RELATIONS BETWEEN TWO MARTIN TOPOLOGIES ON A RIEMANN SURFACE

By

Zenjiro KURAMOCHI

Let G be a domain in R with relative Let R be a Riemann surface. boundary ∂G of positive capacity. Let U(z) be a positive superharmonic function in G such that the Dirichlet integral $D(\min(M, U(z))) < \infty$ for every Let D be a compact domain in G. Let ${}_{D}U^{M}(z)$ be the lower envelope M. of superharmonic functions $\{U_n(z)\}$ such that $U_n(z) \ge \min(M, U(z))$ on $D + \partial G$ except a set of capacity zero, $U_n(z)$ is harmonic in G-D and $U_n(z)$ has M.D.I. (minimal Dirichlet integral) $\leq D(\min(M, U(z)) < \infty \text{ over } G - D \text{ with the same}$ value as $U_n(z)$ on $\partial G + \partial D$. Then ${}_{D}U^{M}(z)$ is uniquely determined. Put ${}_{D}U(z) =$ $\lim_{D} U'(z)$. If for any compact domain $D_{D}U(z) = U(z)$ or $U(z) \leq U(z)$, we call U(z) a full harmonic (F.H.) or a full superharmonic (F.S.H.) in G respectively. If U(z) is an F.S.H. in G and U(z)=0 on ∂G except a set of capacity zero, U(z) is called an F_0 .S.H. in G. Let U(z) be an F.S.H. in G. Then $_D U(z) \uparrow$ For a non compact domain D, put $U(z) = \lim U(z)$, where $\{G_n\}$ is as $D\uparrow$. $n = \infty G_n \cap D$ an exhaustion of G with compact relative boundary ∂G_n $(n = 0, 1, 2 \cdots)$.

 $\mathfrak{M}^{f}(U(z))$ of an F_{0} .S.H. U(z) in G. Let D be a domain in G. Suppose there exists at least one C_{1} -function V(z) in G-D such that V(z)=1 on D, =0 on ∂G except a set of capacity zero and $D(V(z)) < \infty$. Let $\omega(D, z, G)$ be a harmonic function in G-D such that $\omega(D, z, G)=1$ on D, =0 on ∂G except a set of capacity zero and $\omega(D, z, G)$ has M.D.I. over G-D. We call $\omega(D, z, G)$ a C.P. (capacitary potential) of D. Let U(z) be an F_{0} .S.H. in G. Then $\underset{C_{g_{M}}}{D}(q_{M}U(z)) = MD(\omega(q_{M}, z, G))\uparrow$ as $M \rightarrow 0,^{1}$ where $g_{M} = E[z: U(z) > M]$. Put $\mathfrak{M}^{f}(U(z)) = \lim_{M \to 0} \frac{1}{2\pi} \underset{C_{g_{M}}}{D}(q_{M}U(z))$.

 $\mathfrak{M}^{f}(U(z))$ of an F.S.H. U(z) in G. For any compact domain D in G, if we can define functions $U_{n}(z)$ such that $U_{n}(z)$ is superharmonic in G, $U_{n}(z)$ is harmonic in G-D, $U_{n}(z) \ge \min(M, U(z))$ on D, $U_{n}(z)=0$ on ∂G except a set of capacity zero and $U_{n}(z)$ has M.D.I. over G-D. Let ${}^{0}U^{M}(z)$ be the lower envelope of $\{U_{n}(z)\}$. Put ${}^{0}_{D}U(z) = \lim_{M \to \infty} {}^{0}_{D}U^{M}(z)$ (clearly ${}^{0}_{D}U(z) \le {}_{D}U(z)$).

¹⁾ Z. Kuramochi: Superharmonic functions in a domain of a Riemann surface. Nagoya Math. J., to appear.

Since D is compact, ${}^{0}_{D}U(z)=0$ on ∂G except a set of capacity zero. For a non compact domain D, ${}^{0}_{D}U(z)$ is defined as ${}^{D}U(z)$. For U(z), put $\mathfrak{M}^{f}(U(z)) = \lim_{n \to \infty} \mathfrak{M}^{f}(U(z)) = \lim_{n \to \infty} \mathfrak{M}^{f}(U(z)$

 ${\binom{0}{G_n}U(z)}$, where $\{G_n\}$ is an exhaustion of G with compact relative boundary ∂G_n . Let $\{R_n\}$ with compact relative boundary ∂R_n $(n=0,1,2,\cdots)$ Let U(z) be

an F₀.S.H. in $R-R_0$ such that U(z)=0 on ∂R_0 . Consider $R-R_0$ as G. Then ${}_{D}U(z)$ is defined. In this case we say that ${}_{D}U(z)$ is defined relative to $R-R_0$. It is clear that the mapping $U(z) \rightarrow_{D} U(z)$ depends on the domain (G or $R-R_0$) in which ${}_{D}U(z)$ is defined. In the following we use ${}_{D}U(z)$ relative to $R-R_0$ which will be denoted by ${}_{D}^{R}U(z)$ to distinguish from ${}_{D}U(z)$ (relative to G). We understand ${}_{D}U(z)$ (without R on D) means ${}_{D}U(z)$ of U(z) relative to G.

