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Abstract. Let G be a finite nontrivial group and A(G) the Burnside ring of G.

Let F be a set of subgroups of G which is closed under taking subgroups and taking

conjugations by elements in G. Then let F denote the category whose objects are

elements in F and whose morphisms are triples (H, g, K) such that H, K ∈ F and

g ∈ G with gHg−1 ⊂ K. Taking the inverse limit of A(H), where H ∈ F , we obtain

the ring A(F) and the restriction homomorphism resG
F : A(G) → A(F). We study this

restriction homomorphism.
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1. Introduction

Let G be a finite group. Let S(G) denote the set of all subgroups of
G and S the subgroup category whose objects are all subgroups of G and
whose morphisms are all triples (H, g,K) such that H, K ∈ S(G) and
g ∈ G with gHg−1 ⊂ K. Here the source object of (H, g,K) is H, the
target object of (H, g,K) is K, and for morphisms (H, a, K) and (K, b, L)
in S, the composition (K, b, L) ◦ (H, a, K) in S is defined to be (H, ba, L).
We remark that morphisms (H, g,K) in S are not maps. Let A denote
the category of abelian groups whose objects are all abelian groups and
whose morphisms are all (group) homomorphisms. Let A(G) denote the
Burnside ring of G, i.e. the Grothendieck group of the category of finite
G-sets. For α = [X] − [Y ] ∈ A(G) and H ∈ S(G), the integer χH(α) is
defined to be |XH | − |Y H |, where X and Y are finite G-sets, and |XH |
stands for the number of elements in the H-fixed point set XH of X. Let
A = (A∗, A∗) : S → A denote the Burnside ring functor, where A∗ and A∗

are covariant and contravariant functors respectively. That is, A = (A∗, A∗)
is a Mackey functor in the sense of [2] and A(H) (= A∗(H) = A∗(H))
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is the Burnside ring of H for each H ∈ S(G). Moreover A = (A∗, A∗)
can be regarded as a Green ring functor in the sense of [2]. Let F be a
subset of S(G) such that F is closed under taking subgroups and taking
conjugations by elements in G. Let F denote the full subcategry of S such
that Obj(F) = F . Then we obtain the inverse limit A(F) = lim

←−F
A(−) in the

sense of [1, p. 243], i.e. A(F) consists of all elements (xH) of
∏

H∈F A(H),
where xH ∈ A(H), such that A∗((H, g,K))(xK) = xH for all H, K ∈ F , and
g ∈ G with gHg−1 ⊂ K. The restriction homomorphisms resG

H : A(G) →
A(H) yield the homomorphism resG

F : A(G) → ∏
H∈F A(H) and we readily

see Im(resG
F ) ⊂ A(F).

Finite G-CW complexes X and Y are called χ-equivalent if χ(XH) =
χ(Y H) for all H ∈ S(G), where χ(XH) stands for the Euler characteristic
of the H-fixed point set XH of X. Let Ω(G) denote the set of χ-equivalence
classes of finite G-CW complexes. By assigning to an element [X] − [Y ] ∈
A(G) the element [Z] ∈ Ω(G) such that χ(ZH) = |XH | − |Y H | for all
H ∈ S(G), we obtain a map A(G) → Ω(G), where X and Y are finite G-
sets and Z is a finite G-CW complex. This map A(G) → Ω(G) is a bijection,
see e.g. [5], [8]. Therefore we identify Ω(G) with A(G) via the map. LetM =
(MH)H∈F be a tuple consisting of compact (smooth) H-manifolds MH . For
each H ∈ F we have the element [MH ] in Ω(H) = A(H) determined by MH ,
and hence ([MH ])H∈F lies in

∏
H∈F A(H). If there exists a G-manifold MG

such that resG
HMG is H-diffeomorphic to MH for all H ∈ F , then the element

([MH ])H∈F belongs to Im(resG
F ) (⊂ A(F)). Thus the coset σ(M) including

([MH ])H∈F in (
∏

H∈F A(H))/Im(resG
F ) can be regarded as an obstruction

to extend M to ‘a G-manifold’. Set A(G)|F = Im(resG
F ) and observe the

exact sequence

A(F)/A(G)|F � � //

( ∏

H∈F
A(H)

)
/A(G)|F // //

( ∏

H∈F
A(H)

)
/A(F).

