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Introduction. Let $S$ be a simple ring, and $A$ an extension ring of $S$

with the common identity. If $[A:S]_{r}=n(>1)$ and there exists some $y\in A$

such that $A=\sum_{i=0}^{n-1}y^{i}S$ and $Sy\subseteqq yS+S$ , then $A/S$ is called an $n$ dimensional
right polynomial extension and $\{y^{i};i=0,1, \cdots, n-1\}$ is called a nght poly-
nomial S-basis for $A$ . Then, by $sy=ys^{\prime}+s^{\prime\prime}(s\in S)$ , we can define in $S$ a
monomorphism $\rho_{y}$ ; $s\rightarrow s^{\prime}$ and a $(1, \rho_{y})$-derivation1) $D_{y}$ : $s\rightarrow s^{\prime\prime}$ . On the other
hand, an extension ring $A^{\prime}$ of $S$ (with the common identity) is called an $m$

dimensional left polynomial extension over $S$ if $[A^{\prime} : S]_{l}=m(>1),$ $A^{\prime}=\sum_{i=0}^{m-1}Sx^{i}$

and $xS\overline{\equiv}Sx+S$ . Finally, a right polynomial extension is called a polynomial
extension if it is a left polynomial extension at the same time. Any right
quadratic extensions and cyclic extensions (Cf. [4]) are right polynomial ex-
tensions.

The purpose of the present paper is to give some information’ to the study
of finite dimensional right polynomial simple ring extensions. In \S 1, we shall
give a relation between the left dimension and the right dimension of a right
polynomial extension and a necessary and sufficient condition for a simple ring
to have a finite dimensional right polynomial extension. \S 2 is devoted to
determine the structure of $V=V_{R}(S)$ , the centralizer of $S$ in $R(R$ is a finite
dimensional right polynomial simple ring extension), under the restriction that
$\rho$ is inner or $D_{y}$ is $\rho_{y}$ -inner2). As the result, we can see that $V$ is a com-
mutative semi-simple ring with minimum condition in the most of cases. In
\S 3, we shall treat with a right polynomial simple ring extension that is Galois.
Finally, in \S 4, a general description of right quadratic extensions of simple rings
will be given, and it is closely related to that investigated in [1]. Throughout
the present paper, we assume always $R$ will mean an $n$ dimensional right
polynomial simple ring extension over $S$ , and that $R=\sum_{i=0}^{n-1}y^{i}S=(\oplus_{i=0}^{n-1}y^{i}S^{3)})$

and $sy=y(s\rho_{y})+sD_{b}$ . By $C$ and $Z$, we denote the respective centers of $R$ and
$S$, and other notations and terminologies used in this paper, we follow [4].

$*)$ Domestic Fellow in the Mathematical Institute, Hokkaido University, on leave from
Hokkaido Gakugei University.

1) Cf. [3]. P. 170.
2) Unless otherwise stated, a $\rho$-derivation means $(1, \rho)$-derivation.
3) $\oplus means$ a direct sum.
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\S 1. The left dimension and the construction of a right polynomial
extension.

Throughout this section, we assume that $A$ is an $n$ dimensional (not neces-
sary simple) right polynomial extension over $S$ such that $A=\sum_{i=0}^{n-1}y^{i}S,$ $sy=$

$y(sP_{y})+sD_{y}(s\in S)$ . By $P_{k,i}$ , we denote the sum of all formally different
products of consisting of $iP_{y}’ s$ and $k-iD_{y}’ s$ . $(e.g$ . $P_{3,2}=\rho_{y}2D_{y}+\rho_{y}D_{y}P_{y}+D_{y}P_{y}^{2}$ ,
and we set $P_{y}^{0}=I\mathcal{Y}_{k}=1$ ). Then,

Lemma 1. 1. $sy^{k}=\sum_{i=0}^{n-1}y^{i}sP_{k,l}$ for each $s\in S$.
Proof. We prove the assertion by the induction on $k$ . Obviously, $sy=$

$y(sP_{y})+sD_{y}=ysP_{1,1}+sP_{1,0}$ . Assume that $sy^{k-1}=\Sigma_{l=0}^{k-1}y^{i}sP_{k-1,i}$ . Then $sy^{k}=$

$(\Sigma_{i=0}^{k-1}y^{i}sP_{k-1,i})y=\Sigma_{l=0}^{k-1}y^{i+1}(sP_{k-1,i})\rho_{y}+\Sigma_{i=0}^{k-1}y^{i}(sP_{k-1,i})D_{y}=(sP_{k- 1,0})D_{y}+\Sigma_{i=1}^{k-1}y^{i}$

$((sP_{k- 1,i})D_{y}+(sP_{k-1,i-1})P_{y})+y^{k}(sP_{k-1},{}_{k-1}P_{y})$ . Noting here that the number of
formally different terms of $P_{j,i}$ is $(_{i}^{j}),$ $P_{k-1,i}D_{y}+P_{k-1},{}_{i-1}P_{y}$ coincides with $P_{k,i}$

which completes our induction.
Corollary 1. 1. Let $\{x^{i} ; i=0,1, \cdots, n-1\}$ be a right polynomial S-basis

with $sx=x(sP.)+sD$. $(s\in S)$ . Then $\rho_{x}t_{l}=P_{y}t_{r}$ for some $t\in S$ and $0<k<n$ . In
particular, if $P_{y}$ is an automorphism or $S$ is a division ring, then $ P_{x}=P_{y}t^{-1}\sim$

and $D_{x}=\sum^{k}{}_{i=0}P_{i,0}s_{ir}-P_{y}^{\vee}t^{-1}s_{0l}$ for some $s_{i}\in S$ where $t^{-1}-$ is the inner automor-
phism generated by $t^{-1}$ .

Proof. Let $x=y^{k}s_{k}+\sum_{j=0}^{k- 1}y^{j}s_{j}(k\geqq 1, s_{i}\in S, s_{k}\neq 0)$ . Then we have
$y^{k}s_{k}(sP_{x})+\sum_{j=0}^{k-1}y^{f}s_{j}(s\rho_{x})+sD_{x}=x(sP_{x})+sD_{x}=sx=s(y^{k}s_{k}+\sum_{f=0}^{k-1}y^{j}s_{f})=y^{k}(s\rho_{y}^{k})s_{k}\backslash $

$+\sum_{i=0}^{k-1}y^{i}sP_{k,i}s_{k}+\sum_{j=0}^{k-1}(\sum_{i=0}^{j}y^{j}sP_{j,i})s_{j}$ . This show that $P_{x}t_{l}=P_{y}t_{r}$ where $t=s_{k}$

and $D_{x}=\sum^{k}{}_{i=0}P_{i,0}s_{ir}-Ps_{0l}$ . In particular, if $P_{y}$ is an automorphism (or $S$ is
a division ring), $s_{k}\in S4$ ) by $Ss_{k}=SP_{y}^{k}s_{k}=s_{k}S\rho_{x}$ . Hence we have $P_{x}=\rho_{y}t^{-1}-$ and
$D_{x}=\sum^{k}{}_{i=0}P_{l,0}s_{ir}-\rho_{y}\overline{t^{-1}}s_{0}$,.