Martin topologies on $R-R_0$ and on a subdomain $G \subset (R-R_0)$. Let N(z, p) be an N-Green's function of G such that N(z, p) is positively harmonic in G-p, N(z, p)=0 on ∂G except a set of capacity zero, N(z, p) has a logarithmic singularity at p and N(z, p) has M. D.I. (where Dirichlet integral is taken with respect to $N(z, p) + \log |z-p|$ in a neighbourhood of p). We suppose N-Martin topology is defined on G+B using N(z, p), s and the distance between p_1 and p_2 is given as

$$\delta(p_1, p_2) = \sup_{z \in \mathcal{D}} \left| rac{N(z, p_1)}{1 + N(z, p_1)} - rac{N(z, p_2)}{1 + N(z, p_2)}
ight|,$$

where D is a fixed compact domain and B is the set of the ideal boundary. Let L(z, p) be an N-Green's function of $R-R_0$ with pole at p. Then also N-Martin topology is introduced on $R-R_0+B^L$ with metric:

$$\delta(p_1, p_2) = \sup_{z \in R_1} \left| \frac{L(z, p_1)}{1 + L(z, p_1)} - \frac{L(z, p_2)}{1 + L(z, p_2)} \right|,$$

where B^{L} is the set of the ideal boundary points.

In the following for simplicity we call above two topogies L and N-topologies. Let $p \in R - R_0 + B_1^L$ (B_1^L is the set of minimal boundary points of $R - R_0$). If $_{CG}^R L(z, p) < L(z, p)$ (CG is thin at p), we denote by $p \in G$. Then

Theorem 1. Suppose $p \in R - R_0 + B_1^L$ and $p \in G$. Then U(z, p) = L(z, p) - N(z, p) is an F_0 . S. H. in G with $D(\min(M, U(z))) \leq 2\pi M$, whence $\mathfrak{M}^{\ell}(U(z, p)) \leq 1$.

Proof. Nz, p: $p \in R - R_0 + B^L$ is contintinuous on ∂G except p. Hence ${}_{C_G}^R L(z, p) = L(z, p)$ on ∂G and U(z, p) = 0 on ∂G except a set of capacity zero. Case 1. $p \in G$. In this case, clearly U(z, p) = N(z, p) and $D(\min(M, U(z, p))) \leq 2\pi M$.

Case 2. $p \in \partial G$. Put $G_n = G + v_n(p)$, Then $CG_n \uparrow CG$ and $\underset{CG_n}{\overset{R}{\to}} L(z, p) \uparrow \underset{CG}{\overset{R}{\to}} L(z, p)$

Z. Kuramochi

as
$$n \to \infty$$
, where $v_n(p) = E\left[z : \operatorname{dist}(z, p) < \frac{1}{n}\right]$. By $p \in G_n$, we have
 $D(\min(M, U(z, p)) \leq \lim_{n \to \infty} D(\min(M, L(z, p) - C_{G_n}^R L(z, p))) \leq 2\pi M$

Case 3. $p \in B_1^L - B_s^L$. In this case it was proved²⁾ $D(\min(M, U(z, p)) \leq 2\pi M$, where B_s^L is the set of singular points, i.e. set of point p such that $\omega(p, z, R - R_0) > 0$ and B_1^L is the set of minimal boundary points of $R - R_0$.

Case 4. $p \in B_s^L$. It was proved only $D(U(z, p)) < \infty$ but as case 3 it can be proved $D(\min(M, U(z, p))) \leq 2\pi M$.

Hence ${}^{R}_{D}U(z,p)$ can be defined. Now ${}^{R}_{CG+D}({}^{R}_{CG}L(z,p)) = {}^{R}_{CG}L(z,p)$ by $CG + D) \subset CG$ and ${}^{R}_{CG+D}L(z,p) \leq L(z,p)$. Hence ${}^{D}_{D}U(z,p) = {}^{R}_{CG+D}(L(z,p) - {}^{R}_{CG}L(z,p)) = {}^{R}_{CG+D}(L(z,p) - {}^{R}_{CG}L(z,p)) \leq L(z,p) = U(z,p)$. By $D(\min(M, U(z,p))) \leq 2\pi M$ we have at once $\mathfrak{M}^{r}(U(z,p)) \leq 1$. Thus U(z,p) is an F_{0} . S. H. in G with $\mathfrak{M}^{r}(U(z,p)) \leq 1$.

