RELATIONS BETWEEN TWO MARTIN TOPOLOGIES ON A RIEMANN SURFACE

By

Zenjiro KURAMOCHI

Let R be a Riemann surface. Let G be a domain in R with relative boundary ∂G of positive capacity. Let $U(z)$ be a positive superharmonic function in G such that the Dirichlet integral $D(\min (M, U(z)))<\infty$ for every M. Let D be a compact domain in G. Let ${ }_{D} U^{M}(z)$ be the lower envelope of superharmonic functions $\left\{U_{n}(z)\right\}$ such that $U_{n}(z) \geqq \min (M, U(z))$ on $D+\partial G$ except a set of capacity zero, $U_{n}(z)$ is harmonic in $G-D$ and $U_{n}(z)$ has M.D.I. (minimal Dirichlet integral) $\leqq D(\min (M, U(z))<\infty$ over $G-D$ with the same value as $U_{n}(z)$ on $\partial G+\partial D$. Then ${ }_{D} U^{M}(z)$ is uniquely determined. Put ${ }_{D} U(z)=$ $\lim _{M=\infty}{ }_{D} U^{M}(z)$. If for any compact domain $D_{D} U(z)=U(z)$ or ${ }_{D} U(z) \leqq U(z)$, we call $U(z)$ a full harmonic (F.H.) or a full superharmonic (F.S.H.) in G respectively. If $U(z)$ is an F.S.H. in G and $U(z)=0$ on ∂G except a set of capacity zero, $U(z)$ is called an F_{0}.S.H. in G. Let $U(z)$ be an F.S.H. in G. Then ${ }_{D} U(z) \uparrow$ as $D \uparrow$. For a non compact domain D, put $U(z)=\lim _{n=\infty} U(z)$, where $\left\{G_{n}\right\}$ is an exhaustion of G with compact relative boundary $\partial G_{n}(n=0,1,2 \cdots)$.
$\mathfrak{M}^{f}\left(U(z)\right.$) of an F_{0}.S.H. $\quad U(z)$ in G. Let D be a domain in G. Suppose there exists at least one C_{1}-function $V(z)$ in $G-D$ such that $V(z)=1$ on D, $=0$ on ∂G except a set of capacity zero and $D(V(z))<\infty$. Let $\omega(D, z, G)$ be a harmonic function in $G-D$ such that $\omega(D, z, G)=1$ on $D,=0$ on ∂G except a set of capacity zero and $\omega(D, z, G)$ has M.D.I. over $G-D$. We call $\omega(D, z, G)$ a C.P. (capacitary potential) of D. Let $U(z)$ be an F_{0}.S.H. in G. Then $\underset{C_{M}}{D}\left(g_{M} U(z)\right)=M D\left(\omega\left(g_{M}, z, G\right)\right) \uparrow$ as $M \rightarrow 0,{ }^{1)}$ where $g_{M}=E[z: U(z)>M]$. Put $\mathfrak{M}^{f}(U(z))=\lim _{M \rightarrow} \frac{1}{2 \pi}{\underset{C g_{M}}{ }\left(g_{M} U(z)\right) \text {. }}^{D} U(z)$
$\mathfrak{M}^{f}(U(z))$ of an F.S.H. $U(z)$ in G. For any compact domain D in G, if we can define functions $U_{n}(z)$ such that $U_{n}(z)$ is superharmonic in $G, U_{n}(z)$ is harmonic in $G-D, U_{n}(z) \geqq \min (M, U(z))$ on $D, U_{n}(z)=0$ on ∂G except a set of capacity zero and $U_{n}(z)$ has M.D.I. over $G-D$. Let ${ }^{0} U^{M}(z)$ be the lower envelope of $\left\{U_{n}(z)\right\}$. Put ${ }_{D}^{0} U(z)=\lim _{M=\infty}{ }_{D}^{0} U^{M}(z)$ (clearly ${ }_{D}^{0} U(z) \leqq{ }_{D} U(z)$).

[^0]Since D is compact, ${ }_{D}^{0} U(z)=0$ on ∂G except a set of capacity zero. For a non compact domain $D,{ }_{D}^{0} U(z)$ is defined as ${ }_{D} U(z)$. For $U(z)$, put $\mathfrak{M}^{f}(U(z))=\lim _{n=\infty} \mathfrak{M}^{f}$ $\left({ }_{G_{n}}^{0} U(z)\right)$, where $\left\{G_{n}\right\}$ is an exhaustion of G with compact relative boundary ∂G_{n}.

Let $\left\{R_{n}\right\}$ with compact relative boundary $\partial R_{n}(n=0,1,2, \cdots)$ Let $U(z)$ be an F_{0}. S.H. in $R-R_{0}$ such that $U(z)=0$ on ∂R_{0}. Consider $R-R_{0}$ as G. Then ${ }_{D} U(z)$ is defined. In this case we say that ${ }_{D} U(z)$ is defined relative to $R-R_{0}$. It is clear that the mapping $U(z) \rightarrow_{D} U(z)$ depends on the domain (G or $R-$ R_{0}) in which ${ }_{D} U(z)$ is defined. In the following we use ${ }_{D} U(z)$ relative to R $-R_{0}$ which will be denoted by ${ }_{D}^{R} U(z)$ to distinguish from ${ }_{D} U(z)$ (relative to G). We understand ${ }_{D} U(z)$ (without R on D) means ${ }_{D} U(z)$ of $U(z)$ relative to G.

