# The inverse limit of the Burnside ring for a family of subgroups of a finite group 

Yasuhiro Hara and Masaharu Morimoto

(Received December 16, 2015; Revised April 9, 2016)


#### Abstract

Let $G$ be a finite nontrivial group and $A(G)$ the Burnside ring of $G$. Let $\mathcal{F}$ be a set of subgroups of $G$ which is closed under taking subgroups and taking conjugations by elements in $G$. Then let $\mathfrak{F}$ denote the category whose objects are elements in $\mathcal{F}$ and whose morphisms are triples $(H, g, K)$ such that $H, K \in \mathcal{F}$ and $g \in G$ with $g H^{-1} \subset K$. Taking the inverse limit of $A(H)$, where $H \in \mathcal{F}$, we obtain the ring $A(\mathfrak{F})$ and the restriction homomorphism $\operatorname{res}_{\mathcal{F}}^{G}: A(G) \rightarrow A(\mathfrak{F})$. We study this restriction homomorphism.


Key words: Burnside ring, restriction homomorphism, inverse limit.

## 1. Introduction

Let $G$ be a finite group. Let $\mathcal{S}(G)$ denote the set of all subgroups of $G$ and $\mathfrak{S}$ the subgroup category whose objects are all subgroups of $G$ and whose morphisms are all triples $(H, g, K)$ such that $H, K \in \mathcal{S}(G)$ and $g \in G$ with $g H^{-1} \subset K$. Here the source object of $(H, g, K)$ is $H$, the target object of $(H, g, K)$ is $K$, and for morphisms $(H, a, K)$ and $(K, b, L)$ in $\mathfrak{S}$, the composition $(K, b, L) \circ(H, a, K)$ in $\mathfrak{S}$ is defined to be $(H, b a, L)$. We remark that morphisms $(H, g, K)$ in $\mathfrak{S}$ are not maps. Let $\mathfrak{A}$ denote the category of abelian groups whose objects are all abelian groups and whose morphisms are all (group) homomorphisms. Let $A(G)$ denote the Burnside ring of $G$, i.e. the Grothendieck group of the category of finite $G$-sets. For $\alpha=[X]-[Y] \in A(G)$ and $H \in \mathcal{S}(G)$, the integer $\chi_{H}(\alpha)$ is defined to be $\left|X^{H}\right|-\left|Y^{H}\right|$, where $X$ and $Y$ are finite $G$-sets, and $\left|X^{H}\right|$ stands for the number of elements in the $H$-fixed point set $X^{H}$ of $X$. Let $A=\left(A_{*}, A^{*}\right): \mathfrak{S} \rightarrow \mathfrak{A}$ denote the Burnside ring functor, where $A_{*}$ and $A^{*}$ are covariant and contravariant functors respectively. That is, $A=\left(A_{*}, A^{*}\right)$ is a Mackey functor in the sense of [2] and $A(H)\left(=A_{*}(H)=A^{*}(H)\right)$

2010 Mathematics Subject Classification : Primary 19A22; Secondary 57S17.
This research was partially supported by JSPS KAKENHI Grant Number 26400090.
is the Burnside ring of $H$ for each $H \in \mathcal{S}(G)$. Moreover $A=\left(A_{*}, A^{*}\right)$ can be regarded as a Green ring functor in the sense of [2]. Let $\mathcal{F}$ be a subset of $\mathcal{S}(G)$ such that $\mathcal{F}$ is closed under taking subgroups and taking conjugations by elements in $G$. Let $\mathfrak{F}$ denote the full subcategry of $\mathfrak{S}$ such that $\operatorname{Obj}(\mathfrak{F})=\mathcal{F}$. Then we obtain the inverse limit $A(\mathfrak{F})=\lim _{\rightleftarrows} A(-)$ in the sense of [1, p. 243], i.e. $A(\mathfrak{F})$ consists of all elements $\left(x_{H}\right)$ of $\prod_{H \in \mathcal{F}}^{\mathfrak{F}} A(H)$, where $x_{H} \in A(H)$, such that $A^{*}((H, g, K))\left(x_{K}\right)=x_{H}$ for all $H, K \in \mathcal{F}$, and $g \in G$ with $g H g^{-1} \subset K$. The restriction homomorphisms $\operatorname{res}_{H}^{G}: A(G) \rightarrow$ $A(H)$ yield the homomorphism $\operatorname{res}_{\mathcal{F}}^{G}: A(G) \rightarrow \prod_{H \in \mathcal{F}} A(H)$ and we readily see $\operatorname{Im}\left(\operatorname{res}_{\mathcal{F}}^{G}\right) \subset A(\mathfrak{F})$.

Finite $G$-CW complexes $X$ and $Y$ are called $\chi$-equivalent if $\chi\left(X^{H}\right)=$ $\chi\left(Y^{H}\right)$ for all $H \in \mathcal{S}(G)$, where $\chi\left(X^{H}\right)$ stands for the Euler characteristic of the $H$-fixed point set $X^{H}$ of $X$. Let $\Omega(G)$ denote the set of $\chi$-equivalence classes of finite $G$-CW complexes. By assigning to an element $[X]-[Y] \in$ $A(G)$ the element $[Z] \in \Omega(G)$ such that $\chi\left(Z^{H}\right)=\left|X^{H}\right|-\left|Y^{H}\right|$ for all $H \in \mathcal{S}(G)$, we obtain a map $A(G) \rightarrow \Omega(G)$, where $X$ and $Y$ are finite $G$ sets and $Z$ is a finite $G$-CW complex. This map $A(G) \rightarrow \Omega(G)$ is a bijection, see e.g. [5], [8]. Therefore we identify $\Omega(G)$ with $A(G)$ via the map. Let $\mathcal{M}=$ $\left(M_{H}\right)_{H \in \mathcal{F}}$ be a tuple consisting of compact (smooth) $H$-manifolds $M_{H}$. For each $H \in \mathcal{F}$ we have the element $\left[M_{H}\right]$ in $\Omega(H)=A(H)$ determined by $M_{H}$, and hence $\left(\left[M_{H}\right]\right)_{H \in \mathcal{F}}$ lies in $\prod_{H \in \mathcal{F}} A(H)$. If there exists a $G$-manifold $M_{G}$ such that $\operatorname{res}_{H}^{G} M_{G}$ is $H$-diffeomorphic to $M_{H}$ for all $H \in \mathcal{F}$, then the element $\left(\left[M_{H}\right]\right)_{H \in \mathcal{F}}$ belongs to $\operatorname{Im}\left(\operatorname{res}_{\mathcal{F}}^{G}\right)(\subset A(\mathfrak{F}))$. Thus the coset $\sigma(\mathcal{M})$ including $\left(\left[M_{H}\right]\right)_{H \in \mathcal{F}}$ in $\left(\prod_{H \in \mathcal{F}} A(H)\right) / \operatorname{Im}\left(\operatorname{res}_{\mathcal{F}}^{G}\right)$ can be regarded as an obstruction to extend $\mathcal{M}$ to 'a $G$-manifold'. Set $\left.A(G)\right|_{\mathcal{F}}=\operatorname{Im}\left(\operatorname{res}_{\mathcal{F}}^{G}\right)$ and observe the exact sequence

$$
A(\mathfrak{F}) /\left.A(G)\right|_{\mathcal{F}} \prec \longrightarrow\left(\prod_{H \in \mathcal{F}} A(H)\right) /\left.A(G)\right|_{\mathcal{F}} \longrightarrow\left(\prod_{H \in \mathcal{F}} A(H)\right) / A(\mathfrak{F})
$$

In the theory of the Burnside ring, see e.g. [5], it is well-known that $\prod_{H \in \mathcal{F}} A(H)$ is a free $\mathbb{Z}$-module and it is readily seen that $\left(\prod_{H \in \mathcal{F}} A(H)\right) / A(\mathfrak{F})$ is also a free $\mathbb{Z}$-module, where $\mathbb{Z}$ is the ring of integers.