Corollary 1.2. Let $R$ be an $n$ dimensional right polynomial (simple
ring) extension over $S$ .

(a) If $P_{x}$ is inner, then so is every $P_{x^{r}}$ , and there exists a right polynomial
S-basis $\{y^{i};i=0,1, \cdots, n-1\}$ such that $P_{y}=1$ .

(b) If $D_{x}$ is $P_{x}$-inner, then $P_{x}$ is an automorphism, every $D_{x}$ , is $\rho_{x^{\prime}}$-inner,
and then there exists a right polynomial S-basis $\{y^{i} ; i=0,1, \cdots, n-1\}$ such
that $D_{y}=0$ and $P_{y}=\rho_{x}$ .

Proof. (a) Let $\rho_{x}=\tilde{u}$ for some $u\in S$ . Then $\rho_{x^{\prime}}=\rho_{x}t^{-1}=\overline{ut^{-1}}-$ for some
$t\in S$ . Further, $sxu=xus+sE(s\in S)$ where $E=D_{x}u_{r}$ is a derivation in $S$ , and
$\{(xu)^{i};i=0,1, \cdots, n-1\}$ is a requested right polynomial S-basis.

4) $S$ means the multiplicative group consisting of the regular elements of $S$ .
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(b) Let $D_{x}$ be $\rho_{x}$-inner generated by $u\in S$ . Then $s(x-u)=(x-u)(sP.)$
$(s\in S)$ and $\{(x-u)^{i} ; i=0,1, \cdots,n-1\}$ is a requested polynomial S-basis. Further,
$D_{x^{\prime}}=\sum^{k}{}_{i=0}P_{i,0}s_{ir}-P_{x^{\prime}}s_{0l}$ where $P_{l,j}$ is defined by $P_{y}$ and $D_{y}(=0)$ and $y=x-u$ .
Hence $P_{l,0}=0$ if $i\neq 0$ . This means that $D_{x^{\prime}}$ is an inner $P_{x}$-derivation generated
by $s_{0}$ . Now, let $\sum_{i}y^{i}t_{i}(t_{i}\in S)$ be an arbitrary element of $R$ . Then $(\sum_{l}y^{l}t_{i})y$

$=y(\sum_{i}y^{i}t_{i}\rho_{y})$ implies $R=RyR=yR$ . Thus $y$ is a regular element of $R$ , and
hence $y^{-1}Sy=SP_{y=}\subset S$ . On the other hand, since $R=\sum_{i=0}^{n-1}y^{i}S,$ $R=y^{-1}Ry=$

$\sum_{i=0}^{n-1}y^{i}(y^{-1}Sy)$ shows that $P_{y}=y^{-1}-|S$ is an automorphism. The rest is clear
from Corollary 1.1.

Theorem 1. 1. $[A:S|_{l}=\sum_{l=1}^{n}([S:SP_{y}]_{l})^{i}+1$ .
Proof. Let $B_{0}=\{1\}$ , and $B_{l}$ a left $SP_{y}^{i}$-basis for $S(i=1,2, \cdots)$ . Then

one will easily see that $\# B_{i}=(\# B_{1})^{i}$ . Now, we shall prove that $Y=\{y^{l}B_{i}$ ;
$i=0,1,$ $\cdots,$ $n-1$ } is a left S-basis for $A$ . Since $y^{i}(sP_{y}^{i})-sy^{i}\in\sum_{j=0}^{j-1}y^{f}S(i=$

$1,2,$ $\cdots,$ $n-1$ ), we readily see that $y^{i}S_{\equiv}^{-}Sy^{i}B_{i}+\sum_{j-}^{i-- 1}=0y^{j}S$ , whence it follows
$y^{i}S_{-}^{-}=\sum_{j=0}^{i}Sy^{j}B_{j}$ , namely, $Y$ is a left generating system of $A$ over $S$ . At the
same time, the linear independence of $Y$ over $S$ will easily seen.

Corollary 1. 3. The following conditions are eqnivalent.
(a) $[A:S]_{l}=[A:S]_{r}$ .
(b) There exists an element $x\in A\backslash S$ such that $xs=(s\tau)x+sE(s\in S)$

where $\tau$ is a monomorphism in $S,$ $E$ a $(\tau, 1)$-derivation in $S$ .
(c) $P_{y}$ is an automorphism.

Proof. $(c)\rightarrow(a)$ . This is direct consequence of Theorem 1.1.
$(a)\rightarrow(b)$ . By Theorem 1.1, $\rho_{y}$ is an automorphism, and then, $sy=y(sP_{y})$

$+sD_{y}(s\in S)$ implies $ys=(sP_{y}^{-1})y+s(-\rho_{y}^{-1}D_{y})$ .
$(b)\rightarrow(c)$ . If $x=y^{k}s_{k}+\sum_{j=0}^{k-1}y^{j}s_{j}(s_{i}\in S)$ , then $k\geqq 1$ and $s_{k}\neq 0$ . Hence, for

each $u\in S,$ $y^{k}s_{k}u+\Sigma_{j=0}^{k-1}y^{j}s_{j}u=xu=(u\tau)x+uE=(u\tau)(y^{k}s_{k}+\sum_{j=0}^{k-1}y^{j}s_{j})+uE$ .
Therefore, we obtain $s_{k}u=(u\tau)P_{\mathfrak{t},k}s_{k}=(u\tau P_{y}^{k})s_{k}$ , whence it follows $S=Ss_{k}S$

$=Ss_{k}$ , namely, $s_{k}\in S$ . Hence $\tau\cdot P_{y}^{k}=s_{k}\sim$ , which means that $P_{y}$ is an auto-
morphism.

