A Lê-Greuel type formula for the image Milnor number

J. J. Nuño-Ballesteros and I. Pallarés-Torres

(Received July 30, 2016; Revised October 27, 2016)

Abstract

Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ be a corank 1 finitely determined map germ. For a generic linear form $p:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ we denote by $g:\left(\mathbb{C}^{n-1}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ the transverse slice of f with respect to p. We prove that the sum of the image Milnor numbers $\mu_{I}(f)+\mu_{I}(g)$ is equal to the number of critical points of $\left.p\right|_{X_{s}}: X_{s} \rightarrow \mathbb{C}$ on all the strata of X_{s}, where X_{s} is the disentanglement of f (i.e., the image of a stabilisation f_{s} of f).

Key words: Image Milnor number, Lê-Greuel formula, finite determinacy.

1. Introduction

The Lê-Greuel formula [4], [6] provides a recursive method to compute the Milnor number of an isolated complete intersection singularity (ICIS). We recall that if $(X, 0)$ is a d-dimensional ICIS defined as the zero locus of a map germ $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n-d}, 0\right)$, then the Milnor fibre $X_{s}=g^{-1}(s)$ (where s is a generic value in \mathbb{C}^{n-d}) has the homotopy type of a bouquet of d-spheres and the number of such spheres is called the Milnor number $\mu(X, 0)$. If $d>0$, we can take $p: \mathbb{C}^{n} \rightarrow \mathbb{C}$ a generic linear projection with $H=p^{-1}(0)$ and such that $(X \cap H, 0)$ is a $(d-1)$-dimensional ICIS. Then,

$$
\begin{equation*}
\mu(X, 0)+\mu(X \cap H, 0)=\operatorname{dim}_{\mathbb{C}} \frac{\mathcal{O}_{n}}{(g)+J(g, p)} \tag{1}
\end{equation*}
$$

where \mathcal{O}_{n} is the ring of function germs from $\left(\mathbb{C}^{n}, 0\right)$ to $\mathbb{C},(g)$ is the ideal in \mathcal{O}_{n} generated by the components of g and $J(g, p)$ is the Jacobian ideal of (g, p) (i.e., the ideal generated by the maximal minors of the Jacobian matrix). Note that X_{s} is smooth and if p is generic enough, then the re-

[^0]striction $\left.p\right|_{X_{s}}: X_{s} \rightarrow \mathbb{C}$ is a Morse function and the dimension appearing in the right hand side of (1) is equal to the number of critical points of $\left.p\right|_{X_{s}}$.

The aim of this paper is to obtain a Lê-Greuel type formula for the image Milnor number of a finitely determined map germ $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow$ $\left(\mathbb{C}^{n+1}, 0\right)$. Mond showed in [11] that the disentanglement X_{s} (i.e., the image of a stabilisation f_{s} of f) has the homotopy type of a bouquet of n-spheres and the number of such spheres is called the image Milnor number $\mu_{I}(f, 0)$. The celebrated Mond's conjecture says that

$$
\mathcal{A}_{e}-\operatorname{codim}(f) \leq \mu_{I}(f)
$$

with equality if f is weighted homogeneous. Mond's conjecture is known to be true for $n=1,2$ but it remains still open for $n \geq 3$ (see [11], [12]). We feel that our Lê-Greuel type formula can be useful to find a proof of the conjecture in the general case. In fact, it would be enough to prove that the module which controls the number of critical points of a generic linear function is Cohen-Macaulay and then, use an induction argument on the dimension n (see [1] for details about Mond's conjecture).

We assume that f has corank 1 and $n>1$. Then given a generic linear form $p: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ we can see f as a 1-parameter unfolding of another map germ $g:\left(\mathbb{C}^{n-1}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ which is the transverse slice of f with respect to p. This means that g has image $(X \cap H, 0)$, where $(X, 0)$ is the image of f and $H=p^{-1}(0)$. The disentanglement X_{s} is not smooth but it has a natural Whitney stratification given by the stable types. If p is generic enough, the restriction $\left.p\right|_{X_{s}}: X_{s} \rightarrow \mathbb{C}$ is a Morse function on each stratum. Our Lê-Greuel type formula is

$$
\begin{equation*}
\mu_{I}(f)+\mu_{I}(g)=\# \Sigma\left(\left.p\right|_{X_{s}}\right) \tag{2}
\end{equation*}
$$

where the right hand side of equation is the number of critical points of $\left.p\right|_{X_{s}}$ on all the strata of X_{s}. The case $n=1$ has to be considered separately, in this case we have

$$
\begin{equation*}
\mu_{I}(f)+m_{0}(f)-1=\# \Sigma\left(\left.p\right|_{X_{s}}\right) \tag{3}
\end{equation*}
$$

where $m_{0}(f)$ is the multiplicity of the curve parametrized by f. This makes sense, since $\mu(X, 0)=m_{0}(X, 0)-1$ for a 0 -dimensional ICIS $(X, 0)$.

2. Multiple point spaces and Marar's formula

In this section we recall Marar's formula for the Euler characteristic of the disentanglement of a corank 1 finitely determined map germ. We first recall the Marar-Mond [9] construction of the k th-multiple point spaces for corank 1 map germs, which is based on the iterated divided differences. Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ be a corank 1 map germ. We can choose coordinates in the source and target such that f is written in the following form:

$$
f(x, z)=\left(x, f_{n}(x, z), \ldots, f_{p}(x, z)\right), x \in \mathbb{C}^{n-1}, z \in \mathbb{C} .
$$

This forces that if $f\left(x_{1}, z_{1}\right)=f\left(x_{2}, z_{2}\right)$ then necessarily $x_{1}=x_{2}$. Thus, it makes sense to embed the double point space of f in $\mathbb{C}^{n-1} \times \mathbb{C}^{2}$ instead of $\mathbb{C}^{n} \times \mathbb{C}^{n}$. Analogously, we will consider the k th-multiple point space embedded in $\mathbb{C}^{n-1} \times \mathbb{C}^{k}$.

