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Let $R$ be a Riemann surface. Let $G$ be a domain in $R$ with relative
boundary $\partial G$ of positive capacity. Let $U(z)$ be a positive superharmonic
function in $G$ such that the Dirichlet integral $ D(\min(M, U(z)))<\infty$ for every
$M$. Let $D$ be a compact domain in $G$ . Let $DU^{M}(z)$ be the lower envelope
of superharmonic functions $\{U_{n}(z)\}$ such that $U_{n}(z)\geqq\min(M, U(z))$ on $D+\partial G$

except a set of capacity zero, $U_{n}(z)$ is harmonic in $G-D$ and $U_{n}(z)$ has M.D.I.
(minimal Dirichlet $integral$) $\leqq D(\min(M, U(z))<\infty$ over $G-D$ with the same
value as $U_{n}(z)$ on $\partial G+\partial D$ . Then $DU^{M}(z)$ is uniquely determined. Put $DU(z)=$

$\lim_{M=\infty}DU^{\psi}(z)$ . If for any compact domain D $DU(z)=U(z)$ or $DU(z)\leqq U(z)$ , we call

$U(z)$ a full harmonic (F.H.) or a full superharmonic (F.S.H.) in $G$ respectively.
If $U(z)$ is an F.S.H. in $G$ and $U(z)=0$ on $\partial G$ except a set of capacity zero,
$U(z)$ is called an $F_{0}$ .S.H. in $G$ . Let $U(z)$ be an F.S.H. in $G$ . Then $ DU(z)\uparrow$

as $ D\uparrow$ . For a non compact domain $D$, put $U(z)=\lim U(z)$ , where $\{G_{n}\}$ is
$n=\infty\theta_{n}\cap D$

an exhaustion of $G$ with compact relative boundary $\partial G_{n}(n=0,1,2\cdots)$ .
$\mathfrak{M}^{f}(U(z))$ of an $F_{0}$ . S.H. $U(z)$ in $G$ . Let $D$ be a domain in $G$ . Suppose

there exists at least one $C_{1}$-function $V(z)$ in $G-D$ such that $V(z)=1$ on $D$ ,
$=0$ on $\partial G$ except a set of capacity zero and $ D(V(z))<\infty$ . Let $\omega(D, z, G)$ be
a harmonic function in $G-D$ such that $0$) $(D, z, G)=1$ on $D$ , $=0$ on $\partial G$

except a set of capacity zero and $\omega(D, z, G)$ has M.D.I. over $G-D$ . We call
$\omega(D,z,G)$ a C.P. (capacitary potential) of $D$ . Let $U(z)$ be an $F_{0}$.S.H. in $G$ .
Then $ Cg_{M}D\langle q_{M}U(z))=MD(\omega(g_{M}, z, G))\uparrow$ as $M\rightarrow 0^{1)}$ where $g_{M}=E[z:U(z)>M]$ .

Put $\mathfrak{M}^{f}(U(z))=\lim_{CM\rightarrow g_{M}}\frac{1}{2\pi}D(g_{M}U(z))$ .
$\mathfrak{M}^{f}(U(z))$ of an F.S.H. $U(z)$ in $G$ . For any compact domain $D$ in $G$ ,

if we can define functions $U_{n}(z)$ such that $U_{n}(z)$ is superharmonic in $G,$ $U_{n}(z)$

is harmonic in $G-D,$ $U_{n}(z)\geqq\min(M, U(z))$ on $D,$ $U_{n}(z)=0$ on $\partial G$ except

a set of capacity zero and $U_{n}(z)$ has M.D.I. over $G-D$ . Let $0U^{M}(z)$ be the
lower envelope of $\{U_{n}(z)\}$ . Put $D0U(z)=\lim_{M=\infty}D0U^{M}(z)$ (clearly $D0U(z)\leqq DU(z)$).

1) Z. Kuramochi: Superharmonic functions in a domain of a Riemann surface. Nagoya

Math. J., to appear.
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Since $D$ is compact, $D0U(z)=0$ on $\partial G$ except a set of capacity zero. For a non
compact domain $D,$ $D0U(z)$ is defined as $DU(z)$ . For $U(z)$ , put $\mathfrak{M}^{f}(U(z))=\lim_{n=\infty}\mathfrak{M}$

‘

$(_{e_{n}^{0}}U(z))$ , where $\{G_{n}\}$ is an exhaustion of $G$ with compact relative boundary $\partial G_{n}$ .
Let $\{R_{n}\}$ with compact relative boundary $\partial R_{n}(n=0,1,2, \cdots)$ Let $U(z)$ be

an $F_{0}$ . S.H. in $R-R_{0}$ such that $U(z)=0$ on $\partial R_{0}$ . Consider $R-R_{0}$ as $G$ . Then
$DU(z)$ is defined. In this case we say that $DU(z)$ is defined relative to $R-R_{0}$ .
It is clear that the mapping $U(z)\rightarrow DU(z)$ depends on the domain ($G$ or $R-$

$R_{0})$ in which $DU(z)$ is defined. In the following we use $DU(z)$ relative to $R$

$-R_{0}$ which will be denoted by $DRU(z)$ to distinguish from $DU(z)$ (relative to $G$).
We understand $DU(z)$ (without $R$ on $D$) means $DU(z)$ of $U(z)$ relative to $G$ .