Lemma 1. 1). Let $p_i \in R - R_0$ and $p_i \xrightarrow{L} p \in R - R_0 + B^L$ (p_i tends to p_i relative to L-topology). Then $L(z, p) - \lim_{M \to 0} {}_{CG}^R L(z, p_i) \leq L(z, p) - {}_{CG}^R L(z, p)$. 2). Let $p_i \xrightarrow{L} p^{\alpha} \in R - R_0 + B_1^L$ and $p_o \xrightarrow{M} p^{\beta} \in G + B : p_i \in G$. Then

$$N(z, p^{\beta}) = (1-a) \left(L(z, p^{\alpha}) - {}_{CG}^{R} L(z, p^{\alpha}) \right): \quad 1 \ge a \ge 0.$$

Proof of 1). For any $\varepsilon > 0$ we can find a number n_0 such that ${}_{CG}^{R}L(z, p^{\alpha}) \leq {}_{CG\cap R_n}^{R}L(z, p^{\alpha}) + \varepsilon$ for $n \geq n_0$. Since $L(z, p_i) \rightarrow L(z, p^{\alpha})$ on $CG \cap R_n$, $\lim_{i \to C}^{R}L(z, p_i) \geq \lim_{i \to C} {}_{CG}^{R}L(z, p_i) - \varepsilon$. Let $\varepsilon \rightarrow 0$. Then we have (1).

Proof of 2). $L(z, p_i) - {}_{CG}^{R}L(z, p_i) = N(z, p_i)$ in G for $p_i \in G$. By the assumption $\lim_{i} L(z, p_i)$ and $\lim_{i} N(z, p_i)$ exist, whence $\lim_{i} {}_{CG}^{R}L(z, p_i)$ exists. We denote this limit by U(z). Let μ be a canonical mass distribution⁴ of U(z) on $R - R_0 + B_1^{L}$. Assume μ has a positive mass in int $(G \cap Cv_n(p^{\alpha}))$ (int G means the interior of G relative to L-topology and $v_n(p^{\alpha})$ is a neighbouhood of p^{α} relative to L-topology). Then we can find a number n_0 such that G_{n_0} has a positive mass on $\overline{G}_{n_0} \cap Cv_n(p^{\alpha})$, where $G_n = E\left[z \in R - R_0 + B^{L} : \text{dist}(z, CG) > \frac{1}{n}\right]$. Since $\text{dist}(CG + v_{n+i}(p^{\alpha}), G_{n_0} - v_n(p^{\alpha}))) > 0$,

²⁾ Z. Kuramochi: Correspondence of boundaries of Riemann surfaces. Journ. Fac. Sci. Hokkaido Uni., XVII (1963). See page 101.

³⁾ If $p \in G$, U(z, p) = N(z, p), we suppose $p \in B^{G}$. Then L(z, p) is harmonic in $R-R_{0}$, whence $\sup L(z, p) < \infty$ on a compact domin D and it is clear ${}_{D}U(z) = {}_{C_{d+D}^{E}(L(z, p) - {}_{C_{d}^{E}L(z, p)})}$. If D is non compact, consider $D \cap G_{n}$ and let $n \to \infty$.

⁴⁾ Z. Kuramochi: Potentials on Riemann surfaces. Journ. Fac. Sci. Hokkaido Univ., XVI (1962).

Relations between Two Martin Topologies on a Riemann Surface

$$C^{R}_{G^{+}v_{n+i}(p^{\alpha})}U(z) < U(z).^{5}$$

Hence by $_{CG+v_{n+i}(p^{\alpha})}L(z,p^{\alpha}) = L(z,p^{\alpha})$ (for $p^{\alpha} \in R-R+B_1^L$) we have

$$\begin{split} N(z, p^{\beta}) &= L(z, p^{\alpha}) - U(z) >_{C_{G}^{R} \cdot v_{n+i}(p^{\alpha})}^{R} L(z, p^{\alpha}) - _{C_{G}^{R} \cdot v_{n+i}(p^{\alpha})}^{R} U(z) \\ &= {}_{C_{G}^{R} \cdot v_{n+i}(p^{\alpha})}^{R} (L(z, p^{\alpha}) - U(z)) = {}_{v_{n+i}(p^{\alpha})} (L(z, p^{\alpha}) - U(z)). \end{split}$$
(1)