We construct an ideal $I_{k}(f) \subset \mathcal{O}_{n+k-1}$ defined as follows: $I_{k}(f)$ is generated by $(k-1)(p-n+1)$ functions $\Delta_{i}^{(j)} \in \mathcal{O}_{n+k-1}, 1 \leq i \leq k-1$, $n \leq j \leq p$. Each $\Delta_{i}^{(j)}$ is a function only of the variables $x, z_{1}, \ldots, z_{i+1}$ such that:

$$
\Delta_{1}^{(j)}\left(x, z_{1}, z_{2}\right)=\frac{f_{j}\left(x, z_{1}\right)-f_{j}\left(x, z_{2}\right)}{z_{1}-z_{2}}
$$

and for $1 \leq i \leq k-2$,

$$
\Delta_{i+1}^{(j)}\left(x, z_{1}, \ldots, z_{i+2}\right)=\frac{\Delta_{i}^{(j)}\left(x, z_{1}, \ldots, z_{i}, z_{i+1}\right)-\Delta_{i}^{(j)}\left(x, z_{1}, \ldots, z_{i}, z_{i+2}\right)}{z_{i+1}-z_{i+2}}
$$

Definition 2.1 The k th-multiple point space is $D^{k}(f)=V\left(I_{k}(f)\right)$, the zero locus in $\left(\mathbb{C}^{n+k-1}, 0\right)$ of the ideal $I_{k}(f)$.
(We remark that the k th-multiple point space is denoted by $\widetilde{D}^{k}(f)$ instead of $D^{k}(f)$ in [9]).

If f is stable, then, set-theoretically, $D^{k}(f)$ is the Zariski closure of the set of points $\left(x, z_{1}, \ldots, z_{k}\right) \in \mathbb{C}^{n+k-1}$ such that:

$$
f\left(x, z_{1}\right)=\cdots=f\left(x, z_{k}\right), \quad z_{i} \neq z_{j}, \text { for } i \neq j
$$

(see [9], [13]). But, in general, this may be not true if f is not stable. For
instance, consider the cusp $f:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{2}, 0\right)$ given by $f(z)=\left(z^{2}, z^{3}\right)$. Since f is one-to-one, the closure of the double point set is empty, but

$$
D^{2}(f)=V\left(z_{1}+z_{2}, z_{1}^{2}+z_{1} z_{2}+z_{2}^{2}\right)
$$

This example also shows that the k th-multiple point space may be nonreduced in general.

The main result of Marar-Mond in [9] is that the k th-multiple point spaces can be used to characterize the stability and the finite determinacy of f.

Theorem $2.2([9,2.12])$ Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)(n<p)$ be a finitely determined map germ of corank 1. Then:
(1) f is stable if and only if $D^{k}(f)$ is smooth of dimension $p-k(p-n)$, or empty, for $k \geq 2$.
(2) f is finitely determined if and only if for each k with $p-k(p-n) \geq 0$, $D^{k}(f)$ is either an ICIS of dimension $p-k(p-n)$ or empty, and if, for those k such that $p-k(p-n)<0, D^{k}(f)$ consists at most of the point $\{0\}$.

The following construction is also due to Marar-Mond [9] and gives a refinement of the types of multiple points.

Definition 2.3 Let $\mathcal{P}=\left(r_{1}, \ldots, r_{m}\right)$ be a partition of k (that is, $r_{1}+\cdots+$ $r_{m}=k$, with $r_{1} \geq \cdots \geq r_{m}$). Let $I(\mathcal{P})$ be the ideal in \mathcal{O}_{n-1+k} generated by the $k-m$ elements $z_{i}-z_{i+1}$ for $r_{1}+\cdots+r_{j-1}+1 \leq i \leq r_{1}+\cdots+r_{j}$ for $j=1, \ldots, m$. Define the ideal $I_{k}(f, \mathcal{P})=I_{k}(f)+I(\mathcal{P})$ and the k-multiple point space of f with respect to the partition \mathcal{P} as $D^{k}(f, \mathcal{P})=V\left(I_{k}(f, \mathcal{P})\right)$.
Definition 2.4 We define a generic point of $D^{k}(f, \mathcal{P})$ as a point

$$
\left(x, z_{1}, \ldots, z_{1}, \ldots, z_{m}, \ldots, z_{m}\right)
$$

$\left(z_{i}\right.$ iterated r_{i} times, and $z_{i} \neq z_{j}$ if $\left.i \neq j\right)$ such that the local algebra of f at $\left(x, z_{i}\right)$ is isomorphic to $\mathbb{C}[t] /\left(t^{r_{i}}\right)$, and such that

$$
f\left(x, z_{1}\right)=\cdots=f\left(x, z_{m}\right)
$$

If f is stable, then $D^{k}(f, \mathcal{P})$ is equal to the Zariski closure of its generic
points (see [9]). Moreover, we have the following corollary, which extends Theorem 2.2 to the multiple point spaces with respect to the partitions.

