ON POLYNOMIAL EXTENSIONS OF SIMPLE RINGS

By

Kazuo Kishimoto *)

Introduction. Let S be a simple ring, and A an extension ring of S with the common identity. If $[A: S]_{r}=n(>1)$ and there exists some $y \in A$ such that $A=\sum_{i=0}^{n-1} y^{i} S$ and $S y \subseteq y S+S$, then A / S is called an n dimensional right polynomial extension and $\left\{y^{i} ; i=0,1, \cdots, n-1\right\}$ is called a right polynomial S-basis for A. Then, by $s y=y s^{\prime}+s^{\prime \prime}(s \in S)$, we can define in S a monomorphism $\rho_{y}: s \rightarrow s^{\prime}$ and a ($1, \rho_{y}$)-derivation ${ }^{1)} D_{y}: s \rightarrow s^{\prime \prime}$. On the other hand, an extension ring A^{\prime} of S (with the common identity) is called an m dimensional left polynomial extension over S if $\left[A^{\prime}: S\right]_{l}=m(>1), A^{\prime}=\sum_{i=0}^{m-1} S x^{i}$ and $x S \leqq S x+S$. Finally, a right polynomial extension is called a polynomial extension if it is a left polynomial extension at the same time. Any right quadratic extensions and cyclic extensions (Cf. [4]) are right polynomial extensions.

The purpose of the present paper is to give some information' to the study of finite dimensional right polynomial simple ring extensions. In $\S 1$, we shall give a relation between the left dimension and the right dimension of a right polynomial extension and a necessary and sufficient condition for a simple ring to have a finite dimensional right polynomial extension. $\S 2$ is devoted to determine the structure of $V=V_{R}(S)$, the centralizer of S in $R(R$ is a finite dimensional right polynomial simple ring extension), under the restriction that ρ is inner or D_{y} is ρ_{3}-inner ${ }^{2)}$. As the result, we can see that V is a commutative semi-simple ring with minimum condition in the most of cases. In $\S 3$, we shall treat with a right polynomial simple ring extension that is Galois. Finally, in §4, a general description of right quadratic extensions of simple rings will be given, and it is closely related to that investigated in [1]. Throughout the present paper, we assume always R will mean an n dimensional right polynomial simple ring extension over S, and that $R=\sum_{i=0}^{n-1} y^{i} S=\left(\oplus_{i=0}^{n-1} y^{i} S^{3}\right)$ and $s y=y\left(s \rho_{y}\right)+s D_{3}$. By C and Z, we denote the respective centers of R and S, and other notations and terminologies used in this paper, we follow [4].

[^0]§ 1. The left dimension and the construction of a right polynomial extension.

Throughout this section, we assume that A is an n dimensional (not necessary simple) right polynomial extension over S such that $A=\sum_{t=0}^{n=1} y^{i} S$, sy= $y\left(s \rho_{y}\right)+s D_{y}(s \in S)$. By $P_{k, i}$, we denote the sum of all formally different products of consisting of $i \rho_{y}$'s and $k-i D_{y}$'s. (e.g. $P_{3,2}=\rho_{y}^{2} D_{y}+\rho_{y} D_{y} \rho_{y}+D_{y} \rho_{y}^{2}$, and we set $\rho_{y}^{0}=D_{k}^{0}=1$). Then,

Lemma 1.1. $s y^{k}=\sum_{i=0}^{n=1} y^{i} s P_{k, i}$ for each $s \in S$.
Proof. We prove the assertion by the induction on k. Obviously, $s y=$ $y\left(s \rho_{y}\right)+s D_{y}=y s P_{1,1}+s P_{1,0} . \quad$ Assume that $s y^{k-1}=\sum_{i=0}^{k-1} y^{i} s P_{k-1, i}$. Then $s y^{k}=$ $\left(\sum_{t=0}^{k=1} y^{i} s P_{k-1, i}\right) y=\sum_{i=0}^{k=1} y^{i+1}\left(s P_{k-1, i}\right) \rho_{y}+\sum_{t=0}^{k=1} y^{i}\left(s P_{k-1, t}\right) D_{y}=\left(s P_{k-1,0}\right) D_{y}+\sum_{k=1}^{k-1} y^{i}$ $\left(\left(s P_{k-1, t}\right) D_{y}+\left(s P_{k-1, i-1}\right) \rho_{y}\right)+y^{k}\left(s P_{k-1, k-1} \rho_{y}\right)$. Noting here that the number of formally different terms of $P_{j, i}$ is $\binom{j}{i}, P_{k-1, i} D_{y}+P_{k-1, i-1} \rho_{y}$ coincides with $P_{k, i}$ which completes our induction.

Corollary 1.1. Let $\left\{x^{i} ; i=0,1, \cdots, n-1\right\}$ be a right polynomial S-basis with $s x=x\left(s \rho_{x}\right)+s D_{x}(s \in S)$. Then $\rho_{x} t_{l}=\rho_{y} t_{r}$ for some $t \in S$ and $0<k<n$. In particular, if ρ_{y} is an automorphism or S is a division ring, then $\rho_{x}=\rho_{y} \not t^{-1}$ and $D_{x}=\sum_{i=0}^{k} \rho_{i, 0} P_{i, 0} s_{i r}-\rho_{y} t^{-1} s_{0 z}$ for some $s_{t} \in S$ where $\widetilde{t^{-1}}$ is the inner automorphism generated by t^{-1}.

Proof. Let $x=y^{k} s_{k}+\sum_{j=0}^{k=1} y^{j} s_{j}\left(k \geqq 1, s_{i} \in S, s_{k} \neq 0\right)$. Then we have $y^{k} s_{k}\left(s \boldsymbol{\rho}_{x}\right)+\sum_{j=0}^{k=1} y^{j} s_{j}\left(s \boldsymbol{\rho}_{x}\right)+s D_{x}=x\left(s \boldsymbol{\rho}_{x}\right)+s D_{x}=s x=s\left(y^{k} s_{k}+\sum_{j=0}^{k=1} y^{j} s_{j}\right)=y^{k}\left(s \boldsymbol{\rho}_{y}^{k}\right) \boldsymbol{s}_{k}$ $+\sum_{i=0}^{k=1} y^{i} s P_{k, i} s_{k}+\sum_{j=0}^{k=1}\left(\sum_{i=0}^{j} y^{j} s P_{j, i}\right) s_{j}$. This show that $\rho_{x} t_{i}=\rho_{y} t_{r}$ where $t=s_{k}$ and $D_{x}=\sum_{i=0}^{k} P_{i, 0} s_{t r}-\rho_{x} s_{02}$. In particular, if ρ_{y} is an automorphism (or S is a division ring), $s_{k} \in S^{{ }^{4}}$ by $S s_{k}=S \rho_{y}^{k} s_{k}=s_{k} S \rho_{x}$. Hence we have $\rho_{x}=\rho_{y} \widetilde{t^{-1}}$ and $\mathrm{D}_{x}=\sum_{i=0}^{k} P_{i, 0} s_{i r}-\rho_{y} \tilde{t}^{-1} s_{0_{2}}$.

