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The existence of Leray-Hopf weak solutions with linear strain

Ryôhei Kakizawa

(Received January 13, 2016; Revised August 31, 2017)

Abstract. This paper deals with the global existence of weak solutions to the initial

value problem for the Navier-Stokes equations in Rn (n ∈ Z, n ≥ 2). Concerning initial

data of the form Ax + v(0), where A ∈ Mn(R) and v(0) ∈ L2
σ(Rn), the weak solutions

are properly-defined with the aid of the alternativity of the trilinear from (Ax ·∇)v ·ϕ.

Furthermore, we construct the Leray-Hopf weak solution which satisfies not only the

Navier-Stokes equations but also the energy inequality via the Galerkin approximation.

From the viewpoint of quadratic forms, the Gronwall-Bellman inequality admits the

uniform boundedness of the approximate solution.
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1. Introduction

Let n ∈ Z, n ≥ 2 and T > 0. Motion of incompressible viscous fluids
with linear strain in Rn is described by the initial value problem for the
Navier-Stokes equations as follows:





div u = 0 in Rn × (0, T ),

ρ{∂t + (u · ∇)}u +∇p− µ∆u = 0 in Rn × (0, T ),

u|t=0 = Ax + v(0) in Rn,

(1.1)

where u = (u1, . . . , un)T is the fluid velocity, p is the pressure, ρ is the
density, µ is the coefficient of viscosity, A ∈ Mn(R), i.e., A is a real square
matrix of order n and ·T is the transposition. These equations correspond
to the laws of conservation of mass and momentum respectively. Moreover,
it is required that ρ and µ are positive constants. See, for example, Lamb
[5] and Serrin [10] on conservation laws of fluid motion and derivation of the
above equations.

This paper is concerned with the fluid velocity perturbation v := u−Ax

from linear strain Ax. Note that Ax is characterized as an exact solution to
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(1.1). Indeed,

u := Ax, p := −ρ

2
Ax ·AT x

is a stationary solution to (1.1) provided that trA = 0 and A2 ∈ Sn(R),
i.e., A2 is a real symmetric matrix of order n. See, for example, Majda
and Bertozzi [7] and Okamoto [9] on exact solutions to the Navier-Stokes
equations and their fluid mechanical properties. Substituting

v := u−Ax, q := p +
ρ

2
Ax ·AT x

into (1.1), we consider a solution (v, q) to the following initial value problem:





div v = 0 in Rn × (0, T ),

ρ{∂tv + (v · ∇)v + (Ax · ∇)v + Av}+∇q − µ∆v = 0 in Rn × (0, T ),

v|t=0 = v(0) in Rn.
(1.2)

In the case where A is a zero matrix, there are many results on the global
existence and kinetic energy of weak solutions to (1.1) or equivalently, (1.2).
For any v(0) ∈ L2

σ(R3) and T > 0, Leray [6] constructed a weak solution u

to (1.1) such that the energy inequality

1
2
‖u(t)‖2 +

µ

ρ

∫ t

0

‖∇u(τ)‖2dτ ≤ 1
2
‖v(0)‖2 (1.3)

holds for any 0 < t < T via the heat kernel. Moreover, it follows from Hopf
[4] that the Galerkin approximation works in domains rather than R3. On
the other hand, Masuda [8] proved the global existence of weak solutions
to (1.1) which seem to have a somewhat stronger property than Leray-Hopf
weak solutions to (1.1). If A is a non-zero matrix, Campiti, Galdi and
Hieber [1] recently obtained the global existence and uniqueness of strong
solutions to (1.2) in the case of n = 2. However, it is unknown except for
n = 2 whether (1.2) admits the global existence of weak solutions or not.
Concerning the local existence and uniqueness of mild solutions to (1.2),
Hieber and Sawada [2] defined the operator Ap in Lp