Proposition 1.1 Let $G$ be a nontrivial finite group of order $n$. Then $n A(\mathfrak{F})$ is contained in $\left.A(G)\right|_{\mathcal{F}}$.

This proposition immediately follows from Lemmas 3.2 and 3.3. Thus $A(\mathfrak{F}) /\left.A(G)\right|_{\mathcal{F}}$ is a finite abelian group.

The next result also follows from the theory of the Burnside ring.
Proposition 1.2 The exact sequence

$$
\left.0 \longrightarrow \operatorname{Ker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right) \longrightarrow A(G) \xrightarrow{\mathrm{res}_{\mathcal{F}}^{G}} A(G)\right|_{\mathcal{F}} \longrightarrow 0
$$

splits as $\mathbb{Z}$-modules and the $\mathbb{Z}$-rank of $\left.A(G)\right|_{\mathcal{F}}\left(\right.$ resp. $\left.\operatorname{Ker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right)\right)$ is equal to the number of $G$-conjugacy classes of subgroups in $\mathcal{F}($ resp. $\mathcal{S}(G) \backslash \mathcal{F})$.

For the convenience of readers, we will give a proof in Section 3.
For a finite nontrivial group $G$, let $\mathcal{F}_{G}$ and $\mathfrak{F}_{G}$ denote the set $\mathcal{S}(G) \backslash\{G\}$ and the full subcategory of $\mathfrak{S}$ such that $\operatorname{Obj}\left(\mathfrak{F}_{G}\right)=\mathcal{F}_{G}$, respectively. Let $k_{G}$ be the integer defined in R. Oliver [9, Lemma 8], i.e. the product of primes $p$ such that $G$ possesses a normal subgroup with index $p$. If $G$ is a nontrivial perfect group then $k_{G}$ is equal to 1 .

Proposition 1.3 Let $G$ be a finite nontrivial group, $\mathcal{F}=\mathcal{F}_{G}$, and $\mathfrak{F}=$ $\mathfrak{F}_{G}$. Then $\operatorname{Ker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right)$ is generated by a unique element $\gamma \in A(G)$ such that $\chi_{G}(\gamma)=k_{G}$.

Our main result in the paper is
Theorem 1.4 Let $G$ be a finite nontrivial nilpotent group, $\mathcal{F}=\mathcal{F}_{G}$, and $\mathfrak{F}=\mathfrak{F}_{G}$. Then $\left.A(G)\right|_{\mathcal{F}}$ coincides with $A(\mathfrak{F})$ if and only if $G$ is a cyclic group of which the order is a prime or a product of distinct primes.

We will prove Proposition 1.3 in Section 3 and Theorem 1.4 in Section 4.

## 2. Examples of $\left.A(G)\right|_{\mathcal{F}}$ and $A(\mathfrak{F})$

For the Burnside ring functor $A=\left(A_{*}, A^{*}\right): \mathfrak{S} \rightarrow \mathfrak{A}$ and a morphism $(H, g, K)$ in $\mathfrak{S}$, we use $(H, g, K)_{*}$ and $(H, g, K)^{*}$ instead of $A_{*}((H, g, K))$ and $A^{*}((H, g, K))$, respectively. Furthermore, $(H, e, K)_{*}$ and $(H, e, K)^{*}$, where $e$ is the identity element of $G$, are denoted by $\operatorname{ind}_{H}^{K}$ and $\operatorname{res}_{H}^{K}$. For a finite ordered set $F$, let $F_{\max }$ denote the set of all maximal elements in $F$.

Let $S$ be a set of subgroups of $G$ and $M$ a set of morphisms in $\mathfrak{S}$, i.e. $M \subset \operatorname{Mor}(\mathfrak{S})$. Then we define the inverse limit $A(S, M)$ by

$$
\begin{aligned}
A(S, M)=\{ & \left(x_{K}\right)_{K \in S} \mid x_{K} \in A(K) \text { for } K \in S \\
& f^{*} x_{K}=g^{*} x_{L} \text { whenever } K, L \in S, f=(H, a, K) \in M, \\
& g=(H, b, L) \in M \text { for some } H \in \mathcal{S}(G), a, b \in G\} .
\end{aligned}
$$

Let $\mathcal{F}$ and $\mathfrak{F}$ be those in Section 1. In the case where $S$ is a set of complete representatives of conjugacy classes of groups in $\mathcal{F}_{\text {max }}$, it is clear that the canonical projection $A(\mathfrak{F}) \rightarrow A(S, \operatorname{Mor}(\mathfrak{S}))$ is an isomorphism. In addition, we have the restriction homomorphism $\operatorname{res}_{S}^{G}: A(G) \rightarrow A(S, \operatorname{Mor}(\mathfrak{S}))$ and the diagram

commutes. Thus we can study $A(\mathfrak{F})$ and $\left.A(G)\right|_{\mathcal{F}}$ via

$$
A(\mathfrak{F})^{\prime}=A(S, \operatorname{Mor}(\mathfrak{S})) \quad \text { and }\left.\quad A(G)\right|_{S}=\operatorname{Im}\left[\operatorname{res}_{S}^{G}: A(G) \rightarrow A(\mathfrak{F})^{\prime}\right]
$$

respectively.
In the rest of this section, let $\mathcal{F}, \mathfrak{F}$, and $S$ be $\mathcal{F}_{G}, \mathfrak{F}_{G}$, and a set of complete representatives of conjugacy classes of groups in $\mathcal{F}_{\text {max }}$, respectively.

Proposition 2.1 Let p be a prime and $G$ a group of order $p$. Then $\left.A(G)\right|_{\mathcal{F}}$ coincides with $A(\mathfrak{F})$.

One can readily prove this proposition.
Let $E$ denote the unit group, i.e. $E=\{e\}$. For an integer $m \geq 1$, let $C_{m}$ be a cyclic group of order $m$.

Proposition 2.2 Let $p$ be a prime and $G$ an elementary abelian p-group of order $p^{2}$, i.e. $G \cong C_{p} \times C_{p}$. Then $A(\mathfrak{F}) /\left.A(G)\right|_{\mathcal{F}}$ is isomorphic to $\mathbb{Z}_{p}$ as modules.

