ON POLYNOMIAL EXTENSIONS OF SIMPLE RINGS
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Introduction. Let S be a simple ring, and A an extension ring of S
with the common identity. If [A:S],=7n(>1) and there exists some ye A
such that A=77%’S and SySyS+.S, then A/S is called an n dimensional
right polynomial extension and {y’; i=0,1,---,n—1} is called a right poly-
nomial S-basis for A. Then, by sy=ys'+s"” (s€S), we can define in S a
monomorphism @,:s—s’ and a (1, @,)-derivation® D, :s—s"”. On the other
hand, an extension ring A’ of S (with the common identity) is called an m
dimensional left polynomial extension over S if [A’: S],=m (>1), A’= 7' Sz’
and £SESSx+.S. Finally, a right polynomial extension is called a polynomial
extension if it is a left polynomial extension at the same time. Any right
quadratic extensions and cyclic extensions (Cf. [4]) are right polynomial ex-
tensions.

The purpose of the present paper is to give some information'to the study
of finite dimensional right polynomial simple ring extensions. In §1, we shall
give a relation between the left dimension and the right dimension of a right
polynomial extension and a necessary and sufficient condition for a simple ring
to have a finite dimensional right polynomial extension. §2 is devoted to
determine the structure of V= V,(S), the centralizer of S in R (R is a finite
dimensional right polynomial simple ring extension), under the restriction that
P is inner or D, is P,-inner?. As the result, we can see that V is a com-
mutative semi-simple ring with minimum condition in the most of cases. In
§3, we shall treat with a right polynomial simple ring extension that is Galois.
Finally, in §4, a general description of right quadratic extensions of simple rings
will be given, and it is closely related to that investigated in [1]. Throughout
the present paper, we assume always R will mean an 2 dimensional right
polynomial simple ring extension over .S, and that R=>.72"19’S=(®D7,v’S?)
and sy=y(se,)+sD,. By C and Z, we denote the respective centers of R and
S, and other notations and terminologies used in this paper, we follow [4].

*) Domestic Fellow in the Mathematical Institute, Hokkaido University, on leave from
Hokkaido Gakugei University.

1) Cf. [3]. P. 170.

2) Unless otherwise stated, a ©-derivation means (1, ©)-derivation.

3) @ means a direct sum.
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§ 1. The left dimension and the construction of a right polynomial
extension.

Throughout this section, we assume that A is an 7 dimensional (not neces-
sary simple) right polynomial extension over S such that A=Y 7271v%S, sy=
y(s0,)+sD, (s€S). By P,,, we denote the sum of all formally different
products of consisting of 7 #,’s and 2—z D,’s. (e.g. P, ,=0:D,+0,D,0,+ D, 0%,
and we set 05 =D%=1). Then,

Lemma 1.1. sy*=2372"0y’sP,, for each s€S.

Proof. We prove the assertion by the induction on k.. Obviously, sy=
y(sP,)+sD,=ysP,,+sP,,. Assume that sy*'=3/y’P,_,,. Then sy*=
(2620 Y s P 1)y =22020Y" " (SPi_1,0) Py + 2820 Y (SPio1,0) Dy = (SPy-1,0) D, + 23521 y°
(sPr-1,0) Dy + (sPy-1,4-1)Py) + y*(sPy_1 2-12,). Noting here that the number of
formally different terms of P, , is (Jz>, P, ,.D,+ P, ,, P, coincides with P, ,
which completes our induction.

Corollary 1.1. Let {z*; i=0,1,---,n—1} be a right polynomial S-basis
with sx=x(s0,)+sD, (s€.S). Then 0,¢,=0,t, for some €S and 0<k<n. In
particular, if @, is an automorphism or S is a division ring, then 0,= Pz,t‘:-i
and D,= 3 %0 P; o5 —P,,t?‘so, for some s,€.S where ¢! is the inner automor-
phism generated by '

Proof. Let x=vy*s,+ 2525y%s; (k=1, s,€S, s, #0). Then we have
Yisa(s0.) + 2 525y7s 5 (50,) + sD, = x(s0,) + s D, = sx = s(y*s, + D524 y7s;) = y*(s0%)sx
+ N 3 ytsPy s+ 2520 (3010 y?sPy)s;.  This show that 0,¢,=p,t, where t=s,
and D,= X ¢ (P, ¢Ser—P2Sp;- In particular, if ©, is an automorphism (or S is
a division ring), s, €S ¥ by Ss;,=S0%s,=s5,50,. Hence we have Px=Pz,t‘: ' and
D.= ¢ 0F: 05— pyzrlsoz .