σ(Rn) (1 < p < ∞) as
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Ap = −∆ + (Ax · ∇)−A

with its domain D(Ap) := {u ∈ (W 2,p(Rn))n ∩ Lp
σ(Rn); (Ax · ∇)u ∈

(Lp(Rn))n}, and proved that −Ap generates a C0(but non-analytic)-
semigroup {e−tAp}t≥0 on Lp

σ(Rn). Applying Lp-Lq smoothing estimates
for {e−tAp}t≥0 to the successive approximation, the local existence and
uniqueness result was given as follows: Let n ≤ p < ∞, p ≤ q ≤ ∞ and
v(0) ∈ Lp

σ(Rn). Then there exists T∗ > 0 such that (1.2) uniquely has a
mild solution v satisfying

tn/2(1/p−1/q)v ∈ C([0, T∗);Lq
σ(Rn)).

The aim of this paper is to establish the global existence of Leray-Hopf
weak solutions to (1.2). More precisely, weak solutions to (1.2) are properly-
defined with the aid of

∫

Rn

(Ax · ∇)v · ϕdx = −
∫

Rn

v · (Ax · ∇)ϕdx

for any v ∈ H1
σ(Rn) and ϕ ∈ C1

0,σ(Rn). Furthermore, we construct a weak
solution v to (1.2) such that the energy inequality

1
2
‖v(t)‖2 +

∫ t

0

(Av(τ), v(τ))dτ +
µ

ρ

∫ t

0

‖∇v(τ)‖2dτ ≤ 1
2
‖v(0)‖2 (1.4)

holds for any 0 < t < T via the Galerkin approximation. The crucial point
is that the quadratic inequality

Ax · x ≥ a|x|2 (1.5)

holds for any x ∈ Rn, where a := min{λ;λ ∈ σ(S)} and S := (1/2)(A+AT ).
Note that trA = 0 implies a ≤ 0. Then it follows from (1.4), (1.5) and the
Gronwall-Bellman inequality that a priori estimate

1
2
‖v(t)‖2 +

µ

ρ

∫ t

0

‖∇v(τ)‖2dτ ≤ 1
2
‖v(0)‖2 exp(−2at) (1.6)

holds for any 0 < t < T . By virtue of the global existence result of Leray-
Hopf weak solutions to (1.2), the fluid velocity perturbation v = u − Ax
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is in the energy class Cw([0, T ];L2
σ(Rn)) ∩ L2((0, T );H1

σ(Rn)). Moreover,
our main result includes the case of the Navier-Stokes equations with the
Coriolis force, e.g., Hieber and Shibata [3].

This paper is organized as follows: In Subsection 2.1, we define basic
notation used in this paper. Subsection 2.2 provides the notion of weak
solutions and Leray-Hopf weak solutions to (1.2) and our main result. In
Subsection 3.1, we state some auxiliary lemmas. Finally, the global existence
of Leray-Hopf weak solutions to (1.2) is established in Subsection 3.2.

2. Preliminaries and a main result

2.1. Function spaces
Function spaces and basic notation which we use throughout this paper

are introduced as follows: Mn(R) is the set of all real square matrices of
order n. In particular, Sn(R) is the set of all real symmetric matrix of order
n. For any A ∈ Mn(R), the spectrum of A is denoted by σ(A).

Lp(Rn) (1 ≤ p ≤ ∞) and Hk(Rn) (k ∈ Z, k ≥ 0) are the Lebesgue
and L2-Sobolev spaces respectively. Moreover, the scalar product and the
norm in L2(Rn) is denoted by (·, ·) and ‖ · ‖ respectively. Let us introduce
solenoidal function spaces. Ck(Rn) (k ∈ Z, k ≥ 1) is the space of all
functions in Rn which are continuously differentiable up to order k in Rn.
In particular, we denote by Ck

0 (Rn) the space of all Ck-functions in Rn whose
support are compact. Set Ck

0,σ(Rn) := {u ∈ (Ck
0 (Rn))n; div u = 0}. Lp

σ(Rn)
(1 < p < ∞) and H1

σ(Rn) are the completions of C1
0,σ(Rn) in (Lp(Rn))n and

in (H1(Rn))n respectively.
Let I be a bounded open interval in R, and X be a Banach space.