Corollary 1.2. Let R be an n dimensional right polynomial (simple ring) extension over S.
(a) If ρ_{x} is inner, then so is every $\rho_{x^{\prime}}$, and there exists a right polynomial S-basis $\left\{y^{i} ; i=0,1, \cdots, n-1\right\}$ such that $\rho_{y}=1$.
(b) If D_{x} is ρ_{x}-inner, then ρ_{x} is an automorphism, every $D_{x^{\prime}}$ is $\rho_{x^{\prime}-\text { inner, }}$ and then there exists a right polynomial S-basis $\left\{y^{i} ; i=0,1, \cdots, n-1\right\}$ such that $D_{y}=0$ and $\rho_{y}=\rho_{x}$.

Proof. (a) Let $\rho_{x}=\tilde{u}$ for some $u \in S$. Then $\rho_{x^{\prime}}=\rho_{x} \widetilde{t^{-1}}=\widetilde{u t^{-1}}$ for some $t \in S$. Further, $s x u=x u s+s E(s \in S)$ where $E=D_{x} u_{r}$ is a derivation in S, and $\left\{(x u)^{i} ; i=0,1, \cdots, n-1\right\}$ is a requested right polynomial S-basis.

[^1](b) Let D_{x} be ρ_{x}-inner generated by $u \in S$. Then $s(x-u)=(x-u)\left(s \rho_{x}\right)$ $(s \in S)$ and $\left\{(x-u)^{i} ; i=0,1, \cdots, n-1\right\}$ is a requested polynomial S-basis. Further, $D_{x^{\prime}}=\sum_{i=0}^{k} P_{i, 0} s_{i r}-\rho_{x^{\prime},} s_{0 i}$ where $P_{i, j}$ is defined by ρ_{y} and $D_{y}(=0)$ and $y=x-u$. Hence $P_{i, 0}=0$ if $i \neq 0$. This means that $D_{x^{\prime}}$ is an inner $\rho_{x^{\prime}}$-derivation generated by s_{0}. Now, let $\sum_{i} y^{i} t_{i}\left(t_{i} \in S\right)$ be an arbitrary element of R. Then $\left(\sum_{i} y^{i} t_{i}\right) y$ $=y\left(\sum_{i} y^{i} t_{i} \rho_{y}\right)$ implies $R=R y R=y R$. Thus y is a regular element of R, and hence $y^{-1} S y=S \rho_{y} \sqsubseteq S$. On the other hand, since $R=\sum_{i=0}^{n-1} y^{i} S, R=y^{-1} R y=$ $\sum_{i=0}^{n-1} y^{i}\left(y^{-1} S y\right)$ shows that $\rho_{y}=\widetilde{y^{-1}} \mid S$ is an automorphism. The rest is clear from Corollary 1.1.

Theorem 1. 1. $[A: S]_{l}=\sum_{i=1}^{n}\left(\left[S: S \rho_{y}\right]_{l}\right)^{i}+1$.
Proof. Let $B_{0}=\{1\}$, and B_{i} a left $S \rho_{y}^{i}$-basis for $S(i=1,2, \cdots)$. Then one will easily see that $\# B_{i}=\left(\# B_{1}\right)^{i}$. Now, we shall prove that $Y=\left\{y^{i} B_{i}\right.$; $i=0,1, \cdots, n-1\}$ is a left S-basis for A. Since $y^{i}\left(s \rho_{y}^{i}\right)-s y^{i} \in \sum_{j=0}^{j-1} y^{j} S(i=$ $1,2, \cdots, n-1$), we readily see that $y^{i} S \equiv S y^{i} B_{i}+\sum_{j=0}^{i-1} y^{j} S$, whence it follows $y^{i} S \equiv \sum_{j=0}^{i} S y^{j} B_{j}$, namely, Y is a left generating system of A over S. At the same time, the linear independence of Y over S will easily seen.

Corollary 1.3. The following conditions are eqnivalent.
(a) $[A: S]_{l}=[A: S]_{r}$.
(b) There exists an element $x \in A \backslash S$ such that $x s=(s \tau) x+s E \quad(s \in S)$ where τ is a monomorphism in $S, E a(\tau, 1)$-derivation in S.
(c) ρ_{y} is an automorphism.

Proof. (c) $\rightarrow(\mathrm{a})$. This is direct consequence of Theorem 1.1.
$(\mathrm{a}) \rightarrow(\mathrm{b})$. By Theorem 1.1, ρ_{y} is an automorphism, and then, $s y=y\left(s \rho_{y}\right)$ $+s D_{y}(s \in S)$ implies $y s=\left(s \rho_{y}^{-1}\right) y+s\left(-\rho_{y}^{-1} D_{y}\right)$.
(b) \rightarrow (c). If $x=y^{k} s_{k}+\sum_{j=0}^{k-1} y^{j} s_{j}\left(s_{i} \in S\right)$, then $k \geqq 1$ and $s_{k} \neq 0$. Hence, for each $u \in S, \quad y^{k} \mathbf{S}_{k} u+\sum_{j=0}^{k=1} y^{j} s_{j} u=x u=(u \tau) x+u E=(u \tau)\left(y^{k} s_{k}+\sum_{j=0}^{k=1} y^{j} s_{j}\right)+u E$. Therefore, we obtain $s_{k} u=(u \tau) P_{k, k} s_{k}=\left(u \tau \rho_{y}^{k}\right) s_{k}$, whence it follows $S=S s_{k} S$ $=S s_{k}$, namely, $s_{k} \in S^{\cdot}$. Hence $\tau \cdot \rho_{y}^{k}=\widetilde{\varepsilon}_{k}$, which means that ρ_{y} is an automorphism.

Combining Corollary 1.2 (b) with Corollary 1.3, we have
Corollary 1.4. If D_{y} is ρ_{y}-inner, then $[R: S]_{l}=[R: S]_{r}{ }^{5}$.
Let ρ be a monomorphism in S and D a ρ-derivation in S. We consider the ring $\mathfrak{S}=S[X ; \rho, D]=\left\{\sum_{i} X^{i} s_{i} ; s_{i} \in S\right\}$, where the multiplication is defined by $s X=X(s \rho)+s D$. If S is a division ring or a simple ring (of the capacity

[^2]$>1)$ and ρ is an automorphism, then \mathfrak{S} is a right principal ideal ring, that is, each right ideal of \mathfrak{S} is generated by some monic polynomial f (i.e. the leading coefficient of f is 1). Let f be a monic polynomial of \mathbb{S}. Then f is called w-irreducible if f does not generate \mathfrak{S} but any monic proper left factor of f does \mathfrak{S}. By easy computations, we can see that an ideal M of \mathbb{S} is maximal if and only if the monic generator ${ }^{6)}$ of M is w-irreducible.