Corollary 1.2. Let R be an n dimensional right polynomial (simple
ring) extension over S.

(@) If 0, is inner, then so is every 0., and there exists a right polynomial
S-basis {y*; i=0,1,--,n—1} such that P,=1.

(b) If D, is P,-inner, then 0, is an automorphism, every D,. is O, -inner,
and then there exists a right polynomial S-basis {y°; i=0,1,---,n—1} such
that D,=0 and 0,=0P,.

Proof. (a) Let p,.=u% for some u€S. Then 0, =0, '=ut" for some
teS. Further, stu=xus+sE (s€S) where E=D,u, is a derivation in .S, and
{(xu); i=0,1,---,m—1} is a requested right polynomial S-basis.

4) S’ means the multiplicative group consisting of the regular elements of S.
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(b) Let D, be @.-inner generated by #€.S. Then s(x—u)=(x—u)(sP,)
(seS) and {(xr—wu)*; £=0,1,---,m—1} is a requested polynomial S-basis. Further,
D,.= 3% P; ¢Si;r — 0,5, where P, ; is defined by @, and D, (=0) and y=x—u.
Hence P;,=0 if i#0. This means that D,, is an inner @,-derivation generated
by s,. Now, let X},%%, (¢,€.S) be an arbitrary element of R. Then (23,%%)y
=y(2:y°t0,) implies R=RyR=yR. Thus y is a regular element of R, and
hence y 'Sy=S0,Z.S. On the other hand, since R=X7-1v%S, R=y 'Ry=
sy (y ' Sy) shows that Py=y~*|S is an automorphism. The rest is clear
from Corollary 1.1.

Theorem 1.1. [A:S],=2%2.,(S:S0,],)"+1.

Proof. Let B,={1}, and B, a left Sei-basis for S (:=1,2,---). Then
one will easily see that £B,=(#B,’. Now, we shall prove that Y= {y’B;;
i=0,1,---,n—1} is a left S-basis for A. Since y’(sP%)—sy‘e 2 j3¥’S (i =
1,2,---,n—1), we readily see that y’S=.Sy’B,+ X %ty’S, whence it follows
¥'SZ 2%5.0Sy’B,, namely, Y is a left generating system of A over S. At the
same time, the linear independence of Y over S will easily seen.

Corollary 1.3. The following conditions are eqnivalent.

(@) [A:S],=[A4:S5]..

(b) There exists an element xe€ A\S such that xs=(st)x+sE (se.S)
where t is a monomorphism in S, E a (z, 1)-derivation in S.

(c) P, is an automorphism.

Proof. (c)—(a). This is direct consequence of Theorem 1.1.

(a)—>(b). By Theorem 1.1, 0, is an automorphism, and then, sy=y(s0,)
+sD, (s€.S) implies ys=(so0," )y +s(—pL;'D,).

(b)—(c). ¥ x=vy*s.+ 253y’s; (s;€S), then k=1 and s,#0. Hence, for
each ueS, y'squ+ X4 yis,u =x2u = (ut)x+uE = (ur) (y*s. + 2520 ys,) +uE.
Therefore, we obtain s,u=(ur)P; s.=(ur0P%)s,, whence it follows S=Ss.S
=Ss,, namely, s, €S°. Hence r-0;=§,, which means that @, is an auto-
morphism.

Combining Corollary 1.2 (b) with Corollary 1.3, we have

Corollary 1.4. If D, is O,-inner, then [R:S],=[R:S].>.