Corollary 2.5 ([9, 2.15]) If f is finitely determined (resp. stable), then for each partition $\mathcal{P}=\left(r_{1}, \ldots, r_{m}\right)$ of k satisfying $p-k(p-n+1)+m \geq 0$, the germ of $D^{k}(f, \mathcal{P})$ at $\{0\}$ is either an ICIS (resp. smooth) of dimension $p-k(p-n+1)+m$, or empty. Moreover, those $D^{k}(f, \mathcal{P})$ for \mathcal{P} not satisfying the inequality consist at most of the single point $\{0\}$.

Let $f:\left(\mathbb{C}^{p}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ be a finitely determined map germ of corank 1 and let $f_{s}: U_{s} \rightarrow X_{s}$ be a stabilization of f. For a partition \mathcal{P} of k, we denote by $\rho_{\mathcal{P}}$ the mapping given as the composition of the inclusion $D^{k}\left(f_{s}, \mathcal{P}\right) \hookrightarrow D^{k}\left(f_{s}\right)$, the projection $D^{k}\left(f_{s}\right) \rightarrow U_{s}$ and f_{s}. The following two results will be useful in the next section.

Remark 2.6 ([8]) Let $\mathcal{P}=\left(a_{1}, \ldots, a_{h}\right)$ be a partition of k, with $a_{i} \geq$ a_{i+1}. If y is a generic point of $D^{k}\left(f_{s}, \mathcal{P}^{\prime}\right)$, where $\mathcal{P}^{\prime}=\left(b_{1}, \ldots, b_{q}\right)$, with $b_{i} \geq b_{i+1}$ and $\mathcal{P}<\mathcal{P}^{\prime}$ then $\# \rho_{\mathcal{P}}^{-1}\left(\rho_{\mathcal{P}^{\prime}}(y)\right)$ is the coefficient of the monomial $x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{q}^{b_{q}}$ in the polynomial $\prod_{i \geq 1}\left(x_{1}^{a_{i}}+x_{2}^{a_{i}}+\cdots x_{q}^{a_{i}}\right)$.

Lemma 2.7 ([7]) Let h_{k} be the k-th complete symmetric function in variables x_{1}, \ldots, x_{q}, i.e., h_{k} is the sum of all monomials of degree k in the variables x_{1}, \ldots, x_{q}. Then

$$
h_{k}=\sum_{\mathcal{P}} \frac{1}{\prod_{i \geq 1} \alpha_{i}!i^{\alpha_{i}}} \prod_{i \geq 1}\left(x_{1}^{i}+\cdots+x_{q}^{i}\right)^{\alpha_{i}}
$$

where \mathcal{P} runs through the set of all ordered partitions of k.
The next step is to observe that the k th-multiple point space $D^{k}(f)$ is invariant under the action of the k th symmetric group S_{k}.

Definition 2.8 Let M be a \mathbb{Q}-vector space upon which S_{k} acts. Then the alternating part of M, denoted by $\operatorname{Alt}_{k} M$, is defined to be

$$
\operatorname{Alt}_{k} M:=\left\{m \in M: \sigma(m)=\operatorname{sign}(\sigma) m, \text { for all } \sigma \in S_{k}\right\}
$$

Given a topological space X on which S_{k} acts, the alternating Euler characteristic is

$$
\chi^{\text {alt }}(X):=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{Q}} \operatorname{Alt}_{k}\left(H_{i}(X, \mathbb{Q})\right) .
$$

The following theorem of Goryunov-Mond in [3] allows us to compute the image Milnor number of f by means of a spectral sequence associated to the multiple point spaces.
Theorem $2.9([3,2.6])$ Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ be a corank 1 map germ and f_{s} a stabilisation of f, for $s \neq 0$ and X_{s} the image of f_{s}. Then,

$$
H_{n}\left(X_{s}, \mathbb{Q}\right) \cong \bigoplus_{k=2}^{n+1} \operatorname{Alt}_{k}\left(H_{n-k+1}\left(D^{k}\left(f_{s}\right), \mathbb{Q}\right)\right) .
$$

Note that since X_{s} has the homotopy type of a wedge of n-spheres, the image Milnor number of f is the rank of $H_{n}\left(X_{s}, \mathbb{Q}\right)$. If we consider $H_{n}\left(X_{s}, \mathbb{Q}\right)$ as a \mathbb{Q}-vector space,

$$
\mu_{I}(f)=\operatorname{dim}_{\mathbb{Q}} H_{n}\left(X_{s}, \mathbb{Q}\right) .
$$

So, by Theorem 2.9, the image Milnor number is

$$
\mu_{I}(f)=\sum_{k=2}^{n+1} \operatorname{dim}_{\mathbb{Q}} \operatorname{Alt}_{k}\left(H_{n-k+1}\left(D^{k}\left(f_{s}\right), \mathbb{Q}\right)\right) .
$$

By [5, Corollary 2.8], we can compute the alternating Euler characteristic of $D^{k}\left(f_{s}\right)$ as follows: for each partition $\mathcal{P}=\left(r_{1}, \ldots, r_{s}\right)$, we set

$$
\beta(\mathcal{P})=\frac{\operatorname{sign}(\mathcal{P})}{\prod_{i} \alpha_{i}!\cdot:^{\alpha_{i}}},
$$

where $\alpha_{i}:=\#\left\{j: r_{j}=i\right\}$ and $\operatorname{sign}(\mathcal{P})$ is the number $(-1)^{k-\sum_{i} \alpha_{i}}$. Then,

$$
\chi^{a l t}\left(D^{k}\left(f_{s}\right)\right)=\sum_{|\mathcal{P}|=k} \beta(\mathcal{P}) \chi\left(D^{k}\left(f_{s}, \mathcal{P}\right)\right) .
$$

