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Abstract. For an (n − 1)-dimensional compact orientable smooth metric measure

space
`
M, g, e−f dvg

´
embedded in an n-dimensional compact orientable Riemannian

manifold N , we successfully give a lower bound for the first nonzero eigenvalue of the

drifting Laplacian on M , provided the Ricci curvature of N is bounded from below

by a positive constant and the weighted function f on M satisfies two constraints.
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1. Introduction

Suppose that N is an n-dimensional (n > 2) compact orientable Rieman-
nian manifold with Ricci curvature bounded from below by some positive
constant k. For a compact orientable hypersurface M minimally embedded
in N , Choi and Wang [1] proved λ1 > k/2, where λ1 is the first nonzero
eigenvalue of the Laplacian ∆̃ on M .

A smooth metric measure space (also known as the weighted mea-
sure space) is actually a Riemannian manifold equipped with some measure
which is conformal to the usual Riemannian measure. More precisely, for a
given complete Riemannian manifold (M , g) with the metric g, the triple
(M , g, e−fdvg) is called a smooth metric measure space, where f is a smooth
real-valued function on M and dvg is the Riemannian volume element as-
sociated with g (sometimes, we also call dvg the volume density). On a
smooth metric measure space (M , g, e−fdvg), we can define the so-called
drifting Laplacian (also called weighted Laplacian) Lf as follows

Lf := ∆̃− 〈∇̃f, ∇̃·〉g,

where 〈·, ·〉g is the inner product induced by the metric g, ∇̃ is the gradient
operator on M , and, as before, ∆̃ is the corresponding Laplace operator.
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Denote by Ric and Hess the Ricci tensor and the Hessian operator, respec-
tively. On (M , g, e−fdvg), we can also define the so-called ∞-Bakry-Émery
Ricci tensor Ricf given by

Ricf = Ric + Hess f,

which is also called the weighted Ricci curvature. Clearly, the weighted
Laplacian and the weighted Ricci curvature are natural generalizations of
the classical Laplacian and Ricci curvature in the Riemannian geometry.

Maybe people would have an illusion that smooth metric measure spaces
are not necessary to be studied since they are simply obtained from cor-
responding Riemannian manifolds by adding a conformal measure to the
Riemannian measure. However, the truth is not like this, and they do have
many differences. For instance, when Ricf is bounded from below, the
Myers’ theorem, Bishop-Gromov’s volume comparison, Cheeger-Gromoll’s
splitting theorem and Abresch-Gromoll excess estimate cannot hold as the
Riemannian case. However, we know some generalizations. For example,
Cheeger-Gromoll’s splitting theorem was generalized by Lichnerowicz [4]
and Fang-Li-Zhang [3] under Ricf > 0 and sup f < ∞, and some volume
comparison results are included in Wei-Wylie [8]. Here, for the purpose of
comprehension, we would like to repeat an example given in [8, Example 2.1].
That is, for the smooth metric measure space (Rn, gRn , e−fdvgRn ), where gRn

and dvgRn are the usual Euclidean metric and the Euclidean volume density
related to gRn respectively, if f(x) = (λ/2)|x|2 for x ∈ Rn, then we have
Hessf = λgRn and Ricf = λgRn . Therefore, from this example, we know
that unlike in the case of Ricci curvature bounded from below uniformly by
some positive constant, a metric measure space is not necessarily compact
provided Ricf > λ and λ > 0. So, it is interesting to know whether a clas-
sical result in the Riemannian geometry could be extended to the weighted
case or not. The first author here has been walking on this way and some
interesting results have also been obtained (see, e.g., [2], [5], [6]).

In this paper, we also work along this direction, and successfully prove
the following main theorem.

Theorem 1.1 Assume that (M, g, e−fdvg) is an (n−1)-dimensional com-
pact orientable smooth metric measure space embedded in an n-dimensional
(n > 2) compact orientable Riemannian manifold N , and the weight func-
tion f satisfies the following conditions:
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• the norm of the gradient of f is bounded by some nonnegative constant
C1, that is, |∇̃f | 6 C1, where ∇̃ is the gradient operator on M ;

• the absolute value of each element of the Hessian matrix of f is
bounded by some nonnegative constant C2, that is, for any x ∈ M

and a local orthonormal frame {ẽ1, . . . , ẽn−1} at x, |(D̃2f)(ẽi, ẽj)| =
|ẽi(ẽjf)− (∇̃eei

ẽj)f | = |fij | 6 C2 for any i, j = 1, 2, . . . , n− 1, where
D̃2 is the Hessian tensor on M , and ∇̃eei

ẽj is the covariant derivative
associated with the Levi-Civita connection on M .