Now, we shall give a necessary and sufficient condition for S to have an n dimensional right polynomial extension.

Theorem 1.2. (a) In order that S have an n dimensional right polynomial extension, it is necessary and sufficient that there exist a monomorphism ρ in S, a ρ-derivation D in S and $a 1 \times n$ matrix $\left(u_{0}, u, \cdots, u_{n-1}\right)$ with entries in S such that
(1) $u_{i-1}-u_{i-1} \rho=u_{i} D+u_{i}\left(u_{n-1}-u_{n-1} \rho\right)(i=0,1, \cdots, \mathrm{n}-1$ where we set $\left.u_{-1}=1\right)$.
(2) $P_{n, j}+\sum_{i=0}^{n-1} P_{i, j} u_{i r}$ is a $\left(\rho^{j}, \rho^{n}\right)$-inner derivation generated by $-u_{j}$ for each $j=0,1, \cdots, n-1$.
(b) In order that S have an n dimensional polynomial extension, it is necessary and sufficient that there exist an automorphism ρ in S, a ρ_{-} derivation D in S and a $1 \times n$ matrix $\left(u_{0}, u, \cdots, u_{n-1}\right)$ with entries in S satisfying (1), (2) stated above.
(c) In order that S have an n dimensional polynomial simple ring extension, it is necessary and suficient that there exist an automorphism ρ in S, a ρ-derivation D in S and a $1 \times n$ matrix $\left(u_{0}, u_{1}, \cdots, u_{n-1}\right)$ with entries in S satisfying (1), (2) stated above and
(3) $X^{n}+\sum_{i=0}^{n-1} X^{i} u_{i}$ is w-irreducible in $S[X ; \rho, D]$.

Proof. (a) The conditions (1) and (2) are equivalent with the statment that the right ideal M of $S[X ; \rho, D]$ generated by $f(X)=X^{n}+\sum_{i=0}^{n-1} X^{i} u_{i}$ is a two-sided ideal. In fact, M is a two-sided ideal if and only if $X f(X)=$ $f(X)(X+t)(t \in S)$ and $s f(X)=f(X) s^{\prime}\left(s^{\prime} \in S\right)$ for every $s \in S$. The former implies $X^{n+1}+\sum_{i=0}^{n-1} X^{i+1} u_{i}=\left(X^{n}+\sum_{i=0}^{n-1} X^{i} u_{i}\right)(X+t)=X^{n+1}+\sum_{i=0}^{n-1} X^{i+1} u_{i} \rho+X^{n} t+\sum_{i=0}^{n-1}$ $X^{i}\left(u_{i} D+u_{i} t\right)=X^{n+1}+X^{n}\left(u_{n-1} \rho+t\right)+\sum_{i=1}^{n-1} X^{i}\left(u_{i-1} \rho+u_{i} D+u_{i} t\right)+u_{0} D+u_{0} t$ which means $t=u_{n-1}-u_{n-1} \rho, u_{i-1}=u_{i-1} \rho+u_{i} D+u_{i} t, \quad i=1,2, \cdots, \mathrm{n}$ and $u_{0} D+u_{0} t=0$. Thus, we have $u_{i-1}-u_{i-1} \rho=u_{i} D+u_{i}\left(u_{n-1}-u_{n-1} \rho\right)$ for each $i=0,1, \cdots, \mathrm{n}-1$. Next, the latter implies $s\left(X^{n}+\sum_{i=0}^{n-1} X^{i} u_{i}\right)=\sum_{i=0}^{n} X^{i} s P_{n, i}+\sum_{j=0}^{n-1}\left(\sum_{i=j}^{n} X^{j} s P_{j, i}\right) u_{i}$ $=X^{n} s \rho^{n}+\sum_{i=0}^{n-1} X^{i} s P_{n, i}+\sum_{j=0}^{n-1}\left(\sum_{i=j}^{n} X^{j} s P_{i, j}\right) u_{i}=X^{n} s^{\prime}+\sum_{i=0}^{n-1} X^{i} u_{i} s^{\prime}$. Hence $s \rho^{n}=s^{\prime}, s P_{n, j}+\sum_{i=j}^{n} s P_{i, j} u_{i}=s P_{n, j}+\sum_{i=j}^{n} s P_{i, j} u_{i}=s P_{n, j}+\sum_{i=j+1}^{n} s P_{i, i} u_{i}+s P_{j, j} u_{j}$ $=u_{j} s^{\prime}$, and this means that $P_{n, j}+\sum_{i=j+1}^{n} P_{i, j} u_{i r}$ is a $\left(\rho^{j}, \rho^{n}\right)$-inner derivation

[^3]generated by $-u_{j}$ for each $j=0,1, \cdots, \mathrm{n}-1$. Thus $S[X ; \rho, D] / M=A \cong$ $\oplus_{i=0}^{n-1} y^{i} S$ where $s y=y(s \rho)+s D(s \in S), y$ is the residue class of X modulo M, is a requested one. Conversely, let $A=\oplus_{i=0}^{n-1} y^{i} S$ be an n dimensional right polynomial extension with $s y=y\left(s \rho_{y}\right)+s D_{y}$ for each $s \in S$. Then the mapping $\varphi: \quad \sum_{i} X^{i} s_{i} \rightarrow \sum_{i} y^{i} s_{i}$ is an S (ring) epimorphism of $S\left[X ; \rho_{y}, D_{y}\right]$ to A. Let $y^{n}+\sum_{i=0}^{n-1} y^{i} u_{i}=0$ for some $u_{i} \in S$. Then N, the kernel of φ, contains $M=$ $\left(X^{n}+\sum_{i=0}^{n-1} X^{i} u_{i}\right) S\left[X ; \rho_{y}, D_{y}\right]$. Now, we conclude that M coincides with N. For, if $g(X)=\sum_{i=0}^{m} X^{i} s_{i}\left(s_{i} \in S\right)$ is a polynomial of N with $m<n$, then $\sum_{i=0}^{m}$ $y^{i} s_{i}=0$ in A, and hence $g(X)=0$. Thus, each polynomial of N has $X^{n}+$ $\sum_{i=0}^{n-1} X^{i} u_{i}$ as its left factor. This means that $N=M$. Consequently, ρ_{y}, D_{y} and ($u_{0}, u_{1}, \cdots, u_{n-1}$) satisfy conditions (1) and (2).
(b) By Corollary 1.3, a finite dimensional right polynomial extension is a polynomial extension if and only if ρ is an automorphism. Hence the statment is clear from (a).
(c) Recalling that (3) is equivalent with the maximality of $M=\left(X^{n}+\right.$ $\left.\sum_{i=0}^{n-1} X^{i} u_{i}\right) S\left[X ; \rho_{y} D_{y}\right]$ by the remark stated just before our theorem the statment is clear from (a) and (b).