Lq(I;X) (1 ≤ q ≤ ∞) and Hk(I;X) (k ∈ Z, k ≥ 0) are the Lebesgue and
L2-Sobolev spaces of X-valued functions respectively.

Let I be a bounded closed interval in R, and X be a Banach space.
C(I;X) is the Banach space of all X-valued functions which are continuous
in I. In particular, Ck(I;X) (k ∈ Z, k ≥ 1) is the Banach space of all
X-valued functions which are continuously differentiable up to order k in I.

Let I be a bounded closed interval in R, and X be a Hilbert space
with the scalar product (·, ·)X . As for the Banach space of weak continuous
functions, we set Cw(I;X) := {u : I → X;∀ϕ ∈ X, (u, ϕ)X ∈ C(I;R)}.
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2.2. Leray-Hopf weak solutions to (1.2) and a main result
This subsection provides the notion of weak solutions and Leray-Hopf

weak solutions to (1.2) and our main result. First, we define weak solutions
to (1.2) which satisfy the weak formulation of (1.2).

Definition 2.1 Let A ∈ Mn(R), v(0) ∈ L2
σ(Rn) and T > 0. Then v ∈

Cw([0, T ];L2
σ(Rn)) ∩ L2((0, T );H1

σ(Rn)) is called a weak solution to (1.2) if
the functional equation

−
∫ t

s

(v(τ), ∂τϕ(τ))dτ +
∫ t

s

((v(τ) · ∇)v(τ), ϕ(τ))dτ

−
∫ t

s

(v(τ), (Ax · ∇)ϕ(τ))dτ +
∫ t

s

(Av(τ), ϕ(τ))dτ

+
µ

ρ

∫ t

s

(∇v(τ),∇ϕ(τ))dτ = −(v(t), ϕ(t)) + (v(s), ϕ(s)) (2.1)

holds for any ϕ ∈ H1((s, t);C1
0,σ(Rn)) and 0 ≤ s < t < T .

Second, we introduce Leray-Hopf weak solutions to (1.2) which satisfy
not only the weak formulation of (1.2) but also the energy inequality, i.e.,
(1.4).

Definition 2.2 Let A ∈ Mn(R), v(0) ∈ L2
σ(Rn) and T > 0. Then a

weak solution v ∈ Cw([0, T ];L2
σ(Rn)) ∩ L2((0, T );H1

σ(Rn)) to (1.2) is called
a Leray-Hopf weak solution to (1.2) if the energy inequality

1
2
‖v(t)‖2 +

∫ t

0

(Av(τ), v(τ))dτ +
µ

ρ

∫ t

0

‖∇v(τ)‖2dτ ≤ 1
2
‖v(0)‖2 (2.2)

holds for any 0 < t < T .

Finally, we state our main result of this paper, i.e., the global existence
result of Leray-Hopf weak solutions to (1.2) is established. The following
theorem means that for any T > 0, a Leray-Hopf weak solution to (1.2)
exists in Rn × (0, T ).

Theorem 2.1 Let A ∈ Mn(R), trA = 0, v(0) ∈ L2
σ(Rn) and T >

0. Then (1.2) has a Leray-Hopf weak solution v ∈ Cw([0, T ];L2
σ(Rn)) ∩

L2((0, T );H1
σ(Rn)) satisfying
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lim
t→+0

‖v(t)− v(0)‖ = 0. (2.3)

Remark 2.1 In the case where A is a zero matrix, Theorems 2.1 is [8,
Theorem 1].

3. Proof of a main result

3.1. Auxiliary Lemmas
Some auxiliary lemmas are given in this subsection. First, we have the

following lemma on the approximation of functions in L2((s, t);X) and in
H1((s, t);X):

Lemma 3.1 Let X be a Banach space with the norm ‖ · ‖X , Y be a dense
subset of X and 0 ≤ s < t, and set

F ([s, t];Y ) :=
{ ∑

finite

akψk; ak ∈ C1([s, t];R), ψk ∈ Y

}
.