Moreover, by Theorem 2.2 and Corollary $2.5, D^{k}\left(f_{s}\right)\left(\right.$ resp. $\left.D^{k}\left(f_{s}, \mathcal{P}\right)\right)$ is a Milnor fibre of the ICIS $D^{k}(f)\left(\right.$ resp. $\left.D^{k}(f, \mathcal{P})\right)$, and hence it has the homotopy type of a wedge of spheres of real dimension $\operatorname{dim} D^{k}(f)=n-k+1$ (resp. $\left.\operatorname{dim} D^{k}(f, \mathcal{P})\right)$. Thus,

$$
\operatorname{dim}_{\mathbb{Q}} \operatorname{Alt}_{k}\left(H_{n-k+1}\left(D^{k}\left(f_{s}\right), \mathbb{Q}\right)\right)=(-1)^{n-k+1} \chi^{\text {alt }}\left(D^{k}\left(f_{s}\right)\right)
$$

and

$$
\chi\left(D^{k}\left(f_{s}, \mathcal{P}\right)\right)=1+(-1)^{\operatorname{dim} D^{k}(f, \mathcal{P})} \mu\left(D^{k}(f, \mathcal{P})\right)
$$

This gives the following version of Marar's formula [8] in terms of the Milnor numbers of the multiple point spaces:

$$
\begin{equation*}
\mu_{I}(f)=\sum_{k=2}^{n+1}(-1)^{n-k+1} \sum_{|\mathcal{P}|=k} \beta(\mathcal{P})\left(1+(-1)^{\operatorname{dim} D^{k}(f, \mathcal{P})} \mu\left(D^{k}(f, \mathcal{P})\right)\right) \tag{4}
\end{equation*}
$$

where the coefficients $\beta(\mathcal{P})=0$ when the sets $D^{k}(f, \mathcal{P})$ are empty, for $k=2, \ldots, n+1$.

3. Lê-Greuel type formula

Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ be a corank 1 finitely determined map germ. Let $p: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ be a generic linear projection such that $H=p^{-1}(0)$ is a generic hyperplane through the origin in \mathbb{C}^{n+1}. We can choose linear coordinates in \mathbb{C}^{n+1} such that $p\left(y_{1}, \ldots, y_{n+1}\right)=y_{1}$. Then, we choose the coordinates in \mathbb{C}^{n} in such a way that f is written in the form
$f\left(x_{1}, \ldots, x_{n-1}, z\right)=\left(x_{1}, \ldots, x_{n-1}, h_{1}\left(x_{1}, \ldots, x_{n-1}, z\right), h_{2}\left(x_{1}, \ldots, x_{n-1}, z\right)\right)$,
for some holomorphic functions h_{1}, h_{2}. We see f as a 1-parameter unfolding of the map germ $g:\left(\mathbb{C}^{n-1}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ given by

$$
\begin{aligned}
& g\left(x_{2}, \ldots, x_{n-1}, z\right) \\
& \quad=\left(x_{2}, \ldots, x_{n-1}, h_{1}\left(0, x_{2}, \ldots, x_{n-1}, z\right), h_{2}\left(0, x_{2}, \ldots, x_{n-1}, z\right)\right)
\end{aligned}
$$

We say that g is the transverse slice of f with respect to the generic hyperplane H. If f has image $(X, 0)$ in $\left(\mathbb{C}^{n+1}, 0\right)$, then the image of g in $\left(\mathbb{C}^{n}, 0\right)$ is isomorphic to $(X \cap H, 0)$.

We take f_{s} a stabilisation of f and denote by X_{s} the image of f_{s} (see [11] for the definition of stabilisation). Since f has corank $1, X_{s}$ has a natural Whitney stratification given by the stable types of f_{s}. In fact, the strata are the submanifolds

$$
M^{k}\left(f_{s}, \mathcal{P}\right):=\epsilon^{k}\left(D^{k}\left(f_{s}, \mathcal{P}\right)^{0}\right) \backslash \epsilon^{k+1}\left(D^{k+1}\left(f_{s}\right)\right)
$$

where $D^{k}\left(f_{s}, \mathcal{P}\right)^{0}$ is the set of generic points of $D^{k}\left(f_{s}, \mathcal{P}\right), \epsilon^{k}: \mathbb{C}^{n+k-1} \rightarrow$ \mathbb{C}^{n+1} is the map $\left(x, z_{1}, \ldots, z_{k}\right) \mapsto f_{s}\left(x, z_{1}\right)$ and \mathcal{P} runs through all the partitions of k with $k=2, \ldots, n+1$. We can choose the generic linear projection $p: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ in such a way that the restriction to each stratum $M^{k}\left(f_{s}, \mathcal{P}\right)$ is a Morse function. In other words, such that the restriction $\left.p\right|_{X_{s}}: X_{s} \rightarrow \mathbb{C}$ is a Morse function on each stratum (this is one of the condition of be a stratifed Morse function in the sense of [2]). We will denote by $\# \Sigma\left(\left.p\right|_{X_{s}}\right)$ the number of critical points on all the strata of X_{s}. Our first result in this section is for the case of a plane curve.

Theorem 3.1 Let $f:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{2}, 0\right)$ be an injective map germ. Let $p: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a generic linear projection, then

$$
\# \Sigma\left(\left.p\right|_{X_{s}}\right)=\mu_{I}(f)+m_{0}(f)-1
$$

where $m_{0}(f)$ is the multiplicity of f.
Proof. After a change of coordinates, we can assume that

$$
f(t)=\left(t^{k}, c_{m} t^{m}+c_{m+1} t^{m+1}+\cdots\right),
$$

where $k=m_{0}(f), m>k$ and $c_{m} \neq 0$. The stabilisation f_{s} is an immersion with only transverse double points. So, its image X_{s} has only two strata: $M^{2}\left(f_{s},(1,1)\right)$ is a 0 -dimensional stratum composed by the transverse double points and $M^{1}\left(f_{s},(1)\right)$ is a 1-dimensional stratum given by the smooth points of X_{s}. Note that the number of double points of f_{s} is the delta invariant of the plane curve, $\delta(X, 0)$, which is equal to $\mu_{I}(f)$ by [12, Theorem 2.3].