§ 2. The centralizer of S in R.

Let $V=V_{R}(S)$ be the centralizer of S in R. In this section, we shall investigate the relations between $\left\{\rho_{y}, D_{y}\right\}$ and V.

Lemma 2.1. If $V \neq Z$, then ρ_{y} is an automorphism and $m=\left(\left(\rho_{y}\right):\left(\rho_{y}\right)_{n} \widetilde{S}\right)$ $<n$ where \widetilde{S} is the set of all inner automorphisms determined by the elements of S^{\bullet}.

Proof. Since $V \neq Z$, there exists an element $v=y^{k} s_{k}+\sum_{j=0}^{k-1} y^{j} s_{j}\left(s_{i} \in S\right)$ of V such that $s_{k} \neq 0(0<k<n)$. Then $\sum_{i=0}^{k} y^{i} s P_{k, i} s_{k}+\sum_{j=0}^{k-1}\left(\sum_{i=0}^{j} y^{i} s P_{j, i}\right) s_{j}=$ $s v=v s=y^{k} s_{k} s+\sum_{j=0}^{k=1} y^{j} s_{j} s \quad(s \in S)$, which implies that $s P_{k, k} s_{k}=s \rho_{j}^{k} s_{k}=s_{k} s$, in particular, $S=S s_{k} S=S s_{k}$. Hence $s_{k} \in S^{\bullet}$, and $\rho_{y}^{k}=\widetilde{s}_{k}$.

Theorem 2.1. Let D_{y} be an inner ρ_{y}-derivation.
(a) $V \neq Z$ if and only if ρ_{y} is an automorphism and $m=\left(\left(\rho_{y}\right):\left(\rho_{y}\right)_{n} \widetilde{S}\right)$ $<n$, and when this is the case, m is a divisor of n.
(b) V is a finite dimensional commutative algebra over Z. Moreover, if $\chi(S)$, the characteristic of S, is 0 or relatively prime to n, then V is a finite direct sum of fields.

Proof. Since D_{y} is ρ_{y}-inner, we may choose a right polynomial S-basis $\left\{w^{i} ; i=0,1, \cdots, n-1\right\}$ with $D_{w}=0$ by Corollary 1.2 (b). Therefore we may assume from the beginning $s y=y\left(s \rho_{y}\right)$. Thus as was shown in the proof of Corollary 1.2 (b), $y \in R^{\cdot}$ and $\dot{\bar{y}}^{-1} \mid S=\rho_{y}$. For the sake of simplicity, we set $\rho=\rho_{y}$.
(a) The only if part is shown in Lemma 2.1. Conversely, let ρ be an automorphism and $m=\left((\rho):(\rho)_{\cap} \widetilde{S}\right)<n$. Then $\widetilde{y^{-m}} \mid S=\widetilde{s}$ for some $s \in S$. Therefore $y^{m} s$ is not contained in Z but in V. Let $y^{n}+\sum_{i=0}^{n-1} y^{i} u_{i}=0\left(u_{i} \in S\right)$. Then $s\left(y^{n}+\sum_{i=0}^{n-1} y^{i} u_{i}\right)-\left(y^{n}+\sum_{i=0}^{n-1} y^{i} u_{i}\right)\left(s \rho^{n}\right)=0 \quad(s \in S)$ yields at once $s u_{0}=u_{0}\left(s \rho^{n}\right)$. Since $u_{0} \neq 0$ by the regularlity of y, the last means that u_{0} is a regular element. Consequently we have $\rho^{n}=\widetilde{u_{0}^{-1}}$, equivalently, m is a divisor of n.
(b) It suffices to prove the case $V \neq Z$. By (a), ρ is an automorphism and $m=\left((\boldsymbol{\rho}):(\boldsymbol{\rho})_{\mathrm{S}} \widetilde{\boldsymbol{S}}\right)$ is a proper divisor of $n: m^{\prime}=n / m$. Let $v=\sum_{i=0}^{n-1} y^{i} s_{i}\left(s_{i} \in S\right)$ be an element of V. Since $\sum_{i=0}^{n-1} y^{i}\left(t \rho^{i}\right) s_{i}=t v=v t=\sum_{i=0}^{n-1} y^{i} s_{i} t$ for each $t \in S$, we see that $t y^{i} s_{i}=y^{i}\left(t \rho^{i}\right) s^{i}=y^{i} s_{i} t$, namely, each $y^{i} s_{i} \in V$. Moreover, if $s_{i} \neq 0$, then $t \rho^{i} s_{i}=s_{i} t$ proves $s_{i} \in S^{\cdot}$ and $\rho^{i}=\widetilde{s}_{i}$. Thus $V=\left\{\sum_{k=0}^{m^{\prime}} y^{m k} s^{k} z_{k} ; z_{k} \in Z\right\}$, where $\widetilde{s}=\rho^{m}$. The commutativity of V follows from the fact that $y^{m k} s^{k} z_{k}$ commutes with every element of V. Thus V is an m^{\prime} dimensional commutative algebra over Z. Next, let us assume that $\chi(S)=0$ or $(\chi(S), n)=1$. We shall denote the extension \widetilde{y}^{-1} of ρ again by ρ. Let v an element of V. Then $T_{m}(v ; \rho)=\sum_{i=0}^{m-1} v \rho^{i}$ is contained in C, for $T_{m}(v ; \rho)=T_{m}(v ; \rho) \rho$. If v is nilpotent, then so is $v \rho(v \rho \in V)$ and hence $T_{m}(v ; \rho)$ is nilpotent, and so 0 . (Recall that ρ is an automorphism in S and $T_{m}(v ; \rho)$ is in C). Thus we have proved that if $T_{m}(v ; \rho) \neq 0$ then v is non nilpotent. Now we shall show that each (non-zero) non regular element of V is non nilpotent. If $v=\sum_{i=0}^{n-1} y^{i} \mathrm{~S}_{i} \in$ $V \backslash Z\left(s_{i} \in S\right), s_{0}=1$ (is non regular), then $T_{m}(v ; \rho)=T_{m}(v-1 ; \rho)+m \neq 0$. For $T_{m}(v-1 ; \rho)$ is either 0 or not contained in Z. (Note that m is a divisor of $n)$. In general, if $v=y^{m j} s^{j} z_{j}+\sum_{k>j} y^{m k} s^{k} z_{k} \in V \backslash Z\left(z_{j} \neq 0\right)$ is non regular, $u=$ $\left(y^{m \cdot j} s^{j} z_{j}\right)^{-1} v(\in V)$ is non regular and its constant term is 1 , and so, u is non nilpotent by the last remark. Hence u is non nilpotent in either case, which means the semi-simplicity of V.