Martin topologies on $R-R_{0}$ and on a subdomain $G\subset(R-R_{0})$ . Let
$N(z,p)$ bs an N-Green’s function of $G$ such that $N(z,p)$ is positively harmonic
in $G-p,$ $N(z,p)=0$ on $\partial G$ except a set of capacity zero, $N(z,p)$ has a loga-
rithmic singularity at $p$ and $N(z,p)$ has M. D.I. (where Dirichlet integral is
taken with respect to $N(z,p)+\log|z-p|$ in a neighbourhood of $p$). We sup-
pose N-Martin topology is defined on $G+B$ using $N(z,p),s$ and the distance
between $p_{1}$ and $p_{2}$ is given as

$\delta(p_{1}, p_{2})=\sup_{z\epsilon D}|\frac{N(z,p_{1})}{1+N(z,p_{1})}-\frac{N(z,p_{2})}{1+N(z,p_{2})}|$ ,

where $D$ is a fixed compact domain and $B$ is the set of the ideal boundary.
Let $L(z,p)$ be an N-Green’s function of $R-R_{0}$ with pole at $p$ . Then also
N-Martin topology is introduced on $R-R_{0}+B^{L}$ with metric:

$\delta(p_{1}, p_{2})=\sup_{z\text{\’{e}} R_{1}}|\frac{L(z,p_{1})}{1+L(z,p_{1})}-\frac{L(z,p_{2})}{1+L(z,p_{2})}|$ ,

where $B^{L}$ is the set of the ideal boundary points.
In the following for simplicity we call above two topogies $L$ and N-topologies.

Let $p\in R-R_{0}+B_{1}^{L}$ ( $B_{1}^{L}$ is the set of minimal boundary points of $R-R_{0}$).

If $ceRL(z,p)<L(z,p)$ ($CG$ is thin at $p$), we denote by $p^{L}\in G$ . Then

Theorem 1. Suppose $p\in R-R_{0}+B_{1}^{L}$ and $ p^{L}\in$ G. Then $U(z,p)=L(z,p)$
$-N(z,p)$ is an $F_{0}$ . S.H. in $G$ with $D(\min(M, U(z)))\leqq 2\pi M$, whence $\mathfrak{M}^{f}(U(z,p))$

$\leqq 1$ .
Proof. $Nz,p$) $:p\in R-R_{0}+B^{L}$ is contintinuous on $\partial G$ except $p$ . Hence

CGRL $(z,p)=L(z,p)$ on $\partial G$ and $U(z,p)=0$ on $\partial G$ except a set of capacity zero.
Case 1. $p\in G$ . In this case, clearly $U(z,p)=N(z,p)$ and $D(\min(M, U(z,p))$
$\leqq 2\pi M$ .
Case 2. $p\in\partial G$ . Put $G_{n}=G+v_{n}(p)$ , Then $CG_{n}\uparrow CG$ and $c^{R}e_{n}L(z,p)\uparrow_{C\theta}^{R}L(z,p)$
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as $ n\rightarrow\infty$ , where $v_{n}(p)=E[z$ : dist $(z,p)<\frac{1}{n}]$ . By $p\in G_{n}$ , we have

$D(\min(M, U(z,p))\leqq 1_{\frac{im}{n}}D(\min(M, L(z,p)^{R}-ce_{n}L(z,p)))\leqq 2\pi M$

Case 3. $p\in B_{1}^{L}-B_{s}^{L}$ . In this case it was proved2) $D(\min(M, U(z,p))\leqq 2\pi M$,

where $B_{S}^{L}$ is the set of singular points, $i.e$ . set of point $p$ such that $\omega(p,$ $z,$ $R$

$-R_{0})>0$ and $B_{1}^{L}$ is the set of minimal boundary points of $R-R_{0}$ .
Case 4. $p\in B_{8}^{L}$ . It was proved only $ D(U(z,p))<\infty$ but as case 3 it can be
proved $D(\min(M, U(z,p)))\leqq 2\pi M$.

Hence $RDU(z,p)$ can be defined. Now $CG+DR(CRGL(z,p))=_{ce}^{R}L(z,p)$ by $CG+$

$D)\subset CG$ and $CG+DRL(z,p)\leqq L(z,p)$ . Hence $DU(z,p)=_{ce+D}^{R}(L(z,p)_{C\Theta}^{R}-L(z,p))=$

$c^{R}\Theta+DL(z,p)^{R}-C\theta L(z, p)^{3)}\leqq L(z,p)^{R}-CGL(z,p)=U(z,p)$ . By $ D(\min(M, U(z, p)))\leqq$

2rM we have at once $\mathfrak{M}^{f}(U(z,p))\leqq 1$ . Thus $U(z,p)$ is an $F_{0}$.S.H. in $G$ with
$\mathfrak{M}^{f}(U(z,p))\leqq 1$ .