Let © be a monomorphism in .S and D a @-derivation in .S. We consider
the ring &=S[X; 0, D]= {23, X’; s;€ S}, where the multiplication is defined
by sX=X(s0)+sD. If S is a division ring or a simple ring (of the capacity

5) The converse is not true. For, as is shown in Theorem 4.2, a right quadratic ex-
tension R/S is Galois (and hence [R:S];=[R:S],) if and only if Dy is Py-inner provided
X(S)#2. On the other hand, as was constructed in [2], there exists a non Galois quadratic
extension R/S (X(S)#2) such that [R:S);=[R:S]-.
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>1) and P is an automorphism, then & is a right principal ideal ring, that is,
each right ideal of & is generated by some monic polynomial f (i.e. the leading
coefficient of f is 1). Let f be a monic polynomial of &. Then f is called
w-irreducible if f does not generate & but any monic proper left factor of f
does &. By easy computations, we can see that an ideal M of & is maximal
if and only if the monic generator® of M is w-irreducible.

Now, we shall give a necessary and sufficient condition for S to have an
n dimensional right polynomial extension.

Theorem. 1.2. (a) In order that S have an n dimensional right poly-
nomial extension, it is necessary and sufficient that there exist a monomor-
phism 0 in S, a P-derivation D in S and a 1 xn matrix (uy, u, -+, u,_,) with
entries in S such that

(1) wyy—u; P=uD+u,(tty ,—u, ) 2=0,1,--,n—1 where we set
u_,=1).

(2) P, ;+ 2% P iy, is a (07, O*)-inner derivation generated by —u,
for each j=0,1, --,n—1. »

(b) In order that S have an n dimensional polynomial extension, it is
necessary and sufficient that there exist an automorphism P in S, a P-
derivation D in S and a 1 xn matrix (u,, u, -+, u,_,) with entries in S satis-
fying (1), (2) stated above.

(¢) In order that S have an n dimensional polynomial simple ring ex-
tension, it is necessary and sufficient that there exist an automorphism P in
S, a O-derivation D in S and a 1 xn matrix (u,, uy, -+, u,_,) with entries
in S satisfying (1), (2) stated above and

(3) X"+ N7 Xfu, is w-irreducible in S[X; 0, D].

Proof. (a) The conditions (1) and (2) are equivalent with the statment
that the right ideal M of S[X; 0, D] generated by f(X)=X"+ X7 X%, is
a two-sided ideal. In fact, M is a two-sided ideal if and only if XAX)=
F( X)X +¢) (2eS) and sf(X)=f(X)s" (s'€S) for every s€.S. The former implies
Xl Yt Xy, = (X" 4+ 70 X)) ( X+ ) =X+ 22t X0 w0+ Xt + X778
X(uD+uit)=X""'+ X", 1P+ 8)+ 270 X (e 1P+ 0w, D+ ut) + u D+ uyt which
means f=u, —U, 10, Uy 1=u; PL+uD+ut, i=1,2,---,n and uoD+u§t=0.
Thus, we have w, ,—u, #=uD+u,(u,, ,—u,_°) for each 7=0,1,---,n—1.
Next, the latter implies s(X™+ 23770 Xu,)= 2 70 X %P, ;+ 22320 (7 X IsP; ) u,
= X"s0"+ 370 XOsP, s+ 2520 (07, XIsP, jJu; = X™s'+ 2,720 Xu,s’.  Hence
sor=s", sP, ;+ 27 ;5P; jus = SP, ;+ 2.7 ;5P ju; = sP, ;+ 217 ;15FP; s+ 5P; ju,
=u,s', and this means that P, ;+ 2.7 ;1P us is a (07, P")-inner derivation

6) Cf.[4]. P. 75
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generated by —u; for each j=0,1,---,n—1. Thus S[X,;0,D]/M=A=
@r=dy’S where sy=y(s0)+sD (s€.S), y is the residue class of X modulo M,
is a requested one. Conversely, let A=@7?¢¥’S be an n dimensional right
polynomial extension with sy =y(s®,)+sD, for each s€S. Then the mapping
¥: 2. X%;—>2,y%, is an S (ring) epimorphism of S[X; 0,,D,] to A. Let
¥+ 27 ¢y'u; =0 for some u,€S. Then N, the kernel of ¢, contains M=
X"+ X X%u,)S[X; 0,,D,]. Now, we conclude that M coincides with N.
For, if g(X)=27,X"%, (s,€.S) is a polynomial of N with m <z, then 2 7,
¥’s;=0 in A, and hence g(X)=0. Thus, each polynomial of N has X"+
7~ X%, as its left factor. This means that N=M. Consequently, 0,, D,

and (z,, ,, -+, u,_,) satisfy conditions (1) and (2).