Theorem 2.2. Let ρ_{y} be an inner automorphism.
If $\chi(S)=0$ or $\chi(S)>n$, then V coincides with either C or Z, more precisely, if $V \neq Z, R=S[C]$.

Proof. Since ρ_{y} is an inner automorphism, we may choose a right polynomial S-basis $\left\{w^{i} ; i=0,1, \cdots, n-1\right\}$ with $s w=w s+s D_{w}(s \in S)$ by Corollary 1.2 (a). Therefore we may assume that from the beginning that $s y=y s+s D_{y}$ $(s \in S)$. Assume $V \neq Z$, and write $D=D_{y}$. Then there exists an element $v=y^{k} s_{k}+y^{k-1} s_{k-1}+\cdots+s_{0}\left(k \geqq 1, s_{i} \in S, s_{k} \neq 0\right)$ of V, and $\sum_{i=0}^{k}\left(y^{i} s P_{k, i}\right) s_{k}+$ $\sum_{i=0}^{k-1}\left(y^{i} s P_{k-1, i}\right) s_{k-1}+\cdots+s s_{0}=s v=v s=y^{k} s_{k} s+y_{k-1} s_{k-1} s+\cdots+s_{0} s$ implies $\mathrm{s}_{k} \in Z$. Since $\binom{k}{k-1} s D s_{k}+s s_{k-1}=s P_{k, k-1} s_{k}+s P_{k-1, k-1} s_{k-1}=s_{k-1} s, D$ is an inner derivation generated by $-(1 / k) s_{k-1} s_{k}^{-1}$. Thus, by Corollary 1.2 (b), we can choose an S-basis $\left\{c^{i} ; i=0,1, \cdots, n-1\right\}$ such that $c \in C$.

Corollary 2.1. If $[S: Z]$ is finite, then $[R: S]_{l}=[R: S]_{r}$.
Proof. By [5. Lemma], [$R: C$] is finite. If $V=Z$, then $Z \supseteq C$, and hence $[R: S]_{\imath}[S: C]_{l}=[R: C]_{l}=[R: C]_{r}=[R: S]_{r}[S: C]_{r}$ shows that $[R: S]_{l}=[R: S]_{r}$. On the other hand, if $V \neq Z, \rho_{y}$ is an automorphism by Lemma 2.1. Hence the assertion is a direct consequence of Corollary 1.3.

§ 3. Polynomial Galois extensions.

Throughout the present section, by \mathbb{F}, we denote the set of all S-automorphisms of R.

If σ is an arbitrary element of \mathbb{N}, and $u_{\sigma}=y \sigma-y$ then $s u_{\sigma}=u_{\sigma}\left(s \rho_{y}\right) \cdot(s \in S)$. For, $s(y \sigma)=(s y) \sigma=\left(y\left(s o_{y}\right)+s D_{y}\right) \sigma=(y \sigma) \mathrm{s} \rho_{y}+s D_{y}(s \in S)$, we have $s(y \sigma-y)=(y \tilde{\sigma}$ $-y)\left(s \rho_{y}\right)$.

Lemma 3. 1. Let $\mathbb{A} \neq 1$ and $\sigma \neq 1$ be an arbitrary element of (8). Then, there exists a right polynomial S-basis $\left\{y^{i} ; i=0,1, \cdots, \mathrm{n}-1\right\}$ such that $y \sigma-$ $y \in V$ if and only if some (and so every) ρ_{x} is inner.

Proof. Let $v_{\sigma}=y \sigma-y$ be in V. Then $v_{o} s=s v_{\sigma}=v_{\sigma} s \rho_{y}$. Hence $v_{\sigma}\left(s-s \rho_{y}\right)$ $=0$. If we note that the right annihilator of $v_{o}(\neq 0) \in V$ in S is a two-sided ideal, we can readily obtain $s^{o_{y}}=s$, namely, $\rho_{y}=1$. Thus each ρ_{x} is inner by Corollary 1.2 (a). Conversely, if each ρ_{x} is inner, there exists a right polynomial S-basis $\left\{y^{i} ; i=0,1, \cdots, n-1\right\}$ with $\rho_{y}=1$ by Corollary 1.2 (a). Then $y \sigma-y$ is in V.

Corollary 3. 1. Let R be an n dimensional right polynomial division ring extension over S. If $(\mathbb{B}) \neq 1$, then $[R: S]_{l}=[R: S]_{r}$.

Proof. For any $\sigma(\neq 1) \in \mathbb{E}$, there exists a non zero $u_{\sigma} \in R$ such that $s u_{\sigma}$ $=u_{\sigma}\left(s \rho_{y}\right)$ for every right polynomial S-basis $\left\{y^{i} ; i=0,1, \cdots, n-1\right\}$. Hence $\widetilde{u_{\sigma}^{-1}} \mid S=\rho_{y}, \quad R=R \widetilde{u_{\sigma}^{-1}}=\sum_{i=0}^{n-1} y^{i} \widetilde{u_{\sigma}^{-1}}\left(S \widetilde{u_{\sigma}^{-1}}\right)=\sum_{i=0}^{n-1} y^{i} \widetilde{u_{\sigma}^{-1}}\left(S \rho_{y}\right)$ and $\left\{y^{i} \widetilde{u_{\sigma}^{-1}} ; i=0,1, \cdots\right.$, $n-1\}$ is right linearly independent over $S \rho_{y}$. This means that $n=[R: S]_{r}=$ [$\left.R: S \rho_{y}\right]_{r}$. Thus ρ_{y} is an automorphism in S, and then $[R: S]_{r}=[R: S]_{r}$ by Corollary 1.3.

Corollary 3.2. Let ρ_{y} be an inner automorphism.
(a) Assume $V=Z$. If $\chi(S)>n$ or $\chi(S)=0$, then $(\mathbb{S}=1$.
(b) Assume $\chi(S)=n$. If $V=Z \neq C$ then R / S is an inner cyclic extension, and conversely.