Lemma 1. 1). Let $p_{i}\in R-R_{0}$ and $p_{i}^{L}\rightarrow p\in R-R_{0}+B^{L}(p_{i}$ tends to $p$

relative to L-topology). Then $L(z,p)-\lim_{C\theta}_{\overline{i}}^{R}L(z,p_{i})\leqq L(z,p)_{C\theta}^{R}-L(z,p)$ .
2). Let $p_{i}^{L}\rightarrow p^{\alpha}\in R-R_{0}+B_{1}^{L}$ and $p_{0}^{M}\rightarrow p^{8}\in G+B:p_{\ell}\in G$ . Then

$N(z,p^{\beta})=(1-a)(L(z,p^{a})^{R}-C\Theta L(z,p^{\alpha}))$ : $1\geqq a\geqq 0$ .

Proof of 1). For any $\epsilon>0$ we can find a number $n_{0}$ such that $ c^{R}eL(z,p^{\alpha})\leqq$

$ c^{R}G\cap R_{n}L(z,p^{\alpha})+\epsilon$ for $n\geqq n_{0}$ . Since $L(z,p_{i})\rightarrow L(z,p^{\alpha})$ on $CG\cap R_{n},$
$\varliminf_{i^{-}}cReL(z,p_{i})$

$\geqq\varliminf_{C\theta\cap R_{n}}RL(z,p_{i})\underline{i}\geqq_{c^{R}}\Theta L(z,p^{a})-\epsilon$ . Let $\epsilon\rightarrow 0$ . Then we have (1).

Proof of 2). $L(z,p_{i})_{CG}^{R}-L(z,p_{i})=N(z,p_{i})$ in $G$ for $p_{i}\in G$ . By the as-
sumption $\lim_{i}L(z,p_{i})$ and $\lim_{i}N(z,p_{i})$ exist, whence $\lim_{i}cReL(z,p_{i})$ exists. We

denote this limit by $U(z)$ . Let $\mu$ be a canonical mass distribution4) of $U(z)$

on $R-R_{0}+B_{1}^{L}$ . Assume $\mu$ has a positive mass in int $(G\cap Cv_{n}(p^{a}))$ (int $G$

means the interior of $G$ relative to L-topology and $v_{n}(p^{\alpha})$ is a neighbouhood
of $p^{\alpha}$ relative to L-topology). Then we can find a number $n_{0}$ such that $G_{n_{0}}$

has a positive mass on $G_{n}\cap Cv_{n}(p^{\alpha})$ , where $G_{n}=E[z\in R-R_{0}+B^{L}$ : dist $(z, CG)$

$>\frac{1}{n}]$ . Since dist $(CG+v_{n+i}(p^{\alpha}), G_{n_{0}}-v_{n}(p^{\alpha})))>0$ ,

2) Z. Kuramochi: Correspondence of boundaries of Riemann surfaces. Journ. Fac.
Sci. Hokkaido Uni., XVII (1963). See page 101.

3) If $p\in G,$ $U(z,p)=N(z,F)$ , we suppose $p\in B^{G}$ . Then $L(z, p)$ is harmonic in $R-R_{0}$,

whence $supL(z,p)<\infty$ on a compact domin $D$ and it is clear $DU(z)=c\delta_{+D}(L(z,p)-cBL(z,p))$ .
If $D$ is non compact, consider $D\cap G_{n}$ and let $ n\rightarrow\infty$ .

4) Z. Kuramochi: Potentials on Riemann surfaces, Journ. Fac. Sci. Hokkaido Univ.,

XVI (1962).
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$c^{R}\theta+v_{n+i}(p^{\alpha})U(z)<U(z)^{5)}$

Hence by $ce+v_{n+ip^{\prime L(z,p^{\alpha})}}()=L(z,p^{\alpha})$ (for $p^{\alpha}\in R-R+B_{1}^{L}$) we have
$N(z,p^{\beta})=L(z,p^{a})-U(z)>c^{R}e+v_{n+i}(p)L(z,p^{\alpha})_{C\theta+v_{n+i}(p^{\Phi})}^{R}-U(z)$

$=_{C\theta+v_{n+i}(p^{\Phi})(L(z,p^{a})-U(z))=_{v_{n+l}(p^{a})}(L(z,p^{a})-U(z))}^{R}$ . (1)

On the other hand, $L(z,p^{\alpha})-U(z)=N(z,p^{\beta})$ is an $F_{0}$.S.H. in $G$ , whence
$v_{n+i}(p^{\alpha})(L(z,p^{\alpha})-U(z))\leqq L(z,p^{\alpha})-U(z)$ . (2)