(b) By Corollary 1.3, a finite dimensional right polynomial extension is
a polynomial extension if and only if © is an automorphism. Hence the
statment is clear from (a).

(c) Recalling that (3) is equivalent with the maximality of M= (X"+
2 X'u,)S[X, 0, D,] by the remark stated just before our theorem the stat-
ment is clear from (a) and (b).

§ 2. The centralizer of S in R.

Let V=V3,(S) be the centralizer of S in R. In this section, we shall
investigate the relations between {0,,D,} and V.

Lemma 2.1. If V+#Z, then P, is an automorphism and m=((P,): (2,)nS)
<n where S is the set of all inner automorphisms determined by the elements
of S°.

Proof. Since V#Z, there exists an element v=y*s,+ 2 52 y’s; (s:€.S)
of V such that 5s,#£0 (0<k<#n). Then X%  vy’sP. ..+ 2 5-8(Dioy’sP;.)s;=
sv=vs=y%s,s+ D 55y's;s (s€S), which implies that sPj :sp = sP,5: = i, in
particular, S=Ss5,5S=.Ss,. Hence s,€S", and P*=5,. '

Theorem 2.1. Let D, be an inner P,-derivation.

(@) V+£Z if and only if @, is an automorphism and m=(®,):(2,)aS)
<n, and when this is the case, m is a divisor of n.

(b) V is a finite dimensional commutative algebra over Z. Moreover,
if X(S), the characteristic of S, is 0 or relatively prime to n, then V is a
JSinite direct sum of fields.

Proof. Since D, is ©,-inner, we may choose a right polynomial S-basis
{w’; i=0,1,---,m—1} with D,=0 by Corollary 1.2 (b). Therefore we may
assume from the beginning sy =y(s?,). Thus as was shown in the proof of

Corollary 1.2 (b), ye R" and % '|S=p0,. For the sake of simplicity, we set
p=0,.
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(a) The only if part is shown in Lemma 2.1. Conversely, let # be an
automorphism and m=(() : (0),S)<7n. Then y ™|S=5 for some s€S. There-
fore y™s is not contained in Z but in V. Let y"+ 2723 v*u;=0 (u,€.S). Then
s(y™+ 250 viu) — (Y + 2070 ytu,) (sP™) =0 (s€S) yields at once swuy, = u,(sP™).
Since #,#0 by the regularlity of ¥, the last means that w«, is a regular element.
Consequently we have ©"=u;", equivalently, m is a divisor of 7. ,

(b) It suffices to prove the case V#£Z. By (a), © is an automorphism
and m =((P) : (0)~S) is a proper divisor of n: m'=n/m. Let v= Y22y’ (s,€S)
be an element of V. Since X7}y (t0%)s,=tv=vt= ) 7} y’s;t for each t€ S,
we see that ty’s,=y*(t0%)s*=y’,t, namely, each y’%,€ V. Moreover, if s,%#0,
then #0%s,=s,t proves s,€S° and 0°=35,. Thus V={X 7 ,y™*s*z,,; 2,€Z},
where §=0". The commutativity of V follows from the fact that y™*s*z,
commutes with every element of V. Thus V is an m' dimensional commutative
algebra over Z. Next, let us assume that 2(S)=0 or (X(S), n)=1. We shall
denote the extension 7' of © again by 0. Let v an element of V. Then
T,.(vsp)=270vp* is contained in C, for T,(v;p)=T,.(v;p)p. If v is
nilpotent, then so is vp (vp€V) and hence 7T, (v;p) is nilpotent, and so O.
(Recall that © is an automorphism in S and 7T,(v;p) is in C). Thus we have
proved that if 7, (v;p)#0 then v is non nilpotent. Now we shall show that
each (non-zero) non regular element of V is non nilpotent. If v=71y%,€
VAZ (s;€S), so,=1 (is non regular), then T, (v, p)=T,(v—1;p)+m+*0. For
T,.(v—1; p) is either O or not contained in Z. (Note that » is a divisor of
n). In general, if v=y™isiz;+ 3 s,y s*2, € V\Z (2;#0) is non regular, u=
(y™s’z,;) v (€ V) is non regular and its constant term is 1, and so, « is non
nilpotent by the last remark. Hence # is non nilpotent in either case, which
means the semi-simplicity of V. ’

Theorem 2.2. Let P, be an inner automorphism.