Let $p: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a generic linear projection such that $\left.p\right|_{X_{s}}$ is a Morse function on each stratum. Then:
$\# \Sigma\left(\left.p\right|_{X_{s}}\right)=\# M^{2}\left(f_{s},(1,1)\right)+\# \Sigma\left(\left.p\right|_{M^{1}\left(f_{s},(1)\right)}\right)=\mu_{I}(f)+\# \Sigma\left(\left.p\right|_{M^{1}\left(f_{s},(1)\right)}\right)$.
Since f_{s} is a local diffeomorphism on the stratum $M^{1}\left(f_{s},(1)\right)$, the number of critical points of $\left.p\right|_{M^{1}\left(f_{s},(1)\right)}$ is equal to the number of critical points of $p \circ f_{s}$ (here the points of $M^{2}\left(f_{s},(1,1)\right)$ can be excluded by the genericity of p). Assume that $p(x, y)=A x+B y$ with $A \neq 0$. Then $p \circ f_{s}$ is a Morsification
of the function

$$
p \circ f(t)=A t^{k}+B\left(c_{m} t^{m}+c_{m+1} t^{m+1}+\cdots\right)
$$

The number of critical points of $p \circ f_{s}$ is equal to $\mu(p \circ f)=k-1=m_{0}(f)-1$, which proves our formula.

Next, we state and prove the formula for the case $n>1$.
Theorem 3.2 Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ be a corank 1 finitely determined map germ with $n>1$. Let $p: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ be a generic linear projection which defines a transverse slice $g:\left(\mathbb{C}^{n-1}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$. Then,

$$
\# \Sigma\left(\left.p\right|_{X_{s}}\right)=\mu_{I}(f)+\mu_{I}(g) .
$$

Proof. By Marar's formula (4):

$$
\begin{aligned}
\mu_{I}(f)+\mu_{I}(g)= & \sum_{k=2}^{n+1}(-1)^{n-k+1} \sum_{|\mathcal{P}|=k} \beta(\mathcal{P})\left(1+(-1)^{\operatorname{dim} D^{k}(f, \mathcal{P})} \mu\left(D^{k}(f, \mathcal{P})\right)\right) \\
& +\sum_{k=2}^{n}(-1)^{n-k} \sum_{|\mathcal{P}|=k} \beta(\mathcal{P})\left(1+(-1)^{\operatorname{dim} D^{k}(g, \mathcal{P})} \mu\left(D^{k}(g, \mathcal{P})\right)\right)
\end{aligned}
$$

Note that if $\operatorname{dim} D^{k}(f, \mathcal{P})>0$, then $\operatorname{dim} D^{k}(f, \mathcal{P})=1+\operatorname{dim} D^{k}(g, \mathcal{P})$. Moreover, if $\operatorname{dim} D^{k}(f, \mathcal{P})=0$, then $D^{k}(g, \mathcal{P})=\emptyset$. So, we can separate the formula into two parts, the first one for partitions with $\operatorname{dim} D^{k}(f, \mathcal{P})=0$, the second one for partitions with $\operatorname{dim} D^{k}(f, \mathcal{P})>0$. Thus,

$$
\begin{aligned}
\mu_{I}(f)+\mu_{I}(g)= & \sum_{k=2}^{n+1}(-1)^{n+k-1} \sum_{\substack{|\mathcal{P}|=k \\
\operatorname{dim} D^{k}(f, \mathcal{P})=0}} \beta(\mathcal{P})\left(1+\mu\left(D^{k}(f, \mathcal{P})\right)\right) \\
+ & \sum_{k=2}^{n}(-1)^{n+k-1} \sum_{\substack{|\mathcal{P}|=k \\
\operatorname{dim} D^{k}(f, \mathcal{P})>0}} \\
& \times \beta(\mathcal{P})(-1)^{\operatorname{dim} D^{k}(f, \mathcal{P})}\left(\mu\left(D^{k}(f, \mathcal{P})\right)+\mu\left(D^{k}(g, \mathcal{P})\right)\right)
\end{aligned}
$$

If $\operatorname{dim} D^{k}(f, \mathcal{P})=0$, the Milnor number of $D^{k}(f, \mathcal{P})$ is

$$
\mu\left(D^{k}(f, \mathcal{P})\right)=\operatorname{deg}\left(D^{k}(f, \mathcal{P})\right)-1
$$

where $d e g$ is the degree of the map germ that defines the 0-dimensional ICIS $D^{k}(f, \mathcal{P})$. Note that we can see $\operatorname{deg}\left(D^{k}(f, \mathcal{P})\right)$ as the number of critical points of $\left.\tilde{p}\right|_{D^{k}\left(f_{s}, \mathcal{P}\right)}$.