(1) contradicts (2). Hence $\mu=0$ on $Cv_{n}(p)\cap intG$ . Let $ n\rightarrow\infty$ . Then $\mu=0$

except on $p+CG$ . put $V(z)=\int L(z,p)d\mu^{\prime}(p)$ , where $\mu^{\prime}$ is the restriction of
$\mu$ on $CG$ . Let $a$ be the mass of $\mu$ at $p$ . Then $1\geqq a\geqq 0,$ $CGRV(z)=V(z)$ and
$U(z)=V(z)+aL(z,p^{\alpha})$ . Now $V(z)=(1-a)L(z,p^{\alpha})$ on $\partial G$ excpt a set of ca-
pacity zero. Hence $V(z)=_{C\theta}^{R}V(z)=(1-a)_{C\theta}^{R}L(z,p^{\alpha})$ . Thus $U(z)=(1-$
$a)_{C\theta}^{R}L(z,p^{a})+aL(z,p^{\alpha})$ and

$N(z,p^{\beta})=L(z,p^{\alpha})-\lim_{i}c^{R}eL(z,p_{i})=(1-a)((L(z,p^{\alpha})_{C\theta}^{R}-L(z,p^{\alpha}))$ .

We denote by $B^{L}(G)$ the set of points $p$ such that $p\in R-R_{0}+B_{1}^{L},$ $p\in B$ and
$p\in GL$ Clearly $B(G)L$ is an F. set relative to L-topology by the upper semi-
continuity of $L(z, p)_{C\Theta}-RL(z,p)$ and if $p\in\partial G,$ $p\in B(G)L$ if and only if $p$ is an
irregular point for the Dirichlet problem in $G$ by Lemma 1. (2).

Lemma 2. Let $p_{i}\in B(G)LL+G$ and $p_{1}\neq p_{2}$ . Then $ L(z,p_{1})_{C\Theta}-RL(z,p_{1})\neq$

$L(z,p_{2})_{CG}-RL(z,p_{2})$ .
Assume $L(z,p_{1})_{C\theta}-RL(z,p_{1})=L(z, p_{2})_{C\Theta}^{R}-L(z,p_{2})=U(z)$ . Let $n$ be a

number such that dist $(v_{n}(p_{1}), v_{n}(p_{2,L}))>0$ , where $v_{n}(p_{i})$ is a neigebouhood of
$p_{i}$ relative to L-topology. Now $p_{2}\in v_{n}(p_{2})$ imply

$L$

$(G\cap v_{n}(p_{2}))\ni p_{2}.6)$

Let $V_{n}=G-v_{n}(p_{1})$ . Then $V_{n}\supset(G\cap v_{n}(p_{2}))\ni p_{2}L$ Whence
$c^{R}r_{n}^{L(z,p)<L(z,p)}$ .

By $CV_{n}\supset CG$ we have $c^{R}V_{n}(c^{R}eL(z,p_{i}))=_{C\theta}^{R}L(z,p_{i}):i=1,2$ . Now $cr_{n}RL(z,p)\downarrow as$

$ n\rightarrow\infty$ by $ CV_{n}\downarrow$ . Hence there exist a point $z_{0}$ in $V_{n_{0}}$ , a number $n_{0}$ and a
const. $\delta>0$ such that $ c^{R}V_{n}L(z_{0},p_{2})<L(z_{0},p_{2})-\delta$ for $n\geqq n_{0}$ . Hence

$ c^{R}V_{n}(U(z_{0}))=_{CN_{n}}^{R}L(z_{0},p_{2})_{C\theta}-RL(z_{0},p_{2})<cReL(z_{0},p_{2})^{R}-CGL(z_{0},p_{2})-\delta$

$=U(z_{0})-\delta$ : $n\geqq n_{0}$ . (3)

5) See page 60 of 4).
6) See page 99 of 2).
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By $CV_{n}+(v_{n}(p_{1})\cap CG)\supset v_{n}(p_{1})$ , we have

$c^{R}V_{n}L(Z,p_{1})+c^{R}v_{n}(p_{1})R$

$L$

We proved if a domain $\Omega\in p$ , $\lim_{n}v_{\mathcal{R}}(p)\cap c^{R}QL(z,p)=0^{7)}$ Hence for any $\epsilon>0$

there exists a number $n^{\prime}$ such that $ CV_{n}RL(z_{0},p_{1})\geqq L(z_{0},p)-\epsilon$ for $n\geqq n^{\prime}$ . Hence

$c^{R}V_{n}U(z_{0})=_{CV_{n}}^{R}L(z_{0},p_{1})_{CV_{n}}^{R}-(cReL(z_{0},p_{1}))=_{CV_{n}}^{R}L(z_{0},p_{1})-R$

$\geqq L(z_{0},p)_{CG}^{R}-L(z_{0},p_{1})-\epsilon=U(z_{0})-\epsilon$ , for $n\geqq n^{\prime}$ . (4)

By (3) and (4) $ U(z_{0})-\delta\geqq U(z_{0})-\epsilon$ . This is a contradiction. Hence $L(z,p_{1})$