In the theory of the Burnside ring, see e.g. [5], it is well-known
that

∏
H∈F A(H) is a free Z-module and it is readily seen that

(
∏

H∈F A(H))/A(F) is also a free Z-module, where Z is the ring of inte-
gers.

Proposition 1.1 Let G be a nontrivial finite group of order n. Then
nA(F) is contained in A(G)|F .
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This proposition immediately follows from Lemmas 3.2 and 3.3. Thus
A(F)/A(G)|F is a finite abelian group.

The next result also follows from the theory of the Burnside ring.

Proposition 1.2 The exact sequence

0 // Ker(resG
F ) // A(G)

resG
F // A(G)|F // 0

splits as Z-modules and the Z-rank of A(G)|F (resp. Ker(resG
F )) is equal to

the number of G-conjugacy classes of subgroups in F (resp. S(G)r F).

For the convenience of readers, we will give a proof in Section 3.
For a finite nontrivial group G, let FG and FG denote the set S(G)r{G}

and the full subcategory of S such that Obj(FG) = FG, respectively. Let
kG be the integer defined in R. Oliver [9, Lemma 8], i.e. the product of
primes p such that G possesses a normal subgroup with index p. If G is a
nontrivial perfect group then kG is equal to 1.

Proposition 1.3 Let G be a finite nontrivial group, F = FG, and F =
FG. Then Ker(resG

F ) is generated by a unique element γ ∈ A(G) such that
χG(γ) = kG.

Our main result in the paper is

Theorem 1.4 Let G be a finite nontrivial nilpotent group, F = FG, and
F = FG. Then A(G)|F coincides with A(F) if and only if G is a cyclic group
of which the order is a prime or a product of distinct primes.

We will prove Proposition 1.3 in Section 3 and Theorem 1.4 in Section 4.

2. Examples of A(G)|F and A(F)

For the Burnside ring functor A = (A∗, A∗) : S → A and a morphism
(H, g,K) in S, we use (H, g,K)∗ and (H, g,K)∗ instead of A∗((H, g,K))
and A∗((H, g,K)), respectively. Furthermore, (H, e, K)∗ and (H, e, K)∗,
where e is the identity element of G, are denoted by indK

H and resK
H . For a

finite ordered set F , let Fmax denote the set of all maximal elements in F .
Let S be a set of subgroups of G and M a set of morphisms in S, i.e.

M ⊂ Mor(S). Then we define the inverse limit A(S,M) by
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A(S,M) = {(xK)K∈S | xK ∈ A(K) for K ∈ S,

f∗xK = g∗xL whenever K, L ∈ S, f = (H, a, K) ∈ M ,

g = (H, b, L) ∈ M for some H ∈ S(G), a, b ∈ G}.

Let F and F be those in Section 1. In the case where S is a set of com-
plete representatives of conjugacy classes of groups in Fmax, it is clear that
the canonical projection A(F) → A(S, Mor(S)) is an isomorphism. In addi-
tion, we have the restriction homomorphism resG

S : A(G) → A(S, Mor(S))
and the diagram

A(G)
resG
F

wwooooooooooooo
resG

S

))RRRRRRRRRRRRRRR

A(F)
proj

∼= // A(S, Mor(S))

commutes. Thus we can study A(F) and A(G)|F via

A(F)′ = A(S, Mor(S)) and A(G)|S = Im[resG
S : A(G) → A(F)′],

respectively.
In the rest of this section, let F , F, and S be FG, FG, and a set of

complete representatives of conjugacy classes of groups in Fmax, respectively.

Proposition 2.1 Let p be a prime and G a group of order p. Then A(G)|F
coincides with A(F).

One can readily prove this proposition.
Let E denote the unit group, i.e. E = {e}. For an integer m ≥ 1, let

Cm be a cyclic group of order m.

Proposition 2.2 Let p be a prime and G an elementary abelian p-group
of order p2, i.e. G ∼= Cp × Cp. Then A(F)/A(G)|F is isomorphic to Zp as
modules.