Combining Corollary 1.2 (b) with Corollary 1. 3, we have
Corollary 1.4. If $D_{y}$ is $P_{y}$-inner, then $[R:S]_{l}=[R:S]_{r}^{5)}$ .
Let $P$ be a monomorphism in $S$ and $D$ a $P$-derivation in $S$ . We consider

the ring $\mathfrak{S}=S[X;P, D]=\{\sum_{i}X^{i}s_{i} ; s_{i}\in S\}$ , where the multiplication is defined
by $sX=X(sP)+sD$ . If $S$ is a division ring or a simple ring (of the capacity

5) The converse is not true. For, as is shown in Theorem 4.2, a right quadratic ex-
tension $R/S$ is Galois (and hence $[R:S]_{l}=[R:S]_{r}$ ) if and only if $D_{y}$ is $\rho_{y}$-inner provided
$\chi(S)\neq 2$ . On the other hand, as was constructed in [2], there exists a non Galois quadratic
extension $R/S(\chi(S)\neq 2)$ such that $[R:S]_{l}=[R:S]_{r}$ .
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$>1)$ and $\rho$ is an automorphism, then $\mathfrak{S}$ is a right principal ideal ring, that is,
each right ideal of $\mathfrak{S}$ is generated by some monic polynomial $f(i.e$ . the leading
coefficient of $f$ is 1). Let $f$ be a monic polynomial of $\mathfrak{S}$ . Then $f$ is called
w-irreducible if $f$ does not generate $\mathfrak{S}$ but any monic proper left factor of $f$

does $\mathfrak{S}$ . By easy computations, we can see that an ideal $M$ of $\mathfrak{S}$ is maximal
if and only if the monic generator6) of $M$ is w-irreducible.

Now, we shall give a necessary and sufficient condition for $S$ to have an
$n$ dimensional right polynomial extension.

Theorem 1. 2. (a) In order that $S$ have an $n$ dimensional $r\dot{\tau}ght$ poly-
nomial extension, it is necessary and sufficient that there exist a monomor-
phism $P$ in $S,$ a $\rho$-derivation $D$ in $S$ and a $1\times n$ matrix $(u_{0}, u, \cdots, u_{n-1})$ with
entries in $S$ such that

(1) $u_{i-1}-u_{i-1}\rho=u_{i}D+u_{i}(u_{n-1}-u_{n-}{}_{1}P)(i=0,1,$ $\cdots$ , n-l where we set
$u_{-1}=1)$ .

(2) $P_{n,j}+\sum_{i=0}^{n-1}P_{i,j}u_{ir}$ is a $(\rho^{j}, \rho^{n})$-inner derivation genented by $-u_{j}$

for each $j=0,1,$ $\cdots,$ $n-1$ .
(b) In order that $S$ have an $n$ dimensional polynomial extension, it is

necessary and sufficient that there exist an automorphism $P$ in $S$ , a P-
derivation $D$ in $S$ and a $1\times n$ matrix $(u_{0}, u, \cdots, u_{n-1})$ with entries in $S$ satis-
fying (1), (2) stated above.

(c) In order that $S$ have an $n$ dimensional polynomial simple ring ex-
tension, it is necessary and $suff_{l}cient$ that there exist an automorphism $\rho$ in
$S$ , a P-derivation $D$ in $S$ and a $1\times n$ matrix $(u_{0}, u_{1}, \cdots, u_{n-1})$ with entries
in $S$ satisfying (1), (2) stated above and

(3) $X^{n}+\sum_{i=0}^{n-1}X^{i}u_{i}$ is w-irreducible in $S[X;\rho, D]$ .

Proof. (a) The conditions (1) and (2) are equivalent with the statment
that the right ideal $M$ of $S[X;\rho, D]$ generated by $f(X)=X^{n}+\sum_{i=0}^{n-1}X^{i}u_{i}$ is
a two-sided ideal. In fact, $M$ is a two-sided ideal if and only if $Xf(X)=$
$f(X)(X+t)(t\in S)$ and $sf(X)=f(X)s^{\prime}(s^{\prime}\in S)$ for every $s\in S$ . The former implies
$X^{n+1}+\Sigma_{i\Leftarrow 0}^{n-1}X^{i+1}u_{i}=(X^{n}+\Sigma_{i=0}^{n-1}X^{i}u_{i})(X+t)=X^{n+1}+\Sigma_{i=0}^{n-1}X^{i+1}u_{i}P+X^{n}t+\Sigma_{i=0}^{n-1}$

$X^{i}(u_{i}D+u_{i}t)=X^{n+1}+X^{n}(u_{n-1}\rho+t)+\Sigma_{i=1}^{n-1}X^{i}(u_{i-}{}_{1}P+u_{i}D+u_{i}t)+u_{0}D+u_{0}t$ which
means $t=u_{n-1}-u_{n-}{}_{1}P,$ $u_{i- 1}=u_{i- 1}\rho+u_{i}D+u_{i}t,$ $i=1,2,$ $\cdots,n$ and $u_{0}D+u_{0}t=0$ .
Thus, we have $u_{i-1}-u_{i-}{}_{1}P=u_{i}D+u_{i}(u_{n-1}-u_{n-}{}_{1}P)$ for each $i=0,1,$ $\cdots,n-1$ .
Next, the latter implies $s(X^{n}+\sum_{i=0}^{n-1}X^{i}u_{i})=\sum_{i=0}^{n}X^{i}sP_{n,i}+\sum_{j=0}^{n-1}(\sum_{i=j}^{n}X^{j}sP_{j,i})u_{i}$

$=X^{n}sP^{n}+\Sigma_{i=0}^{n-1}X^{i}sP_{n,i}+\sum_{j=0}^{n-1}(\sum_{i=j}^{n}X^{j}sP_{i,j})u_{i}=X^{n}s^{\prime}+\Sigma_{i=0}^{n-1}X^{i}u_{i}s^{\prime}$ . Hence
$sP^{n}=s^{\prime},$ $sP_{n,j}+\Sigma_{i=j}^{n}sP_{i,j}u_{i}=sP_{n,j}+\Sigma_{i=j}^{n}sP_{i,j}u_{i}=sP_{n,j}+\Sigma_{i=j+1}^{n}sP_{i,i}u_{i}+sP_{j,j}u_{j}$

$=u_{f}\cdot s^{\prime}$ , and this means that $P_{n,j}+\sum_{i-- j+1}^{n}P_{i,j}u_{ir}$ is a $(\rho^{j}, \rho^{n})$-inner derivation

6) Cf. [4]. P. 75.
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generated by $-u_{j}$ for each $j=0,1,$ $\cdots,$ $n-1$ . Thus $ S[X;P, D]/M=A\cong$
$\oplus_{i=0}^{n-1}y^{i}S$ where $sy=y(sP)+sD(s\in S),$ $y$ is the residue class of $X$ modulo $M$ ,
is a requested one. Conversely, let $A=\oplus_{i=0}^{n-1}y^{i}S$ be an $n$ dimensional right
polynomial extension with $sy=y(sP_{y})+sD_{y}$ for each $s\in S$ . Then the mapping
$\varphi$ ; $\sum_{i}X^{i}s_{i}\rightarrow\sum_{i}y^{i}s_{i}$ is an $S$ (ring) epimorphism of $S[X;P_{y}, D_{y}]$ to $A$ . Let
$y^{n}+\sum_{i=0}^{n-1}y^{i}u_{i}=0$ for some $u_{i}\in S$ . Then $N$ , the kernel of $\varphi$ , contains $M=$
$(X^{n}+\sum_{i=0}^{n-1}X^{i}u_{i})S[X;\rho_{y}, D_{y}]$ . Now, we conclude that $M$ coincides with $N$ .
For, if $g(X)=\sum_{i=0}^{m}X^{i}s_{i}(s_{i}\in S)$ is a polynomial of $N$ with $m<n$ , then $\sum_{i=0}^{m}$