$-cReL(z,p_{1})\neq L(z,p_{2})_{C\theta}-RL(z,p_{2})$ .
Let $p^{\alpha}$ be a point in $G+B^{L}(G)$ . If there exists a sequence $\{p_{i}\}$ such that

$p_{i}\sim^{L}p^{a}$ and $p_{i}^{M}\rightarrow p^{\beta}\in G+B$ , we say that $p^{\theta}$ lies on $p^{\alpha}$ . We denote the set of
points $p$ lying on $p^{\alpha}$ by $\mathfrak{p}(p^{\alpha})$ . Then

Lemma 3. Let $p^{\alpha}\in G+B^{L}(G)$ . Then $\mathfrak{p}(p^{\alpha})$ contains only one point $p^{\beta}$

of $G+B_{1}$ and $L(z,p^{\alpha})_{C\Theta}^{R}-L(z,p)=N(z,p^{\beta})$ , where $B_{1}$ is the set of minimal
boundary points of $G$ relative to N-topology. We denote such $p^{\beta}$ by $f(p.)$ .

Let $p_{i}^{L}\rightarrow p^{\alpha}$ and $p_{i}^{M}\rightarrow p^{\beta}$ . Then by Lemma 1.2) $N(z,p^{\beta})=(1-a_{\beta})(L(z,p^{\alpha})$

$-ceRL(z,p^{a}))$ . Hence any function $N(z,p^{\beta})$ corresponding to $p^{\alpha}$ is a submultiple
of a fixed function and there exists at most one minimal or inner point $p^{\beta}$

‘ of
$G+B_{1}$ in $\mathfrak{p}(p^{\alpha})$ such that $\mathfrak{M}(p^{\beta^{\prime}})=1(\mathfrak{M}(p^{\beta^{\prime}})=\mathfrak{M}^{f}(N(z,p^{\beta^{\prime}}))=1$ is a necessary

condition for $p^{\beta^{\prime}}$ to be minimal).8) Let $p^{\alpha}\in G+B^{L}(G)$ and $v_{n}(p^{\alpha})$ be a neigh-
bourhood of $p^{\alpha}$ relative to L-topology and $\overline{v}_{n}(p^{\alpha})$ be the closure of $v_{n}(p_{\alpha})$

relative by M-topology. Then by $p\in G+B^{L}(G)L(z,p^{a})_{CG}^{R}-L(z,p^{\alpha})=\delta_{\beta}N(z,p^{\beta})$ :

$\delta_{\beta}=\frac{1}{1-a_{\beta}}$ and by $v_{n}(p^{\alpha})L(z,p^{\alpha}=L(z,p)$ and $CG+v_{n}(p^{a})\supset CG$ we have

$\delta_{\beta}N(z,p^{\beta})=L(z,p^{\alpha})_{C\theta}^{R}-L(z,p^{\alpha})=_{C\Theta+v_{n}(p^{a})(L(z,p^{\alpha})_{CG}^{R}}-L(z,p^{a}))$

$=\delta_{\beta_{\overline{v}_{n}(p^{\alpha})}}N(z,p^{\beta})$ .

Let $ n\rightarrow\infty$ . Then $N(z,p^{\theta})=_{F}N(z,p^{\beta})>0$ , where $F=\bigcap_{n>0}\overline{v}_{n}(p_{\alpha})$ is a M-closed

set, whence $N(z,p^{\beta})$ is representable by a canonical mass distribution on $F^{9)}$

This implies $\mathfrak{p}(p^{\alpha})$ contains at least one point in $G+B_{1}$ . Thus $\mathfrak{p}(p^{\alpha})$ contains
only one point $p^{*}$ in $G+B_{1}$ and $(1-a^{*})(L(z,p^{a})^{R}-ceL(z,p^{a}))=N(z,p^{*})$ . On the
other hand, $\mathfrak{M}^{f}(L(z,p)_{C\theta}-RL(z,p))\leqq 1$ by Theorem 1 and $\mathfrak{M}^{f}(N(z,p^{*}))=1$ .

7) See 6).
8) See Lemma 4 of 1).

9) See 5).
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Hence $a^{*}=0$ and $L(z,p^{\alpha})_{C\theta}^{R}-L(z,p^{\alpha})=N(z,p^{*})$ .
Theorem 2. Let $p^{\beta}$ be a point in $G+B_{1}$ . Let $f^{-1}(p^{\beta})$ be the set of

points $p$ in $R-R_{0}+B^{L}$ (not only in $G+B(G)$)
$L$

such that $L(z,p)_{C\Theta}-RL(z,p)=$

$N(z,p^{\beta})$ . Then $f^{-1}(p^{\beta})$ consists of only one point $p\in G+B(G)L$ Hence the
mapping $f(p^{\alpha}):p^{\alpha}\in G+B(G)L$ is one-to-one manner between $G+B^{L}(G)$ and
$G+B_{1}$ and further $f^{-1}(p^{\beta})$ is a continuous function of $p^{\beta}$ in $G+B_{1}$ , but $f(p^{\alpha})$

is not necessarily continuous in $G+B(G)L$

Let $p\in f^{-1}(p^{\beta})$ . Then $L(z,p)_{CG}^{R}-L(z,p)$ is minimal in $G$ and is equal to
$N(z,p^{\beta}):p\in G+B_{1}$ . There exists a canonical distribution $\mu(p^{a})$ on $R-R_{0}+$

