obtained from the parallel class jpj and the tangent
pencils with support p. The circles of L0p correspond to the points of L not on jpj
(more precisely, such a point q represents the collection of all circles of L through
p and q) and to the circles of L not passing through p (more precisely, such a
circle C represents the collection of all circles of L through p that touch C ). Thus
the affine part of L0p with respect to the parallel class containing 1 is made up
of the nonvertical lines of the derived affine plane Ap of L at p, and points of
Ap represent circles of L0p through1. Hence the derived projective plane P0

1
of

L0p at1 is the dual of Pp, the derived projective plane of L at p. A circle of L

not passing through p induces an oval O in Pp. Since this circle also represents
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a circle of L0p, we just obtain the dual oval O� of O in P0
1

. Hence, the whole
process involves forming the dual of the derived projective plane Pp plus all duals
of the ovals in Pp that are induced by circles of L; we then remove one line to
obtain the affine part of the sister L0p and add one parallel class at infinity in order
to complete the Laguerre plane. Although applying this process to a point p on
K0 of a nonclassical semiclassical Laguerre plane L.hm; id/ yields the dual of the
derived plane at p, other circles of L.hm; id/0p do not match circles of Lk . Since
the point p has a 1-dimensional orbit we also expect the automorphism group of
L.hm; id/0p to be at most 3-dimensional, and so L.hm; id/0p cannot be isomorphic
to a plane Lk .

Schroth [2000] used a provisional classification of 2-dimensional Laguerre planes
of group dimension 4 to show that a compact 3-dimensional generalized quadrangle
is the real orthogonal quadrangle Q.4;R/, or its dual if the group of automor-
phisms of the quadrangle has dimension at least 6. Since the new Laguerre planes
Lk do not appear on the list used in [Schroth 2000], this can potentially affect
Schroth’s result. However, as noted in [Schroth 2000, Section, 3.7], in case of a
4-dimensional group of automorphisms of a 2-dimensional Laguerre plane such
that a circle is fixed, the information on the groups involved is enough to see that
the dimension of the automorphism group of the associated quadrangle does not
become larger; see also [Schroth 2000, Section 4.6]. The automorphism group of
Lk has at most as many orbits on the circle set and point set as the automorphism
group of semiclassical Laguerre planes pasted along a circle. This implies that the
same dimensions of orbits occur as stated in [Schroth 2000, Section 4.6]. Hence
we have the following result; compare [Schroth 2000, Theorem 4.8].

Corollary 5.8. The automorphism group of the 3-dimensional compact general-
ized quadrangle Q.Lk/ is 4-dimensional when k ¤ 1.

As a consequence, the planes constructed here are not counterexamples to the
main theorem of [Schroth 2000].
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