If the Ricci curvature of N is bounded from below by a positive constant k,
then

(1) 2λ1,f > k − 2C3 provided M is a minimal hypersurface, where C3 :=
max{√n− 1 · C2, C1} and λ1,f is the first nonzero eigenvalue of the
drifting Laplacian Lf on M ;

(2) 2λ1,f > k−(n−1)maxM |H| provided M is not a minimal hypersurface,
where H is the mean curvature of M .

Especially, if furthermore f is a constant function on M , then equalities
in the above two eigenvalue inequalities cannot hold.

Remark 1.2 If f is a constant function on M , then the drifting Laplacian
Lf degenerates into the normal Laplacian ∆̃ on M and C1 = C2 = 0, which
leads to the facts that C3 = 0 and λ1,f = λ1 with, as before, λ1 the first
nonzero eigenvalue of ∆̃. Correspondingly, in this situation, our eigenvalue
lower bounds become 2λ1 > k − (n − 1)maxM |H|. Clearly, if furthermore
M is minimally embedded in N , then 2λ1 > k, which is sharper than Choi-
Wang’s lower bound λ1 > k/2 shown in [1].

Yau’s conjecture [9] asserts that the first nonzero eigenvalue of the Lapla-
cian on a compact embedded minimal hypersurface of Sn must be n−1. Choi
and Wang [1] have shown that this first eigenvalue is bounded from below
by (n− 1)/2. Therefore, it is meaningful to see what we can get if N ≡ Sn

in Theorem 1.1. In fact, we can obtain the following.

Corollary 1.3 If furthermore the ambient Riemannian manifold N in the
assumption of Theorem 1.1 satisfies N ≡ Sn, then λ1,f > (n − 1)/2 − C3

provided M is a minimal hypersurface of Sn, and λ1,f > (1/2)(n − 1)
(
1 −

maxM |H|) provided M is not a minimal hypersurface of Sn. Especially,
if furthermore f is a constant function on M , then equalities in these two
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eigenvalue inequalities cannot be attained.

2. Proof of main theorem

Proof of Theorem 1.1. Since the Ricci curvature of N is strictly positive,
the first Betti number of N must be zero. Furthermore, together with the
fact that M and N are orientable and considering the exact sequences of
homology groups, one can get the conclusion that M divides N into two
components, say Ω1 and Ω2, such that ∂Ω1 = ∂Ω2 = M .

Let ϕ be the eigenfunction of the first nonzero eigenvalue λ1,f of the
drifting Laplacian Lf on M , that is,

Lfϕ + λ1,fϕ = 0, in M. (2.1)

Let u be the solution to the following Cauchy problem

{
∆u = 0, in Ω1,

u = ϕ, on ∂Ω1 = M,
(2.2)

where ∆ is the Laplace operator with respect to the Riemannian metric on
Ω1. Clearly, u is a function defined on Ω1 smooth up to ∂Ω1.

For any x ∈ Ω1, one can always set up a local orthonormal frame
{e1, e2, . . . , en−1, en}, and moreover, if furthermore x ∈ ∂Ω1, one can re-
quire that at x, {e1, e2, . . . , en−1} forms an orthonormal basis of the tangent
space Tx(∂Ω1) and en is the outward normal vector. Define the second fun-
damental form h as h(v, w) = 〈∇ven, w〉, where v, w are vectors tangent
to ∂Ω1 = M , and ∇ is the gradient operator with respect to the Rieman-
nian metric on Ω1. Then the mean curvature H of ∂Ω1 = M is given by
H =

∑n−1
i=1 (h(ei, ei)/(n − 1)). To avoid confusion, as before, denote by ∆̃

and ∇̃ the Laplace and the gradient operators with respect to the induced
Riemannian metric on ∂Ω1 = M respectively. For x ∈ Ω1 and X, Y ∈ TxΩ1,
define the Hessian tensor (D2u)(X, Y ) = X(Y u)− (∇XY )u, where ∇XY is
the covariant derivative of the Levi-Civita connection on Ω1.