On the other hand, $L(z, p^{\alpha}) - U(z) = N(z, p^{\beta})$ is an F₀.S.H. in G, whence

$$v_{n+i}(p^{\alpha})(L(z,p^{\alpha})-U(z)) \leq L(z,p^{\alpha})-U(z).$$

$$(2)$$

(1) contradicts (2). Hence $\mu = 0$ on $Cv_n(p) \cap \operatorname{int} G$. Let $n \to \infty$. Then $\mu = 0$ except on p + CG. put $V(z) = \int L(z, p) d\mu'(p)$, where μ' is the restriction of μ on CG. Let a be the mass of μ at p. Then $1 \ge a \ge 0$, ${}_{CG}^{R}V(z) = V(z)$ and $U(z) = V(z) + aL(z, p^{\alpha})$. Now $V(z) = (1-a)L(z, p^{\alpha})$ on ∂G except a set of capacity zero. Hence $V(z) = {}_{CG}^{R}V(z) = (1-a){}_{CG}^{R}L(z, p^{\alpha})$. Thus $U(z) = (1-a){}_{CG}^{R}L(z, p^{\alpha}) + aL(z, p^{\alpha})$ and

$$N(z, p^{\beta}) = L(z, p^{\alpha}) - \lim_{i} C_{G}^{R}L(z, p_{i}) = (1-a) \left((L(z, p^{\alpha}) - C_{G}^{R}L(z, p^{\alpha})) \right)$$

We denote by $\overset{L}{B}(G)$ the set of points p such that $p \in R - R_0 + B_1^L$, $p \in B$ and $p \in G$. Clearly $\overset{L}{B}(G)$ is an F_σ set relative to L-topology by the upper semicontinuity of $L(z, p) - \overset{R}{C_G}L(z, p)$ and if $p \in \partial G$, $p \in \overset{L}{B}(G)$ if and only if p is an irregular point for the Dirichlet problem in G by Lemma 1. (2).

Lemma 2. Let $p_i \in \overset{L}{\in} \overset{L}{B}(G) + G$ and $p_1 \neq p_2$. Then $L(z, p_1) - \overset{R}{CG}L(z, p_1) \neq L(z, p_2) - \overset{R}{CG}L(z, p_2)$.

Assume $L(z, p_1) - {}_{CG}^{R}L(z, p_1) = L(z, p_2) - {}_{CG}^{R}L(z, p_2) = U(z)$. Let *n* be a number such that dist $(v_n(p_1), v_n(p_2)) > 0$, where $v_n(p_i)$ is a neigebouhood of p_i relative to *L*-topology. Now $p_2 \in v_n(p_2)$ imply

 $(G \cap v_n(p_2)) \stackrel{L}{\ni} p_2 .^{6}$

Let
$$V_n = G - v_n(p_1)$$
. Then $V_n \supset (G \cap v_n(p_2)) \stackrel{L}{\ni} p_2$. Whence
 $C_{V_n}^R L(z, p) < L(z, p)$.

By $CV_n \supset CG$ we have ${}_{CV_n}^R({}_{CG}^R L(z, p_i)) = {}_{CG}^R L(z, p_i) : i = 1, 2$. Now ${}_{CV_n}^R L(z, p) \downarrow$ as $n \rightarrow \infty$ by $CV_n \downarrow$. Hence there exist a point z_0 in V_{n_0} , a number n_0 and a const. $\delta > 0$ such that ${}_{CV_n}^R L(z_0, p_2) < L(z_0, p_2) - \delta$ for $n \ge n_0$. Hence

$$C_{V_n}^{R}(U(z_0)) = C_{N_n}^{R}L(z_0, p_2) - C_{G}^{R}L(z_0, p_2) < C_{G}^{R}L(z_0, p_2) - C_{G}^{R}L(z_0, p_2) - \delta$$

= $U(z_0) - \delta : n \ge n_0.$ (3)

5) See page 60 of 4).

6) See page 99 of 2).

Z. Kuramochi

By $CV_n + (v_n(p_1) \cap CG) \supset v_n(p_1)$, we have

$${}_{CV_n}^{R}L(z, p_1) + {}_{v_n(p_1) \cap CG}^{R}L(z, p_1) \ge {}_{v_n(p_1)}^{R}L(z, p_1) = L(z, p_1).$$

We proved if a domain $\Omega \stackrel{L}{\in} p$, $\lim_{v_n(p) \cap C\Omega} L(z, p) = 0.^{7}$ Hence for any $\varepsilon > 0$ there exists a number n' such that $\sum_{CV_n}^R L(z_0, p_1) \ge L(z_0, p) - \varepsilon$ for $n \ge n'$. Hence

$${}_{CV_{n}}^{R}U(z_{0}) = {}_{CV_{n}}^{R}L(z_{0}, p_{1}) - {}_{CV_{n}}^{R}({}_{CG}^{R}L(z_{0}, p_{1})) = {}_{CV_{n}}^{R}L(z_{0}, p_{1}) - {}_{CG}^{R}L(z_{0}, p_{1})$$

$$\ge L(z_{0}, p) - {}_{CG}^{R}L(z_{0}, p_{1}) - \varepsilon = U(z_{0}) - \varepsilon, \quad \text{for} \quad n \ge n'.$$

$$(4)$$

By (3) and (4) $U(z_0) - \delta \ge U(z_0) - \varepsilon$. This is a contradiction. Hence $L(z, p_1) - {}_{CG}^{R}L(z, p_1) = L(z, p_2) - {}_{CG}^{R}L(z, p_2)$.