Martin topologies on $R-R_{0}$ and on a subdomain $G \subset\left(R-R_{0}\right)$. Let $N(z, p)$ bs an N-Green's function of G such that $N(z, p)$ is positively harmonic in $G-p, N(z, p)=0$ on ∂G except a set of capacity zero, $N(z, p)$ has a logarithmic singularity at p and $N(z, p)$ has M. D.I. (where Dirichlet integral is taken with respect to $N(z, p)+\log |z-p|$ in a neighbourhood of p). We suppose N-Martin topology is defined on $G+B$ using $N(z, p), s$ and the distance between p_{1} and p_{2} is given as

$$
\delta\left(p_{1}, p_{2}\right)=\sup _{z \in D}\left|\frac{N\left(z, p_{1}\right)}{1+N\left(z, p_{1}\right)}-\frac{N\left(z, p_{2}\right)}{1+N\left(z, p_{2}\right)}\right|
$$

where D is a fixed compact domain and B is the set of the ideal boundary. Let $L(z, p)$ be an N-Green's function of $R-R_{0}$ with pole at p. Then also N-Martin topology is introduced on $R-R_{0}+B^{L}$ with metric:

$$
\delta\left(p_{1}, p_{2}\right)=\sup _{z \in R_{1}}\left|\frac{L\left(z, p_{1}\right)}{1+L\left(z, p_{1}\right)}-\frac{L\left(z, p_{2}\right)}{1+L\left(z, p_{2}\right)}\right|,
$$

where B^{L} is the set of the ideal boundary points.
In the following for simplicity we call above two topogies L and N-topologies.
Let $p \in R-R_{0}+B_{1}^{L}$ (B_{1}^{L} is the set of minimal boundary points of $R-R_{0}$). If $c_{\boldsymbol{Q}}^{R} L(z, p)<L(z, p)(C G$ is thin at $p)$, we denote by $p \stackrel{L}{\in} G$. Then

Theorem 1. Suppose $p \in R-R_{0}+B_{1}^{L}$ and $p \stackrel{L}{\in} G$. Then $U(z, p)=L(z, p)$ $-N(z, p)$ is an F_{0}. S. H. in G with $D(\min (M, U(z))) \leqq 2 \pi M$, whence $\mathbb{M}^{f}(U(z, p))$ $\leqq 1$.

Proof. $N z, p): p \in R-R_{0}+B^{L}$ is contintinuous on ∂G except p. Hence ${ }_{c G}^{R} L(z, p)=L(z, p)$ on ∂G and $U(z, p)=0$ on ∂G except a set of capacity zero. Case 1. $p \in G$. In this case, clearly $U(z, p)=N(z, p)$ and $D(\min (M, U(z, p))$ $\leqq 2 \pi M$.
Case 2. $p \in \partial G$. Put $G_{n}=G+v_{n}(p)$, Then $C G_{n} \uparrow C G$ and ${ }_{C \theta_{n}}^{R} L(z, p) \uparrow \underset{c}{R} L(z, p)$
as $n \rightarrow \infty$, where $v_{n}(p)=E\left[z: \operatorname{dist}(z, p)<\frac{1}{n}\right]$. By $p \in G_{n}$, we have

$$
D\left(\min (M, U(z, p)) \leqq \lim _{n} D\left(\min \left(M, L(z, p)-c{\underset{\theta}{n}}_{R}^{R} L(z, p)\right)\right) \leqq 2 \pi M\right.
$$

Case 3. $p \in B_{1}^{L}-B_{s}^{L}$. In this case it was $\operatorname{proved}^{2)} D(\min (M, U(z, p)) \leqq 2 \pi M$, where B_{s}^{L} is the set of singular points, i.e. set of point p such that $\omega(p, z, R$ $\left.-R_{0}\right)>0$ and B_{1}^{L} is the set of minimal boundary points of $R-R_{0}$.
Case 4. $p \in B_{s}^{L}$. It was proved only $D(U(z, p))<\infty$ but as case 3 it can be proved $D(\min (M, U(z, p))) \leqq 2 \pi M$.

Hence ${ }_{D}^{R} U(z, p)$ can be defined. Now ${ }_{C \in+p}^{R}\left(c{ }_{G}^{R} L(z, p)\right)={ }_{C G}^{R} L(z, p)$ by $C G+$ D) $\subset C G$ and ${ }_{C \boldsymbol{R}+{ }_{D}}^{R} L(z, p) \leqq L(z, p)$. Hence ${ }_{p} U(z, p)={ }_{C \boldsymbol{a}+\boldsymbol{p}}^{R}\left(L(z, p)-{ }_{C G}^{R} L(z, p)\right)=$ $C_{G+D}^{R} L(z, p)-{ }_{C G}^{R} L(z, p)^{3} \leqq L(z, p)-{ }_{C G}^{R} L(z, p)=U(z, p)$. By $D(\min (M, U(z, p)) \leqq$ $2 \pi . M$ we have at once $\mathfrak{M}^{f}(U(z, p)) \leqq 1$. Thus $U(z, p)$ is an F_{0}.S.H. in G with $\mathfrak{M}^{f}(U(z, p)) \leqq 1$.