$B_{1}^{L}$ such that $L(z,p)=\int L(z,p^{\alpha})d\mu(p^{\alpha})$ . Hence

$N(z,p^{\beta})=L(z,p)_{C\Theta}-RL(z,p)=\int ce^{L(z,p^{\alpha}))d\mu(p^{\alpha})^{10)}}$.
Now by Lemma 3 $L(z,p^{a})_{CG}^{R}-L(z,p^{\alpha})=N(z, q)$ is minimal in $G$ , where $p^{\alpha}\in G$

$+B(G)L$ and $q=f(p^{\alpha})$ . Clearly $L(z,p^{\alpha})_{CG}^{R}-L(z,p^{\alpha})=0$ for $p^{\alpha}\epsilon c+B^{L}(G)$ . Since
$N(z,p^{\beta})$ is minimal $\mu(p^{a})$ must be a point mass $a$ at $p^{\prime}\in R-R_{0}+B_{1}^{L}$ and clearly
$p^{\prime}\in G+B^{L}(G)$ . Hence $N(z,p^{\beta})=a(L(z,p^{\prime})_{C\Theta}-RL(z,p)):a>0$ . But $\mathfrak{M}^{f}(N(z,p^{\beta}))$

$=1$ and $\mathfrak{M}(L(z,p^{\alpha})_{C\theta}-RL(z,p))\leqq 1$ by Theorem 1, hence $a=1$ and $N(z,p^{\beta})=$

$L(z,p^{\prime})_{CG}-RL(z,p^{\prime})$ : $p^{\prime}\in c_{+B(G)}^{L}$ .
Suppose there exist two points $p_{1}$ and $p_{2}$ in $G+B(G)L$ such that $L(z,p_{i})-$

$ceRL(z,p_{i})=N(z,p^{\beta})$ : $i=1,2$ . Then by Lemma 2 $p_{1}=p_{2}$ . Thus $f^{-1}(p^{\beta})$ is
uniquely determined and $f^{-1}(p^{\beta})\in G+B^{L}(G)$ .

We show $f^{-1}(p^{\beta})$ is continuous in $G+B_{1}$ . Let $p_{i}^{\beta}\in G+B_{1}$ and $ p_{i}^{\beta}\rightarrow p^{\beta}M\in$

$G+B_{1}$ as $ i\rightarrow\infty$ and let $p_{i}^{\alpha}=f^{-1}(p_{i}^{\beta})$ . Then $\{p_{i}^{\alpha}\}$ has at least one limiting
point $p$ in $\overline{R-R_{0}}+B^{L}$, since $R-R_{1}+B^{L}$ is compact. Let $\{p_{j}^{\alpha}\}$ be a sub-
sequence of $\{p_{i}^{\alpha}\}$ such that $p_{j}^{\alpha}\rightarrow p$ and $p_{j}^{\beta}\rightarrow p^{\beta}$ : $p_{j}^{\beta}=f(p_{j}^{\alpha})$ . Then $\lim_{j}L(z,p_{j}^{\alpha})=$

$L(z,p)$ , $\lim N(z,p_{j}^{\beta})=N(z,p^{\beta})$ and $\lim_{C\theta}^{R}L(z,p_{j}^{\alpha})$ exists, $i.e$ . $L(z,p)-\lim_{C\Theta}^{R}L(z,p_{j}^{\alpha})$

$j$ $j$

$B^{L}(G).By=N(z,p^{\beta})$

.
$\lim_{CG}^{Let}RL(z,p_{j}^{\alpha})\geqq cRe(\lim_{jj}^{T}L(z, p_{j}^{\alpha}))=_{C\theta}^{R^{-}}L(z,p),wehavep^{\prime}=f^{-1}(p^{\beta}).henL(z,p^{\prime})_{C\theta}^{R}L(z,p^{\prime})=N(z,p^{\beta})$

and $p^{\prime}\in G+$

$L(z,p)_{C\theta}-RL(z,p)\geqq L(z,p)-\lim_{j}cReL(z,p_{j}^{a})=N(z,p^{\beta})$ .