We choose the coordinates such that $p\left(y_{1}, \ldots, y_{n+1}\right)=y_{1}$. We denote by $\tilde{p}: \mathbb{C}^{n+k-1} \rightarrow \mathbb{C}$ the projection onto the first coordinate. Then:

$$
D^{k}(g, \mathcal{P})=D^{k}(f, \mathcal{P}) \cap \tilde{p}^{-1}(0)
$$

By the Lê-Greuel formula for ICIS [4], [6],

$$
\mu\left(D^{k}(f, \mathcal{P})\right)+\mu\left(D^{k}(g, \mathcal{P})\right)=\# \Sigma\left(\left.\tilde{p}\right|_{D^{k}\left(f_{s}, \mathcal{P}\right)}\right)
$$

It is easy to check that $(-1)^{\operatorname{dim} D^{k}(f)} \operatorname{sign}(\mathcal{P})(-1)^{\operatorname{dim} D^{k}(f, \mathcal{P})}=1$ for any partition \mathcal{P}. Thus, we get:

$$
\mu_{I}(f)+\mu_{I}(g)=\sum_{k=2}^{n+1} \sum_{|\mathcal{P}|=k} \frac{\# \Sigma\left(\left.\tilde{p}\right|_{D^{k}\left(f_{s}, \mathcal{P}\right)}\right)}{\gamma(\mathcal{P})}
$$

where $\gamma(\mathcal{P})=\prod_{i} \alpha_{i}!i^{\alpha_{i}}$.
Let \mathcal{P} be a partition of k, if $\left|\mathcal{P}^{\prime}\right|=k$ and $\mathcal{P}^{\prime} \geq \mathcal{P}$ then any critical point of $\left.\tilde{p}\right|_{D^{k}\left(f_{s}, \mathcal{P}^{\prime}\right)}$ is a critical point of $\left.\tilde{p}\right|_{D^{k}\left(f_{s}, \mathcal{P}\right)}$. This implies

$$
\# \Sigma\left(\left.\tilde{p}\right|_{D^{k}\left(f_{s}, \mathcal{P}\right)}\right)=\sum_{\substack{\left|\mathcal{P}^{\prime}\right|=k \\ \mathcal{P}^{\prime} \geq \mathcal{P}}} \alpha\left(\mathcal{P}, \mathcal{P}^{\prime}\right) \# \Sigma\left(\left.\tilde{p}\right|_{D^{k}\left(f_{s}, \mathcal{P}^{\prime}\right)^{0}}\right)
$$

where $\alpha\left(\mathcal{P}, \mathcal{P}^{\prime}\right)$ is defined by

$$
\alpha\left(\mathcal{P}, \mathcal{P}^{\prime}\right):=\frac{\# \rho_{\mathcal{P}}^{-1}\left(\rho_{\mathcal{P}^{\prime}}(y)\right)}{\# \rho_{\mathcal{P}^{\prime}}^{-1}\left(\rho_{\mathcal{P}^{\prime}}(y)\right)}
$$

for a generic point y in $D^{k}\left(f_{s}, \mathcal{P}^{\prime}\right)$. We can see $\alpha\left(\mathcal{P}, \mathcal{P}^{\prime}\right)$ as the number of times that a generic point of $D^{k}\left(f_{s}, \mathcal{P}^{\prime}\right)$ appears repeated in $D^{k}\left(f_{s}, \mathcal{P}\right)$. By Remark 2.6 and Lemma 2.7,

$$
\begin{aligned}
\mu_{I}(f)+\mu_{I}(g) & =\sum_{k=2}^{n+1} \sum_{|\mathcal{P}|=k} \frac{\# \Sigma\left(\left.\tilde{p}\right|_{D^{k}\left(f_{s}, \mathcal{P}\right)}\right)}{\gamma(\mathcal{P})} \\
& =\sum_{k=2}^{n+1} \sum_{|\mathcal{P}|=k} \sum_{\substack{\left|\mathcal{P}^{\prime}\right|=k \\
\mathcal{P}^{\prime} \geq \mathcal{P}}} \frac{\alpha\left(\mathcal{P}, \mathcal{P}^{\prime}\right)}{\gamma(\mathcal{P})} \# \Sigma\left(\left.\tilde{p}\right|_{D^{k}\left(f_{s}, \mathcal{P}^{\prime}\right)^{0}}\right) \\
& =\sum_{k=2}^{n+1} \sum_{\left|\mathcal{P}^{\prime}\right|=k}\left(\sum_{\substack{|\mathcal{P}|=k \\
\mathcal{P} \leq \mathcal{P}^{\prime}}} \frac{\# \rho_{\mathcal{P}}^{-1}\left(\rho_{\mathcal{P}^{\prime}}(y)\right)}{\gamma(\mathcal{P})}\right) \frac{\# \Sigma\left(\left.\tilde{p}\right|_{\left.D^{k}\left(f_{s}, \mathcal{P}^{\prime}\right)^{0}\right)}\right.}{\# \rho_{\mathcal{P}^{\prime}}^{-1}\left(\rho_{\mathcal{P}^{\prime}}(y)\right)} \\
& =\sum_{k=2}^{n+1} \sum_{\left|\mathcal{P}^{\prime}\right|=k} \frac{\# \Sigma\left(\left.\tilde{p}\right|_{\left.D^{k}\left(f_{s}, \mathcal{P}^{\prime}\right)^{0}\right)}\right.}{\# \rho_{\mathcal{P}^{\prime}}^{-1}\left(\rho_{\mathcal{P}^{\prime}}(y)\right)} \\
& =\sum_{k=2}^{n+1} \sum_{\left|\mathcal{P}^{\prime}\right|=k} \# \Sigma\left(\left.p\right|_{M^{k}\left(f_{s}, \mathcal{P}^{\prime}\right)}\right),
\end{aligned}
$$

which is nothing but the number of critical points of $\left.p\right|_{X_{s}}$.

4. Examples

In this section, we give some examples to illustrate the formulas of theorems 3.1 and 3.2.