Proof. Let $u$ and $v$ be elements of order $p$ in $G$ generating $G$, i.e. $G=$ $\langle u, v\rangle$. Set $C^{(0)}=\langle v\rangle$ and $C^{(k)}=\left\langle u v^{k}\right\rangle$ for $k=1,2, \ldots, p$. Then $S=\left\{C^{(k)} \mid\right.$ $k=0,1, \ldots, p\}$ and

$$
\begin{align*}
A(\mathfrak{F})^{\prime}=\{ & \left(a_{0}\left[C^{(0)} / C^{(0)}\right]+b_{0}\left[C^{(0)} / E\right],\right. \\
& \left(a_{0}+p\left(b_{0}-b_{1}\right)\right)\left[C^{(1)} / C^{(1)}\right]+b_{1}\left[C^{(1)} / E\right], \ldots \ldots, \\
& \left.\left.\left(a_{0}+p\left(b_{0}-b_{p}\right)\right)\left[C^{(p)} / C^{(p)}\right]+b_{p}\left[C^{(p)} / E\right]\right) \mid a_{0}, b_{i} \in \mathbb{Z}\right\} . \tag{2.1}
\end{align*}
$$

For $w=x[G / G]+\sum_{k=0}^{p} y_{k}\left[G / C^{(k)}\right]+z[G / E]$, we have

$$
\begin{equation*}
\operatorname{res}_{C^{(k)}}^{G} w=\left(x+p y_{k}\right)\left[C^{(k)} / C^{(k)}\right]+\left(\sum_{i=0}^{p} y_{i}-y_{k}+p z\right)\left[C^{(k)} / E\right] . \tag{2.2}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{k=0}^{p}\left(\sum_{i=0}^{p} y_{i}-y_{k}+p z\right)=p\left(\sum_{i=0}^{p} y_{i}+(p+1) z\right) \tag{2.3}
\end{equation*}
$$

we obtain $A(\mathfrak{F})^{\prime} /\left.A(G)\right|_{S} \cong \mathbb{Z}_{p}$.
Proposition 2.3 Let $p$ be a prime and $G$ an elementary abelian p-group of order $p^{n}$ with $n \geq 2$. Then there exists an element $w=\left(w_{K}\right)_{K \in \mathcal{F}}$ in $A(\mathfrak{F})$ satisfying $w_{K}=[K / E] \in A(K)$ for all $K \in \mathcal{F}_{\text {max }}$, where $\mathcal{F}_{\text {max }}$ is the set of subgroups of $G$ with index $p$. In addition this element $w$ does not lie in $\left.A(G)\right|_{\mathcal{F}}$.

Proof. Let $H \in \mathcal{F}$ and $K \in \mathcal{F}_{\text {max }}$ such that $H \subset K$. Then we have $\operatorname{res}_{H}^{K}[K / E]=|K / H|[H / E]$. This implies that $([K / E])_{K \in \mathcal{F}_{\text {max }}}$ determines the well-defined element $w \in A(\mathfrak{F})$ as in the proposition.

Let $L \in \mathcal{F}$. For $K \in \mathcal{F}_{\max }$,

$$
\operatorname{res}_{K}^{G}[G / L]= \begin{cases}p[K / L] & (K \supset L)  \tag{2.4}\\ {[K /(L \cap K)]} & (K \not \supset L) .\end{cases}
$$

Assume an element $x \in A(G)$ satisfies $\operatorname{res}_{\mathcal{F}}^{G}(x)=w$. Then $x$ has the form

$$
\left.x \equiv \sum_{L \in \mathcal{L}} a_{L}[G / L]+b[G / E] \quad \bmod \langle[G / H]| H \in \mathcal{S}(G),|H| \geq p^{2}\right\rangle_{\mathbb{Z}}
$$

for some $a_{L}, b \in \mathbb{Z}$, where $\mathcal{L}$ is the set of all subgroups of $G$ of order $p$. For $K \in \mathcal{F}_{\text {max }}$, we have

$$
\begin{align*}
\operatorname{res}_{K}^{G} x \equiv & \sum_{L \in \mathcal{L}_{K}} a_{L}[K / E] \\
& \bmod p A(K)+\langle[K / H]| H \in \mathcal{S}(K),|H| \geq p\rangle_{\mathbb{Z}} \tag{2.5}
\end{align*}
$$

where $\mathcal{L}_{K}=\{L \in \mathcal{L} \mid L \not \subset K\}$. Since $|\mathcal{L}|=\left(p^{n}-1\right) /(p-1),\left|\mathcal{L}_{K}\right|=p^{n-1}$, and $\left|\mathcal{F}_{\text {max }}\right|=\left(p^{n}-1\right) /(p-1)$, we have

$$
\begin{equation*}
\sum_{K \in \mathcal{F}_{\max }} \sum_{L \in \mathcal{L}_{K}} a_{L}=p^{n-1} \sum_{L \in \mathcal{L}} a_{L} . \tag{2.6}
\end{equation*}
$$

On the other hand, since $\operatorname{res}_{K}^{G} x=[K / E]$, we get

$$
\sum_{L \in \mathcal{L}_{K}} a_{L} \equiv 1 \quad \bmod p,
$$

i.e. $\sum_{L \in \mathcal{L}_{K}} a_{L}=1+p m_{K}$ for some $m_{K} \in \mathbb{Z}$. Thus we have

$$
\begin{equation*}
\sum_{K \in \mathcal{F}_{\max }} \sum_{L \in \mathcal{L}_{K}} a_{L}=\sum_{K \in \mathcal{F}_{\max }}\left(1+p m_{K}\right)=\frac{p^{n}-1}{p-1} \cdot\left(1+p m_{K}\right) \equiv 1 \quad \bmod p \tag{2.7}
\end{equation*}
$$

which contradicts (2.6). Thus $w$ does not belong to $\left.A(G)\right|_{\mathcal{F}}$.
Proposition 2.4 Let $p$ and $q$ be distinct primes. If $G$ is a nontrivial extension of $C_{q}$ by $C_{p}$, i.e. $C_{p} \triangleleft G, G / C_{p}=C_{q}$ and $G \not \approx C_{p q}$, then $\left.A(G)\right|_{\mathcal{F}}$ coincides with $A(\mathfrak{F})$.

Proof. Note that $\mathcal{S}(G)=\left\{G, C_{p}, g C_{q} g^{-1}, E \mid g \in C_{p}\right\}$. For $y \in A\left(C_{p}\right)$ with the form $y=a_{1}\left[C_{p} / C_{p}\right]+a_{2}\left[C_{p} / E\right]$, we have

$$
\begin{equation*}
\operatorname{res}_{E}^{C_{p}} y=\left(a_{1}+a_{2} p\right)[E / E] \tag{2.8}
\end{equation*}
$$

and for $z \in A\left(C_{q}\right)$ with the form $z=b_{1}\left[C_{q} / C_{q}\right]+b_{2}\left[C_{q} / E\right]$, we have

$$
\begin{equation*}
\operatorname{res}_{E}^{C_{q}} z=\left(b_{1}+b_{2} q\right)[E / E] . \tag{2.9}
\end{equation*}
$$

Then for $S=\left\{C_{p}, C_{q}\right\}$, we have

$$
\begin{align*}
A(\mathfrak{F})^{\prime}=\{ & \left(a_{1}\left[C_{p} / C_{p}\right]+a_{2}\left[C_{p} / E\right],\right. \\
& \left.\left.\left(a_{1}+p a_{2}-b_{2} q\right)\left[C_{q} / C_{q}\right]+b_{2}\left[C_{q} / E\right]\right) \in A\left(C_{p}\right) \times A\left(C_{q}\right)\right\}, \tag{2.10}
\end{align*}
$$

where $a_{1}, a_{2}$, and $b_{2}$ range over $\mathbb{Z}$. For $x \in A(G)$ with the form

$$
x=c_{1}[G / G]+c_{2}\left[G / C_{p}\right]+c_{3}\left[G / C_{q}\right]+c_{4}[G / E],
$$

we have

$$
\begin{align*}
\operatorname{res}_{C_{p}}^{G} x & =\left(c_{1}+c_{2} q\right)\left[C_{p} / C_{p}\right]+\left(c_{3}+c_{4} q\right)\left[C_{p} / E\right], \\
\operatorname{res}_{C_{q}}^{G} x & =\left(c_{1}+c_{3}\right)\left[C_{q} / C_{q}\right]+\left(c_{2}+\frac{c_{3}(p-1)}{q}+c_{4} p\right)\left[C_{q} / E\right] . \tag{2.11}
\end{align*}
$$

Thus $\operatorname{res}_{S}^{G}: A(G) \rightarrow A(\mathfrak{F})^{\prime}$ is surjective.
Proposition 2.5 Let $p$ be a prime, $m$ a natural number, and $G$ a cyclic group of order $p^{m}$. Then $A(\mathfrak{F}) /\left.A(G)\right|_{\mathcal{F}}$ is isomorphic to $\mathbb{Z}_{p}{ }^{\oplus m-1}$ as modules.