Then

(1) For any ϕ ∈ L2((s, t);X), there exists a sequence {ϕm;m ∈ N} in
F ([s, t];Y ) satisfying

lim
m→∞

ϕm = ϕ in L2((s, t);X).

(2) For any ϕ ∈ H1((s, t);X), there exists a sequence {ϕm;m ∈ N} in
F ([s, t];Y ) satisfying

lim
m→∞

ϕm = ϕ in H1((s, t);X).

Proof. See [8, Lemma 2.2]. ¤

Second, we proceed to the alternativity of the trilinear form ((u·∇)v, w).
This property is established as follows:

Lemma 3.2 Let u ∈ H1
σ(Rn) ∩ Ln

σ(Rn). Then

((u · ∇)v, w) = −((u · ∇)w, v) (3.1)

holds for any v, w ∈ H1
σ(Rn).
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Proof. See [8, Lemma 2.3]. ¤

Finally, the Friedrichs inequality for the trilinear form ((u · ∇)v, w) is
given. The following lemma is used for the equicontinuity.

Lemma 3.3 Let T > 0 and w ∈ C([0, T ];Ln
σ(Rn)). Then for any ε >

0, there exists C(T, w, ε) > 0, N(T, w, ε) ∈ N and a sequence {ϕk; k ∈
{1, . . . , N(T, w, ε)}} in L2

σ(Rn) depending only on n, T , w and ε such that

∫ t

s

|((u(τ) · ∇)v(τ), w(τ))|dτ

≤ ε

∫ t

s

(‖∇u(τ)‖2 + ‖u(τ)‖‖∇v(τ)‖+ ‖∇v(τ)‖2)dτ

+ C(T, w, ε)
N(T,w,ε)∑

k=1

∫ t

s

|(u(τ), ϕk)|2dτ (3.2)

holds for any u, v ∈ L2((s, t);H1
σ(Rn)) and 0 ≤ s < t ≤ T .

Proof. See [8, Lemma 2.5]. ¤

3.2. Proof of Theorem 2.1
In this subsection, we will prove Theorem 2.1. Since H1

σ(Rn) ∩ Ln
σ(Rn)

is a separable Banach space and C1
0,σ(Rn) is dense in H1

σ(Rn)∩Ln
σ(Rn), see

[8, Proposition 1 and Lemma 3.1], there exists a linearly independent total
sequence {ψk; k ∈ N} in H1

σ(Rn) ∩ Ln
σ(Rn) which admits ψk ∈ C1

0,σ(Rn)
for any k ∈ N. Note that C1

0,σ(Rn) ⊆ H1
σ(Rn) ∩ Ln

σ(Rn) ⊆ L2
σ(Rn) and

C1
0,σ(Rn) is dense in L2

σ(Rn). Without loss of generality, we may assume
that {ψk; k ∈ N} is an orthonormal basis for L2

σ(Rn). The approximate
solution vm to (1.2) of the form

vm(x, t) :=
m∑

k=1

bk(t)ψk(x) (x ∈ Rn, 0 ≤ t ≤ T )

is constructed by the sequence {bk; k ∈ {1, . . . , m}} in C1([0, T ];R) which is
a solution to the following initial value problem for the system of m ordinary
differential equations:
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b′k(t) +
(m,m)∑

(i,j)=(1,1)

((ψi · ∇)ψj , ψk)bi(t)bj(t)−
m∑

i=1

(ψi, (Ax · ∇)ψk)bi(t)

+
m∑

i=1

(Aψi, ψk)bi(t) +
µ

ρ

m∑

i=1

(∇ψi,∇ψk)bi(t) = 0

(k ∈ {1, . . . , m}), (3.3)

bk(0) = (v(0), ψk) (k ∈ {1, . . . , m}). (3.4)