Let $\mu(q)$ be a canonical mass distribution of $L(z,p)$ on $R-R_{0}+B_{1}^{L}$ . Then
$L(z,p)=\int L(z, q)d\mu(q)$ and $\int d\mu(q)=1$ by

$\mathfrak{M}^{f}(L(z,p))=\frac{1}{2\pi}\int_{\partial R_{0}}\frac{\partial}{\partial n}L(z,p)ds$

10) Becaus $\int ceL(z,p)d\mu(p)=ce(JL(z,p)d\mu(p))$ . See Theorem 1 of 1).
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$=\int d\mu(p)=1$ . Now

$L(z,p)_{C\theta}-RL(z,p)=\int(L(z, q)_{CG}-RL(z, q))d\mu(q)=\int N(z, q^{\beta})\delta(q)d\mu(q)$ ,

where $\delta(q)=1$ or $0$ according as $q\in G+B(G)L$ or not and $q^{\beta}=f(q)\subset G+B_{1}$ .
Hence $\mathfrak{M}^{f}(L(z,p)^{R}-ceL(z,p))=\int\delta(q)d\mu(q)$ by Theorem 6.11) On the other hand,
by $N(z,p^{\beta})\leqq L(z,p)_{C\theta}^{R}-L(z,p),$ $\mathfrak{M}^{f}(N(z,p^{\beta}))=1\leqq \mathfrak{M}^{f}(L(z,p)^{R}-C\theta L(z,p))\leqq 1$ by
Theorem 1. Hence $\delta(q)=1$ if $\mu(q)>0$ and $\int d\mu(q)=1=\mathfrak{M}^{f}(L(z,p)_{CG}^{R}-L(z,p))$ .
Both $L(z,p)_{C\Theta}-RL(z,p)$ and $N(z, p^{\beta})$ are $F_{0}$.S.H.s in $G$ . Let $V_{M}=E[z:L(z,p)$

$-ceRL(z,p)>M]$ and $V_{M}^{\prime}=E[z:N(z,p)>M$. Then $V_{M}\supset V_{M}^{\prime}$ . $\mathfrak{M}^{f}(N(z,p^{\beta}))=$

$\frac{MD(\omega(V_{M}^{\prime},z,G))}{2r}=1$ for any $M$, since $N(z,p^{\theta})$ is minimal and $r_{M}N(z, p^{\beta})=$

$N(z,p^{\beta})$ . Also $1=\mathfrak{M}^{t}(L(z,p)_{C\theta}-RL(z,p))\geqq\frac{MD(\omega(V_{M},z,G))}{2\tau}\geqq\frac{MD(\omega(V_{N}^{\prime},z,G))}{2\pi}$

$=1$ , because $MD(\omega(V_{M}, z, G))\uparrow asM\rightarrow 0$ . Hence $V_{M}\supset V_{M}^{\prime}$ and $\omega(V_{M}, z, G)=$

$\omega(V_{M}^{\prime}, z, G)$ for any $M$ . This implies $L(z,p)_{CM}^{R}-L(z,p)=N(z,p^{\beta})$ and $p=$

$f^{-1}(p^{\beta})=p^{\prime}\in G+B^{L}(G)$ . Since any subsequence $p_{j}^{a}\rightarrow p^{\prime},$ $\{p_{i}^{\alpha}\}$ converges to
$f^{-1}(p_{\beta})$ as $p_{i}^{\beta}\rightarrow p^{\beta}$ .

We show $f(p^{\alpha})$ is not necessarily continuous. Let $R-R_{0}$ be $E[0<|z|<1]$
$=\Omega$ , and $F$ be a closed set on the real axis such that $z_{0}=0$ is an irregular

point for the Dirichlet problem of $G=\Omega-F$, where $F=\sum_{K=0}^{\infty}F_{K}$ and $F_{K}$ is a

segment. Then $L(z,p)$ of $\Omega$ and $N(z,p)$ of $G$ are Green’s functions $G(z,p)$

and $G^{\prime}(z,p)$ of $\Omega$ and $G$ respectively. Then by Lemma 3 there exists a
sequence $\{p_{i}\}$ such that $G(z,p_{i})$ converges to a function $G^{\prime}(z,p^{\beta})$ with
$\mathfrak{M}^{f}(G^{\prime}(z,p^{\beta}))=1$ and $p_{i}\rightarrow z_{0}$ . Hence $p^{\beta}=f(z_{0})$ . Let $p_{0}$ be a fixed point in $G$ .

Let $q_{i}$ be a point such that $q_{i}$ is so near $F_{i}$ that $ G^{\prime}(p_{0}, q_{i})\leqq\div\cdot$ Then $\lim_{i}G(z$,

$q_{i})=0$ . For any $i$ we can find $G^{\prime}(z,p_{i}^{\prime})$ such that $p_{i}^{\prime}$ lies on a curvc connecting
$p_{i}$ and $q_{i}$ and that $G(p_{0},p_{i}^{\prime})\rightarrow a(G^{\prime}(p_{0},p^{\beta})$ as $ i\rightarrow\infty$ , where $0<a<1$ . Also we
choose a subsequence $\{p_{j}^{\prime}\}$ from $\{p_{i}^{\prime}\}$ so that $p_{i}^{\prime}\rightarrow z_{0}$ (relative to L-topology)

and $G$ ‘ $(z,p_{j}^{\prime})\rightarrow p^{\beta^{\prime}}$ (relative to M-topology): $p^{\beta^{\prime}}\neq p^{\beta}$ . Then since $p_{j}^{\prime}\in G_{j}^{\prime},$ $p_{j}^{\prime}=$

$f(p_{j}^{\prime})$ and $p_{j}^{\prime}\rightarrow z_{0}L$ but $f(p_{j}^{\prime})\rightarrow p^{\beta^{\prime}}\neq p^{\theta}=f(z_{0})M$ Hence $f(p)$ is not continuous
at $z_{0}$ .