Example 4.1 (The singular plane curve E_{6}) Let $f(z)=\left(z^{3}, z^{4}\right)$ be the singular plane curve E_{6}, let $f_{s}(z)=\left(z^{3}+s z, z^{4}+(5 / 4) s z^{2}\right)$ be a stabilisation of f, for $s \neq 0$.

Let $M^{2}\left(f_{s},(1,1)\right)$ be the 0 -dimensional stratum of X_{s}. It is composed by three points, they correspond to three double transversal points. Let $M^{1}\left(f_{s},(1)\right)$ be the 1-dimensional stratum. If we compose f_{s} with $p(z, u)=z$ there are two critical points in a neighbourhood of the origin, so $\# \sum p_{X_{X_{s}}}=$ 5.

Figure 1. The curve E_{6} and its stabilisation for $s<0$.

Figure 2. Critical points in X_{s}.

Now, since the multiplicity of $f, m_{0}(f)=3$ and the image Milnor number of f is $\mu_{I}(f)=3, \mu_{I}(f)+m_{0}(f)-1=5$ as predicted by the formula.

When $n>1$, we proceed in the following way: Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow$ $\left(\mathbb{C}^{n+1}, 0\right)$ be a corank 1 finitely determined map germ written as

$$
f(x, z)=\left(x, h_{1}(x, z), h_{2}(x, z)\right), x \in \mathbb{C}^{n-1}, z \in \mathbb{C}
$$

Let f_{s} be a stabilisation of f. The image of f_{s} is denoted by X_{s}. First, we calculate the number of critical points of the restriction of p to X_{s}, for the generic linear projection $p\left(y_{1}, \ldots, y_{n+1}\right)=y_{1}$. We separate the image set X_{s} in strata of different dimensions given by stable types, which correspond to the sets $M^{k}\left(f_{s}, \mathcal{P}\right)$. The n-dimensional stratum, $M^{1}\left(f_{s},(1)\right)$, is composed of the regular part of f_{s}. So, the restriction $\left.p\right|_{M^{1}\left(f_{s}\right)}$ has not critical points.

The $(n-1)$-dimensional stratum is composed of $M^{2}\left(f_{s},(1,1)\right)$. To calculate the critical points, we will work with the inverse image by ϵ^{2}, that is, $D^{2}\left(f_{s},(1,1)\right)=D^{2}\left(f_{s}\right)$. The double point space $D^{2}\left(f_{s}\right)$ is a subset of \mathbb{C}^{n+1}, but we take a projection of $D^{2}\left(f_{s}\right)$ in the first n variables. So, we denote by $D\left(f_{s}\right)$ the projection of double point space in \mathbb{C}^{n}. The double point space $D\left(f_{s}\right)$ is a hypersurface in \mathbb{C}^{n} given by the resultant of P_{s} and Q_{s} with respect to z_{2}, where $P_{s}=\left(h_{1, s}\left(x, z_{2}\right)-h_{1, s}\left(x, z_{1}\right)\right) /\left(z_{2}-z_{1}\right)$ and $Q_{s}=\left(h_{2, s}\left(x, z_{2}\right)-h_{2, s}\left(x, z_{1}\right)\right) /\left(z_{2}-z_{1}\right)$. This gives the defining equation of $D\left(f_{s}\right)$, denoted by $\lambda_{s}(x, z)=0$.

To calculate the critical points of the set $D\left(f_{s}\right)$ we take the linear projection $\tilde{p}\left(x_{1}, \ldots, x_{n-1}, z\right)=x_{1}$. Note that the hypersuface $D\left(f_{s}\right)$ also contains the critical points of the other k-dimensional strata, with $k<n-1$. Then, it will be sufficient to compute critical points here, in order to have all the critical points. We have that $\left(x_{1}, \ldots, x_{n-1}, z\right)$ is a critical point of $\tilde{p}_{\left.\right|_{D\left(f_{s}\right)}}$ if $\lambda_{s}(x, z)=0$ and $J\left(\lambda_{s}, \tilde{p}\right)(x, z)=0$, where $J\left(\lambda_{s}, \tilde{p}\right)$ is the Jacobian determinant of λ and \tilde{p}.

If a critical point of $\tilde{p}_{\left.\right|_{D\left(f_{s}\right)}}$ corresponds to a m-multiple point, then we will have m critical points in $D\left(f_{s}\right)$ for one in the image of f_{s}. Thus, once the critical points of each type are obtained, we have to divide by the multiplicity of the point. In this way, we obtain the number of critical points of p in the image of f_{s}.

On the other hand, we compute separately the image Milnor numbers of f and g in order to check the formulas.

Example 4.2 (The germ F_{4} in $\left.\mathbb{C}^{3}\right)$ Let $f(x, z)=\left(x, z^{2}, z^{5}+x^{3} z\right)$ be the germ F_{4}. Let $f_{s}(x, z)=\left(x, z^{2}, z^{5}+x s z^{3}+\left(x^{3}-5 x s-s\right) z\right)$ be a stabilisation of f, for $s \neq 0$. By [10], f is a 1-parameter unfolding of the plane curve A_{4}, $g(z)=\left(z^{2}, z^{5}\right)$ and in fact, g is the transverse slice of f.

Figure 3. The germ F_{4} and its stabilisation for $s>0$.
Let $M^{3}\left(f_{s},(1,1,1)\right) \cup M^{2}\left(f_{s},(2)\right)$ be the 0 -dimensional strata of X_{s}. In our case, there are not triple points and there are three cross caps in $M^{2}\left(f_{s},(2)\right)$.