Lemma 1. 1). Let $p_{i} \in R-R_{0}$ and $p_{i} \xrightarrow{L} p \in R-R_{0}+B^{L}$ (p_{i} tends to p relative to L-topology). Then $L(z, p)-\lim _{c}^{R} L\left(z, p_{i}\right) \leqq L(z, p)-{ }_{C G}^{R} L(z, p)$.
2). Let $p_{i} \xrightarrow{L} p^{\alpha} \in R-R_{0}+B_{1}^{L}$ and $p_{0} \xrightarrow{M} p^{i} \in G+B: p_{i} \in G$. Then

$$
N\left(z, p^{\beta}\right)=(1-a)\left(L\left(z, p^{a}\right)-{ }_{C}^{R} L\left(z, p^{\alpha}\right)\right): \quad 1 \geqq a \geqq 0 .
$$

Proof of 1). For any $\varepsilon>0$ we can find a number n_{0} such that ${ }_{c \in}^{R} L\left(z, p^{\alpha}\right) \leqq$ $\underset{C G \cap R_{n}}{R} L\left(z, p^{\alpha}\right)+\varepsilon$ for $n \geqq n_{0}$. Since $L\left(z, p_{i}\right) \rightarrow L\left(z, p^{\alpha}\right)$ on $C G \cap R_{n}, \lim _{-i} C R L\left(z, p_{i}\right)$ $\geqq \lim _{i} C_{G \in R_{n}}^{R} L\left(z, p_{i}\right) \geqq C_{G}^{R} L\left(z, p^{\alpha}\right)-\varepsilon$. Let $\varepsilon \rightarrow 0$. Then we have (1).

Proof of 2). $L\left(z, p_{i}\right)-{ }_{C G}^{R} L\left(z, p_{i}\right)=N\left(z, p_{i}\right)$ in G for $p_{i} \in G$. By the assumption $\lim _{i} L\left(z, p_{i}\right)$ and $\lim _{i} N\left(z, p_{i}\right)$ exist, whence $\lim _{i}{ }_{C G}^{R} L\left(z, p_{i}\right)$ exists. We denote this limit by $U(z)$. Let μ be a canonical mass distribution ${ }^{4)}$ of $U(z)$ on $R-R_{0}+B_{1}^{L}$. Assume μ has a positive mass in int $\left(G \cap C v_{n}\left(p^{\alpha}\right)\right)$ (int G means the interior of G relative to L-topology and $v_{n}\left(p^{\alpha}\right)$ is a neighbouhood of p^{α} relative to L-topology). Then we can find a number n_{0} such that $G_{n_{0}}$ has a positive mass on $\bar{G}_{n_{0}} \cap C v_{n}\left(p^{\alpha}\right)$, where $G_{n}=E\left[z \in R-R_{0}+B^{L}: \operatorname{dist}(z, C G)\right.$ $\left.>\frac{1}{n}\right]$. Since $\left.\operatorname{dist}\left(C G+v_{n+i}\left(p^{\alpha}\right), G_{n_{0}}-v_{n}\left(p^{\alpha}\right)\right)\right)>0$,
2) Z. Kuramochi: Correspondence of boundaries of Riemann surfaces. Journ. Fac. Sci. Hokkaido Uni., XVII (1963). See page 101.
3) If $p \in G, U(z, p)=N(z, p)$, we suppose $p \in B^{G}$. Then $L(z, p)$ is harmonic in $R-R_{0}$, whence $\sup L(z, p)<\infty$ on a compact domin D and it is clear ${ }_{p} U(z)=c{ }_{\sigma}^{R}+\boldsymbol{D}\left(L(z, p)-c_{z}^{R} L(z, p)\right)$. If D is non compact, consider $D \cap G_{n}$ and let $n \rightarrow \infty$.
4) Z. Kuramochi: Potentials on Riemann surfaces. Journ. Fac. Sci. Hokkaido Univ., XVI (1962).

$$
{ }_{c \boldsymbol{A}+v_{n+i}\left(p^{\alpha}\right)}^{R} U(z)<U(z) .{ }^{5)}
$$

Hence by $\quad c a+v_{n+i}\left(p^{\wedge}\right) L\left(z, p^{\alpha}\right)=L\left(z, p^{\alpha}\right)\left(\right.$ for $\left.p^{\alpha} \in R-R+B_{1}^{L}\right)$ we have

$$
\begin{align*}
& N\left(z, p^{\beta}\right)=L\left(z, p^{\alpha}\right)-U(z)>_{C G+v_{n+i^{(}\left(p^{v}\right)}^{R}}^{R} L\left(z, p^{\alpha}\right)-C_{G+v_{n+i}\left(p^{\alpha}\right)}^{R} U(z) \\
&=c_{\alpha+v_{n+i}\left(p^{\alpha}\right)}^{R}\left(L\left(z, p^{\alpha}\right)-U(z)\right)=v_{n+i}\left(p^{\alpha}\right) \tag{1}\\
&\left(L\left(z, p^{\alpha}\right)-U(z)\right) .
\end{align*}
$$

On the other hand, $L\left(z, p^{\alpha}\right)-U(z)=N\left(z, p^{\beta}\right)$ is an $\mathrm{F}_{0} . \mathrm{S} . \mathrm{H}$. in G, whence

$$
\begin{equation*}
v_{n+i\left(p^{\alpha}\right)}\left(L\left(z, p^{\alpha}\right)-U(z)\right) \leqq L\left(z, p^{\alpha}\right)-U(z) \tag{2}
\end{equation*}
$$

(1) contradicts (2). Hence $\mu=0$ on $C v_{n}(p) \cap \operatorname{int} G$. Let $n \rightarrow \infty$. Then $\mu=0$ except on $p+C G$. put $V(z)=\int L(z, p) d \mu^{\prime}(p)$, where μ^{\prime} is the restriction of μ on CG. Let a be the mass of μ at p. Then $1 \geqq a \geqq 0, c_{G}^{R} V(z)=V(z)$ and $U(z)=V(z)+a L\left(z, p^{\alpha}\right)$. Now $V(z)=(1-a) L\left(z, p^{\alpha}\right)$ on ∂G excpt a set of capacity zero. Hence $V(z)={ }_{c \cdot}^{R} V(z)=(1-a)_{C G}^{R} L\left(z, p^{\alpha}\right)$. Thus $U(z)=(1-$ a) $C_{A}^{R} L\left(z, p^{\alpha}\right)+a L\left(z, p^{\alpha}\right)$ and

$$
N\left(z, p^{\beta}\right)=L\left(z, p^{\alpha}\right)-\lim _{i} C_{G}^{R} L\left(z, p_{i}\right)=(1-a)\left(\left(L\left(z, p^{\alpha}\right)-C_{\alpha}^{R} L\left(z, p^{\alpha}\right)\right)\right.
$$