Note that (3.3), (3.4) uniquely has a solution {bk; k ∈ {1, . . . , m}} in
C1([0, T ];R). Furthermore, (3.3) is rewritten to the system of m ordinary
differential equations

(∂tvm(t), ψk) + ((vm(t) · ∇)vm(t), ψk)− (vm(t), (Ax · ∇)ψk)

+ (Avm(t), ψk) +
µ

ρ
(∇vm(t),∇ψk) = 0 (k ∈ {1, . . . , m}). (3.5)

First, for any k ∈ N, the (uniform) boundedness of {(vm, ψk);m ∈ N}
in C([0, T ];R) is derived from the following lemma on the energy equality
for vm:

Lemma 3.4 The energy equality

1
2
‖vm(t)‖2 +

∫ t

s

(Avm(τ), vm(τ))dτ +
µ

ρ

∫ t

s

‖∇vm(τ)‖2dτ =
1
2
‖vm(s)‖2

(3.6)

holds for any 0 ≤ s < t ≤ T .

Proof. After multiplying (3.5) by bk, we integrate it with respect to time
over [s, t]. This integration yields the system of m integral equations

∫ t

s

(∂τvm(τ), bk(τ)ψk)dτ +
∫ t

s

((vm(τ) · ∇)vm(τ), bk(τ)ψk)dτ

−
∫ t

s

(vm(τ), (Ax · ∇)(bk(τ)ψk))dτ +
∫ t

s

(Avm(τ), bk(τ)ψk)dτ

+
µ

ρ

∫ t

s

(∇vm(τ),∇(bk(τ)ψk))dτ = 0 (k ∈ {1, . . . , m}). (3.7)
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Since vm ∈ C1([0, T ];C1
0,σ(Rn)),

((vm · ∇)vm, vm) = 0 = (vm, (Ax · ∇)vm)

follows from Lemma 3.2. Consequently, the sum of (3.7) with respect to
k ∈ {1, . . . , m} yields

∫ t

s

(∂τvm(τ), vm(τ))dτ +
∫ t

s

(Avm(τ), vm(τ))dτ +
µ

ρ

∫ t

s

‖∇vm(τ)‖2dτ = 0.

(3.8)

It is easy to see (3.6) from (3.8) and the fundamental theorem of calculus,
which completes the proof of Lemma 3.4. ¤

The following lemma yields not only the (uniform) boundedness of
{(vm, ψk);m ∈ N} in C([0, T ];R) but also the energy inequality for weak
solutions to (1.2).

Lemma 3.5 The energy inequality

1
2
‖vm(t)‖2+

∫ t

0

(Avm(τ), vm(τ))dτ +
µ

ρ

∫ t

0

‖∇vm(τ)‖2dτ ≤ 1
2
‖v(0)‖2 (3.9)

holds for any 0 < t ≤ T .

Proof. Substituting s = 0 into Lemma 3.4, we have

1
2
‖vm(t)‖2 +

∫ t

0

(Avm(τ), vm(τ))dτ +
µ

ρ

∫ t

0

‖∇vm(τ)‖2dτ =
1
2
‖vm(0)‖2.

Moreover, ‖vm(0)‖ ≤ ‖v(0)‖ follows from the Bessel inequality. This com-
pletes the proof of Lemma 3.5. ¤

By the quadratic inequality,

∫ t

0

(Avm(τ), vm(τ))dτ ≥ a

∫ t

0

‖vm(τ)‖2dτ (3.10)

holds for any 0 < t ≤ T , where a = min{λ;λ ∈ σ(S)} and S = (1/2)(A +
AT ). Note that trA = 0 implies a ≤ 0. Then it follows from Lemma 3.5 and
(3.10) that
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1
2
‖vm(t)‖2 +

µ

ρ

∫ t

0

‖∇vm(τ)‖2dτ ≤ −a

∫ t

0

‖vm(τ)‖2dτ +
1
2
‖v(0)‖2 (3.11)

holds for any 0 < t ≤ T . Applying the Gronwall-Bellman inequality to
(3.11),

1
2
‖vm(t)‖2 +

µ

ρ

∫ t

0

‖∇vm(τ)‖2dτ ≤ 1
2
‖v(0)‖2 exp(−2at) (3.12)

holds for any 0 < t ≤ T . Therefore, for any k ∈ N, the Schwarz inequality,
(3.12) and ‖ψk‖ = 1 admit that {(vm, ψk);m ∈ N} is (uniformly) bounded
in C([0, T ];R).