Proof. Let $\{e\}=H_{1}<H_{2}<\cdots<H_{m}<H_{m+1}=G$ be the subgroups of $G$. Set $K=H_{m}$. Then $S=\{K\}$ and $A(\mathfrak{F})^{\prime}=A(K)$. Each element $x \in A(G)$ has the form

$$
x=a_{1}\left[G / H_{1}\right]+\cdots+a_{m}\left[G / H_{m}\right]+a_{m+1}\left[G / H_{m+1}\right]
$$

with integers $a_{1}, \ldots, a_{m+1}$. For the $x$, we have

$$
\begin{equation*}
\operatorname{res}_{K}^{G} x=p\left(a_{1}\left[K / H_{1}\right]+\cdots+a_{m-1}\left[K / H_{m-1}\right]\right)+\left(a_{m} p+a_{m+1}\right)\left[K / H_{m}\right] . \tag{2.12}
\end{equation*}
$$

Thus we get $A(\mathfrak{F})^{\prime} /\left.A(G)\right|_{S} \cong \mathbb{Z}_{p}{ }^{\oplus m-1}$.
Proposition 2.6 Let $p$ and $q$ be distinct primes, and $G$ a cyclic group of order $p q$. Then $\left.A(G)\right|_{\mathcal{F}}$ coincides with $A(\mathfrak{F})$.

Proof. Let $P$ and $Q$ be Sylow $p$ - and $q$-subgroups of $G$, respectively. Since the maximal proper subgroups of $G$ are $P$ and $Q$, we have $S=\{P, Q\}$ and

$$
\begin{align*}
A(\mathfrak{F})^{\prime}=\{ & \left(a_{1}[P / E]+a_{2}[P / P], b_{1}[Q / E]+\left(a_{1} p+a_{2}-b_{1} q\right)[Q / Q]\right) \\
& \left.\in A(P) \times A(Q) \mid a_{1}, a_{2}, b_{1} \in \mathbb{Z}\right\} \tag{2.13}
\end{align*}
$$

For $x=\sum_{H \leq G} c_{H}[G / H] \in A(G)$, we have

$$
\begin{align*}
\left(\operatorname{res}_{P}^{G} x, \operatorname{res}_{Q}^{G} x\right)= & \left(\left(c_{E} q+c_{Q}\right)[P / E]+\left(c_{P} q+c_{G}\right)[P / P]\right. \\
& \left.\left.\left(c_{E} p+c_{P}\right)[Q / E]+\left(c_{Q} p+c_{G}\right)[Q / Q]\right)\right) . \tag{2.14}
\end{align*}
$$

These equalities imply $A(\mathfrak{F})^{\prime}=\left.A(G)\right|_{S}$.
Proposition 2.7 Let $p$ and $q$ be distinct primes and $G$ a cyclic group of order $p^{2} q$. Then the quotient of $A(\mathfrak{F}) /\left.A(G)\right|_{\mathcal{F}}$ is isomorphic to $\mathbb{Z}_{p}$ as modules.

Proof. Regard $K=C_{p q}, P=C_{p^{2}}, Q=C_{q}, L=C_{p}$, and $E=\{e\}$ as groups in $\mathcal{S}(G)$. Since the maximal proper subgroups of $G$ are $K$ and $P$, we have $S=\{K, P\}$ and

$$
\begin{align*}
A(\mathfrak{F})^{\prime}=\{ & \left(b_{1}[K / E]+\left(c_{1} p-b_{1} q\right)[K / Q]+b_{2}[K / L]+b_{3}[K / K],\right. \\
& \left.\left.c_{1}[P / E]+c_{2}[P / L]+\left(b_{3}+b_{2} q-c_{2} p\right)[P / P]\right) \in A(K) \times A(P)\right\} \tag{2.15}
\end{align*}
$$

where $b_{1}, b_{2}, b_{3}, c_{1}, c_{2}$ range over $\mathbb{Z}$. For $x=\sum_{H \leq G} a_{H}[G / H] \in A(G)$, we have

$$
\begin{align*}
\operatorname{res}_{K}^{G} x & =a_{E} p[K / E]+a_{Q} p[K / Q]+\left(a_{P}+a_{L} p\right)[K / L]+\left(a_{G}+a_{K} p\right)[K / K], \\
\operatorname{res}_{P}^{G} x & =\left(a_{Q}+a_{E} q\right)[P / E]+\left(a_{K}+a_{L} q\right)[P / L]+\left(a_{G}+a_{P} q\right)[P / P] . \tag{2.16}
\end{align*}
$$

These equalities show $A(\mathfrak{F})^{\prime} /\left.A(G)\right|_{S} \cong \mathbb{Z}_{p}$.
Proposition 2.8 For $G=A_{4}$, the alternating group on four letters, $\left.A(G)\right|_{\mathcal{F}}$ coincides with $A(\mathfrak{F})$.

Proof. We regard $G$ as $D_{4} \rtimes C_{3}$, where $D_{4}$ is a dihedral group of order 4. Then $\mathcal{F}=\left(D_{4}\right) \cup\left(C_{3}\right) \cup\left(C_{2}\right) \cup(E)$ and $\mathcal{S}\left(D_{4}\right)=\left\{D_{4}, C_{2}, C_{2}^{\prime}, C_{2}^{\prime \prime}, E\right\}$, where $C_{2}, C_{2}^{\prime}$ and $C_{2}^{\prime \prime}$ are distinct subgroups of order 2 . For

$$
x=x_{1}[G / G]+x_{2}\left[G / D_{4}\right]+x_{3}\left[G / C_{3}\right]+x_{4}\left[G / C_{2}\right]+x_{5}[G / E] \in A(G),
$$

we have

$$
\begin{aligned}
\operatorname{res}_{D_{4}}^{G} x= & \left(x_{1}+3 x_{2}\right)\left[D_{4} / D_{4}\right]+x_{4}\left(\left[D_{4} / C_{2}\right]+\left[D_{4} / C_{2}^{\prime}\right]+\left[D_{4} / C_{2}^{\prime \prime}\right]\right) \\
& +\left(x_{3}+3 x_{5}\right)\left[D_{4} / E\right], \\
\operatorname{res}_{C_{3}}^{G} x= & \left(x_{1}+x_{3}\right)\left[C_{3} / C_{3}\right]+\left(x_{2}+x_{3}+2 x_{4}+4 x_{5}\right)\left[C_{3} / E\right] .
\end{aligned}
$$

Set $S=\left\{D_{4}, C_{3}\right\}$. Then we have

$$
\begin{aligned}
A(\mathfrak{F})^{\prime}= & \{(y, z) \mid \alpha, \beta, \gamma, \delta \in \mathbb{Z}, u=\alpha+6 \beta+4 \gamma-3 \delta\} ; \\
y= & \alpha\left[D_{4} / D_{4}\right]+\beta\left(\left[D_{4} / C_{2}\right]+\left[D_{4} / C_{2}^{\prime}\right]+\left[D_{4} / C_{2}^{\prime \prime}\right]\right)+\gamma\left[D_{4} / E\right] \\
& \in A\left(D_{4}\right), \text { and } \\
z= & u\left[C_{3} / C_{3}\right]+\delta\left[C_{3} / E\right] \in A\left(C_{3}\right) .
\end{aligned}
$$

Here we remark that $\operatorname{res}_{E}^{D_{4}} y=\operatorname{res}_{E}^{C_{3}} z$. Using these equalities, we can readily see the equality $A(\mathfrak{F})^{\prime}=\left.A(G)\right|_{S}$.