We denote by ${ }^{L}(G)$ the set of points p such that $p \in R-R_{0}+B_{1}^{L}, p \in B$ and $p \stackrel{L}{\in} G$. Clearly $\stackrel{L}{B}(G)$ is an F_{σ} set relative to L-topology by the upper semicontinuity of $L(z, \mathrm{p})-{ }_{C G}^{R} L(z, p)$ and if $p \in \partial G, p \in \stackrel{L}{B}(G)$ if and only if p is an irregular point for the Dirichlet problem in G by Lemma 1. (2).

Lemma 2. Let $p_{i} \stackrel{L}{\in} \stackrel{L}{B}(G)+G$ and $p_{1} \neq p_{2}$. Then $L\left(z, p_{1}\right)-{ }_{c}^{R} L\left(z, p_{1}\right) \neq$ $L\left(z, p_{2}\right)-{ }_{c}^{R} L\left(z, p_{2}\right)$.

Assume $L\left(z, p_{1}\right)-{ }_{c \theta}^{R} L\left(z, p_{1}\right)=L\left(z, p_{2}\right)-{ }_{c \cdot}^{R} L\left(z, p_{2}\right)=U(z)$. Let n be a number such that $\operatorname{dist}\left(v_{n}\left(p_{1}\right), v_{n}\left(p_{2}\right)\right)>0$, where $v_{n}\left(p_{i}\right)$ is a neigebouhood of p_{i} relative to L-topology. Now $p_{2} \stackrel{L}{\in} v_{n}\left(p_{2}\right)$ imply

$$
\left(G \cap v_{n}\left(p_{2}\right)\right) \stackrel{L}{\ni} p_{2} . .^{6)}
$$

Let $\quad V_{n}=G-v_{n}\left(p_{1}\right)$. Then $V_{n} \supset\left(\mathrm{G} \cap v_{n}\left(p_{2}\right)\right) \ni p_{2}$. Whence

$$
{ }_{c}^{R} \nabla_{n} L(z, p)<L(z, p)
$$

 $n \rightarrow \infty$ by $C V_{n} \downarrow$. Hence there exist a point z_{0} in $V_{n_{0}}$, a number n_{0} and a const. $\delta>0$ such that ${ }_{c V_{n}}^{R} L\left(z_{0}, p_{2}\right)<L\left(z_{0}, p_{2}\right)-\delta$ for $n \geqq n_{0}$. Hence

$$
\begin{align*}
C_{V_{n}}^{R}\left(U\left(z_{0}\right)\right) & =c_{N_{n}}^{R} L\left(z_{0}, p_{2}\right)-{ }_{C G}^{R} L\left(z_{0}, p_{2}\right)<{ }_{C G}^{R} L\left(z_{0}, p_{2}\right)-{ }_{C G}^{R} L\left(z_{0}, p_{2}\right)-\delta \\
& =U\left(z_{0}\right)-\delta: n \geqq n_{0} . \tag{3}
\end{align*}
$$

5) See page 60 of 4).
6) See page 99 of 2).

By $C V_{n}+\left(v_{n}\left(p_{1}\right) \cap C G\right) \supset v_{n}\left(p_{1}\right)$, we have

$$
C_{V_{n}}^{R} L\left(z, p_{1}\right)+v_{v_{n}\left(p_{1}\right) \cap C G}^{R} L\left(z, p_{1}\right) \geqq v_{v_{n}\left(p_{1}\right)}^{R} L\left(z, p_{1}\right)=L\left(z, p_{1}\right) .
$$

We proved if a domain $\Omega \stackrel{L}{\in} p, \lim _{v_{n}(p) \cap C .} L(z, p)=0 .^{7} \quad$ Hence for any $\varepsilon>0$ there exists a number n^{\prime} such that ${ }_{C V_{n}}^{R} L\left(z_{0}, p_{1}\right) \geqq L\left(z_{0}, p\right)-\varepsilon$ for $n \geqq n^{\prime}$. Hence

$$
\begin{align*}
C_{V_{n}}^{R} U\left(z_{0}\right)= & { }_{C V_{n}}^{R} L\left(z_{0}, p_{1}\right)-C_{V_{n}}^{R}\left({ }_{c}^{R} L\left(z_{0}, p_{1}\right)\right)=C_{V_{n}}^{R} L\left(z_{0}, p_{1}\right)-{ }_{c \theta}^{R} L\left(z_{0}, p_{1}\right) \\
& \geqq L\left(z_{0}, p\right)-C{ }_{\theta}^{R} L\left(z_{0}, p_{1}\right)-\varepsilon=U\left(z_{0}\right)-\varepsilon, \quad \text { for } n \geqq n^{\prime} . \tag{4}
\end{align*}
$$

By (3) and (4) $U\left(z_{0}\right)-\delta \geqq U\left(z_{0}\right)-\varepsilon$. This is a contradiction. Hence $L\left(z, p_{1}\right)$ $-{ }_{c 木}^{R} L\left(z, p_{1}\right) \neq L\left(z, p_{2}\right)-{ }_{c \cdot}^{R} L\left(z, p_{2}\right)$.