Proof. (a) Suppose (S) contains an element $\sigma \neq 1$. Then by Lemma 3.1, there exists a right polynomial S-basis $\left\{y^{i} ; i=0,1, \cdots, n-1\right\}$ with $s y=y s+$ $s D_{y}(s \in S)$, and $y \sigma=y+z_{\sigma}, z_{\sigma}(\neq 0) \in V=Z$. Thus we may assume further $y \sigma=y+1$. Hence if $y^{n}=\sum_{i=0}^{n-1} y^{i} s_{i}\left(s_{i} \in S\right)$, we have $y^{n} \sigma=(y+1)^{n}=\sum_{i=0}^{n}\binom{n}{i} y^{i}$
$=y^{n}+\sum_{i=0}^{n-1}\binom{n}{i} y^{i}=\sum_{i=1}^{n-1} y^{i}\left(\binom{n}{i}+s_{i}\right)$ and $y^{n}=\left(\sum_{i=0}^{n-1} y^{i} s_{i}\right) \sigma=\sum_{i=0}^{n-1}(y+1)^{t} s_{i}=$ $\sum_{i=0}^{n-1}\left(\sum_{j=0}^{n-1}\binom{i}{j} y^{j}\right) s_{i}$. From those, we see that $\binom{n}{n-1}+s_{n-1}=s_{n-1}$, whence it follows a contradiction $\binom{n}{n-1}=0$.
(b) If R / S is inner Galois, then $V=Z \neq C$ by Theorem 2.2. Next, we shall prove the converse. Let $z_{0} \in Z \backslash C$. Then $z_{0} D_{y}=z_{0} y-y z_{0}$ is a non zero element of Z. If $\sum_{i=0}^{n-1} y^{i} t_{i}\left(t_{i} \in S\right)$ is in $J\left(\tilde{\mathfrak{z}}_{0}, R\right), \sum_{i=0}^{n-1} y^{i} t_{i}=\left(\sum_{i=0}^{n-1} y^{i} y_{i}\right) \tilde{z}_{0}=$ $\sum_{i=0}^{n-1} z_{0} y^{i} t_{i} z_{0}^{-1}=\sum_{i=0}^{n-1}\left(\sum_{j=0}^{i}\binom{i}{j} y^{j} z_{0} D^{i-j}\right) t_{i} z_{0}^{-1}$. Hence, we obtain $\binom{n-1}{n-2} z_{0}$ $D t_{n-1} z_{0}^{-1}=0$, and so $t_{n-1}=0$. Repeating the same procedures, we have $t_{i}=0$, $i=1,2, \cdots, n-1$. Thus $J\left(\tilde{z}_{0}, R\right)=S$. Furthermore, the fact that $C=\{z \in Z$; $\left.z D_{y}=0\right\}$ and $z^{k} D_{y}=\left(k z^{k-1}\right) z D_{y}$ imply the order of \tilde{z}_{0} is just n.

Theorem 3.1. (a) Let $\chi(S)=n$. In order that S have an n dimensional polynomial Galois extension $R=\sum_{i=0}^{n-1} y^{i} S$ with $s y=y s^{\prime}+s^{\prime \prime}$ such that $s \rightarrow s^{\prime}$ is an inner automorphism, it is necessary and sufficient that the following condition be satisfied:
(1) There exist a derivation D in S and $s \in S$ satisfying $D^{n}-D=I_{s}$, $s D=0$ and $X^{n}-X-s$ is w-irreducible in $S[X ; D]$.
(b) Let $\chi(S)>n$ or $\chi(S)=0$. In order that S have an n dimensional polynomial Galois extension $R=\sum_{i=0}^{n-1} y^{i} S$ with $s y=y s^{\prime}+s^{\prime \prime}$ such that $s \rightarrow s^{\prime}$ is an inner automorphism, it is necessary and sufficient that the following condition be satisfied:
(2) There exists an n dimensional Galois extension field of Z.

Proof. (a) Let R / S be a Galois extension with the requested property. Then, by Theorem $2.2, V$ is either Z or C. If $V=C$, then R / S is obviously an n dimensional cyclic extension. On the other hand, if $V=Z \neq C$ then R / S is still an n dimensional cyclic extension by Corollary 3.2 (b). Hence, there holds (1) by [4. Theorem 2.1]. Conversely, if there exist D, S satisfying (1), then, by [4. Theorem 2.1], there exists an n dimensional polynomial Galois extension $R=\sum_{i=0}^{n-1} y^{i} S$ such that $t y=y t+t D(t \in S)$.
(b) Assume that there exists a Galois extension R / S with the requested property. Then $V=C き Z$ and $R=S[C]$ by Theorem 2.2 and Corollary 3.2 (a). Thus the rest of the proof will be obvious.

Theorem 3.2. Let ρ be an automorphism in S. In order that S have an n dimensional polynomial inner Galois extension $R=\sum_{i=0}^{n-1} y^{i} S$ with sy $=$ $y(s \rho)+s^{\prime \prime}$ such that $s \rightarrow s^{\prime \prime}$ is an inner ρ-derivation, it is necessary and sufficient that there exist $s_{0} \in S, z \in Z$ satisfying the following conditions:
(1) $\rho^{n}=\widetilde{\varsigma}_{0}, s_{0} \rho=s_{0}$.
(2) $\quad z \rho^{i} \neq z(i=1, \cdots, n-1)$.
(3) $X^{n}-s_{0}$ is w-irreducible in $S[X ; \rho]$.

More precisely, when this is the case, R / S has a cyclic Galois group.
Proof. Assume that there exists a Galois extension R / S with the requested property. Since V is commutative by Theorem 2.1 (b), V has to coincides with Z. Further, by Corollary $1.2(\mathrm{~b})$, we may assume $s y=y(s \rho)(s \in S)$. One may remark here $o=\widetilde{y^{-1}} \mid S$ (Cf. the proof of Corollay 1.2 (b).). If $y^{n}=$ $\sum_{i=0}^{n-1} y^{i} u_{i}\left(u_{i} \in S\right)$, then $\widetilde{y^{-n}} \mid S=\rho^{n}=\widetilde{u_{0}^{-1}}$. (By the regularlity of $y, u_{0} \neq 0$, and hence $\left.u_{0} \in S^{\bullet}\right)$. Hence $z y^{n} z^{-1}=y^{n}\left(z \rho^{n}\right) z^{-1}=y^{n}$ for each $z \in Z$, which implies $s_{0}=y^{n} \in J(\widetilde{Z}, R)=S$. (Obviously $s_{0} \rho=s_{0}$). Further, by the same way as in the proof of Theorem 1.2 (a), $R \cong S[X ; \rho] /\left(X^{n}-s_{0}\right) S[X ; \rho]$ and $X^{n}-s_{0}$ is w írreducible in $S[X ; \rho]$. Next, as $[R: S]=[V: C]=[Z: C]$ and $J(\rho \mid Z, Z)=C$, there exists an element $z \in Z$ such that $z \rho^{i} \neq z$ for $i=1, \cdots, n-1$. (Take, for instance, a normal basis element of $Z / C)$. Then $J(\bar{z}, R)=S$. In fact, $\sum_{i=0}^{n-1} y^{i} t_{i}$ $\in J(\tilde{z}, R)\left(t_{i} \in S\right)$ shows that $\sum_{i=0}^{n-1} y^{i} t_{i}=z\left(\sum_{i=0}^{n-1} y^{i} t_{i}\right) z^{-1}=\sum_{i=0}^{n-1} y^{i} t_{i}\left(z \rho^{i}\right) z^{-1}$ and hence, $t_{i}=0$ for $i=1,2, \cdots, n-1$. Conversely, assume that there exist $s_{0} \in S$, $z \in Z$ satisfying (1)-(3). Then (1) is equivalent with $M=\left(X^{n}-s_{0}\right) S[X ; \rho]$ is a two-sided ideal, and hence $R=S[X ; \rho] / M=\oplus_{i=0}^{n-1} y^{i} S$ is an n dimensional polynomial extension with $s y=y(s \rho)$ where y is the residue class of X modulo M. Now (3) is equivalent with the maximality of M. Hence R is simple. Finally by (2), we can use the above argument to prove $J(\tilde{z}, R)=S$ and then we have $V=J(\tilde{z} \mid V, V)=V_{\cap} S=Z$ (a field). Thus R / S is an inner Galois extension with respect to a cyclic Galois group (\mathfrak{z}).