## 3. Basic observation of $\left.A(G)\right|_{\mathcal{F}}$ and $A(\mathfrak{F})$

For each subgroup $H$ of $G$, we have the homomorphism $\chi_{H}: A(G) \rightarrow \mathbb{Z}$ defined by $\chi_{H}([X]-[Y])=\left|X^{H}\right|-\left|Y^{H}\right|$ for finite $G$-sets $X$ and $Y$. Let $\left(\prod_{H \in \mathcal{S}(G)} \mathbb{Z}\right)^{G}$ denote the $G$-conjugation invariant subset of $\prod_{H \in \mathcal{S}(G)} \mathbb{Z}$. We get the homomorphism $\sqcap \chi: A(G) \rightarrow\left(\prod_{H \in \mathcal{S}(G)} \mathbb{Z}\right)^{G}$ by assigning $\left(\chi_{H}(x)\right)_{H \in \mathcal{S}(G)}$ to $x \in A(G)$. We recall the next two lemmas, see e.g. [5, I (2.18), I Proposition 2, IV (5.1)-(5.7)], [8, (2.2), (5.1)-(5.3)].

Lemma 3.1 The homomorphism $\sqcap \chi: A(G) \rightarrow\left(\prod_{H \in \mathcal{S}(G)} \mathbb{Z}\right)^{G}$ is injective.
Lemma 3.2 (Burnside Congruence) An element $\left(y_{H}\right)_{H \in \mathcal{S}(G)} \in$ $\left(\prod_{H \in \mathcal{S}(G)} \mathbb{Z}\right)^{G}$ lies in the image of $\sqcap \chi: A(G) \rightarrow\left(\prod_{H \in \mathcal{S}(G)} \mathbb{Z}\right)^{G}$ if and only if

$$
\sum_{s \in W H} y_{K} \equiv 0 \quad \bmod |W H|
$$

for all $H \in \mathcal{S}(G)$, where $W H=N_{G}(H) / H$ and $K$ is the subgroup of $N_{G}(H)$ such that $K \supset H$ and $K / H=\langle s\rangle \leq W H$.

For $L \in \mathcal{F}$, we denote by $\varphi_{L}$ the composition

$$
A(\mathfrak{F}) \xrightarrow{\text { incl }} \prod_{H \in \mathcal{F}} A(H) \xrightarrow{\text { proj }} A(L) \xrightarrow{\chi_{L}} \mathbb{Z} .
$$

Lemma 3.3 The homomorphism

$$
\varphi_{\mathcal{F}}=\prod_{(H) \subset \mathcal{F}} \varphi_{H}: A(\mathfrak{F}) \longrightarrow \prod_{(H) \subset \mathcal{F}} \mathbb{Z}
$$

is injective.
Proof. Let $x=\left(x_{H}\right)_{H \in \mathcal{F}}$, where $x_{H} \in A(H)$, be an element of $A(\mathfrak{F})$ such that $\varphi_{\mathcal{F}}(x)=0$, i.e. $\chi_{L}\left(x_{L}\right)=0$ for all $L \in \mathcal{F}$. For $H \in \mathcal{F}$ and $L \leq H$, we have

$$
\chi_{L}\left(x_{H}\right)=\chi_{L}\left(\operatorname{res}_{L}^{H} x_{H}\right)=\chi_{L}\left(x_{L}\right)=0 .
$$

By Lemma 3.1, we get $x_{H}=0$ in $A(H)$. This implies $x=0$ in $A(\mathfrak{F})$. Thus $\varphi_{\mathcal{F}}$ is injective.

We are ready for proving Proposition 1.2.
Proof of Proposition 1.2. Let $a$ and $b$ denote the numbers of $G$-conjugacy classes of elements in $\mathcal{F}$ and $\mathcal{S}(G) \backslash \mathcal{F}$, respectively. The Burnside ring $A(G)$ is a free $\mathbb{Z}$-module, and hence $\operatorname{Ker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right)$ and $\left.A(G)\right|_{\mathcal{F}}$ both are free $\mathbb{Z}$ modules. The module $A(G)$ has the $\mathbb{Z}$-basis $\{[G / H] \mid(H) \subset \mathcal{S}(G)\}$, where $(H)$ is the $G$-conjugacy class of $H \in \mathcal{S}(G)$. It is clear that $\operatorname{rank} A(G)=a+b$.

Since $\varphi_{\mathcal{F}}$ is injective and $\left.A(G)\right|_{\mathcal{F}} \subset A(\mathfrak{F})$, we get

$$
\begin{equation*}
\left.\operatorname{rank} A(G)\right|_{\mathcal{F}} \leq \operatorname{rank} A(\mathfrak{F}) \leq a \tag{3.1}
\end{equation*}
$$

The injectivity of $\sqcap \chi$ and $\varphi_{\mathcal{F}}$ imply that the homomorphism

$$
\prod_{(K) \subset \mathcal{S}(G) \backslash \mathcal{F}} \chi_{K}: \operatorname{Ker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right) \rightarrow \prod_{(K) \subset \mathcal{S}(G) \backslash \mathcal{F}} \mathbb{Z}
$$

is injective. Thus we get

$$
\begin{equation*}
\operatorname{rank} \operatorname{Ker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right) \leq b \tag{3.2}
\end{equation*}
$$

Putting these together, we have

$$
\begin{equation*}
a+b=\operatorname{rank} A(G)=\left.\operatorname{rank} A(G)\right|_{\mathcal{F}}+\operatorname{rank} \operatorname{Ker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right) \leq a+b \tag{3.3}
\end{equation*}
$$

which implies $\left.\operatorname{rank} A(G)\right|_{\mathcal{F}}=a$ and $\operatorname{rank} \operatorname{Ker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right)=b$.
The proof above implies the next fact.
Proposition 3.4 The $\mathbb{Z}$-rank of $A(\mathfrak{F})$ is equal to the number of $G$ conjugacy classes of subgroups belonging to $\mathcal{F}$.

The next lemma is essentially due to [9, Lemma 8]. We remark that in the case where $G$ is an elementary abelian $p$-group for a prime $p$, the lemma can be proved by explicit calculation, and in the case where $G$ is a nontrivial perfect group, the lemma immediately follows from Lemma 3.2.

Lemma 3.5 Let $G$ be a finite nontrivial group. Then there exists $\gamma \in A(G)$ such that $\chi_{G}(\gamma)=k_{G}$ and $\operatorname{res}_{H}^{G} \gamma=0$ for all $H<G$.