$y^{i}s_{i}=0$ in $A$ , and hence $g(X)=0$ . Thus, each polynomial of $N$ has $X^{n}+$

$\sum_{i=0}^{n-1}X^{i}u_{i}$ as its left factor. This means that $N=M$ . Consequently, $P_{y},$ $D_{y}$

and $(u_{0}, u_{1}, \cdots, u_{n-1})$ satisfy conditions (1) and (2).
(b) By Corollary 1.3, a finite dimensional right polynomial extension is

a polynomial extension if and only if $P$ is an automorphism. Hence the
statment is clear from (a).

(c) Recalling that (3) is equivalent with the maximality of $M=(X^{n}+$

$\sum_{i=0}^{n-1}X^{i}u_{i})S[X;\rho_{y}D_{y}]$ by the remark stated just before our theorem the stat-
ment is clear from (a) and (b).

\S 2. The centralizer of $S$ in $R$.
Let $V=V_{R}(S)$ be the centralizer of $S$ in $R$ . In this section, we shall

investigate the relations between $\{P_{y}, D_{y}\}$ and $V$.
Lemma 2. 1. If $V\neq Z$, then $P_{y}$ is an automorphism and $m=((P_{y}):(\rho_{y})_{\cap}\tilde{S})$

$<n$ where $\tilde{S}$ is the set of all inner automorphisms determined by the elements
of $S$ .

Proof. Since $V\neq Z$ , there exists an element $v=y^{k}s_{k}+\sum_{j=0}^{k-1}y^{j}s_{j}(s_{i}\in S)$

of $V$ such that $s_{k}\neq 0(0<k<n)$ . Then $\Sigma_{i=0}^{k}y^{i}sP_{k,i}s_{k}+\Sigma_{j\subset 0}^{k-1}(\Sigma_{i=0}^{j}y^{i}sP_{j,i})s_{j}=$

$sv=vs=y^{k}s_{k}s+\Sigma_{j=0}^{k-1}y^{j}s_{j}s(s\in S)$ , which implies that $sP_{k,k}s_{k}=s\rho_{y}^{k}s_{k}=s_{k}s$ , in
particular, $S=Ss_{k}S=Ss_{k}$ . Hence $s_{k}\in S$ , and $\rho_{y}^{k}=s_{k}\sim$ .

Theorem 2. 1. Let $D_{y}$ be an inner $P_{y}$-derivation.
(a) $V\neq Z$ if and only $\iota f\rho_{y}$ is an automorphism and $m=((P_{y}):(P_{y})_{\cap}\tilde{S})$

$<n$ , and when this is the case, $m$ is a divisor of $n$ .
(b) $V$ is a finite dimensional commutative algebn over Z. Moreover,

if $\chi(S)$ , the charactenStic of $S$ , is $0$ or relatively prime to $n$ , then $V$ is a
finite direct sum of fields.

Proof. Since $D_{y}$ is $P_{y}$-inner, we may choose a right polynomial S-basis
$\{w^{i} ; i=0,1, \cdots, n-1\}$ with $D_{w}=0$ by Corollary 1.2 (b). Therefore we may
assume from the beginning $sy=y(sP_{y})$ . Thus as was shown in the proof of
Corollary 1.2 (b), $y\in R$ and $y^{-1}\sim|S=P_{y}$ . For the sake of simplicity, we set
$P=P_{y}$ .
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(a) The only if part is shown in Lemma 2.1. Conversely, let $\rho$ be an
automorphism and $m=((P):(P)_{\cap}\tilde{S})<n$ . Then $ y^{-m}|S=s\sim\vee\sim$ for some $s\in S$ . There-
fore $y^{m}s$ is not contained in $Z$ but in $V$. Let $y^{n}+\sum_{l=0}^{n-1}y^{i}u_{i}=0(u_{i}\in S)$ . Then
$s(y^{n}+\Sigma_{i-0}^{n-1}y^{i}u_{i})-(y^{n}+\Sigma_{i=0}^{n- 1}y^{i}u_{i})(s\rho^{n})=0(s\in S)$ yields at once $su_{0}=u_{0}(sP^{n})$ .
Since $u_{0}\neq 0$ by the regularlity of $y$ , the last means that $u_{0}$ is a regular element.
Consequently we have $P^{n}=u_{0}^{\overline{-}1}$ , equivalently, $m$ is a divisor of $n$ .

(b) It suffices to prove the case $V\neq Z$ . By (a), $P$ is an automorphism
and $m=((P):(\rho)_{1\gamma}\tilde{S})$ is a proper divisor of $n:m^{\prime}=n/m$ . Let $v=\sum_{i=0}^{n-1}y^{i}s_{i}(s_{i}\in S)$

be an element of $V$. Since $\sum_{i=0}^{n- 1}y^{i}(t\rho^{t})s_{i}=tv=vt=\sum_{i=0}^{n-1}y^{i}s_{i}t$ for each $t\in S$ ,
we see that $ty^{i}s_{i}=y^{i}(tP^{i})s^{i}=y^{i}s_{i}t$ , namely, each $y^{i}s_{i}\in V$. Moreover, if $s_{i}\neq 0$ ,
then $tP^{i}s_{i}=s_{i}t$ proves $s_{t}\in S$ and $\rho^{i}=s_{l}\sim$ . Thus $V=\{\sum_{k=0}^{m^{r}}y^{mk}s^{k}z_{k} ; z_{k}\in Z\}$ ,
where $ s=\rho^{m}\sim$ . The commutativity of $V$ follows from the fact that $y^{mk}s^{k}z_{k}$

commutes with every element of $V$. Thus $V$ is an $m^{\prime}$ dimensional commutative
algebra over $Z$. Next, let us assume that $\chi(S)=0$ or $(\chi(S), n)=1$ . We shall
denote the extension $y^{\overline{-}1}$ of $\rho$ again by $P$ . Let $v$ an element of $V$. Then
$T_{m}(v;p)=\Sigma_{i=0}^{m-1}vp^{i}$ is contained in $C$ , for $ T_{m}(v;p)=T_{m}(v;\rho)\rho$ . If $v$ is
nilpotent, then so is $v\rho(vp\in V)$ and hence $T_{m}(v;p)$ is nilpotent, and so $0$ .
(Recall that $\rho$ is an automorphism in $S$ and $T_{m}(v;p)$ is in $C$). Thus we have
proved that if $T_{m}(v;\rho)\neq 0$ then $v$ is non nilpotent. Now we shall show that
each (non-zero) non regular element of $V$ is non nilpotent. If $ v=\sum_{i=0}^{n-1}y^{i}s_{i}\in$