We call the harmonic dimension of $p\in(\partial G+B)$ relative to $G$ and $R-$

$R_{0}$ the number of linearly independent $F_{0}$ .S.H. $s$ with finite $\mathfrak{M}^{f}$ in $G$ and $R$

$-R_{0}$ which are harmonic in $G$ and $R-R_{0}$ respectively. Then by Lemma 1
we have the following

11) If $\mu$ is canonical, $\mathfrak{M}^{f}(U(z))=\{d\mu(p)$ . See Theorem 6 of 1).
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Corollarly. Harmonic dimension of $p$ relative to $R-R_{0}$ is equal to
that of $p$ relative to $G$ .

Applications to extremisations. Let $U(z)$ be an $F_{0}$ . S.H. in $R-R_{0}$ with
$\mathfrak{M}^{f}(U(z))<\infty$ . Then there exists a canonical distribution $\mu$ such that $U(z)=$

$\int L(z,p)d\mu(p)^{12)}$ and $\int d\mu(p)=\mathfrak{M}^{f}(U(z))$ . Put $V(z)=U(z)_{C\Theta}^{R}-U(z)$ . Then
$V(z)=\int(L(z,p)_{C\Theta}^{R}-L(z,p))d\mu(p)=\int N(z, q)\delta(p)d\mu(p)$ , where $q=f(p)$ and $\delta(p)$

$=1$ or $0$ according as $p\in G+B(G)L$ or not. Hence $V(z)$ is an F.S.H. in $G$

with $\mathfrak{M}^{f}(V(z))\leqq\int\delta(p)d\mu(p)<\infty$ and $U(z)-V(z)=_{CG}U(z)$ is full harmonic in
$G$ . We denote $V(z)$ by in $exU(z)$ . Let $V^{\prime}(z)$ be an F.S.H. in $G$ with $\mathfrak{M}^{f}(V(z))$

$<\infty$ . Then $V(z)$ is a potential such that $V(z)=\int_{e+B_{1}}N(z, q)d\mu(q)^{13)}$ and $\int d\mu(q)$

$=\mathfrak{M}^{f}(V^{\prime}(z))$ . Put $U^{\prime}(z)=\int L(z,p)d\mu(q)$ , where $p=f^{-1}(q)$ . Then $U^{\prime}(z)$ is an
$F_{0}$ . S.H. in $R-R_{0}$ with $\mathfrak{M}^{f}(U^{\prime}(z))\leqq\int d\mu(q)$ and $U^{\prime}(z)-V(z)$ is full harmonic
in $G$ . We denote $U^{\prime}(z)$ by $exV^{\prime}(z)$ . Then $U^{\prime}(z)-ceU^{\prime}(z)=V^{\prime}(z)$ .

Let $\{G_{n}\}$ be an exhaustionof $G$ with compact relative boundary $\partial G_{n}$ .
Since $e_{n}V$

‘
$(z)$ is full harmonic in $G-\overline{G}_{n}$ , the solution of Neumann’s problem

(to obtain an $F_{0}$ . S.H. $W(z)$ in $R-R_{0}$ such that $W(z)-e_{n}V^{\prime}(z)$ is full harmonic
in $G_{n+i+j}$ and $W(z)$ is full harmonic in $G-G_{n+i}$ ) can be obtained by smooting
process by dist $(\partial G_{n+i}, \partial G_{n+i+j})>0$ for a given singularity of $e_{n}V(z)$ in $G_{n}$ and
its solution is unique. It is evident that this solution coincides with $ex(G_{n}V^{\prime}(z))$ .
Clearly $ ex(e_{n}V^{\prime}(z))\uparrow asn-\infty$ . On the other hand, $f^{-1}(p):p\in G+B_{1}$ is con-
tinuous, we have $ex(V^{\prime}(z))=\lim_{n=\infty}(_{ex\Theta_{n}}V^{\prime}(z))$ . Hence $exV^{\prime}(z)$ is the least $F_{0}$.S.H.
in $R-R_{0}$ such that $xV^{\prime}(z)-V(z)$ is full harmonic in $G$ . We have easily
the following

Theorem 3. 1). Let $U(z)$ de an $F_{0}$ . S.H. in $R-R_{0}$ with $\mathfrak{M}^{f}(U(z))<\infty$ .
Then $ex(inexU(z))\leqq U(z)$ and $ex(inexU(z))=U(z)$ if and only $\iota f$ the canonical
distribution of $U(z)$ has no mass on $CG$ .

2). Let $V(z)$ be an F. S.H. in $G$ with $\mathfrak{M}^{f}(V(z))<\infty$ . Then

in $ex(exV(z))=V(z)$ .
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12) See 4).
13) See 1).