Proof. Let $\psi: \mathcal{S}(G) \rightarrow \mathbb{Z}$ be the function uniquely defined by the conditions

$$
\begin{equation*}
\psi(G)=k_{G}, \quad \text { and } \quad \sum_{K \supset H} \psi(K)=0 \quad \text { for all } H<G . \tag{3.4}
\end{equation*}
$$

R. Oliver [9, Lemma 8] proved that $\left|N_{G}(H) / H\right|$ divides $\psi(H)$ for any $H \in$ $\mathcal{S}(G)$. By the definition in [9, p. 159], $\psi$ is an integral resolving function. By the arguments used in [9, Proof of Theorem 1, p. 161, line 20-p. 162, line 2], there exists a finite $G$-CW complex $X$ such that

$$
\begin{equation*}
\chi\left(X^{G}\right)=1+\psi(G), \quad \text { and } \quad \chi\left(X^{H}\right)=1 \quad \text { for all } H<G, \tag{3.5}
\end{equation*}
$$

where $\chi\left(X^{H}\right)$ is the Euler characteristic of $X^{H}$. Let $\gamma$ be the element of $A(G)$ satisfying

$$
\begin{equation*}
\chi_{H}(\gamma)=\chi\left(X^{H}\right)-1 \quad \text { for all } H \in \mathcal{S}(G) \tag{3.6}
\end{equation*}
$$

see $\left[8\right.$, p. 129, (1.1)]. Then $\chi_{G}(\gamma)=k_{G}$ and $\chi_{H}(\gamma)=0$ for all $H<G$.
We obtain Proposition 1.3 from the lemma above as follows.
Proof of Proposition 1.3. Let $\gamma \in A(G)$ be the element stated in Lemma 3.5. It is clear that $\gamma \in \operatorname{Ker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right)$. Let $\alpha$ be an element in
$\operatorname{Ker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right)$. If $p$ is a prime and $N$ is a normal subgroup of $G$ with index $p$, then $\chi_{G}(\alpha) \equiv \chi_{N}(\alpha)=0 \bmod p$. This implies that $\chi_{G}(\alpha)$ is divisible by $k_{G}$. By Lemma 3.1, $\alpha=m \gamma$ for some integer $m$.

Proposition 3.6 Let $p$ be a prime, $G$ a nontrivial abelian group of $p$ power order, and $n$ a natural number prime to $p$. Then there exists an element $x \in A(G)$ such that $\chi_{G}(x)=1$ and $\operatorname{res}_{H}^{G} x \in n A(H)$ for all $H<G$.

Proof. By Lemma 3.5, we have an element $\gamma \in A(G)$ such that $\chi_{G}(\gamma)=p$ and $\operatorname{res}_{H}^{G} \gamma=0$ for all $H<G$. There exist integers $a$ and $b$ satisfying $a p+b n=1$. Set $x=a \gamma+b n[G / G]$. Then $\chi_{G}(x)=a p+b n=1$ and $\operatorname{res}_{H}^{G} x=n(b[H / H])$ for all $H<G$.

Let $N$ be a normal subgroup of $G, L$ a subgroup of $G$ containing $N$, and $X$ a finite $L$-set. Then the $N$-fixed point set $X^{N}$ and the complement $X \backslash X^{N}$ are $L$-sets, and $X^{N}$ can be regarded as an $L / N$-set. For $x=$ $[X]-[Y] \in A(L)$, let $x^{N}$ denote the element $\left[X^{N}\right]-\left[Y^{N}\right]$ in $A(L / N)$. Then we obtain a homomorphism

$$
\operatorname{fix}_{L}^{N}: A(L) \rightarrow A(L / N) ; x \longmapsto x^{N}
$$

For a finite group $G$ and a prime $p$, let $G^{\{p\}}$ denote the smallest normal subgroup of $G$ such that $G / G^{\{p\}}$ is of $p$-power order.

Proposition 3.7 Let $P$ be a cyclic group of order $p^{2}$ or an elementary abelian $p$-group of order $\geq p^{2}$, let $G$ be the cartesian product $P \times P_{1} \times \cdots \times P_{m}$ such that for each $i=1, \ldots, m, P_{i}$ is a nontrivial elementary abelian $p_{i}-$ group, and let $\mathcal{F}=\mathcal{F}_{G}$ and $\mathfrak{F}=\mathfrak{F}_{G}$. Then $\left.A(G)\right|_{\mathcal{F}} \neq A(\mathfrak{F})$.

Proof. In the case that $G=P$, the conclusion follows from Propositions 2.5 and 2.3. Thus we may suppose $m \geq 1$. Let $\mathcal{G}=\mathcal{F}_{P}$, i.e. $\mathcal{G}=\mathcal{S}(P) \backslash\{P\}$, and $\mathfrak{G}=\mathfrak{F}_{P}$, hence $\operatorname{Obj}(\mathfrak{G})=\mathcal{G}$. For each $i=1, \ldots m$, by Proposition 3.6, we can take an element $u_{i} \in A\left[P_{i}\right]$ satisfying

$$
\begin{equation*}
\chi_{P_{i}}\left(u_{i}\right)=1, \text { and } \quad \operatorname{res}_{K}^{P_{i}} u_{i} \in|P| A(K) \quad \text { for all } K<P_{i} . \tag{3.7}
\end{equation*}
$$

Let $w=\left(w_{K}\right)_{K \in \mathcal{G}} \in A(\mathfrak{G})$ be the element such that

$$
w_{K}=[K / E] \quad \text { for all } K \in \mathcal{G}_{\max } .
$$

We set $u=u_{1} \cdots u_{m} \in A\left(G^{\{p\}}\right)$ and

$$
v_{K G\{p\}}=w_{K} u \in A\left(K G^{\{p\}}\right) \quad\left(K \in \mathcal{G}_{\max }\right)
$$

Let $\mathcal{H}=\mathcal{S}\left(G^{\{p\}}\right) \backslash\left\{G^{\{p\}}\right\}$. Then for $S \in \mathcal{H}_{\text {max }}$, the element

$$
\operatorname{res}_{K S}^{K G G^{\{p\}}} v_{K G\{p\}}=w_{K}\left(\operatorname{res}_{S}^{G\{p\}} u\right)
$$

lies in $|P| A(K S)$. By Lemma 3.2, there exists an element $v_{P S} \in A(P S)$ such that

$$
\operatorname{res}_{K S}^{P S} v_{P S}=\operatorname{res}_{K S}^{K G^{\{p\}}} v_{K G\{p\}}
$$

Thus the datum $\left(\left(v_{P S}\right)_{S \in \mathcal{H}_{\max }},\left(v_{K G\{p\}}\right)_{K \in \mathcal{G}_{\max }}\right)$ determines an element $v=$ $\left(v_{K}\right)_{K \in \mathcal{F}} \in A(\mathfrak{F})$.

For $K \leq L$ and $y=\sum_{(H) \subset \mathcal{S}(L)} a_{H}[L / H] \in A(L)$, let $d(y, L / K)$ denote the coefficient $a_{H}$ of $[L / K]$.