$V\backslash Z(s_{i}\in S),$ $s_{0}=1$ (is non regular), then $T_{m}(v;\rho)=T_{m}(v-1;p)+m\neq 0$ . For
$T_{m}(v-1;p)$ is either $0$ or not contained in Z. (Note that $m$ is a divisor of
$n)$ . In general, if $v=y^{mj}s^{j}z_{j}+\sum_{k>j}y^{mk}s^{k}z_{k}\in V\backslash Z(z_{j}\neq 0)$ is non regular, $u=$

$(y^{mj}s^{j}z_{j})^{-1}v(\in V)$ is non regular and its constant term is 1, and so, $u$ is non
nilpotent by the last remark. Hence $u$ is non nilpotent in either case, which
means the semi-simplicity of $V$.

Theorem 2.2. Let $P_{y}$ be an inner automorphism.
If $\chi(S)=0$ or $\chi(S)>n$ , then $V$ coincides with either $C$ or $Z$ , more

precisely, $\iota fV\neq Z,$ $R=S[C]$ .

Proof. Since $\rho_{y}$ is an inner automorphism, we may choose a right poly-
nomial S-basis $\{w^{i} ; i=0,1, \cdots, n-1\}$ with $sw=ws+sD_{w}(s\in S)$ by Corollary
1.2 (a). Therefore we may assume that from the beginning that $sy=ys+sD_{y}$

$(s\in S)$ . Assume $V\neq Z$ , and write $D=D_{y}$ . Then there exists an element
$v=y^{k}s_{k}+y^{k-1}s_{k-1}+\cdots+s_{0}(k\geqq 1, s_{i}\in S, s_{k}\neq 0)$ of $V$ , and $\Sigma_{i\Rightarrow 0}^{k}(y^{i}sP_{k.l})s_{k}+$

$\Sigma_{i=0}^{k-1}(y^{i}sP_{k-1,i})s_{k-1}+\cdots+ss_{0}=sv=vs=y^{k}s_{k}s+y_{k-1}s_{k-1}s+\cdots+s_{0}s$ implies $s_{k}\in Z$ .
Since $\left(\begin{array}{l}k\\k-1\end{array}\right)sDs_{k}+ss_{k-1}=sP_{k,k-1}s_{k}+sP_{k-1,k-1}s_{k-1}=s_{k-1}s,$ $D$ is an inner deriva-
tion generated by $-(1/k)s_{k-1}s_{k}^{-1}$ . Thus, by Corollary 1.2 (b), we can choose
an S-basis $\{c^{i}; i=0,1, \cdots, n-1\}$ such that $c\in C$ .
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Corollary 2. 1. If $[S:Z]$ is finite, then $[R:S]_{l}=[R:S]_{r}$ .
Proof. By [5. Lemma], $[R:C]$ is finite. If $V=Z$, then $Z\supseteq C$, and hence

$[R:S]_{l}[S:C]_{l}=[R:C]_{l}=[R:C]_{r}=[R:S]_{r}[S:C]_{r}$ shows that $[R:S]_{l}=[R:S]_{r}$ .
On the other hand, if $V\neq Z,$ $p_{y}$ is an automorphism by Lemma 2.1. Hence
the assertion is a direct consequence of Corollary 1.3.

\S 3. Polynomial Galois extensions.
Throughout the present section, by $\mathfrak{G}$ , we denote the set of all S-automor-

phisms of $R$ .
If $\sigma$ is an arbitrary element of $\mathfrak{G}$ , and $u_{\sigma}=y\sigma-y$ then $su_{\sigma}=u_{\sigma}(sP_{y}\rangle\langle s\in S)$ .

For, $s(y\sigma)=(sy)\sigma=(y(s^{o_{y}})+sD_{y})\sigma=(y\sigma)s\rho_{b}+sD_{y}(s\in S)$ , we have $s(y\sigma-y)--(\overline{y\sigma}$

$-y)(sP_{y})$ .
Lemma 3. 1. Let $\mathfrak{G}\neq 1$ and $\sigma\neq 1$ be an arbitrary element of G. Then,

there exists a nght polynomial S-basis $\{y^{i}; i=0,1, \cdots,n-1\}$ such that $y\sigma-$

$y\in V\iota f$ and only $\iota f$ some (and so every) $\rho_{x}$ is inner.

Proof. Let $v_{\sigma}=y\sigma-y$ be in $V$. Then $v_{\sigma}s=sv_{\sigma}=v\rho P_{v}$ . Hence $v_{\sigma}(s-sP_{y})$

$=0$ . If we note that the right annihilator of $v_{\sigma}(\neq 0)\in V$ in $S$ is a two-sided
ideal, we can readily obtain $s^{\rho_{y}}=s$ , namely, $P_{y}=1$ . Thus each $P_{x}$ is inner
by Corollary 1.2 (a). Conversely, if each $P_{x}$ is inner, there exists a right
polynomial S-basis $\{y^{i} ; i=0,1, \cdots, n-1\}$ with $P_{y}=1$ by Corollary 1.2 (a).
Then $y\sigma-y$ is in $V$.

Corollary 3. 1. Let $R$ be an $n$ dimensional right polynomial division
nng extension over S. If $\mathfrak{G}\neq 1$ , then $[R:S]_{l}=[R:S]_{r}$ .

Proof. For any $\sigma(\neq 1)\in \mathfrak{G}$ , there exists a non zero $u_{\sigma}\in R$ such that $su_{\sigma}$

$=u_{\sigma}(s\rho_{y})$ for every right polynomial S-basis $\{y^{i}; i=0,1, \cdots, n-1\}$ . Hence
$u_{\sigma}^{\overline{-}1}|S=P_{y},$ $R=Ru_{\sigma}^{-1}=\Sigma_{i=0}^{n-1}y^{i}u_{\sigma}^{\overline{-}1}(S^{-}u_{\sigma}^{-1})=\Sigma_{i=0}^{n-1}y^{i}u_{\sigma}^{\overline{-}1}(SP_{y})$ and { $y^{i-- 1}u_{\sigma}^{-}$ ; $i=0,1,$ $\cdots$ ,
$n-1\}$ is right linearly independent over $SP_{y}$ . This means that $n=[R:S]_{r}=$

$[R:SP_{y}]_{r}$ . Thus $P_{y}$ is an automorphism in $S$ , and then $[R:S]_{l}=[R:S]_{r}$ by
Corollary 1.3.