Second, for any k ∈ N, we proceed to the equicontinuity of {(vm, ψk);
m ∈ N} on [0, T ]. It is easy to see from (3.5) and the fundamental theorem
of calculus that

(vm(t), ψk)− (vm(s), ψk) =
∫ t

s

(∂τvm(τ), ψk)dτ

= −
∫ t

s

((vm(τ) · ∇)vm(τ), ψk)dτ

+
∫ t

s

(vm(τ), (Ax · ∇)ψk)dτ

−
∫ t

s

(Avm(τ), ψk)dτ − µ

ρ

∫ t

s

(∇vm(τ),∇ψk)dτ

=: I1(s, t) + I2(s, t) + I3(s, t) + I4(s, t) (3.13)

holds for any 0 ≤ s < t ≤ T . Concerning continuity properties of the
above integrals in (3.13) with respect to time, the following two lemmas are
established.

Lemma 3.6 Let I1(s, t) be taken as in (3.13). Then for any ε > 0, there
exists C(k, ε) > 0 depending only on n, k and ε such that

|I1(s, t)| ≤
{

ρ

4µ
ε + C(k, ε)(t− s)

}
‖v(0)‖2 exp(−2aT ) (3.14)

holds for any 0 ≤ s < t ≤ T .
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Proof. By Lemma 3.3 and the Schwarz inequality, for any ε > 0, there
exists C(k, ε) > 0 depending only on n, k and ε such that

|I1(s, t)| ≤ ε

2

∫ t

s

‖∇vm(τ)‖2dτ + C(k, ε)
∫ t

s

‖vm(τ)‖2dτ

holds for any 0 ≤ s < t ≤ T . Consequently, (3.14) follows from (3.12). ¤

Lemma 3.7 Let I2(s, t), I3(s, t) and I4(s, t) be taken as in (3.13). Then

|I2(s, t)| ≤ (t− s)‖(Ax · ∇)ψk‖‖v(0)‖ exp(−aT ) (3.15)

holds for any 0 ≤ s < t ≤ T ,

|I3(s, t)| ≤ (t− s)|A|‖v(0)‖ exp(−aT ) (3.16)

holds for any 0 ≤ s < t ≤ T , and

|I4(s, t)| ≤
{

µ

2ρ
(t− s)

}1/2

‖∇ψk‖‖v(0)‖ exp(−aT ) (3.17)

holds for any 0 ≤ s < t ≤ T .

Proof. Analogously to the proof of Lemma 3.6, (3.15), (3.16) and (3.17)
are derived from the Schwarz inequality, (3.12) and ‖ψk‖ = 1. ¤

Combining (3.13) with Lemmas 3.6 and 3.7, for any ε > 0, there exists
δ(T, k, ε) > 0 depending only on n, ρ, µ, a, v(0), T , k and ε such that

|(vm(t), ψk)− (vm(s), ψk)| < ε

holds for any m ∈ N and 0 ≤ s, t ≤ T satisfying |t−s| < δ(T, k, ε). Therefore,
for any k ∈ N, {(vm, ψk);m ∈ N} is equicontinuous on [0, T ].

The proof of Theorem 2.1 is based on the following lemma on the con-
vergence of the approximate solution vm to (1.2). Hereafter, a subsequence
of {vm;m ∈ N} is denoted by {vm;m ∈ N} itself for the sake of simplicity
of the notation.