Let p^{α} be a point in $G+\stackrel{L}{B}(G)$. If there exists a sequence $\left\{p_{i}\right\}$ such that $p_{i} \xrightarrow{L} p^{\alpha}$ and $p_{i} \xrightarrow{M} p^{\beta} \in G+B$, we say that p^{β} lies on p^{α}. We denote the set of points p lying on p^{α} by $\mathfrak{p}\left(p^{\alpha}\right)$. Then

Lemma 3. Let $p^{\alpha} \in G+\stackrel{L}{B}(G)$. Then $\mathfrak{p}\left(p^{\alpha}\right)$ contains only one point p^{β} of $G+B_{1}$ and $L\left(z, p^{\alpha}\right)-{ }_{C}^{R} L(z, p)=N\left(z, p^{\beta}\right)$, where B_{1} is the set of minimal boundary points of G relative to N-topology. We denote such p^{β} by $f\left(p_{\alpha}\right)$.

Let $p_{i} \xrightarrow{L} p^{\alpha}$ and $p_{i} \xrightarrow{\boldsymbol{M}} p^{\beta}$. Then by Lemma 1.2) $N\left(z, p^{\beta}\right)=\left(1-a_{\beta}\right)\left(L\left(z, p^{\alpha}\right)\right.$ $\left.-_{C}^{R} L\left(z, p^{\alpha}\right)\right)$. Hence any function $N\left(z, p^{\beta}\right)$ corresponding to p^{α} is a submultiple of a fixed function and there exists at most one minimal or inner point $p^{\beta^{\prime}}$ of $G+B_{1}$ in $\mathfrak{p}\left(p^{\alpha}\right)$ such that $\mathfrak{M}\left(p^{\beta^{\prime}}\right)=1 \quad \mathfrak{M}\left(p^{\beta^{\prime}}\right)=\mathfrak{M}^{f}\left(N\left(z, p^{\beta^{\prime}}\right)\right)=1$ is a necessary condition for $p^{\beta^{\prime}}$ to be minimal)..$^{8)}$ Let $p^{\alpha} \in G+\stackrel{L}{B}(G)$ and $v_{n}\left(p^{\alpha}\right)$ be a neighbourhood of p^{α} relative to L-topology and $\bar{v}_{n}\left(p^{\alpha}\right)$ be the closure of $v_{n}\left(p_{\alpha}\right)$ relative by M-topology. Then by $p \in G+B(G) L\left(z, p^{\alpha}\right)-{ }_{C}^{R} L\left(z, p^{\alpha}\right)=\delta_{\beta} N\left(z, p^{\beta}\right)$: $\delta_{\beta}=\frac{1}{1-a_{\beta}}$ and by $v_{v_{n}\left(p^{\alpha}\right)} L\left(z, p^{\alpha}=L(z, p)\right.$ and $C G+v_{n}\left(p^{\alpha}\right) \supset C G$ we have

$$
\begin{aligned}
\delta_{\beta} N\left(z, p^{\beta}\right) & =L\left(z, p^{\alpha}\right)-c \underset{G}{R} L\left(z, p^{\alpha}\right)=c \boldsymbol{a}+v_{n}\left(p^{\alpha}\right) \\
& =\delta_{\beta_{\bar{v}_{n}\left(p^{\alpha}\right)}} N\left(z\left(z, p^{\alpha}\right)-p_{\boldsymbol{\theta}}^{R} L\left(z, p^{\alpha}\right)\right)
\end{aligned}
$$

Let $n \rightarrow \infty$. Then $N\left(z, p^{\beta}\right)={ }_{F} N\left(z, p^{\beta}\right)>0$, where $F=\bigcap_{n>0} \bar{v}_{n}\left(p_{\alpha}\right)$ is a M-closed set, whence $N\left(z, p^{\beta}\right)$ is representable by a canonical mass distribution on $F .^{9)}$ This implies $\mathfrak{p}\left(p^{\alpha}\right)$ contains at least one point in $G+B_{1}$. Thus $\mathfrak{p}\left(p^{\alpha}\right)$ contains only one point p^{*} in $G+B_{1}$ and $\left(1-a^{*}\right)\left(L\left(z, p^{\alpha}\right)-c_{G}^{R} L\left(z, p^{\alpha}\right)\right)=N\left(z, p^{*}\right)$. On the other hand, $\mathfrak{M}^{f}\left(L(z, p)-c_{G}^{R} L(z, p)\right) \leqq 1$ by Theorem 1 and $\mathfrak{M}^{f}\left(N\left(z, p^{*}\right)\right)=1$.
7) See 6).
8) See Lemma 4 of 1).
9) See 5).

Hence $a^{*}=0$ and $L\left(z, p^{\alpha}\right)-{ }_{c}^{R} L\left(z, p^{\alpha}\right)=N\left(z, p^{*}\right)$.
Theorem 2. Let p^{β} be a point in $G+B_{1}$. Let $f^{-1}\left(p^{\beta}\right)$ be the set of points p in $R-R_{0}+B^{L}$ (not only in $G+\stackrel{L}{B}(G)$) such that $L(z, p)-{ }_{G}^{R} L(z, p)=$ $N\left(z, p^{\beta}\right)$. Then $f^{-1}\left(p^{\beta}\right)$ consists of only one point $p \in G+\stackrel{L}{B}(G)$. Hence the mapping $f\left(p^{\alpha}\right): p^{\alpha} \in G+\stackrel{L}{B}(G)$ is one-to-one manner between $G+\stackrel{L}{B}(G)$ and $G+B_{1}$ and further $f^{-1}\left(p^{\beta}\right)$ is a continuous function of p^{β} in $G+B_{1}$, but $f\left(p^{\alpha}\right)$ is not necessarily continuous in $G+\stackrel{L}{B}(G)$.