Corollary 3.2. Let $P_{y}$ be an inner automorphism.
(a) Assume $V=Z$ . If $\chi(S)>n$ or $\chi(S)=0$ , then $\mathfrak{G}=1$ .
(b) Assume $\chi(S)=n$ . If $V=Z\neq C$ then $R/S$ is an inner cyclic extension,

and conversely.

Proof. (a) Suppose $\mathfrak{G}$ contains an element $\sigma\neq 1$ . Then by Lemma 3.1,
there exists a right polynomial S-basis $\{y^{i} ; i=0,1, \cdots, n-1\}$ with $sy=ys+$
$sD_{y}(s\in S)$ , and $y\sigma=y+z_{\sigma},$ $z_{\sigma}(\neq 0)\in V=Z$ . Thus we may assume further
$y\sigma=y+1$ . Hence if $y^{n}=\sum_{i=0}^{n-1}y^{i}s_{i}(s_{i}\in S)$ , we have $y^{n}\sigma=(y+1)^{n}=\sum_{i=0^{(}}^{n}ni)y^{i}$
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$=y^{n}+\Sigma_{i=0}^{n-1}\left(\begin{array}{l}n\\i\end{array}\right)y^{i}=\Sigma_{i=1}^{n-1}y^{i}(\left(\begin{array}{l}n\\i\end{array}\right)\dashv s_{i})$ and $y^{n}=(\Sigma_{i=0}^{n-1}y^{i}s_{i})\sigma=\Sigma_{i=0}^{n-1}(y+1)^{i}s_{i}=$

$\sum_{i=0}^{n-1}(\sum_{j=0\left(\begin{array}{l}i\\j\end{array}\right)y^{j)s_{\ell}}}^{n-1}$ . From those, we see that $\left(\begin{array}{ll} & n\\n & -1\end{array}\right)+s_{n-1}=s_{n-1}$ , whence it

follows a contradiction $\left(\begin{array}{ll} & n\\n & -1\end{array}\right)=0$ .
(b) If $R/S$ is inner Galois, then $V=Z\neq C$ by Theorem 2.2. Next, we

shall prove the converse. Let $z_{0}\in Z\backslash C$ . Then $z_{0}D_{y}=z_{0}y-yz_{0}$ is a non zero
element of $Z$ . If $\sum_{i=0}^{n-1}y^{i}t_{i}(t_{i}\in S)$ is in $J(\tilde{z}_{0}, R),$ $\sum_{i=0}^{n-1}y^{i}t_{i}=(\sum_{i=0}^{n-1}y^{i}y_{f})z_{0}=r$

$\sum_{l=0}^{n-1}z_{0}y^{i}t_{i}z_{0}^{-1}=\sum_{i=0}^{n-1}(\sum_{f=0}^{i}\left(\begin{array}{l}i\\j\end{array}\right)y^{j}z_{0}D^{i-j})t_{i}z_{0}^{-1}$ . Hence, we obtain $\left(\begin{array}{ll}n & -1\\n & -2\end{array}\right)z_{0}$

$Dt_{n-1}z_{0}^{-1}=0$ , and so $t_{n-1}=0$ . Repeating the same procedures, we have $t_{i}=0$ ,
$i=1,2,$ $\cdots,$ $n-1$ . Thus $J(\tilde{z}_{0}, R)=S$ . Furthermore, the fact that $C=\{z\in Z$;
$zD_{y}=0\}$ and $z^{k}D_{y}=(kz^{k-1})zD_{y}$ imply the order of $\tilde{z}_{0}$ is just $n$ .

Theorem 3. 1. (a) Let $\chi(S)=n$ . In order that $S$ have an $n$ dimensional
polynomial Galois extension $R=\sum_{i\Rightarrow 0}^{n-1}y^{i}S$ with $sy=ys^{\prime}+s^{\prime\prime}$ such that $s\rightarrow s^{\prime}$

is an inner automorphism, it is necessary and suff cient that the following
condition be satisfied:

(1) There exist a derivation $D$ in $S$ and $s\in S$ satisfying $D^{n}-D=I_{s}$ ,
$sD=0$ and $X^{n}-X-s$ is w-irreducible in $S[X;D]$ .

(b) Let $\chi(S)>n$ or $\chi(S)=0$ . In order that $S$ have an $n$ dimensional
polynomial Galois extension $R=\sum_{i=0}^{n-1}y^{i}S$ with $sy=ys^{\prime}+s^{\prime\prime}$ such that $s\rightarrow s^{\prime}$ is
an inner automorphism, it is necessary and sufficient that the following con-
dition be satisfied:

(2) There exists an $n$ dimensional Galois extension field of $Z$ .

Proof. (a) Let $R/S$ be a Galois extension with the requested property.
Then, by Theorem 2.2, $V$ is either $Z$ Or $C$. If $V=C$, then $R/S$ is obviously
an $n$ dimensional cyclic extension. On the other hand, if $V=Z\neq C$ then $R/S$

is still an $n$ dimensional cyclic extension by Corollary 3.2 (b). Hence, there
holds (1) by [4. Theorem 2.1]. Conversely, if there exist $D,$ $S$ satisfying (1),
then, by [4. Theorem 2.1], there exists an $n$ dimensional polynomial Galois
extension $R=\sum_{i=0}^{n-1}y^{i}S$ such that $ty=yt+tD(t\in S)$ .

(b) Assume that there exists a Galois extension $R/S$ with the requested
property. Then $V=C_{\neq}\supset Z$ and $R=S[C]$ by Theorem 2.2 and Corollary 3.2
(a). Thus the rest of the proof will be obvious.

Theorem 3. 2. Let $\rho$ be an automorphism in S. In order that $S$ have
an $n$ dimensional polynomial inner Galois extension $R=\sum_{l=0}^{n-1}y^{i}S$ with $sy=$

$y(sP)+s$“ such that $s\rightarrow s^{\prime\prime}$ is an inner $\rho$-derivation, it is necessary and suffrcient
that there exist $s_{0}\in S,$ $z\in Z$ satisfying the following conditions:
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(1) $P^{n}=\iota\sim\sigma_{0}s_{0}\rho=s_{0}$ .
(2) $z\rho i\neq z(i=1, \cdots, n-1)$ .
(3) $X^{n}-s_{0}$ is w-irreducible in $S[X;\rho]$ .