Proof. Let u and v be elements of order p in G generating G, i.e. G =
〈u, v〉. Set C(0) = 〈v〉 and C(k) = 〈uvk〉 for k = 1, 2, . . . , p. Then S = {C(k) |
k = 0, 1, . . . , p} and
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A(F)′ =
{
(a0[C(0)/C(0)] + b0[C(0)/E],

(a0 + p(b0 − b1))[C(1)/C(1)] + b1[C(1)/E], . . . . . . ,

(a0 + p(b0 − bp))[C(p)/C(p)] + bp[C(p)/E]) | a0, bi ∈ Z
}
. (2.1)

For w = x[G/G] +
∑p

k=0 yk[G/C(k)] + z[G/E], we have

resG
C(k)w = (x + pyk)[C(k)/C(k)] +

( p∑

i=0

yi − yk + pz

)
[C(k)/E]. (2.2)

Since

p∑

k=0

( p∑

i=0

yi − yk + pz

)
= p

( p∑

i=0

yi + (p + 1)z
)

, (2.3)

we obtain A(F)′/A(G)|S ∼= Zp. ¤

Proposition 2.3 Let p be a prime and G an elementary abelian p-group
of order pn with n ≥ 2. Then there exists an element w = (wK)K∈F in
A(F) satisfying wK = [K/E] ∈ A(K) for all K ∈ Fmax, where Fmax is the
set of subgroups of G with index p. In addition this element w does not lie
in A(G)|F .

Proof. Let H ∈ F and K ∈ Fmax such that H ⊂ K. Then we have
resK

H [K/E] = |K/H|[H/E]. This implies that ([K/E])K∈Fmax determines
the well-defined element w ∈ A(F) as in the proposition.

Let L ∈ F . For K ∈ Fmax,

resG
K [G/L] =

{
p[K/L] (K ⊃ L)

[K/(L ∩K)] (K 6⊃ L).
(2.4)

Assume an element x ∈ A(G) satisfies resG
F (x) = w. Then x has the form

x ≡
∑

L∈L
aL[G/L] + b[G/E] mod 〈[G/H] | H ∈ S(G), |H| ≥ p2〉Z

for some aL, b ∈ Z, where L is the set of all subgroups of G of order p. For
K ∈ Fmax, we have
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resG
Kx ≡

∑

L∈LK

aL[K/E]

mod pA(K) + 〈[K/H] | H ∈ S(K), |H| ≥ p〉Z, (2.5)

where LK = {L ∈ L | L 6⊂ K}. Since |L| = (pn − 1)/(p − 1), |LK | = pn−1,
and |Fmax| = (pn − 1)/(p− 1), we have

∑

K∈Fmax

∑

L∈LK

aL = pn−1
∑

L∈L
aL. (2.6)

On the other hand, since resG
Kx = [K/E], we get

∑

L∈LK

aL ≡ 1 mod p,

i.e.
∑

L∈LK
aL = 1 + pmK for some mK ∈ Z. Thus we have

∑

K∈Fmax

∑

L∈LK

aL =
∑

K∈Fmax

(1 + pmK) =
pn − 1
p− 1

· (1 + pmK) ≡ 1 mod p,

(2.7)

which contradicts (2.6). Thus w does not belong to A(G)|F . ¤

Proposition 2.4 Let p and q be distinct primes. If G is a nontrivial
extension of Cq by Cp, i.e. Cp / G, G/Cp = Cq and G 6∼= Cpq, then A(G)|F
coincides with A(F).