Assume that there exists an element $x \in A(G)$ such that $\operatorname{res}_{\mathcal{F}}^{G} x=v$. Then we readily obtain

$$
\begin{aligned}
& d\left(\operatorname{res}_{K G\{p\}}^{G} x, K G^{\{p\}} / G^{\{p\}}\right)=d\left(v_{K G\{p\}}, K G^{\{p\}} / G^{\{p\}}\right), \\
& d\left(\operatorname{res}_{K G\{p\}}^{G} x, K G^{\{p\}} / G^{\{p\}}\right)=d\left(\operatorname{res}_{K}^{P}\left(x^{G^{\{p\}}}\right), K / E\right)
\end{aligned}
$$

and

$$
d\left(v_{K G\{p\}}, K G^{\{p\}} / G^{\{p\}}\right)=d\left(v_{K G\{p\}}^{G^{\{p\}}}, K / E\right)=d\left(w_{K}, K / E\right)=1
$$

from (3.7). By the arguments proving (2.6), we get

$$
\begin{equation*}
\sum_{K \in \mathcal{G}_{\max }} d\left(\operatorname{res}_{K}^{P} x^{G^{\{p\}}}, K / E\right) \text { is divisible by } p \tag{3.8}
\end{equation*}
$$

However, since $\left|\mathcal{G}_{\text {max }}\right| \equiv 1 \bmod p$, the arguments proving (2.7) show

$$
\begin{equation*}
\sum_{K \in \mathcal{G}_{\max }} d\left(w_{K}, K / E\right) \equiv 1 \quad \bmod p \tag{3.9}
\end{equation*}
$$

The property (3.8) contradicts the property (3.9), and hence $v$ does not
belong to $\left.A(G)\right|_{\mathcal{F}}$.

## 4. Observation of $\left.A(G / N)\right|_{\overline{\mathcal{F}}}$ and $A(\overline{\mathfrak{F}})$

Throughout this section, let $\mathcal{F}=\mathcal{F}_{G}$ and $\mathfrak{F}=\mathfrak{F}_{G}$. Let $N$ be a proper normal subgroup of $G, Q=G / N, \pi: G \rightarrow Q$ the projection, $\overline{\mathcal{F}}=\mathcal{F}_{Q}$, and $\overline{\mathfrak{F}}=\mathfrak{F}_{Q}$. Then the projection $\pi$ induces the homomorphism $\pi^{*}: A(Q) \rightarrow$ $A(G)$;

$$
\pi^{*}([Q / H])=\left[G / \pi^{-1}(H)\right] \quad(H \in \mathcal{S}(Q))
$$

We readily see that fix ${ }_{G}^{N} \circ \pi^{*}$ is the identity map on $A(Q)$. For $w=\left(w_{K}\right)_{K \in \mathcal{F}}$, consider the associated datum

$$
\left(w_{K}^{N}\right)_{K \in \mathcal{F}, K \supset N} .
$$

This yields the homomorphism fix $_{\mathfrak{F}}^{N}: A(\mathfrak{F}) \rightarrow A(\overline{\mathfrak{F}})$.
For $x=\left.\left(x_{H}\right)_{H \in \overline{\mathcal{F}}} \in A(Q)\right|_{\overline{\mathcal{F}}}$, take an element $y \in A(Q)$ such that $\operatorname{res} \frac{Q}{\mathcal{F}}(y)=x$ and consider the element $z=\left(z_{K}\right)_{K \in \mathcal{F}}=\operatorname{res}_{\mathcal{F}}^{G}\left(\pi^{*} y\right)$ in $\left.A(G)\right|_{\mathcal{F}}$. For any $K \in \mathcal{F}$ with $K \supset N, z_{K}^{N}$ is equal to $z_{K}$ in $A(K)(\supset A(K / N)$ via $\left.\left.\pi\right|_{K} ^{*}\right)$. Since $\left.A(Q)\right|_{\overline{\mathcal{F}}}$ is a $\mathbb{Z}$-free module, we can get a homomorphism

$$
\pi_{B}^{*}:\left.\left.A(Q)\right|_{\overline{\mathcal{F}}} \rightarrow A(G)\right|_{\mathcal{F}}
$$

such that $\pi_{B}^{*}(x)=\operatorname{res}_{\mathcal{F}}^{G}\left(\pi^{*} y\right)$ for $\left.x \in A(Q)\right|_{\overline{\mathcal{F}}}$ and some $y \in A(Q)$ with $\operatorname{res} \frac{Q}{\mathcal{F}}(y)=x$. Then the diagram

commutes.
In the rest of this section, let $L$ be a nontrivial subgroup of $G, \mathcal{G}=\mathcal{F}_{L}$, and $\mathfrak{G}=\mathfrak{F}_{L}$.

Proposition 4.1 Let $p$ be a prime and $L$ a nontrivial subgroup of $G$ such that $G=L \times C_{p}$, and $p$ is prime to the order of $L$. If $\left.A(L)\right|_{\mathcal{G}}$ coincides with $A(\mathfrak{G})$ then $\left.A(G)\right|_{\mathcal{F}}$ coincides with $A(\mathfrak{F})$.

Proof. We may regard $C_{p} \subset G$ and $G=L \cdot C_{p}$. Set $B(G)=A(\mathfrak{F})$ and $Q=G / C_{p}$. Let $\pi: G \rightarrow Q$ be the projection. Since $Q$ is isomorphic to $L$, the restriction homomorphism $\operatorname{res}_{\overline{\mathcal{F}}}^{Q}: A(Q) \rightarrow B(Q)=A(\overline{\mathfrak{F}})$ is surjective, i.e. $\left.A(Q)\right|_{\overline{\mathcal{F}}}=A(\overline{\mathfrak{F}})$. Since $B(L)=A(\mathfrak{G})$ is a free $\mathbb{Z}$-module and $\operatorname{res}_{\mathcal{G}}^{G}$ : $A(L) \rightarrow B(L)$ is surjective, there is a homomorphism $\iota_{B}: B(L) \rightarrow B(G)$ such that the diagram

commutes. For a subgroup $K$ of $L$, define the homomorphism

$$
f_{K}: A(K) \rightarrow A\left(K \cdot C_{p}\right) \times A(K)
$$

by

$$
f_{K}([K / H])=\left(\left[\left(K \cdot C_{p}\right) / H\right], p[K / H]\right) \quad \text { for } H \leq K
$$

Then we obtain the homomorphism

$$
\sqcap f_{\star}=\prod_{K<L} f_{K}: \prod_{K<L} A(K) \rightarrow \prod_{K<L} A\left(K \cdot C_{p}\right) \times \prod_{K<L} A(K) .
$$

We remark that the diagram

commutes.
Decompose $\mathcal{F}$ to $\mathcal{F}=\mathcal{F}_{1} \amalg \mathcal{F}_{2} \amalg\{L\}$, where

$$
\begin{aligned}
\mathcal{F}_{1} & =\left\{K \in \mathcal{F} \mid K \supset C_{p}\right\} \\
\mathcal{F}_{2} & =\left\{K \in \mathcal{F} \mid K \not \supset C_{p}, K \neq L\right\}
\end{aligned}
$$

Let $x=\left(\left(x_{K}\right)_{K \in \mathcal{F}_{1}},\left(x_{K}\right)_{K \in \mathcal{F}_{2}}, x_{L}\right) \in B(G)$. Since $K \cdot C_{p} \in \mathcal{F}_{1}$ for any $K \in \mathcal{F}_{2}$, the element $x$ is determined by the datum $\left(\left(x_{K}\right)_{K \in \mathcal{F}_{1}}, x_{L}\right)$. Define $u=\left(u_{H}\right)_{H \in \overline{\mathcal{F}}} \in B(Q)$ by $u_{\pi(K)}=\operatorname{fix}_{K}^{C_{p}} x_{K}$ for $K \in \mathcal{F}_{1}$. Set $y=\left(y_{K}\right)_{K \in \mathcal{F}}=$ $x-\pi_{B}^{*}(u)$. For $K \in \mathcal{F}_{1}$, since $y_{K}{ }^{C_{p}}=0, y_{K}$ has the form

$$
y_{K}=\sum_{H \in \mathcal{S}(K) \cap \mathcal{F}_{2}} b_{H}[K / H] .
$$

Let $K^{\{p\}}$ be the normal subgroup of $K$ with index $p$. Define $v=$ $\left(v_{K\{p\}}\right)_{K \in \mathcal{F}_{1}}$ by

$$
v_{K\{p\}}=\sum_{H \in \mathcal{S}(K) \cap \mathcal{F}_{2}} b_{H}\left[K^{\{p\}} / H\right] .
$$