Let p^{α} be a point in $G + \dot{B}(G)$. If there exists a sequence $\{p_i\}$ such that $p_i \xrightarrow{L} p^{\alpha}$ and $p_i \xrightarrow{M} p^{\beta} \in G + B$, we say that p^{β} lies on p^{α} . We denote the set of points p lying on p^{α} by $\mathfrak{p}(p^{\alpha})$. Then

Lemma 3. Let $p^{\alpha} \in G + \overset{L}{B}(G)$. Then $\mathfrak{P}(p^{\alpha})$ contains only one point p^{β} of $G + B_1$ and $L(z, p^{\alpha}) - \overset{R}{cg}L(z, p) = N(z, p^{\beta})$, where B_1 is the set of minimal boundary points of G relative to N-topology. We denote such p^{β} by $f(p_{\alpha})$. Let $p_i \overset{L}{\rightarrow} p^{\alpha}$ and $p_i \overset{M}{\rightarrow} p^{\beta}$. Then by Lemma 1.2) $N(z, p^{\beta}) = (1 - a_{\beta}) (L(z, p^{\alpha}) - \overset{R}{cg}L(z, p^{\alpha}))$. Hence any function $N(z, p^{\beta})$ corresponding to p^{α} is a submultiple of a fixed function and there exists at most one minimal or inner point $p^{\beta'}$ of $G + B_1$ in $\mathfrak{P}(p^{\alpha})$ such that $\mathfrak{M}(p^{\beta'}) = 1$ $(\mathfrak{M}(p^{\beta'}) = \mathfrak{M}^{\ell}(N(z, p^{\beta'})) = 1$ is a necessary condition for $p^{\beta'}$ to be minimal).⁸⁾ Let $p^{\alpha} \in G + \overset{L}{B}(G)$ and $v_n(p^{\alpha})$ be a neighbourhood of p^{α} relative to L-topology and $\overline{v}_n(p^{\alpha})$ be the closure of $v_n(p_{\alpha})$ relative by M-topology. Then by $p \in G + B(G)$ $L(z, p^{\alpha}) - \overset{R}{cg}L(z, p^{\alpha}) = \delta_{\beta}N(z, p^{\beta}) :$ $\delta_{\beta} = \frac{1}{1-a_{\beta}}$ and by $_{v_n(p^{\alpha})}L(z, p^{\alpha} = L(z, p)$ and $CG + v_n(p^{\alpha}) \supset CG$ we have $\delta_{\beta}N(z, p^{\beta}) = L(z, p^{\alpha}) - \overset{R}{cg}L(z, p^{\alpha}) = \overset{R}{cg + v_n(p^{\alpha})}(L(z, p^{\alpha}) - \overset{R}{cg}L(z, p^{\alpha})))$ $= \delta_{\beta_{\overline{v}_n(p^{\alpha})}}N(z, p^{\beta})$.

Let $n \to \infty$. Then $N(z, p^{\beta}) = {}_{F}N(z, p^{\beta}) > 0$, where $F = \bigcap_{n>0} \bar{v}_{n}(p_{\alpha})$ is a *M*-closed set, whence $N(z, p^{\beta})$ is representable by a canonical mass distribution on F.⁹ This implies $\mathfrak{p}(p^{\alpha})$ contains at least one point in $G + B_1$. Thus $\mathfrak{p}(p^{\alpha})$ contains only one point p^* in $G + B_1$ and $(1 - a^*)(L(z, p^{\alpha}) - {}_{CG}^{R}L(z, p^{\alpha})) = N(z, p^*)$. On the other hand, $\mathfrak{M}^{\ell}(L(z, p) - {}_{CG}^{R}L(z, p)) \leq 1$ by Theorem 1 and $\mathfrak{M}^{\ell}(N(z, p^*)) = 1$.

⁷⁾ See 6).

⁸⁾ See Lemma 4 of 1).

⁹⁾ See 5).