Now, we do computations in the above setting. As we know, for any
x ∈ Ω1, one has

∆u =
n∑

i=1

D2u(ei, ei) =
n∑

i=1

uii, (2.3)
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where uij = D2u(ei, ej) for any i, j = 1, 2, . . . , n. On the other hand, when
x ∈ ∂Ω1 and i 6= n, we have ∇ei

ei = ∇̃ei
ei + hiiei, where hii = h(ei, ei).

Therefore, combing (2.2) with (2.3), and together with the definition of the
Hessian tensor, we can obtain

∆u = unn + ∆̃ϕ +
n−1∑

i=1

hiien(u)

= unn + Lfϕ + 〈∇̃f, ∇̃ϕ〉g + (n− 1)Hen(u) (2.4)

for any x ∈ ∂Ω1 = M . Furthermore, by (2.1) and (2.4), we have

unn = λ1,fϕ− (n− 1)Hen(u)− 〈∇̃f, ∇̃ϕ〉g (2.5)

for x ∈ ∂Ω1 = M .
By the fact that ∆u = 0 and Bochner’s formula, for x ∈ Ω1, we have

∆|∇u|2 = 2
n∑

ij

u2
ij + 2

n∑

ij

Rijuiuj ,

where Rij = Ric(ei, ej). Together with the fact that the Ricci curvature of
N is bounded from below by k, it follows that ∆|∇u|2 > 2|D2u|2 +2k|∇u|2,
which implies that

∫

Ω1

∆|∇u|2 > 2
∫

Ω1

|D2u|2 + 2k

∫

Ω1

|∇u|2. (2.6)

Here we drop the volume element in all integrations in (2.6), and for con-
venience, we make an agreement that the volume element will be dropped in
every integration below.

On the other hand, when i 6= n, uin = D2u(ei, en) = ei(enu) −
(∇ei

en)u = ei(un) −∑n−1
j=1 hijuj . Furthermore, by using Green’s formula,

(2.1), (2.2) and (2.5), one can obtain

∫

Ω1

∆|∇u|2 = 2
∫

∂Ω1

n−1∑

i=1

uiuin + 2
∫

∂Ω1

ununn
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= 2
∫

∂Ω1

∇̃ϕ · ∇̃un − 2
∫

∂Ω1

n−1∑

i,j=1

hijuiuj + 2
∫

∂Ω1

ununn

= −2
∫

∂Ω1

un∆̃ϕ− 2
∫

∂Ω1

h(∇u,∇u) + 2
∫

∂Ω1

ununn

= 4λ1,f

∫

∂Ω1

unϕ− 4
∫

∂Ω1

un〈∇̃f, ∇̃ϕ〉g − 2
∫

∂Ω1

h(∇u,∇u)

− 2(n− 1)
∫

∂Ω1

Hu2
n

= 4λ1,f

∫

∂Ω1

unϕ− 4
∫

∂Ω1

n−1∑

i=1

unfiϕi − 2
∫

∂Ω1

h(∇u,∇u)

− 2(n− 1)
∫

∂Ω1

Hu2
n. (2.7)

For the first term of the right hand side (RHS for short) of (2.7), by Green’s
formula and (2.2), we have

4λ1,f

∫

Ω1

|∇u|2 = 4λ1,f

(
−

∫

Ω1

u∆u +
∫

∂Ω1

uun

)
= 4λ1,f

∫

∂Ω1

unϕ. (2.8)

For the last term of the RHS of (2.7), by (2.2), Green’s formula, and Hölder’s
inequality, we can obtain

− 2(n− 1)
∫

∂Ω1

Hu2
n

6 2(n− 1)max
M

|H|
∫

∂Ω1

u2
n

= 2(n− 1)max
M

|H|
( ∫

Ω1

un∆u +
∫

Ω1

∇un · ∇u

)

6 2(n− 1)max
M

|H|
( ∫

Ω1

|∇un|2
)1/2( ∫

Ω1

|∇u|2
)1/2

. (2.9)

Consider the second term of the RHS of (2.7), by two constraints for the
weight function f in the assumption of Theorem 1.1, (2.2), Green’s formula,
and Hölder’s inequality, one can get
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− 4
∫