Let $p \in f^{-1}\left(p^{\beta}\right)$. Then $L(z, p)-C_{a}^{R} L(z, p)$ is minimal in G and is equal to $N\left(z, p^{\beta}\right): p \in G+B_{1}$. There exists a canonical distribution $\mu\left(p^{\alpha}\right)$ on $R-R_{0}+$ B_{1}^{L} such that $L(z, p)=\int L\left(z, p^{\alpha}\right) d \mu\left(p^{\alpha}\right)$. Hence

$$
N\left(z, p^{\beta}\right)=L(z, p)-c_{G}^{R} L(z, p)=\int\left(L\left(z, p^{\alpha}\right)-C_{G}^{R} L\left(z, p^{\alpha}\right)\right) d \mu\left(p^{\alpha}\right) .^{10)}
$$

Now by Lemma $3 L\left(z, p^{\alpha}\right)-c_{G}^{R} L\left(z, p^{\alpha}\right)=N(z, q)$ is minimal in G, where $p^{\alpha} \in G$ $+\stackrel{L}{B}(G)$ and $q=f\left(p^{\alpha}\right)$. Clearly $L\left(z, p^{\alpha}\right)-{ }_{G}^{R} L\left(z, p^{\alpha}\right)=0$ for $p^{\alpha} \notin G+\stackrel{L}{B}(G)$. Since $N\left(z, p^{\beta}\right)$ is minimal $\mu\left(p^{\alpha}\right)$ must be a point mass a at $p^{\prime} \in R-R_{0}+B_{1}^{L}$ and clearly $p^{\prime} \in G+B(G)$. Hence $N\left(z, p^{\beta}\right)=a\left(L\left(z, p^{\prime}\right)-{ }_{c \beta}^{R} L(z, p)\right): a>0$. But $\mathfrak{M}^{f}\left(N\left(z, p^{\beta}\right)\right)$ $=1$ and $\mathfrak{M}\left(L\left(z, p^{\alpha}\right)-c_{G}^{R} L\left(z, p_{L}\right)\right) \leqq 1$ by Theorem 1 , hence $a=1$ and $N\left(z, p^{\beta}\right)=$ $L\left(z, p^{\prime}\right)-{ }_{C G}^{R} L\left(z, p^{\prime}\right): p^{\prime} \in G+{ }_{B}^{L}(G)$.
Suppose there exist two points p_{1} and p_{2} in $G+\stackrel{L}{B}(G)$ such that $L\left(z, p_{i}\right)-$ ${ }_{c}^{R} L\left(z, p_{i}\right)=N\left(z, p^{\beta}\right): i=1,2$. Then by Lemma $2 p_{1}=p_{2}$. Thus $f^{-1}\left(p^{\beta}\right)$ is uniquely determined and $f^{-1}\left(p^{\beta}\right) \in G+\frac{L}{B}(G)$.

We show $f^{-1}\left(p^{\beta}\right)$ is continuous in $G+B_{1}$. Let $p_{i}^{\beta} \in G+B_{1}$ and $p_{i}^{\beta} \xrightarrow{M} p^{\beta} \in$ $G+B_{1}$ as $i \rightarrow \infty$ and let $p_{i}^{\alpha}=f^{-1}\left(p_{i}^{\beta}\right)$. Then $\left\{p_{i}^{\alpha}\right\}$ has at least one limiting point p in $\overline{R-R_{0}}+B^{L}$, since $R-R_{1}+B^{L}$ is compact. Let $\left\{p_{j}^{\alpha}\right\}$ be a subsequence of $\left\{p_{i}^{\alpha}\right\}$ such that $p_{j}^{\alpha} \rightarrow p$ and $p_{j}^{\beta} \rightarrow p^{\beta}: p_{j}^{\beta}=f\left(p_{j}^{\alpha}\right)$. Then $\lim _{j} L\left(z, p_{j}^{\alpha}\right)=$ $L(z, p), \lim N\left(z, p_{j}^{\beta}\right)=N\left(z, p^{\beta}\right)$ and $\lim _{j} C_{a}^{R} L\left(z, p_{j}^{\alpha}\right)$ exists, i.e. $L(z, p)-\lim _{j}^{R} L\left(z, p_{j}^{\alpha}\right)$ $\underset{L}{=} N\left(z, p^{\beta}\right)$. Let $p^{\prime}=f^{-1}\left(p^{\beta}\right)$. Then $L\left(z, p^{\prime}\right)-{ }_{c}^{R} L\left(z, p^{\prime}\right)=N\left(z, p^{\beta}\right)$ and $p^{\prime} \in G+$ $\stackrel{L}{B}(G)$. By $\lim _{j} C_{G}^{R} L\left(z, p_{j}^{\alpha}\right) \geqq \sum_{G}^{R}\left(\lim _{j} L\left(z, p_{j}^{\alpha}\right)\right)=C_{G}^{R} L(z, p)$, we have

$$
L(z, p)-{ }_{c \cdot}^{R} L(z, p) \geqq L(z, p)-\lim _{j}{ }_{C \sigma}^{R} L\left(z, p_{j}^{\alpha}\right)=N\left(z, p^{\beta}\right) .
$$

Let $\mu(q)$ be a canonical mass distribution of $L(z, p)$ on $R-R_{0}+B_{1}^{L}$. Then
$\mathrm{L}(z, p)=\int L(z, q) d \mu(q)$ and $\int d \mu(q)=1$ by $\mathfrak{M}^{f}(L(z, p))=\frac{1}{2 \pi} \int_{\partial R_{0}} \frac{\partial}{\partial n} L(z, p) d s$