Hence $a^*=0$ and $L(z, p^{\alpha})-{}_{CG}^{R}L(z, p^{\alpha})=N(z, p^*).$

Theorem 2. Let p^{β} be a point in $G + B_1$. Let $f^{-1}(p^{\beta})$ be the set of points p in $R - R_0 + B^L$ (not only in $G + \overset{L}{B}(G)$) such that $L(z, p) - \overset{R}{CG}L(z, p) =$ $N(z, p^{\beta})$. Then $f^{-1}(p^{\beta})$ consists of only one point $p \in G + \overset{L}{B}(G)$. Hence the mapping $f(p^{\alpha}): p^{\alpha} \in G + \overset{L}{B}(G)$ is one-to-one manner between $G + \overset{L}{B}(G)$ and $G + B_1$ and further $f^{-1}(p^{\beta})$ is a continuous function of p^{β} in $G + B_1$, but $f(p^{\alpha})$ is not necessarily continuous in $G + \overset{L}{B}(G)$.

Let $p \in f^{-1}(p^{\beta})$. Then $L(z, p) - {}_{CG}^{R}L(z, p)$ is minimal in G and is equal to $N(z, p^{\beta}) : p \in G + B_1$. There exists a canonical distribution $\mu(p^{\alpha})$ on $R - R_0 + B_1^{L}$ such that $L(z, p) = \int L(z, p^{\alpha}) d\mu(p^{\alpha})$. Hence

$$N(z, p^{\beta}) = L(z, p) - {}_{CG}^{R}L(z, p) = \int (L(z, p^{\alpha}) - {}_{CG}^{R}L(z, p^{\alpha})) d\mu(p^{\alpha}).^{10}$$

Now by Lemma 3 $L(z, p^{\alpha}) - {}_{C_{G}}^{R}L(z, p^{\alpha}) = N(z, q)$ is minimal in G, where $p^{\alpha} \in G + \overset{L}{B}(G)$ and $q = f(p^{\alpha})$. Clearly $L(z, p^{\alpha}) - {}_{C_{G}}^{R}L(z, p^{\alpha}) = 0$ for $p^{\alpha} \in G + \overset{L}{B}(G)$. Since $N(z, p^{\beta})$ is minimal $\mu(p^{\alpha})$ must be a point mass a at $p' \in R - R_{0} + B_{1}^{L}$ and clearly $p' \in G + \overset{L}{B}(G)$. Hence $N(z, p^{\beta}) = a(L(z, p') - {}_{C_{G}}^{R}L(z, p)) : a > 0$. But $\mathfrak{M}^{f}(N(z, p^{\beta})) = 1$ and $\mathfrak{M}(L(z, p^{\alpha}) - {}_{C_{G}}^{R}L(z, p)) \leq 1$ by Theorem 1, hence a = 1 and $N(z, p^{\beta}) = L(z, p') - {}_{C_{G}}^{R}L(z, p') : p' \in G + \overset{L}{B}(G)$.

Suppose there exist two points p_1 and p_2 in $G + \overset{L}{B}(G)$ such that $L(z, p_i) - \overset{R}{CG}L(z, p_i) = N(z, p^{\beta})$: i=1, 2. Then by Lemma 2 $p_1 = p_2$. Thus $f^{-1}(p^{\beta})$ is uniquely determined and $f^{-1}(p^{\beta}) \in G + \overset{L}{B}(G)$.

We show $f^{-1}(p^{\beta})$ is continuous in $G + B_1$. Let $p_i^{\beta} \in G + B_1$ and $p_i^{\beta} \stackrel{M}{\rightarrow} p^{\beta} \in G + B_1$ as $i \to \infty$ and let $p_i^{\alpha} = f^{-1}(p_i^{\beta})$. Then $\{p_i^{\alpha}\}$ has at least one limiting point p in $\overline{R-R_0} + B^L$, since $R - R_1 + B^L$ is compact. Let $\{p_j^{\alpha}\}$ be a subsequence of $\{p_i^{\alpha}\}$ such that $p_j^{\alpha} \to p$ and $p_j^{\beta} \to p^{\beta} : p_j^{\beta} = f(p_j^{\alpha})$. Then $\lim_{j} L(z, p_j^{\alpha}) = L(z, p), \lim_{j} N(z, p_j^{\beta}) = N(z, p^{\beta})$ and $\lim_{j} C_G^R L(z, p_j^{\alpha})$ exists, i.e. $L(z, p) - \lim_{j} C_G^R L(z, p_j^{\alpha}) = N(z, p^{\beta})$. Let $p' = f^{-1}(p^{\beta})$. Then $L(z, p') - C_G^R L(z, p') = N(z, p^{\beta})$ and $p' \in G + B(G)$. By $\lim_{j} C_G^R L(z, p_j^{\alpha}) \ge C_G^R(\lim_{j} L(z, p_j^{\alpha})) = C_G^R L(z, p),$ we have $L(z, p) - C_G^R L(z, p) \ge L(z, p) - \lim_{\alpha} C_G^R L(z, p^{\beta}).$