If x(S)=0 or xX(S)>n, then V coincides with either C or Z, more
precisely, if V+2Z, R=S[C].

Proof. Since @, is an inner automorphism, we may choose a right poly-
nomial S-basis {w?’;7=0,1,---,7n—1} with sw=ws+sD,, (s€.S) by Corollary
1.2 (a). Therefore we may assume that from the beginning that sy=ys+sD,
(s€S). Assume V#Z, and write D=D,. Then there exists an element
v=yts,+yt s+ 4, (=1, 5,€8, 5. #0) of V, and % (y'sP.,)s.+

(Y SPy_1,0)Sk—1+ o +SSo=SU=US=y* S5, S+ Yp_1Sx_1S+ -+ +5,5 implies s,€Z.

. k . . .
Since (k_1>st,c + 5S4 1=SPy 1 1St +SPy_1 4 _1Sk-1=5;_1S, D is an inner deriva-

tion generated by —(1/k)s._,si'. Thus, by Corollary 1.2 (b), we can choose
an S-basis {c¢’; =0,1,---,7—1} such that ceC.
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Corollary 2.1. If [S:Z] is finite, then [R:S],=[R:S]..

Proof. By [5. Lemmal], [R: C] is finite. If V=Z, then Z2C, and hence
[R:SL[S:Cl,=[R:C],=[R:C],=[R: S].[S: C], shows that [R: S],=[R: S],.
On the other hand, if V+#£Z, @, is an automorphism by Lemma 2.1. Hence
the assertion is a direct consequence of Corollary 1.3.

§ 3. Polynomial Galois extensions.

Throughout the present section, by &, we denote the set of all S-automor-
phisms of R. o

If ¢ is an arbitrary element of &, and «»,=yo—vy then su,=u,(s?,){s€S).
For, s(yo)=(sy)o=(y (s0,) +sD,)o =(yo)sP, +sD, (s€S), we have s(yo—y)=(yo
'—y)(sp z/)- o

Lemma 3.1. Let 8+#1 and a#1 be an arbitrary element of ®. Then,
there exists a right polynomial S-basis {y*; i=0,1,---,n—1} such that yo—
y eV if and only if some (and so every) P, is inner.

Proof. Let v,=yo—y be in V. Then v,s=sv,=v,0,. Hence v,(s—sP,)
=0. If we note that the right annihilator of v,(#0)€V in S is a two-sided
ideal, we can readily obtain s0,=s, namely, ©,=1. Thus each @, is inner
by Corollary 1.2 (a). Conversely, if each 0, is inner, there exists a right
polynomial S-basis {y*; 7=0,1,---,n—1} with @,=1 by Corollary 1.2 (a).
Then yo—y is in V.

Corollary 3.1. Let R be an n dimensional right polynomial division
ring extension over S. If &+#1, then [R:S],=[R:S]..

Proof. For any o(#1)€®, there exists a non zero u,€R such that su,
=u,(sP,) for every right polynomial S-basis {y’; :=0,1,---,7—1}. Hence
u;'|S=0,, R=Ru'= Y713 y'u, (Su, )= S 73y'u-(Se,) and {y'u;'; i=0,1, ---,
n—1} is right linearly independent over Sp,. This means that n=[R:S], =
[R:S8p0,],. Thus @, is an automorphism in S, and then [R:S],=[R:S],. by
Corollary 1.3.

Corollary 3.2. Let P, be an inner automorphism.

(@) Assume V=Z. If x(S)>n or x(S)=0, then & =1.

(b) Assume X(S)=n. If V=Z+#C then R/S is an inner cyclic extension,
and conversely.