∂Ω1

n−1∑

i=1

unfiϕi

= −4
∫

∂Ω1

n−1∑

i=1

unfiui

6 4
∣∣∣∣
∫

Ω1

( n−1∑

i=1

fiui

)
∆u +

∫

Ω1

∇
( n−1∑

i=1

fiui

)
∇u

∣∣∣∣

= 4
∣∣∣∣

n−1∑

i=1

[ ∫

Ω1

(
∇fi · ∇u

)
ui +

∫

Ω1

(
∇ui · ∇u

)
fi

]∣∣∣∣

6 4
n−1∑

i=1

[(∫

Ω1

|∇fi|2u2
i

)1/2( ∫

Ω1

|∇u|2
)1/2

+
( ∫

Ω1

|∇ui|2|fi|2
)1/2( ∫

Ω1

|∇u|2
)1/2]

6 4
n−1∑

i=1

[√
n− 1 · C2

( ∫

Ω1

u2
i

)1/2

+ C1

( ∫

Ω1

|∇ui|2
)1/2]

×
( ∫

Ω1

|∇u|2
)1/2

6 4C3

n−1∑

i=1

[(∫

Ω1

u2
i

)1/2

+
( ∫

Ω1

|∇ui|2
)1/2](∫

Ω1

|∇u|2
)1/2

, (2.10)

where, as defined before, C3 = max{√n−1 · C2, C1}. Since
∫

∂Ω1
h(∇u,∇u)

=
∫

M
h(∇ϕ,∇ϕ) and the outward normal vector of ∂Ω2 is −en, we have∫

∂Ω1
h(∇u,∇u) = − ∫

∂Ω2
h(∇u,∇u). So, without loss of generality, we can

assume
∫

∂Ω1
h(∇u,∇u) > 0, otherwise, we can work on Ω2 rather than

Ω1. Putting (2.8), (2.9), (2.10) into (2.7), and together with the fact that∫
∂Ω1

h(∇u,∇u) > 0, it follows that

∫

Ω1

∆|∇u|2

6 4λ1,f

∫

Ω1

|∇u|2 + 2(n− 1)max
M

|H|
( ∫

Ω1

|∇un|2
)1/2( ∫

Ω1

|∇u|2
)1/2
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+ 4C3

n−1∑

i=1

[(∫

Ω1

u2
i

)1/2

+
( ∫

Ω1

|∇ui|2
)1/2](∫

Ω1

|∇u|2
)1/2

. (2.11)

Combining (2.6) and (2.11), we have

(2λ1,f − k)
∫

Ω1

|∇u|2

>
∫

Ω1

|D2u|2 − (n− 1)max
M

|H|
( ∫

Ω1

|∇un|2
)1/2( ∫

Ω1

|∇u|2
)1/2

− 2C3

n−1∑

i=1

[(∫

Ω1

u2
i

)1/2

+
( ∫

Ω1

|∇ui|2
)1/2](∫

Ω1

|∇u|2
)1/2

.

(2.12)

Now, we divide the rest of the proof into two steps.

Step 1. If furthermore M is a minimal hypersurface, then H ≡ 0, which
implies that the second term of the RHS of (2.12) vanishes identically. So,
in this setting, we have

(2λ1,f − k)
∫

Ω1

|∇u|2

>
∫

Ω1

|D2u|2 − 2C3

n−1∑

i=1

[(∫

Ω1

u2
i

)1/2

+
( ∫

Ω1

|∇ui|2
)1/2]

×
( ∫

Ω1

|∇u|2
)1/2

. (2.13)

In the following, for convenience, set ] :=
∑n−1

i=1

[( ∫
Ω1

u2
i

)1/2 +
( ∫

Ω1
|∇ui|2

)1/2]. Consider (2.13) into the following two cases:

Case (A). If ] 6
( ∫

Ω1
|∇u|2)1/2, then from (2.13), one can get

(2λ1,f − k)
∫

Ω1

|∇u|2 >
∫

Ω1

|D2u|2 − 2C3

∫

Ω1

|∇u|2 > −2C3

∫

Ω1

|∇u|2,

which implies 2λ1,f > k − 2C3. This is because the harmonic function u

cannot be constant in Ω1 (otherwise it contradicts the boundary condition
u = ϕ on ∂Ω) and so

∫
Ω1
|∇u|2 > 0.



Estimates for the first eigenvalue 633

Case (B). If ] >
( ∫

Ω1
|∇u|2)1/2, then we have

−2C3]
2 6 −2C3 · ] ·

( ∫

Ω1

|∇u|2
)1/2

.

