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D. M. Topping conjectured in [1] that free (and therefore projective) vector
lattices are countably decomposable, that is, they do not contain more than
countable number of mutually orthogonal positive elements. The main purpose
of this paper is to prove this fact. In the case of countable generators, this
was essentially proved by E. C. Weinberg in [2].

First we reduce the problem to the case of finite generators making use
of an argument which can be applied to any free algebraic system; it provides,
for instance, a proof of the countable decomposability of free Boolean algebras.

Next we give a simple proof of the fact that every countably generated
semi-simple vector lattice is countably decomposable. (The semi-simplicity of
free vector lattices was shown in [1] and [2].)

Finally we show that the semi-simplicity is redundant in the above result
in the case of at most two generators and otherwise necessary.

1. Reduction to the finite case.
Let $L(A)$ be the free vector lattice generated by a set $A$ of generators

and $\{x_{\lambda}\}_{\lambda\in A}$ an uncountable orthogonal system of positive elements in $L(A)$ .
We assign, for every $\lambda\in\Lambda$ , a finite subset $A_{\lambda}$ of $A$ such that $x_{\lambda}$ is con-

tained in $L(A_{\lambda})$ considered as a sublattice of $L(A)$ .
Replacing $\{A_{\lambda}\}$ , if necessary, by a suitable uncountable subsystem, we can

suppose that every $A_{\lambda}$ is the disjoint union of a fixed subset $B$ and $C_{\lambda}$ where
$\{C_{\lambda}\}$ is mutually disjoint system and each $C_{\lambda}$ contains the same number of
elements. To prove this, first take a subsystem for which $A_{\lambda}$ contains the
same number of elements. Then, take a maximal subset $B$ of $A$ with the
property that $A_{\lambda}$ includes $B$ for more than countable unmber of $\lambda$ .

Finally, choose a maximal mutually disjoint subsystem among $\{A_{\lambda}-B\}$ .
By virtue of the maximality of $B$, this subsystem must be uncountable.

Let $C$ be a subset of $A$ which is disjoint from $B$ and contains the same
number of elements with $C_{\lambda}$ . Replacing the generators in $C_{\lambda}$ by those in $C$,
we obtain an isomorphism

$\varphi_{\lambda}$ : $L(A_{\lambda})\rightarrow L(B^{\cup}C)$ .
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Since $\varphi_{\lambda}$ and $\varphi_{\mu}$ can be extended at the same time to a homomorphism of
$L(A_{\lambda}A_{\mu})$ to $L(B^{\cup}C)\{\varphi_{\lambda}(x_{\lambda})\}_{\lambda- A}$, constitues an orthogonal system in $L(B^{\cup}C)$ .

Thus our problem is reduced to the case of finite generators.

2. The case of countable generators.

Let $L$ be a semi-simple vector lattice. Then $L$ can be considered as a
lattice of functions defined on a set $X$. Suppose $L$ is generated by functions
$f_{i}i=1,2,$ $\cdots$ .

$L$ can be considered as a sublattice of all continuous functions on $X$ if
we define the topology of $X$ as the weakest topology for which every $f_{l}$ is
continuous.

$X$ is separable by this topology and hence can not contain uncountable
mutually disjoint family of non-void open sets.

Thus $L$ must be countably decomposable.

3. The case of two generators.

Every free vector lattice with two generators is isomorphic to the lattice
$L$ of functions on the real line which is generated by the constants and the
identity. $L$ consists of those continuous functions which are linear except at
finite number of points.

Let $J$ be an ideal of $L$ and $\{f_{\lambda}\}_{\lambda\epsilon A}$ an uncountable system of positive
functions in $L$ with the property that every intersection $f_{\lambda\cap}f_{\mu}$ with $\lambda\neq\mu$ be-
longs to $J$. We are going to prove that some $f_{\lambda}$ itself belongs to $J$.

Let $S$ be the set of those points at which every function in $J$ vanishes.
If $S$ is empty, then every function in $L$ with compact support belongs to $J$

and hence, as can be seen easily, $L/J$ is isomorphic to a quotient of the direct
sum of a pair of two dimensional lexicographically ordered space; $L/J$ allows
at most only two mutually orthogonal elements.

Suppose $ S\neq\phi$ then the complement of $S$ is the union of countable or
finite family of mutually disjoint open intervals $ I_{f}i=1,2,\cdots$ . Let $\varphi$ be the
homomorphism of $L$ into the lattice $C(S)$ of continuous functions on $S$ defined
by restriction, then we have $\varphi(f_{\lambda})=0$ except for a countable number of $\lambda$ ,

since $C(S)$ , as has been shown in 2, is countably decomposable. So we can
suppose that every $f_{\lambda}$ belongs to the Kemel $L_{0}$ of $\varphi$ .

For every $i$ and every mutually different triple $\lambda,$ $\lambda_{2}$ and $\lambda_{3}$ in $\Lambda$ , at least
one of the restrictions of $f_{\lambda_{1}},f_{\lambda_{2}}$ and $f_{\lambda_{\theta}}$ to $I_{t}$ is the restriction to $I_{t}$ of a function
in $J$, by a similar reason as has been described for the case where $S$ is espty.

On the other hand, every function in $L_{0}$ , having the polygonal graph with
finite verteces, vanishes on $I_{t}$ except for a finite number of $i’ s$ . Therefore the
number of those $\lambda$ for which $f_{\lambda}\not\in J$ is at most countable.
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Thus we have proved that every quotient of $L$ and therefore every lattice
generated by two elements is countably decomposable.

4. A vector lattice which is generated by three elements and not
countably decomposable.

Let $L$ be the vector lattice of functions on the coordinated plane which
is generated by the constants and the two coordinate functions $g$ and $h$ where
$ q(\alpha, \beta)=\alpha$ and $ h(\alpha, \beta)=\beta$ . ($L$ is isomorphic to a free vector lattice with three
generators.)

Let $J$ be the ideal of $L$ which consists of all functions in $L$ whose sup-
ports are disjoint with the diaonal line.

For every real number $\alpha$ , we define the function $f_{\alpha}$ as

$f_{\alpha}=\{(q-\alpha)_{\cap}(\alpha-h)\}^{\cup}0$ .
The intersection of the support of $f_{\alpha}$ with the diagonal line cosists of only one
point $(\alpha, \alpha)$ and every $f_{\alpha\cap}f_{\beta}$ with $\alpha\neq\beta$ belongs to $J$.

So the images of $f_{a}’ s$ in the quotient lattice $L/J$ constitute an uncountable
orthogonal system.
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