Then $v$ belongs to $B(L)$. Note that $x$ has the form

$$
\begin{equation*}
x=\pi_{B}^{*}(u)+\iota_{B}(v)+w \tag{4.4}
\end{equation*}
$$

with $w=\left(w_{K}\right)_{K \in \mathcal{F}} \in B(G)$ such that $w_{K}=0$ for all $K \neq L$. Since $\left.u \in A(Q)\right|_{\overline{\mathcal{F}}}$ and $\left.v \in A(L)\right|_{\mathcal{G}}$, where $\overline{\mathcal{F}}=\mathcal{S}(Q) \backslash\{Q\}$ and $\mathcal{G}=\mathcal{S}(L) \backslash\{L\}$, $\pi_{B}^{*}(u)$ and $\iota_{B}(v)$ both belong to $\left.A(G)\right|_{\mathcal{F}}$, cf. the commutative diagrams (4.1) and (4.2). Let $\tau: G \rightarrow L$ be the canonical projection. Set $z=\tau^{*}\left(w_{L}\right)$. Then $\operatorname{res}_{L}^{G}(z)=w_{L}$ and $\operatorname{res}_{K}^{G}(z)=0$ for all $K \in \mathcal{S}(G) \backslash\{G, L\}$. Thus
$\operatorname{res}_{\mathcal{F}}^{G}: A(G) \rightarrow B(G)$ is surjective.
Corollary 4.2 Let $G$ be a nontrivial cyclic group of which the order is a prime or a product of distinct primes. Then $\left.A(G)\right|_{\mathcal{F}}$ coincides with $A(\mathfrak{F})$.

Proof. We obtain the corollary from Propositions 2.1 and 4.1.
Proposition 4.3 Let $G$ be a nontrivial finite group, $N$ a proper normal subgroup of $G$, and $Q=G / N$. If all maximal proper subgroups of $G$ contain $N$ and $\left.A(G)\right|_{\mathcal{F}}$ coincides with $A(\mathfrak{F})$ then $\left.A(Q)\right|_{\overline{\mathcal{F}}}$ coincides with $A(\overline{\mathfrak{F}})$, where $\overline{\mathcal{F}}=\mathcal{F}_{Q}$ and $\overline{\mathfrak{F}}=\mathfrak{F}_{Q}$.

Proof. In this situation, the projection $\pi: G \rightarrow Q$ induces the homomorphism $\pi_{\mathfrak{F}}^{*}: A(\overline{\mathfrak{F}}) \rightarrow A(\mathfrak{F})$ such that $\mathrm{fix}_{\mathfrak{F}}^{N} \circ \pi_{\mathfrak{F}}^{*}$ is the identity map on $A(\overline{\mathfrak{F}})$. Since $\left.A(G)\right|_{\mathcal{F}}=A(\mathfrak{F})$, we get $\left.A(Q)\right|_{\overline{\mathcal{F}}}=A(\overline{\mathfrak{F}})$.

Now we give the proof of Theorem 1.4.
Proof of Theorem 1.4. By Corollary 4.2, it suffices to prove that if $\left.A(G)\right|_{\mathcal{F}}=A(\mathfrak{F})$ then $G$ is a cyclic group of which the order is a prime or a product of distinct primes. Assume that $G$ is a minimal nilpotent group with respect to the order such that $\left.A(G)\right|_{\mathcal{F}}=A(\mathfrak{F})$ but $G$ is not a cyclic group of which the order is a prime or a product of distinct primes. Write $G$ as the product $P_{1} \times \cdots \times P_{m}$ of Sylow $p_{i}$-subgroups $P_{i}$. Let $N_{i}$ denote the intersection of all maximal proper subgroups of $P_{i}$ and set $N=N_{1} \cdots N_{m}$. First set $Q=G / N$. By Proposition 4.3, we obtain $\left.A(Q)\right|_{\overline{\mathcal{F}}}=A(\overline{\mathfrak{F}})$ from $\left.A(G)\right|_{\mathcal{F}}=A(\mathfrak{F})$. It is readily seen that $Q$ is a product of elementary abelian $p_{i}$-groups. Thus by Proposition 3.7, $Q$ is a cyclic group of order $p_{1} \cdots p_{m}$. This implies that each $P_{i}$ admits a unique maximal proper subgroup $N_{i}$. If $N_{i}$ is nontrivial then there exists a subgroup $C^{(i)}$ of order $p_{i}$ such that $C^{(i)} \subset N_{i} \cap Z_{i}$, where $Z_{i}$ is the center of $P_{i}$. Now set $Q=G / C_{i}$. Using Proposition 4.3, we obtain $\left.A(Q)\right|_{\overline{\mathcal{F}}}=A(\overline{\mathfrak{F}})$ from $\left.A(G)\right|_{\mathcal{F}}=A(\mathfrak{F})$. By the minimal property of $G, G / C^{(i)}$ is a cyclic group of which the order is a prime or a product of distinct primes. Thus if $j \neq i$ then $\left|P_{j}\right|=p_{j}$, and $P_{i} \cong C_{p_{i}} \times C_{p_{i}}$ or $C_{p_{i}^{2}}$. By Proposition 3.7 we get $\left.A(G)\right|_{\mathcal{F}} \neq A(\mathfrak{F})$, which is a contradiction.

## References

[1] Bak A., K-Theory of Forms. Annals of Mathematics Studies 98, Princeton Univ. Press, Princeton, 1981.
[ 2 ] Bak A., Induction for finite groups revisited. J. Pure and Applied Alg. 104 (1995), 235-241.
[ 3 ] tom Dieck T., The Burnside ring of a compact Lie group. I. Math. Ann. 215 (1975), 235-250.
[4] tom Dieck T., Transformation Groups and Representation Theory. Lecture Notes in Mathematics 766, Springer Verlag, Berlin-Heidelberg-New York, 1979.
[ 5 ] tom Dieck T., Transformation Groups. de Gruyter Studies in Mathematics 8, de Gruyter, Berlin-New York, 1987.
[6] Laitinen E., Unstable homotopy theory of homotopy representations. Transformation Groups, Poznań 1985, Lecture Notes in Mathematics 1217, Springer Verlag, Berlin-Heidelberg-New York, 1986, pp. 210-248.
[ 7 ] Laitinen E. and Lück W., Equivariant Lefschetz classes. Osaka J. Math. 26 (1989), 491-525.
[8] Morimoto M., The Burnside ring revisited. Current Trends in Transformation Groups, eds. A. Bak, M. Morimoto and F. Ushitaki, $K$-Monographs in Mathematics, Kluwer Acad. Publ., Dordrecht, 2002, pp. 129-145.
[9] Oliver R., Fixed point sets of group actions on finite acyclic complexes. Comment. Math. Helv. 50 (1975), 155-177.

Yasuhiro Hara<br>Graduate School of Science<br>Osaka University<br>1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan<br>E-mail: hara@math.sci.osaka-u.ac.jp<br>Masaharu Morimoto<br>Graduate School of Natural Science and Technology<br>Okayama University<br>3-1-1 Tsushimanaka, Kitaku, Okayama 700-5360, Japan<br>E-mail: morimoto@ems.okayama-u.ac.jp