Let $\mu(q)$ be a canonical mass distribution of L(z, p) on $R - R_0 + B_1^{\mathbb{Z}}$. Then $L(z, p) = \int L(z, q) d\mu(q)$ and $\int d\mu(q) = 1$ by $\mathfrak{M}^f(L(z, p)) = \frac{1}{2\pi} \int_{\partial R} \frac{\partial}{\partial n} L(z, p) ds$

¹⁰⁾ Becaus $\int c_{\mathbf{g}}L(z,p) d\mu(p) = c_{\mathbf{g}}(\int L(z,p) d\mu(p))$. See Theorem 1 of 1).

Z. Kuramochi

 $= \int d\mu (p) = 1. \text{ Now}$ $L(z, p) - {}_{C_{G}}^{R}L(z, p) = \int (L(z, q) - {}_{C_{G}}^{R}L(z, q))d\mu(q) = \int N(z, q^{\beta})\delta(q)d\mu(q),$

where $\delta(q)=1$ or 0 according as $q \in G + \overset{L}{B}(G)$ or not and $q^{\beta} = f(q) \subset G + B_1$. Hence $\mathfrak{M}^{\ell}(L(z,p) - {}_{CG}^{R}L(z,p)) = \int \delta(q) d\mu(q)$ by Theorem 6.¹¹⁾ On the other hand, by $N(z,p^{\beta}) \leq L(z,p) - {}_{CG}^{R}L(z,p)$, $\mathfrak{M}^{\ell}(N(z,p^{\beta})) = 1 \leq \mathfrak{M}^{\ell}(L(z,p) - {}_{CG}^{R}L(z,p)) \leq 1$ by Theorem 1. Hence $\delta(q)=1$ if $\mu(q)>0$ and $\int d\mu(q)=1=\mathfrak{M}^{\ell}(L(z,p) - {}_{CG}^{R}L(z,p))$. Both $L(z,p) - {}_{CG}^{R}L(z,p)$ and $N(z,p^{\beta})$ are F_0 . S. H.s in G. Let $V_M = \mathbb{E}[z:L(z,p) - {}_{CG}^{R}L(z,p)] = \frac{MD(\omega(V'_M,z,G))}{2\pi} = 1$ for any M, since $N(z,p^{\beta})$ is minimal and ${}_{V'_M}N(z,p^{\beta})= \frac{MD(\omega(V'_M,z,G))}{2\pi} \geq \frac{MD(\omega(V'_M,z,G))}{2\pi} = 1$, because $MD(\omega(V_M,z,G))$ as $M \to 0$. Hence $V_M \supset V'_M$ and $\omega(V_M,z,G) = \omega(V'_M,z,G)$ for any M. This implies $L(z,p) - {}_{CM}^{R}L(z,p) = N(z,p^{\beta})$ and $p = f^{-1}(p^{\beta}) = p' \in G + \overset{L}{B}(G)$. Since any subsequence $p^{\alpha}_{J} \to p'$, $\{p^{\alpha}_{i}\}$ converges to $f^{-1}(p_{\beta})$ as $p^{\beta}_{i} \to p^{\beta}$.

We show $f(p^{s})$ is not necessarily continuous. Let $R-R_{0}$ be $E[0 < |z| < 1] = \Omega$, and F be a closed set on the real axis such that $z_{0}=0$ is an irregular point for the Dirichlet problem of $G = \Omega - F$, where $F = \sum_{K=0}^{\infty} F_{K}$ and F_{K} is a segment. Then L(z, p) of Ω and N(z, p) of G are Green's functions G(z, p) and G'(z, p) of Ω and G respectively. Then by Lemma 3 there exists a sequence $\{p_{i}\}$ such that $G(z, p_{i})$ converges to a function $G'(z, p^{\beta})$ with $\mathfrak{M}'(G'(z, p^{\beta}))=1$ and $p_{i} \rightarrow z_{0}$. Hence $p^{\beta}=f(z_{0})$. Let p_{0} be a fixed point in G. Let q_{i} be a point such that q_{i} is so near F_{i} that $G'(p_{0}, q_{i}) \leq \frac{1}{i}$. Then $\lim_{i} G(z, q_{i})=0$. For any i we can find $G'(z, p'_{i})$ such that p'_{i} lies on a curve connecting p_{i} and q_{i} and that $G(p_{0}, p'_{i}) \rightarrow a(G'(p_{0}, p^{\beta})$ as $i \rightarrow \infty$, where 0 < a < 1. Also we choose a subsequence $\{p'_{j}\}$ from $\{p'_{i}\}$ so that $p'_{i} \rightarrow z_{0}$ (relative to L-topology) and $G'(z, p'_{j}) \rightarrow p^{\beta'}$ (relative to M-topology): $p^{\beta'} \neq p^{\beta}$. Then since $p'_{j} \in G'_{j}, p'_{j} = f(p'_{j})$ and $p'_{j} \stackrel{L}{\rightarrow} z_{0}$ but $f(p'_{j}) \stackrel{M}{\rightarrow} p^{\beta'} \neq p^{\beta} = f(z_{0})$. Hence f(p) is not continuous at z_{0} .