Proof. (a) Suppose & contains an element ¢#1. Then by Lemma 3.1,
there exists a right polynomial S-basis {y’; :=0,1,---,7—1} with sy=ys+
sD, (s€S), and yo=vy+=,, 2,(#0)eV=Z. Thus we may assume further

yo=y+1. Hence if y"=27"¢v’, (s;,€S), we have y"o=(y +1)”=Z;’=o(?)y"
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=y"+22‘:o‘(’;>yi=Zz‘:fy’((';)4 s¢> and y* = (X5’ = 2i% (v +1)'s, =

2‘;&( ?;é(;)y’)si. From those, we see that <n21>+s,,_1=s,,_.1, whence it

follows a contradiction ( " n 1) =0.

(b) If R/S is inner Galois, then V=Z+#C by Theorem 2.2. Next, we
shall prove the converse. Let 2,€ Z\C. Then 2,D,=2y—y%, is a non zero
element of Z. If 74w, (t,€S) is in J(&, R), Lrovt,=(70 v v)%=
il itz = 2075 (Z§=o(})yjzoDi‘j) t,z;!. Hence, we obtain (77::;)%
D¢, ,2;'=0, and so t,_,=0. Repeating the same procedures, we have ¢,=0,
i=1,2,---,m—1. Thus J(&, R)=S. Furthermore, the fact that C={zeZ;
zD,=0} and z*D,=(kz* *)zD, imply the order of %, is just =.

Theorem 3.1. (a) Let X(S)=n. In order that S have an n dimensional
polynomial Galois extension R=Y.720y*S with sy=ys' +s" such that s—s'
is an inner automorphism, it is necessary and sufficient that the following
condition be satisfied:

(1) There exist a derivation D in S and s€S satisfying D"—D=1,,
sD=0 and X"— X—s is w-irreducible in S[X; D].

(b) Let X(S)>n or X(S)=0. In order that S have an n dimensional
polynomial Galois extension R= 370 y*S with sy=ys' +s" such that s—s' is
an inner automorphism, it is necessary and sufficient that the following con-
dition be satisfied:

(2) There exists an n dimensional Galois extension field of Z.

Proof. (a) Let R/S be a Galois extension with the requested property.
Then, by Theorem 2.2, V is either Z or C. If V=C, then R/S is obviously
an n dimensional cyclic extension. On the other hand, if V=Z=C then R/S
is still an z dimensional cyclic extension by Corollary 3.2 (b). Hence, there
holds (1) by [4. Theorem 2.1]. Conversely, if there exist D, S satisfying (1),
then, by [4. Theorem 2.1], there exists an n dimensional polynomial Galois
extension R=Y.72719’S such that ty=yt+tD (€ .S).

(b) Assume that there exists a Galois extension R/S with the requested
property. Then V=C=Z and R=S[C] by Theorem 2.2 and Corollary 3.2
(a). Thus the rest of the proof will be obvious.

Theorem 3.2. Let © be an automorphism in S. In order that S have
an n dimensional polynomial inner Galois extension R= 773y"S with sy=
y(sP) +s" such that s—s'" is an inner P-derivation, it is necessary and sufficient
that there exist s,€ S, z€Z satisfying the following conditions:
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(1) O"=%,, s;P=s,.
(2) =20+#z (i=1,---,n—1).
(3) Xm"—s, is w-irreducible in S[X; P].
More precisely, when this is the case, R|S has a cyclic Galois group.

Proof. Assume that there exists a Galois extension R/S with the requested
property. Since V is commutative by Theorem 2.1 (b), V has to coincides
with Z. Further, by Corollary 1.2 (b), we may assume sy =1y(sP) (s€.S). One
may remark here 0= y“:l]S (Cf. the proof of Corollay 1.2 (b).). If y*=
Do vu, (u;€S8), then gf”"]S=P”=zZ,“. (By the regularlity of v, #,#0, and
hence #,€S"). Hence zy"z '=y"(20") 2 '=y" for each ze€Z , which implies
so=vy"€J(Z,R)=S. (Obviously s,0=s,). Further, by the same way as in the
proof of Theorem 1.2 (a), R=S[X; P]/(X"—5)S[X; ] and X"—s, is w-
irreducible in S[X; p]. Next, as [R:S]=[V:C]=[Z:C] and JP|Z,Z)=C,
there exists an element z € Z such that z0°#z for i=1,---,n—1. (Take, for
instance, a normal basis element of Z/C). Then J(g, R)=S. In fact, 172 3y%,
€J(g, R) (t,€S) shows that X 70 vy't,==2(Drdvit)z = 22 ¢ v, (2092 ! and
hence, #;,=0 for i=1,2,---,n—1. Conversely, assume that there exist s,€.5,
z € Z satisfying (1)«(3). Then (1) is equivalent with M=(X"—s,)S[X;P] is
a two-sided ideal, and hence R=S[X;P)/M=®7?}y’S is an n dimensional
polynomial extension with sy =y(s0) where y is the residue class of X modulo
M. Now (3) is equivalent with the maximality of M. Hence R is simple.
Finally by (2), we can use the above argument to prove J(g, R)=S and then
we have V=J(g|V, V)=V,S=Z (a field. Thus R/S is an inner Galois ex-
tension with respect to a cyclic Galois group ().