More precisely, when this is the case, $R/S$ has a cyclic Galois group.
Proof. Assume that there exists a Galois extension $R/S$ with the requested

property. Since $V$ is commutative by Theorem 2.1 (b), $V$ has to coincides
with $Z$. Further, by Corollary 1.2 (b), we may assume $sy=y(s\rho)(s\in S)$ . One
may remark here $0=y^{-1}|S-$ (Cf. the proof of Corollay 1.2 $(b).$ ). If $y^{n}=$

$\sum_{i=0}^{n-1}y^{i}u_{i}(u_{i}\in S)$ , then $y^{-n}|S=P^{n}=u_{0}^{-1}-$ . (By the regularlity of $y,$ $u_{0}\neq 0$ , and
hence $u_{0}\in S$ ). Hence $zy^{n}z^{-1}=y^{n}(z\rho^{n})z^{-1}=y^{n}$ for each $z\in Z$ , which implies
$s_{0}=y^{n}\in J(\tilde{Z}, R)=S$ . (Obviously $s_{0}\rho=s_{0}$). Further, by the same way as in the
proof of Theorem 1.2 (a), $R\cong S[X;\rho]/(X^{n}-s_{0})S[X;\rho]$ and $X^{n}-s_{0}$ is w-
’irreducible in $S[X;\rho]$ . Next, as $[R:S]=[V:C]=[Z:C]$ and $J(P|Z, Z)=C$,
there exists an element $z\in Z$ such that $z\rho^{i}\neq z$ for $i=1,$ $\cdots,$ $n-1$ . (Take, for
instance, a normal basis element of $Z/C$). Then $J(\tilde{z}, R)=S$ . In fact, $\sum_{i=0}^{n-1}y^{i}t_{l}$

$\in J(\tilde{z}, R)(t_{i}\in S)$ shows that $\sum_{i\Rightarrow 0}^{n-1}y^{i}t_{i}=z(\sum_{i=0}^{n-1}y^{i}t_{i})z^{-1}=\sum_{i=0}^{n-1}y^{i}t_{i}(z\rho^{i})z^{-1}$ and
hence, $t_{i}=0$ for $i=1,2,$ $\cdots,$ $n-1$ . Conversely, assume that there exist $s_{0}\in S$ ,
$z\in Z$ satisfying (1)$-(3)$ . Then (1) is equivalent with $M=(X^{n}-s_{0})S[X;P]$ is
a two-sided ideal, and hence $R=S[X;\rho]/M=\oplus_{i=0}^{n-1}y^{i}S$ is an $n$ dimensional
polynomial extension with $sy=y(s\rho)$ where $y$ is the residue class of $X$ modulo
$M$. Now (3) is equivalent with the maximality of $M$. Hence $R$ is simple.
Finally by (2), we can use the above argument to prove $J(\tilde{z}, R)=S$ and then
we have $V=J(\tilde{z}|V, V)=V_{\cap}S=Z$ (a field). Thus $R/S$ is an inner Galois ex-
tension with respect to a cyclic Galois group (2).

\S 4. Right quadratic extensions.
Let $R=\oplus_{i=0}^{1}y^{i}S$ be a right quadratic simple ring extension over $S$. Then,

it is clear that $sy=y(s\rho_{y})+sD_{y}(s\in S)$ where $\rho_{y}$ is a monomorphism in $S,$ $D_{y}$

is a $\rho_{y}$-derivation in $S$.
Lemma 4. 1. $R$ is $R_{l}\cdot S_{r}$-irreducible.
Proof. It suffices to prove $R=RxS$ for each $x\in R\backslash S$ . Since $RxS+S$

is a subring of $R$ properly containing $S,$ $RxS+S=R=S\oplus yS$ . Hence there
exists $u\in S$ such that $y-u\in RxS$ . Noting that $\{1, y-u\}$ is a right S-basis
for $R,$ $(R(y-u)S)R=(R(y-u)S)(S+(y-u)S)\subseteqq R(y-u)S$ , and hence $R=$
$R(y-u)S=RxS$ .

Lemma 4.2. Let $\rho$ be an automorphism in $S$ , and $f(X)=X^{2}+Xu_{1}+u_{0}$

$(u_{0}, u_{1}\in S)$ a polynomial of $S[X;P, D]$ where $D$ is a $\rho$-derivation in $S$ .
Assume that $f(X)$ generates a proper ideal of $S[X;\rho, D]$ . Then $f(X)$ is
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w-irreducible if and only $\iota fS$ has no solution $t$ satisfying the following
conditions:

(i) $tD+t(u_{1}-tP)=u_{0}$ .
(ii) $tD=t(t\rho-t)$ .
(iii) $sD=t(s\rho)-st$ for each $s\in S$ .

Moreover, $f(X)$ is irreducible7) if and only if $S$ has no solution $t$ satisfying (i).

Proof. Let $t$ be an element of $S$ . Then $I=(X+t)S[X;\rho, D]$ is a two-
sided ideal if and only if $X(X+t)=(X+t)(X+t^{\prime})(t^{\prime}\in S)$ and $s(X+t)=(X+t)s^{\prime}$

$(s^{\prime}\in S)$ for every $s\in S$ . The former imples $t^{\prime}=t-t\rho,$ $tD+tt^{\prime}=0$ . The latter
implies $sD=ts^{\prime}-st,$ $ s^{\prime}=s\rho$ for every $s\in S$ . Hence $I$ is a two-sided ideal if
and only if $t$ satisfies (ii) and (iii).

Let us assume that $f(X)=(X+t)(X+b)=X^{2}+X(t\rho+b)+tD+tb$ . Then
$tP+b=u_{1},$ $tD+tb=u_{0}$ , and so, we have $tD+t(u_{1}-t\rho)=u_{0}$ . Thus $f(X)is\backslash $

irreducible if and only if $S$ has no solution $t$ satisfying (i). Next, we assume
that $f(X)=(X+t)(X+b)$ is w-irreducible. If we note that the right ideal
$I=(X+t)S[X;\rho, D]$ does not coincide with $S[X;\rho, D],$ $I$ can not be a two-

sided ideal. Thus $t$ does not satisfy one of the conditions (ii) and (iii) but
satisfies (i). Finally, we assume that $f(X)$ is not w-irreducible, then, there
exists $t\in S$ such that $f(X)=(X+t)(X+b)$ and the two-sided ideal $(X+t)$ gener-
ated by $X+t$ is a proper ideal of $S[X;\rho, D]$ . Since the monic generator of
$(X+t)$ is $X+t$ itself, $(X+t)=(X+t)S[X;\rho, D]$ . Hence $t$ satisfies all the
conditions $(i)-(iii)$ .

Now, we shall give a necessary and sufficient condition for $S$ to have
a right quadratic simple ring extension.