§ 4. Right quadratic extensions.

Let $R=\oplus_{i=0}^{1} y^{i} S$ be a right quadratic simple ring extension over S. Then, it is clear that $s y=y\left(s \rho_{3}\right)+s D_{y}(s \in S)$ where ρ_{y} is a monomorphism in S, D_{y} is a ρ_{y}-derivation in S.

Lemma 4. 1. R is $R_{l} \cdot S_{r}$-irreducible.
Proof. It suffices to prove $R=R x S$ for each $x \in R \backslash S$. Since $R x S+S$ is a subring of R properly containing $S, R x S+S=R=S \oplus y S$. Hence there exists $u \in S$ such that $y-u \in R x S$. Noting that $\{1, y-u\}$ is a right S-basis for $R,(R(y-u) S) R=(R(y-u) S)(S+(y-u) S) \subseteq R(y-u) S$, and hence $R=$ $R(y-u) S=R x S$.

Lemma 4. 2. Let ρ be an automorphism in S, and $f(X)=X^{2}+X u_{1}+u_{0}$ $\left(u_{0}, u_{1} \in S\right)$ a polynomial of $S[X ; \rho, D]$ where D is a ρ-derivation in S. Assume that $f(X)$ generates a proper ideal of $S[X ; \rho, D]$. Then $f(X)$ is
w-irreducible if and only if S has no solution t satisfying the following conditions:
(i) $t D+t\left(u_{1}-t \rho\right)=u_{0}$.
(ii) $t D=t(t \rho-t)$.
(iii) $s D=t(s \rho)-s t$ for each $s \in S$.

Moreover, $f(X)$ is irreducible ${ }^{7)}$ if and only if S has no solution t satisfying (i).
Proof. Let t be an element of S. Then $I=(X+t) S[X ; \rho, D]$ is a twosided ideal if and only if $X(X+t)=(X+t)\left(X+t^{\prime}\right)\left(t^{\prime} \in S\right)$ and $s(X+t)=(X+t) s^{\prime}$ $\left(s^{\prime} \in S\right)$ for every $s \in S$. The former imples $t^{\prime}=t-t \rho, t D+t t^{\prime}=0$. The latter implies $s D=t s^{\prime}-s t, s^{\prime}=s \rho$ for every $s \in S$. Hence I is a two-sided ideal if and only if t satisfies (ii) and (iii).

Let us assume that $f(X)=(X+t)(X+b)=X^{2}+X(t \rho+b)+t D+t b$. Then $t \rho+b=u_{1}, t D+t b=u_{0}$, and so, we have $t D+t\left(u_{1}-t \rho\right)=u_{0}$. Thus $f(X)$ is irreducible if and only if S has no solution t satisfying (i). Next, we assume that $f(X)=(X+t)(X+b)$ is w-irreducible. If we note that the right ideal $I=(X+t) S[X ; \rho, D]$ does not coincide with $S[X ; \rho, D], I$ can not be a twosided ideal. Thus t does not satisfy one of the conditions (ii) and (iii) but satisfies (i). Finally, we assume that $f(X)$ is not w-irreducible, then, there exists $t \in S$ such that $f(X)=(X+t)(X+b)$ and the two-sided ideal $(X+t)$ generated by $X+t$ is a proper ideal of $S[X ; \rho, D]$. Since the monic generator of $(X+t)$ is $X+t$ itself, $(X+t)=(X+t) S[X ; \rho, D]$. Hence t satisfies all the conditions (i)-(iii).

Now, we shall give a necessary and sufficient condition for S to have a right quadratic simple ring extension.

Theorem 4. 1. (a) In order that S have a right quadratic simple ring extension, it is necessary and sufficient that there exist a monomorphism ρ in S, a ρ-derivation D in S and a 1×2 matrix $\left(u_{0}, u_{1}\right)$ with entries in S satisfying (1), (2) of Theorem 1.2 (a) and the following condition:
(3) There exists a finite subset $\left\{s_{i}, t_{i}, v_{i}\right\}$ of S satisfyng $\sum_{i}\left(-u_{1}\left(s_{i} \rho\right) a+\right.$ $\left.s_{i} D a+s_{i} b+t_{i} \rho a\right) v_{i}=0$, and $\sum_{i}\left(-u_{0}\left(s_{i} \rho\right) a+t_{i} D a+s_{i} b\right) v_{i}=1$ for each pair (a, b) of $S \times S$ such that $a \neq 0$.
(b) In order that S have a quadratic simple ring extension, it is necessary and sufficient that there exist an automorphism ρ in S, a ρ-derivation. D in S and a 1×2 matrix (u_{0}, u_{1}) with entries in S satisfying (1), (2) of Theorem 1.2 (a) and the following condition:
(3') S has no solution t satisfying (i), (ii) and (iii) of Lemma 4.2.
7) A polynomial $f(X)$ of $S[X ; \rho, D]$ is called irreducible if $f(X)$ has no left monic factor $g(X)$ such that $\operatorname{deg} g(X)<\operatorname{deg} f(X)$.