Lemma 3.8 There exists v ∈ Cw([0, T ];L2
σ(Rn)) ∩ L2((0, T );H1

σ(Rn))
satisfying
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lim
m→∞

vm = v weakly in L2((0, T );H1
σ(Rn))

and

lim
m→∞

vm = v in Cw([0, T ];L2
σ(Rn)).

Proof. Since {vm;m ∈ N} is (uniformly) bounded in C([0, T ];L2
σ(Rn))

and in L2((0, T );H1
σ(Rn)), which follows from (3.12), there exists v ∈

L2((0, T );H1
σ(Rn)) satisfying

lim
m→∞

vm = v weakly in L2((0, T );H1
σ(Rn)).

As is proved above, for any k ∈ N, {(vm, ψk);m ∈ N} is (uniformly) bounded
in C([0, T ];R) and equicontinuous on [0, T ]. Recall that {ψk; k ∈ N} is an
orthonormal basis for L2

σ(Rn). Then, by the Arzelà-Ascoli theorem and
Cantor’s diagonal argument, v is also in Cw([0, T ];L2

σ(Rn)), and

lim
m→∞

vm = v in Cw([0, T ];L2
σ(Rn)).

This completes the proof of Lemma 3.8. ¤

Finally, we will prove that v is a Leray-Hopf weak solution to (1.2). Let
0 ≤ s < t < T , and set

F ([s, t]; span{ψk; k ∈ N}) :=
{ ∑

finite

akψk; ak ∈ C1([s, t];R)
}

.

Then the same argument as in Lemma 3.4 shows that

−
∫ t

s

(vm(τ), ∂τϕ(τ))dτ +
∫ t

s

((vm(τ) · ∇)vm(τ), ϕ(τ))dτ

−
∫ t

s

(vm(τ), (Ax · ∇)ϕ(τ))dτ +
∫ t

s

(Avm(τ), ϕ(τ))dτ

+
µ

ρ

∫ t

s

(∇vm(τ),∇ϕ(τ))dτ = −(vm(t), ϕ(t)) + (vm(s), ϕ(s)) (3.18)

holds for any ϕ ∈ F ([s, t]; span{ψk; k ∈ N}). For the purpose of the conclu-
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sion, we have the following lemma on the convergence of the triliner form
((vm(τ) · ∇)vm(τ), ϕ(τ)):

Lemma 3.9 Let v ∈ Cw([0, T ];L2
σ(Rn)) ∩ L2((0, T );H1

σ(Rn)) be taken as
in Lemma 3.8. Then

lim
m→∞

∫ t

s

((vm(τ) · ∇)vm(τ), ϕ(τ))dτ =
∫ t

s

((v(τ) · ∇)v(τ), ϕ(τ))dτ (3.19)

holds for any ϕ ∈ F ([s, t]; span{ψk; k ∈ N}).
Proof. See [8, (3.12)]. ¤

Let m →∞ in (3.18). Then, by Lemmas 3.8 and 3.9, we obtain

−
∫ t

s

(v(τ), ∂τϕ(τ))dτ +
∫ t

s

((v(τ) · ∇)v(τ), ϕ(τ))dτ

−
∫ t

s

(v(τ), (Ax · ∇)ϕ(τ))dτ +
∫ t

s

(Av(τ), ϕ(τ))dτ

+
µ

ρ

∫ t

s

(∇v(τ),∇ϕ(τ))dτ = −(v(t), ϕ(t)) + (v(s), ϕ(s)) (3.20)

for any ϕ ∈ F ([s, t]; span{ψk; k ∈ N}). Thus, it follows from (3.20) and
Lemma 3.1 with X = H1

σ(Rn)∩Ln
σ(Rn) and Y = C1

0,σ(Rn) that v is a weak
solution to (1.2). Moreover, Lemma 3.5 and 3.8 admit the energy inequality
for v, so v is also a Leray-Hopf weak solution to (1.2). This completes the
proof of Theorem 2.1.
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