We call the harmonic dimension of $p \in (\partial G + B)$ relative to G and $R - R_0$ the number of linearly independent $F_0.S.H.s$ with finite \mathfrak{M}^f in G and $R - R_0$ which are harmonic in G and $R - R_0$ respectively. Then by Lemma 1 we have the following

¹¹⁾ If μ is canonical, $\mathfrak{M}(U(z)) = \int d\mu(p)$. See Theorem 6 of 1).

Corollarly. Harmonic dimension of p relative to $R-R_0$ is equal to that of p relative to G.

Applications to extremisations. Let U(z) be an $F_0.S.H.$ in $R-R_0$ with $\mathfrak{M}^{f}(U(z)) < \infty$. Then there exists a canonical distribution μ such that $U(z) = \int L(z, p) d\mu(p)^{12}$ and $\int d\mu(p) = \mathfrak{M}^{f}(U(z))$. Put $V(z) = U(z) - {}_{CG}^{R}U(z)$. Then $V(z) = \int (L(z, p) - {}_{CG}^{R}L(z, p)) d\mu(p) = \int N(z, q) \delta(p) d\mu(p)$, where q = f(p) and $\delta(p) = 1$ or 0 according as $p \in G + \overset{L}{B}(G)$ or not. Hence V(z) is an F.S.H. in G with $\mathfrak{M}^{f}(V(z)) \leq \int \delta(p) d\mu(p) < \infty$ and $U(z) - V(z) = {}_{CG}U(z)$ is full harmonic in G. We denote V(z) by ${}_{in\,ex}U(z)$. Let V'(z) be an F.S.H. in G with $\mathfrak{M}^{f}(V(z)) < \infty$. Then V(z) is a potential such that $V(z) = \int N(z, q) d\mu(q)^{13}$ and $\int d\mu(q) = \mathfrak{M}^{f}(V'(z))$. Put $U'(z) = \int L(z, p) d\mu(q)$, where $p = f^{-1}(q)$. Then U'(z) is an $F_0.S.H.$ in $R - R_0$ with $\mathfrak{M}^{f}(U'(z)) \leq \int d\mu(q)$ and U'(z) - V(z) is full harmonic in G. We denote U'(z) by ${}_{ex}V'(z)$. Then U'(z) = V'(z).

Let $\{G_n\}$ be an exhaustion of G with compact relative boundary ∂G_n . Since $_{G_n}V'(z)$ is full harmonic in $G-\overline{G}_n$, the solution of Neumann's problem (to obtain an F_0 .S.H. W(z) in $R-R_0$ such that $W(z)-_{G_n}V'(z)$ is full harmonic in G_{n+i+j} and W(z) is full harmonic in $G-G_{n+i}$) can be obtained by smooting process by dist $(\partial G_{n+i}, \partial G_{n+i+j}) > 0$ for a given singularity of $_{G_n}V(z)$ in \overline{G}_n and its solution is unique. It is evident that this solution coincides with $_{ex}(g_nV'(z))$. Clearly $_{ex}(g_nV'(z))\uparrow$ as $n\to\infty$. On the other hand, $f^{-1}(p): p\in G+B_1$ is continuous, we have $_{ex}(V'(z))=\lim_{n=\infty} (_{ex} G_nV'(z))$. Hence $_{ex}V'(z)$ is the least F_0 .S.H. in $R-R_0$ such that $_{ex}V'(z)-V(z)$ is full harmonic in G. We have easily the following

Theorem 3. 1). Let U(z) de an F_0 . S. H. in $R-R_0$ with $\mathfrak{M}^t(U(z)) < \infty$. Then $_{ex}(_{in \ ex}U(z)) \leq U(z)$ and $_{ex}(_{in \ ex}U(z)) = U(z)$ if and only if the canonical distribution of U(z) has no mass on CG.

2). Let V(z) be an F.S.H. in G with $\mathfrak{M}^{f}(V(z)) < \infty$. Then

$$_{in\,ex}(_{ex}V(z))=V(z)$$
 .

Department of Mathematics Hokkaido University

(Received June 30, 1966)

12) See 4).

13) See 1).