[^1]\[

$$
\begin{aligned}
& =\int d \mu(p)=1 . \quad \text { Now } \\
& \quad L(z, p)-C_{\theta}^{R} L(z, p)=\int\left(L(z, q)-{ }_{c}^{R} L(z, q)\right) d \mu(q)=\int N\left(z, q^{\beta}\right) \delta(q) d \mu(q),
\end{aligned}
$$
\]

where $\delta(q)=1$ or 0 according as $q \in G+\stackrel{L}{B}(G)$ or not and $q^{\beta}=f(q) \subset G+B_{1}$. Hence $\mathfrak{M}^{f}\left(L(z, p)-{ }_{C=}^{R} L(z, p)\right)=\int \delta(q) d \mu(q)$ by Theorem 6. ${ }^{11)} \quad$ On the other hand, by $N\left(z, p^{\beta}\right) \leqq L(z, p)-{ }_{c}^{R} L(z, p), \mathfrak{M}^{f}\left(N\left(z, p^{\beta}\right)\right)=1 \leqq \mathfrak{M}^{f}\left(L(z, p)-c_{G}^{R} L(z, p)\right) \leqq 1$ by Theorem 1. Hence $\delta(q)=1$ if $\mu(q)>0$ and $\int d \mu(q)=1=\mathfrak{M}^{f}\left(L(z, p)-{ }_{G}^{R} L(z, p)\right)$. Both $L(z, p)-{ }_{C G}^{R} L(z, p)$ and $N\left(z, p^{\beta}\right)$ are F_{0}.S.H.s in G. Let $V_{M}=\mathrm{E}[z: L(z, p)$ $\left.-{ }_{C G}^{R} L(z, p)>M\right]$ and $V_{M}^{\prime}=E\left[z: N(z, p)>M\right.$. Then $V_{M} \supset V_{M}^{\prime}$. $\mathfrak{M}^{f}\left(N\left(z, p^{\beta}\right)\right)=$ $\frac{M D\left(\omega\left(V_{M}^{\prime}, z, G\right)\right)}{2 \tau}=1$ for any M, since $N\left(z, p^{\beta}\right)$ is minimal and ${ }_{V_{M}^{\prime}} N\left(z, p^{\beta}\right)=$ $N\left(z, p^{\beta}\right)$. Also $1=\mathfrak{M}^{f}\left(L(z, p)-{ }_{C \beta}^{R} L(z, p)\right) \geqq \frac{M D\left(\omega\left(V_{M}, z, G\right)\right)}{2 \pi} \geqq \frac{M D\left(\omega\left(V_{N}^{\prime}, z, G\right)\right)}{2 \pi}$ $=1$, because $M D\left(\omega\left(V_{M}, z, G\right)\right) \uparrow$ as $M \rightarrow 0$. Hence $V_{M} \supset V_{M}^{\prime}$ and $\omega\left(V_{M}, z, G\right)=$ $\omega\left(V_{M}^{\prime}, z, G\right)$ for any M. This implies $L(z, p)-c_{M}^{R} L(z, p)=N\left(z, p^{\beta}\right)$ and $p=$ $f^{-1}\left(p^{\beta}\right)=p^{\prime} \in G+\stackrel{L}{B}(G)$. Since any subsequence $p_{j}^{\alpha} \rightarrow p^{\prime}, \quad\left\{p_{i}^{\alpha}\right\}$ converges to $f^{-1}\left(p_{\beta}\right)$ as $p_{i}^{\beta} \rightarrow p^{\beta}$.

We show $f\left(p^{\alpha}\right)$ is not necessarily continuous. Let $R-R_{0}$ be $E[0<|z|<1]$ $=\Omega$, and F be a closed set on the real axis such that $z_{0}=0$ is an irregular point for the Dirichlet problem of $G=\Omega-F$, where $F=\sum_{K=0}^{\infty} F_{K}$ and F_{K} is a segment. Then $L(z, p)$ of Ω and $N(z, p)$ of G are Green's functions $G(z, p)$ and $G^{\prime}(z, p)$ of Ω and G respectively. Then by Lemma 3 there exists a sequence $\left\{p_{i}\right\}$ such that $G\left(z, p_{i}\right)$ converges to a function $G^{\prime}\left(z, p^{\beta}\right)$ with $\mathfrak{M}^{f}\left(G^{\prime}\left(z, p^{\beta}\right)\right)=1$ and $p_{i} \rightarrow z_{0}$. Hence $p^{\beta}=f\left(z_{0}\right)$. Let p_{0} be a fixed point in G. Let q_{i} be a point such that q_{i} is so near F_{i} that $G^{\prime}\left(p_{0}, q_{i}\right) \leqq \frac{1}{i}$. Then $\lim _{i} G(z$, $\left.q_{i}\right)=0$. For any i we can find $G^{\prime}\left(z, p_{i}^{\prime}\right)$ such that p_{i}^{\prime} lies on a curvc connecting p_{i} and q_{i} and that $G\left(p_{0}, p_{i}^{\prime}\right) \rightarrow a\left(G^{\prime}\left(p_{0}, p^{\beta}\right)\right.$ as $i \rightarrow \infty$, where $0<a<1$. Also we choose a subsequence $\left\{p_{j}^{\prime}\right\}$ from $\left\{p_{i}^{\prime}\right\}$ so that $p_{i}^{\prime} \rightarrow z_{0}$ (relative to L-topology) and $G^{\prime}\left(z, p_{j}^{\prime}\right) \rightarrow p^{\beta^{\prime}}$ (relative to M-topology) : $p^{\beta^{\prime}} \neq p^{\beta}$. Then since $p_{j}^{\prime} \in G_{j}^{\prime}, p_{j}^{\prime}=$ $f\left(p_{j}^{\prime}\right)$ and $p_{j}^{\prime} \xrightarrow{L} z_{0}$ but $f\left(p_{j}^{\prime}\right) \xrightarrow{M} p^{\beta^{\prime}} \neq p^{\beta}=f\left(z_{0}\right)$. Hence $f(p)$ is not continuous at z_{0}.