Proof. (a) As was shown in the proof of Theorem 1.2 (a), the existence of ρ, D and (u_{0}, u_{1}) satisfying (1), (2) are equivalent with the statment that S has a right quadratic (polynomial) extension $R=S[X ; \rho, D] /\left(X^{2}+X u_{1}+u_{0}\right) S[X$; $\rho, D]$. Let $R=S \oplus y S$ where y is the residue class of X modulo ($X^{2}+X u_{1}$ $\left.+u_{0}\right) S[X ; \rho, D]$. Then (3) yields the simplicity of R. In fact, $\sum_{i}\left(y s_{i}+t_{i}\right)$ $(y a+b) v_{i}=\sum_{i} y^{2} s_{i} a v_{i}+\sum_{i} y\left(s_{i} b+s_{i} D a+s_{i} b+t_{i} \rho a\right) v_{i}+\sum_{i}\left(t_{i} D a+t_{i} b\right) v_{i}=\sum_{i} y$ $\left(-u_{1}\left(s_{i} \rho\right) a+s_{i} D a+s_{i} b+t_{i} \rho a\right) v_{i}+\sum_{i}\left(-u_{0}\left(s_{i} \rho\right) a+t_{i} D a+t_{i} b\right) v_{i}=1$ for each ya+ $b \in R(a, b \in S)$. Conversely, let R be simple. Then, R is $R_{r} \cdot S_{r}$-irreducible by Lemma 4.1. Hence there exists a finite subset $\left\{s_{i}, t_{i}, v_{i}\right\}$ of S satisfying (3).
(b) The assertion is almost evident from the proof of (a) and Lemma 4.2. The proof may be left to readers.

Lemma 4. 3. Let R be a right quadratic simple ring extension over S. Then,
(a) V is either Z or C.
(b) If R / S is Galois, then either ρ_{y} is inner or D_{y} is ρ_{y}-inner.

Proof. (a) Let $V \neq Z$. Then ρ_{y} is inner by Lemma 2.1, and hence $V=$ C (and $R=S[C]$) by Theorem 2.2.
(b) Let $\sigma(\neq 1)$ be in (S) and $u_{\sigma}=y \sigma-y$. Then $s u_{\sigma}=u_{\sigma}\left(s \rho_{y}\right)(s \in S)$. We set $u_{\sigma}=y a+b(a, b \in S)$. Then $y\left(s \rho_{y}\right) a+s D_{y} a+s b=s u_{\sigma}=u_{\sigma} s \rho_{y}=y a\left(s \rho_{y}\right)+$ $b\left(s \rho_{y}\right)$. Hence, we obtain $\left(s \rho_{y}\right) a=a\left(s \rho_{y}\right)$ and $s D_{y} a=s(-b)-(-b)\left(s \rho_{y}\right)$. Since ρ_{y} is an automorphism (Corollary 1.3), the first relation implies $a \in Z$. If $a=0$, then $b \neq 0$ and $s b=b\left(s \rho_{y}\right)$. Hence $b \in S^{\bullet}$ and $\rho_{y}=b^{-1}$. On the other hand, if $a \neq 0$, then D_{3} is ρ_{y}-inner generated by $\left(-a^{-1} b\right)$.

Corollary 4. 1. Let $\chi(S) \neq 2$. If $Z \neq C$, then R / S is a Galois extension. If $[S: Z]<\infty$, then R / S is a Galois extension.

Proof. By the assumption $Z \neq C$ and Lemma 4.3 (a), we have either $V=Z \supsetneq C$ or $V=C \nsupseteq Z$ and $R=S[C]=S \otimes_{Z} C$ (Theorem 2.2). The former implies $J(\widetilde{Z}, R)=S$ and the latter implies C / Z is Galois, and hence R / S is Galois. The latter assertion is a consequence of the former. In fact, if $[S: Z]<\infty$ and $Z=C$ then $[R: C]<\infty$ and $V=C$ (Lemma 4.3 (a)), we have then a contradiction $R=S$.

Theorem 4. 2. Let $\chi(S) \neq 2$. If R / S is a Galois extension then D_{3} is ρ_{y}-inner, and conversely.

Proof. By Lemma 4.3 (a) and Corollary 4.1, it suffices to prove our theorem for the case $V=Z$. Assume that R / S is Galois. Then ρ_{y} is an automorphism (Corollary 1.3) and either ρ_{3} is inner or D_{y} is ρ_{3}-inner by Lemma 4.3 (b). If ρ_{y} is inner, it contradicts Corollary 3.2 (a). Conversely, assume
D_{y} is ρ_{y}-inner. Then we may assume $D_{y}=0, \rho_{y}$ is an automorphism. (Corollary $1.2(\mathrm{~b}))$. Let $y^{2}+y u_{1}+u_{0}=0\left(u_{i} \in S\right)$. Since $s\left(y^{2}+y u_{1}+u_{0}\right)-\left(y^{2}+y u_{1}+\right.$ $\left.u_{0}\right)\left(s \rho_{y}\right)=0(s \in S)$, we have $u_{1}=0$. Otherwise, $\rho_{y}=u_{1}^{-1}$ and it contradicts $V=Z$ (Theorem 2.1 (a)). Thus the map $\sigma: s+y t \rightarrow s-y t(s, t \in S)$ is an automorphism of R such that $J(\sigma, R)=S$.

References

[1] P. M. COHN : Quadratic extensions of skew fields, Proc. London Math. Soc., (3) 11 (1961), 531-556.
[2] N. Jacobson : A note on two dimensional division ring extension, Amer. J. Math., Vol. 77 (1955), 593-599.
[3] N. Jacobson: Structure of Rings, Providence (1956).
[4] K. Kishimoto: On cyclic extensions of simple rings, J. of Fac. Sci. Hakkaido Univ., Ser. I. Vol. 19 (1966), 74-85.
[5] H. Tominaga: On a theorem of N. Jacobson, Proc. Japan Acad., Vol. 31 (1955), 653-654.

Hokkaido Gakugei University

[^0]: *) Domestic Fellow in the Mathematical Institute, Hokkaido University, on leave from Hokkaido Gakugei University.

 1) Cf. [3]. P. 170.
 2) Unless otherwise stated, a $\rho_{\text {-derivation means }}(1, \rho)$-derivation.
 3) \oplus means a direct sum.
[^1]: 4) S^{\bullet} means the multiplicative group consisting of the regular elements of S.
[^2]: 5) The converse is not true. For, as is shown in Theorem 4.2, a right quadratic extension R / S is Galois (and hence $[R: S]_{l}=[R: S]_{r}$) if and only if D_{y} is ρ_{y}-inner provided $\chi(S) \neq 2$. On the other hand, as was constructed in [2], there exists a non Galois quadratic extension $R / S(\chi(S) \neq 2)$ such that $[R: S]_{l}=[R: S]_{r}$.
[^3]: 6) Cf. [4]. P. 75.