§ 4. Right quadratic extensions.

Let R=®;-,%"S be a right quadratic simple ring extension over S. Then,
it is clear that sy=y(sP,)+sD, (s€.S) where @, is a monomorphism in S, D,
is a O, ,-derivation in S.

Lemma 4.1. R is R, S, -irreducible.

Proof. It suffices to prove R=RuxS for each xe€R\S. Since RzS+S
is a subring of R properly containing .S, RxS+S=R=S®»S. Hence there
exists #€S such that y—u € RxS. Noting that {1, y—u} is a right S-basis

for R, (R(y—w)S)R=R(y—u)S)(S+(y—u)S)SR(y—u)S, and hence R —
R(y—u)S=RxS.

Lemma 4.2. Let £ be an automorphism in S, and f(X)=X?+ Xu, +u,
(4o, 1€ S) a polynomial of S[X; e, D] where D is a P-derivation in S.
Assume that f(X) generates a proper ideal of S[X;e,D]. Then f(X) is
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w-irreducible if and only if S has no solution t satisfying the following
conditions :

(i) tD+t(u,—tP)=u,.

(ii) tD=t(tP—1).

(iii) sD=¢t(sP)—st for each s€S.
Moreover, f(X) is irreducible” if and only if S has no solution t satisfying (i).

Proof. Let ¢ be an element of S. Then I=(X+¢#)S[X; 0, D] is a two-
sided ideal if and only if X(X+8)=(X+8)(X+¢) (¢ €S) and s(X+)=(X+1¢)s
(s'€S) for every s€S. The former imples #=¢—10, tD+t'=0. The latter
implies sD=ts'—st, s'=sP for every s€S. Hence I is a two-sided ideal if
and only if ¢ satisfies (ii) and (iii).

Let us assume that f(X)=(X+8(X+b)=X?>+X@e+b)+tD+tb. Then
t0+b=u,, tD+th=u,, and so, we have tD+#t(u;—t0)=u,. Thus f(X) is
irreducible if and only if S has no solution # satisfying (i). Next, we assume
that f(X)=(X+1#)(X+b) is w-irreducible. If we note that the right ideal
I=(X+1%)S[X; e, D] does not coincide with S[X; @, D], I can not be a two-
sided ideal. Thus ¢ does not satisfy one of the conditions (ii) and (iii) but
satisfies (i). Finally, we assume that f(X) is not w-irreducible, then, there
exists €S such that f(X)=(X+?) (X +5) and the two-sided ideal (X +#) gener-
ated by X +¢ is a proper ideal of S[X; @, D]. Since the monic generator of
(X+18) is X+t itself, (X+8=(X+2)S[X; e, D]. Hence ¢ satisfies all the
conditions (1)-(iii).

Now, we shall give a necessary and sufficient condition for S to have
a right quadratic simple ring extension.

Theorem 4.1. (a) In order that S have a right quadratic simple ring
extension, it is necessary and sufficient that there exist a monomorphism
e in S, a O-derivation D in S and a 1x2 matrix (u,, w,) with entries in S
satisfying (1), (2) of Theorem 1.2 (a) and the following condition :

(3) There exists a finite subset {s,, t;, v} of S satisfyng 35.(—wu(s.P)a+
s;Da+sp+t,La)v,=0, and X ,(—u,(s:P)a+¢t,Da+sb)v, =1 for each pair (a, b)
of Sx.S such that a#0.