We call the harmonic dimension of $p \in(\partial G+B)$ relative to G and $R-$ R_{0} the number of linearly independent F_{0}.S.H.s with finite \mathfrak{M}^{f} in G and R $-R_{0}$ which are harmonic in G and $R-R_{0}$ respectively. Then by Lemma 1 we have the following
11) If μ is canonical, $\mathfrak{M}^{f}(U(z))=\int d \mu(p)$. See Theorem 6 of 1$)$.

Corollarly. Harmonic dimension of p relative to $R-R_{0}$ is equal to that of p relative to G.

Applications to extremisations. Let $U(z)$ be an F_{0}.S.H. in $R-R_{0}$ with $\mathfrak{M}^{f}(U(z))<\infty$. Then there exists a canonical distribution μ such that $U(z)=$ $\int L(z, p) d \mu(p)^{12)}$ and $\int d \mu(p)=\mathfrak{M}^{f}(U(z))$. Put $V(z)=U(z)-{ }_{c}^{R} U(z)$. Then $V(z)=\int\left(L(z, p)-{ }_{c}^{R} L(z, p)\right) d \mu(p)=\int N(z, q) \delta(p) d \mu(p)$, where $q=f(p)$ and $\delta(p)$ $=1$ or 0 according as $p \in G+\stackrel{L}{B}(G)$ or not. Hence $V(z)$ is an F.S.H. in G with $\mathfrak{M}^{f}(V(z)) \leqq \int \delta(p) d \mu(p)<\infty$ and $U(z)-V(z)={ }_{C G} U(z)$ is full harmonic in G. We denote $V(z)$ by ${ }_{\text {inex }} U(z)$. Let $V^{\prime}(z)$ be an F.S.H. in G with $\mathfrak{M}^{f}(V(z))$ $<\infty$. Then $V(z)$ is a potential such that $V(z)=\int_{G+B_{1}} N(z, q) d \mu(q)^{13)}$ and $\int d \mu(q)$ $=\mathfrak{M}^{f}\left(V^{\prime}(z)\right)$. Put $U^{\prime}(z)=\int L(z, p) d \mu(q)$, where $p=f^{-1}(q)$. Then $U^{\prime}(z)$ is an F_{0}. S.H. in $R-R_{0}$ with $\mathfrak{M}^{f}\left(U^{\prime}(z)\right) \leqq \int d \mu(q)$ and $U^{\prime}(z)-V(z)$ is full harmonic in G. We denote $U^{\prime}(z)$ by ${ }_{e x} V^{\prime}(z)$. Then $U^{\prime}(z)-{ }_{C G} U^{\prime}(z)=V^{\prime}(z)$.

Let $\left\{G_{n}\right\}$ be an exhaustionof G with compact relative boundary ∂G_{n}. Since ${ }_{a_{n}} V^{\prime}(z)$ is full harmonic in $G-\bar{G}_{n}$, the solution of Neumann's problem (to obtain an F_{0}.S.H. $W(z)$ in $R-R_{0}$ such that $W(z)-a_{n} V^{\prime}(z)$ is full harmonic in G_{n+i+j} and $W(z)$ is full harmonic in $G-G_{n+i}$) can be obtained by smooting process by dist $\left(\partial G_{n+i}, \partial G_{n+i+j}\right)>0$ for a given singularity of ${a_{n}}_{n} V(z)$ in \bar{G}_{n} and its solution is unique. It is evident that this solution coincides with ex $\left(\theta_{n} V^{\prime}(z)\right)$. Clearly ${ }_{e x}\left(\theta_{n} V^{\prime}(z)\right) \uparrow$ as $n \rightarrow \infty$. On the other hand, $f^{-1}(p): p \in G+B_{1}$ is continuous, we have ${ }_{e x}\left(V^{\prime}(z)\right)=\lim _{n=\infty}\left({ }_{e x G_{n}} V^{\prime}(z)\right)$. Hence ${ }_{e x} V^{\prime}(z)$ is the least F_{0}. S.H. in $R-R_{0}$ such that ${ }_{e x} V^{\prime}(z)-V(z)$ is full harmonic in G. We have easily the following

Theorem 3. 1). Let $U(z)$ de an F_{0}.S.H. in $R-R_{0}$ with $\mathfrak{M}^{f}(U(z))<\infty$. Then ${ }_{e x}\left(i_{\text {inex }} U(z)\right) \leqq U(z)$ and ${ }_{e x}\left({ }_{i n e x} U(z)\right)=U(z)$ if and only if the canonical distribution of $U(z)$ has no mass on $C G$.
2). Let $V(z)$ be an F.S.H. in G with $\mathfrak{M}^{f}(V(z))<\infty$. Then

$$
i_{i n e x}(e x V(z))=V(z)
$$

Department of Mathematics Hokkaido University
(Received June 30, 1966)
12) See 4).
13) See 1).

[^0]: 1) Z. Kuramochi: Superharmonic functions in a domain of a Riemann surface. Nagoya Math. J., to appear.
[^1]: 10) Becaus $\int C_{G} L(z, p) d \mu(p)=c G\left(\int L(z, p) d \mu(p)\right)$. See Theorem 1 of 1$)$.