Together with (2.13), one can obtain

(2λ1,f − k)
∫

Ω1

|∇u|2 + 2C3]
2 >

∫

Ω1

|D2u|2 > 0.

Therefore, we have

(2λ1,f − k + 2C3)]2 > (2λ1,f − k)
∫

Ω1

|∇u|2 + 2C3]
2 >

∫

Ω1

|D2u|2 > 0,

which implies that 2λ1,f − k + 2C3 > 0. This fact holds since in this case
]2 >

∫
Ω1
|∇u|2 > 0.

Step 2. If M is not a minimal hypersurface, then there must exist some
point x0 ∈ M such that H(x0) 6= 0, which implies that maxM |H| > 0. So,
in this setting, by (2.12) we have

(2λ1,f − k)
∫

Ω1

|∇u|2

> −(n− 1)max
M

|H|
( ∫

Ω1

|∇un|2
)1/2( ∫

Ω1

|∇u|2
)1/2

− 2C3]

( ∫

Ω1

|∇u|2
)1/2

+
∫

Ω1

|D2u|2

= −(n−1)max
M

|H|
[(∫

Ω1

|∇un|2
)1/2

+
2C3]

(n−1)maxM |H|
](∫

Ω1

|∇u|2
)1/2

+
∫

Ω1

|D2u|2. (2.14)

For convenience, set [ :=
( ∫

Ω1
|∇un|2

)1/2 + 2C3]/((n− 1)maxM |H|). As
in Step 1, we consider (2.14) into the following two cases:

Case (C). If [ 6
( ∫

Ω1
|∇u|2)1/2, then from (2.14) and the fact that
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∫
Ω1
|∇u|2 > 0, we have

(2λ1,f − k)
∫

Ω1

|∇u|2 >
∫

Ω1

|D2u|2 − (n− 1)max
M

|H|
∫

Ω1

|∇u|2

> −(n− 1)max
M

|H|
∫

Ω1

|∇u|2,

which implies 2λ1,f > k − (n− 1)maxM |H|.
Case (D). If [ >

( ∫
Ω1
|∇u|2)1/2, then

−(n− 1)max
M

|H| · [2 6 −(n− 1)max
M

|H| · [
( ∫

Ω1

|∇u|2
)1/2

.

Together with (2.14), we can obtain

(2λ1,f − k)
∫

Ω1

|∇u|2 + (n− 1)max
M

|H| · [2 >
∫

Ω1

|D2u|2 > 0.

Hence, one has

(
2λ1,f − k + (n− 1)max

M
|H|

)
· [2

> (2λ1,f − k)
∫

Ω1

|∇u|2 + (n− 1)max
M

|H| · [2 >
∫

Ω1

|D2u|2 > 0,

which implies that 2λ1,f − k + (n− 1)maxM |H| > 0. This inequality holds
since in this case [2 >

∫
Ω1
|∇u|2 > 0.

Through the above two steps, we have proved two eigenvalue inequalities
involved λ1,f in Theorem 1.1. At the end, we would like to give the proof of
the last assertion of Theorem 1.1. In fact, by the argument in Steps 1 and 2,
if equalities in the two eigenvalue inequalities in Theorem 1.1 holds, we must
have

∫
Ω1
|D2u|2 = 0, which implies that uij = 0 on Ω1 for all 1 6 i, j 6 n.

Furthermore, we have ϕij = 0 on M for all 1 6 i, j 6 n − 1, since u is
smooth up to ∂Ω1 = M and u = ϕ on Ω1. It follows that ∆̃ϕ = 0 in M .
This is equivalent to say that Lfϕ = 0 in M when f is a constant function.
However, this is a contradiction since ϕ is the first eigenfunction of Lf .
Therefore, when f is a constant function, equalities in the two eigenvalue
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inequalities in Theorem 1.1 cannot be achieved.
The proof of Theorem 1.1 is finished. ¤

Remark 2.1 For Φ ∈ C∞(N), the so-called weighted mean curvature HΦ

(see, e.g., [7] for this notion about a generalization of the mean curvature)
can be well-defined on the ambient manifold N . Maybe it is possible to get
analogous estimates for the first nonzero eigenvalue λ1 of ∆̃ on M under
RicΦ > k on N and some conditions on HΦ.
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