(b) In order that S have a quadratic simple ring extension, it is neces-
sary and sufficient that there exist an automorphism P in S, a P-derivation
D in S and a 1x2 matrixz (u,, u,) with entries in S satisfying (1), (2) of
Theorem 1.2 (a) and the following condition :

(3") S has no solution t satisfying (i), (ii) and (iii) of Lemma 4.2.

7) A polynomial f(X) of S[X; P, D] is called irreducible if f(X) has no left monic
factor ¢g(X) such that deg ¢(X)< deg f(X).
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Proof. (a) As was shown in the proof of Theorem 1.2 (a), the existence
of o, D and (u,, u,) satisfying (1), (2) are equivalent with the statment that S
has a right quadratic (polynomial) extension R=S[X; 0, D]/(X?+ Xu, + u,) S[X;
P,D]. Let R=S®yS where y is the residue class of X modulo (X?+ Xu,
+uy) S[X; 0, D]. Then (3) yields the simplicity of R. In fact, X .(ys;+ )
(ya+b)v, = Z’siav, + Doy (b +s.Da+sb+t,Pa)v, + Xt Da+tb)v,= 1.y
(—2wi(si@)a+s,Da+ sd + tPa)v,+ o —u(sef)a+t,Da+tb)v,=1 for each ya+
beR (a,beS). Conversely, let R be simple. Then, R is R;,S,-irreducible
by Lemma 4.1. Hence there exists a finite subset {s,, z;, v} of S satisfying (3).

(b) The assertion is almost evident from the proof of (a) and Lemma 4.2.
The proof may be left to readers.

Lemma 4.3. Let R be a right quadratic simple ring extension over .
Then,

(@) V is either Z or C.

(b) If R/S is Galois, then either O, is inner or D, is O,inner.

Proof. (a) Let Vs£Z. Then @, is inner by Lemma 2.1, and hence V=
C (and R=S[C]) by Theorem 2.2.

(b) Let o(#1) be in @ and uw,=yo—y. Then su,=u,(s0,) (s€S). We
set u,=ya+b (a,b€S). Then y(sP,)a+sD,a+sb= su,=us0,=ya(sP,)+
b(sp,). Hence, we obtain (s@,)a=a(sP,) and sD,a=s(—b)—(—>b)(sp,). Since
P, is an automorphism (Corollary 1.3), the first relation implies a€ Z. If a=0,
then 4#0 and sb=b(sp,). Hence b€S" and p,=b"'. On the other hand,
if a#0, then D, is @ ,-inner generated by (—a'b).

Corollary 4.1. Let X(S)+2. If Z#C, then R[S is a Galois extension.
If [S:Z]< oo, then R/S is a Galois extension.

Proof. By the assumption Z#C and Lemma 4.3 (a), we have either
V=Z=C or V=C=xZ and R=S[C]=S®,C (Theorem 2.2). The former
implies J(Z, R)=S and the latter implies C/Z is Galois, and hence R/S is
Galois. The latter assertion is a consequence of the former. In fact, if
[S:Z]<o0 and Z=C then [R:C]<oo and V=C (Lemma 4.3 (a)), we have

then a contradiction R=.S.

Theorem 4.2. Let X(S)#2. If R/S is a Galois extension then D, is
P,~inner, and conversely.

Proof. By Lemma 4.3 (a) and Corollary 4.1, it suffices to prove our theorem
for the case V=Z. Assume that R/S is Galois. Then @, is an auto-
morphism (Corollary 1.3) and either @, is inner or D, is @,-inner by Lemma
4.3 (b). I o, is inner, it contradicts Corollary 3.2 (a). Conversely, assume
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D, is P, inner. Then we may assume D,=0, @, is an automorphism. (Corol-
lary 1.2 (b)). Let %*+yu,+u,=0 (ux;€.S). Since s (y*+ yu,+u,)—(y*+ yu, +
uy) (s0,) =0 (s€.S), we have u, =0. Otherwise, @,=u;' and it contradicts
V=Z (Theorem 2.1 (a)). Thus the map ¢:s+yt—>s—yt (s, t€S) is an auto-
morphism of R such that J(s, R)=S.
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