Theorem 4. 1. (a) In order that $S$ have a right quadntic simple ring
extension, it is necessary and sufficient that there exist a monomorphism
$\rho$ in $S,$ a $\rho$-derivation $D$ in $S$ and a $1\times 2$ matrix $(u_{0}, u_{1})$ with entries in $S$

satisfying (1), (2) of Theorem 1.2 (a) and the following condition:
(3) There exists a finite subset $\{s_{i}, t_{i}, v_{i}\}$ of $S$ satisfyng $\sum_{i}(-u_{1}(s_{l}\rho)a+$

$s_{i}Da+s_{i}b+t_{i}\rho a)v_{i}=0$ , and $\Sigma_{i}(-u_{0}(s_{i}\rho)a+t_{i}Da+s_{i}b)v_{i}=1$ for each pair $(a, b)$

of $S\times S$ such that $a\neq 0$ .
(b) In order that $S$ have a quadratic simple ring extension, it is neces-

sary and sufficient that there exist an automorphism $\rho$ in $S,$ a $\rho-derivation$ .
$D$ in $S$ and a $1\times 2$ matrix $(u_{0}, u_{1})$ with entries in $S$ satisfying (1), (2) of
Theorem 1.2 $(a)$ and the following condition:

(3) $S$ has no solution $t$ satisfying (i), (ii) and (iii) of Lemma 4.2.

7) A polynomial $f(X)$ of $S[X;\rho D]$ is called irreducible if $f(X)$ has no left monic
factor $g(X)$ such that deg $g(X)<$ deg $f(X)$ .
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Proof. (a) As was shown in the proof of Theorem 1.2 (a), the existence
of $P,$ $D$ and $(u_{0}, u_{1})$ satisfying (1), (2) are equivalent with the statment that $S$

has a right quadratic (polynomial) extension $R=S[X;\rho, D]/(X^{2}+Xu_{1}+u_{0})S[X$ ;
$\rho,$ $D$]. Let $R=S\oplus yS$ where $y$ is the residue class of $X$ modulo (X $2+Xu_{1}$

$+u_{0})S[X;\rho, D]$ . Then (3) yields the simplicity of $R$ . In fact, $\sum_{l}(ys_{l}+t_{l})$

$(ya+b)v_{i}=\sum_{l}y^{2}s_{l}av_{t}+\sum_{i}y(s_{l}b+s_{l}Da+s_{l}b+t_{t}\rho a)v_{l}+\sum_{l}(t_{l}\&+t_{i}b)v_{l}=\sum y$

$(-u_{1}(s_{\ell}\rho)a+s_{l}Da+s_{i}b+t_{l}\rho a)v_{i}+\sum_{l}(-u_{0}(s_{i}\rho)a+t_{i}Da+t_{l}b)v_{l}=1$ for each $ya+$

$b\in R(a, b\in S)$ . Conversely, let $R$ be simple. Then, $R$ is $R_{l}\cdot S_{r}$-irreducible
by Lemma 4.1. Hence there exists a finite subset $\{s_{l}, t_{i}, v_{i}\}$ of $S$ satisfying (3).

(b) The assertion is almost evident from the proof of (a) and Lemma 4.2.
The proof may be left to readers.

Lemma 4.3. Let $R$ be a nght quadratic simple ring extension over $S$.
Then,

(a) $V$ is ather $Z$ or $C$.
(b) If $R/S$ is Galois, then either $\rho_{y}$ is inner or $D_{y}$ is $\rho_{y}$-inner.
Proof. (a) Let $V\neq Z$. Then $\rho_{y}$ is inner by Lemma 2.1, and hence $V=$

$C$ (and $R=S[C]$ ) by Theorem 2.2.
(b) Let $\sigma(\neq 1)$ be in $\mathfrak{G}$ and $u_{\sigma}=y\sigma-y$ . Then $su_{\sigma}=u_{a}(sP_{y})(s\in S)$ . We

set $u_{\sigma}=ya+b(a, b\in S)$ . Then $y(sP_{y})a+sD_{y}a+sb=su_{\sigma}=us\rho_{y}=ya(sP_{y})+$

$b(s\rho_{y})$ . Hence, we obtain $(s\rho_{y})a=a(s\rho_{y})$ and $sD_{y}a=s(-b)-(-b)(s\rho_{y})$ . Since
$\rho_{y}$ is an automorphism (Corollary 1.3), the first relation implies $a\in Z$ . If $a=0$ ,
then $b\neq 0$ and $sb=b(s\rho_{y})$ . Hence $b\in S$ and $P_{y}=b^{-1}-$ . On the other hand,
if $a\neq 0$ , then $D_{y}$ is $\rho_{y}$-inner generated by $(-a^{-1}b)$ .

Corollary 4. 1. Let $\chi(S)\neq 2$ . If $Z\neq C$ , then $R/S$ is a Galois extension.
If $[S:Z]<\infty$ , then $R/S$ is a Galois extension.

Proof. By the assumption $Z\neq C$ and Lemma 4.3 (a), we have either
$V=Z\neq\supset C$ or $V=C?Z$ and $R=S[C]=S\otimes\cdot C$ (Theorem 2.2). The former
implies $J(\overline{Z}, R)=S$ and the latter implies $C/Z$ is Galois, and hence $R/S$ is
Galois. The latter assertion is a consequence of the former. In fact, if
$[S:Z]<\infty$ and $Z=C$ then $[R:C]<\infty$ and $V=C$ (Lemma 4. 3 $(a)$), we have
then a contradiction $R=S$ .

Theorem 4.2. Let $\chi(S)\neq 2$ . If $R/S$ is a Galois extension then $D_{y}$ is
$\rho_{y}$-inner, and conversely.

Proof. By Lemma 4.3 (a) and Corollary 4. 1, it suffices to prove our theorem
for the case $V=Z$ . Assume that $R/S$ is Galois. Then $\rho_{y}$ is an auto-
morphism (Corollary 1.3) and either $P_{y}$ is inner or $D_{y}$ is $\rho_{b}$-inner by Lemma
4.3 (b). If $\rho_{y}$ is inner, it contradicts Corollary 3.2 (a). Conversely, assume
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$D_{y}$ is $\rho_{y}$-inner. Then we may assume $D_{y}=0,$ $\rho_{y}$ is an automorphism. (Corol-
lary 1.2 $(b))$ . Let $y^{2}+yu_{1}+u_{0}=0(u_{i}\in S)$ . Since $s(y^{2}+yu_{1}+u_{0})-(y^{2}+yu_{1}+$

$u_{0})(s\rho_{y})=0(s\in S)$ , we have $u_{1}=0$ . Otherwise, $\rho_{y}=u_{1}^{-1}$ and it contradicts
$V=Z$ (Theorem 2.1 $(a)$). Thus the map $\sigma:s+yt\rightarrow s-yt(s, t\in S)$ is an auto-
morphism of $R$ such that $J(\sigma, R)=S$ .
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