Let $M^{2}\left(f_{s},(1,1)\right)$ be the 1-dimensional stratum of X_{s}. As we said, let $D^{2}\left(f_{s}\right)$ be the double point curve in \mathbb{C}^{3} and by projecting in the first two coordinates, we have the double point curve in \mathbb{C}^{2}, denoted by $D\left(f_{s}\right)$.

We compute the resultant of P_{s} and Q_{s} respect to z_{2}, where P_{s} and Q_{s} are the divided differences. The double point curve of f_{s} in \mathbb{C}^{2} is the plane curve

$$
\lambda_{s}(x, z)=-s-5 s x+x^{3}+s x z^{2}+z^{4} .
$$

The critical points of the restriction $\left.p\right|_{D}\left(f_{s}\right)$ are given by $\lambda_{s}\left(x_{0}, z_{0}\right)=0$ and $J\left(\lambda_{s}, \tilde{p}\right)\left(x_{0}, z_{0}\right)=0$, where $\tilde{p}(x, z)=x$.

Nine critical points are obtained. Three of these points are cusps in $g_{x, s}$ which correspond to the three cross caps of f_{s}. Then, the other six critical points in $\tilde{p}_{\lambda_{s}\left(x_{0}, z_{0}\right)=0}$ correspond to three tacnodes in $g_{x, s}$ which are represented in the double point curve when a vertical line is tangent at two

Figure 4. Cusps and tacnodes in the double point curve.
points of $D\left(f_{s}\right)$. So, each two of these critical points in λ_{s} correspond to one tacnode of $g_{x, s}$ in $M^{2}\left(f_{s},(1,1)\right)$. Note that in the Fig. 4 there are only two tacnodes, that is because the other is a complex tacnode.

Finally, in the 2-dimensional stratum $M^{1}\left(f_{s},(1)\right)$ there are not critical points. So, the number of critical points in X_{s} is $\left.\# \Sigma p\right|_{X_{s}}=6$, three cusps, three tacnodes and zero triple points. Then, $\left.\# \Sigma p\right|_{X_{s}}=C+J+T$ where C, J, T are the numbers of cusps, tacnodes and triple points respectively of $g_{x, s}$. By [10], $\mu_{I}(f)=C+J+T-\delta(g)$. Since g is a plane curve, we have that $\mu_{I}(g)=\delta(g)($ see [12]). So,

$$
\left.\# \Sigma p\right|_{X_{s}}=C+J+T=\mu_{I}(f)+\mu_{I}(g) .
$$

Acknowledgements The authors thank D. Mond for many valuable comments and suggestions.

References

[1] Fernández de Bobadilla J., Nuño-Ballesteros J. J. and Peñafort-Sanchis G., A Jacobian module for disentanglements and applications to Mond's conjecture, arXiv:1604.02422, 2016.
[2] Goresky M. and MacPherson R., Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988, MR 932724.
[3] Goryunov V. and Mond D., Vanishing cohomology of singularities of mappings. Compositio Mathematica, 89 (1993), 45-80.
[4] Greuel G. M., Der Gauss-Manin-zusammenhang isolierter singularitäten von vollständigen durchschnitten. Math. Ann., 214 (1975), 235-266.
[5] Kirk N. and Houston K., On the classification and geometry of corank 1
map-germs from three-space to four-space, Singularity Theory: Proceedings of the European Singularities Conference, August 1996, Liverpool and Dedicated to CTC Wall on the Occasion of His 60th Birthday, vol. 263, Cambridge University Press, 1999, p. 325.
[6] Lê D. T., Computation of the Milnor number of an isolated singularity of a complete intersection. Funkcional. Anal. i Priložen., 8 (1974), 45-49 (Russian).
[7] Macdonald I., Symmetric functions and hall polynomials, Oxford university press, 1998.
[8] Marar W. L., The Euler characteristic of the disentanglement of the image of a corank 1 map germ, Singularity Theory and its Applications, Lecture Notes in Math., Springer, 1991, 212-220.
[9] Marar W. L. and Mond D., Multiple point schemes for corank 1 maps. J. London Math. Soc. (2), 39 (1989), 553-567.
[10] Marar W. L. and Nuño-Ballesteros J. J., Slicing corank 1 map germs from \mathbb{C}^{2} to \mathbb{C}^{3}. Q. J. Math., 65 (2014), 1375-1395.
[11] Mond D., Vanishing cycles for analytic maps, Singularity theory and its applications, Part I (Coventry, 1988/1989), Lecture Notes in Math., vol. 1462, Springer, Berlin, 1991, pp. 221-234.
[12] Mond D., Looking at bent wires - \mathcal{A}_{e}-codimension and the vanishing topology of parametrized curve singularities. Math. Proc. Cambridge Philos. Soc., 117 (1995), 213-222.
[13] Nuño-Ballesteros J. J. and Peñafort-Sanchis G., Multiple point spaces of finite holomorphic maps. Q. J. Math. 68 (2017), 369-390.

J. J. Nuño-Ballesteros

Departament de Matemàtiques
Universitat de València
Campus de Burjassot, 46100 Burjassot, Spain
E-mail: Juan.Nuno@uv.es
I. Pallarés-Torres

Basque Center for Applied Mathematics
Alameda de Mazarredo 14, 48009 Bilbao, Bizkaia, Spain
E-mail: irpato@alumni.uv.es

[^0]: 2010 Mathematics Subject Classification : Primary 32S30; Secondary 32S05, 58K40.
 Work partially supported by DGICYT Grant MTM2015-64013-P, the ERCEA Consolidator Grant 615655 NMST and also by the Basque Government through the BERC 2014-2017 program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323.