Proof. Note that S(G) = {G,Cp, gCqg
−1, E | g ∈ Cp}. For y ∈ A(Cp)

with the form y = a1[Cp/Cp] + a2[Cp/E], we have

resCp

E y = (a1 + a2p)[E/E], (2.8)

and for z ∈ A(Cq) with the form z = b1[Cq/Cq] + b2[Cq/E], we have

resCq

E z = (b1 + b2q)[E/E]. (2.9)

Then for S = {Cp, Cq}, we have
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A(F)′ =
{(

a1[Cp/Cp] + a2[Cp/E],

(a1 + pa2 − b2q)[Cq/Cq] + b2[Cq/E]
) ∈ A(Cp)×A(Cq)

}
, (2.10)

where a1, a2, and b2 range over Z. For x ∈ A(G) with the form

x = c1[G/G] + c2[G/Cp] + c3[G/Cq] + c4[G/E],

we have

resG
Cp

x = (c1 + c2q)[Cp/Cp] + (c3 + c4q)[Cp/E],

resG
Cq

x = (c1 + c3)[Cq/Cq] +
(

c2 +
c3(p− 1)

q
+ c4p

)
[Cq/E].

(2.11)

Thus resG
S : A(G) → A(F)′ is surjective. ¤

Proposition 2.5 Let p be a prime, m a natural number, and G a cyclic
group of order pm. Then A(F)/A(G)|F is isomorphic to Zp

⊕m−1 as modules.

Proof. Let {e} = H1 < H2 < · · · < Hm < Hm+1 = G be the subgroups
of G. Set K = Hm. Then S = {K} and A(F)′ = A(K). Each element
x ∈ A(G) has the form

x = a1[G/H1] + · · ·+ am[G/Hm] + am+1[G/Hm+1]

with integers a1, . . . , am+1. For the x, we have

resG
Kx = p(a1[K/H1]+· · ·+am−1[K/Hm−1])+(amp+am+1)[K/Hm]. (2.12)

Thus we get A(F)′/A(G)|S ∼= Zp
⊕m−1. ¤

Proposition 2.6 Let p and q be distinct primes, and G a cyclic group of
order pq. Then A(G)|F coincides with A(F).

Proof. Let P and Q be Sylow p- and q-subgroups of G, respectively. Since
the maximal proper subgroups of G are P and Q, we have S = {P, Q} and

A(F)′ = {(a1[P/E] + a2[P/P ], b1[Q/E] + (a1p + a2 − b1q)[Q/Q])

∈ A(P )×A(Q) | a1, a2, b1 ∈ Z}. (2.13)
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For x =
∑

H≤G cH [G/H] ∈ A(G), we have

(resG
P x, resG

Qx) =
(
(cEq + cQ)[P/E] + (cP q + cG)[P/P ],

(cEp + cP )[Q/E] + (cQp + cG)[Q/Q])
)
. (2.14)

These equalities imply A(F)′ = A(G)|S . ¤

Proposition 2.7 Let p and q be distinct primes and G a cyclic group
of order p2q. Then the quotient of A(F)/A(G)|F is isomorphic to Zp as
modules.

Proof. Regard K = Cpq, P = Cp2 , Q = Cq, L = Cp, and E = {e} as
groups in S(G). Since the maximal proper subgroups of G are K and P , we
have S = {K, P} and

A(F)′ = {(b1[K/E] + (c1p− b1q)[K/Q] + b2[K/L] + b3[K/K],

c1[P/E] + c2[P/L] + (b3 + b2q − c2p)[P/P ]) ∈ A(K)×A(P )}
(2.15)

where b1, b2, b3, c1, c2 range over Z. For x =
∑

H≤G aH [G/H] ∈ A(G), we
have

resG
Kx = aEp[K/E] + aQp[K/Q] + (aP + aLp)[K/L] + (aG + aKp)[K/K],

resG
P x = (aQ + aEq)[P/E] + (aK + aLq)[P/L] + (aG + aP q)[P/P ].

(2.16)

These equalities show A(F)′/A(G)|S ∼= Zp. ¤

Proposition 2.8 For G = A4, the alternating group on four letters,
A(G)|F coincides with A(F).

Proof. We regard G as D4 o C3, where D4 is a dihedral group of order
4. Then F = (D4) ∪ (C3) ∪ (C2) ∪ (E) and S(D4) = {D4, C2, C ′2, C ′′2 , E},
where C2, C ′2 and C ′′2 are distinct subgroups of order 2. For

x = x1[G/G] + x2[G/D4] + x3[G/C3] + x4[G/C2] + x5[G/E] ∈ A(G),

we have
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resG
D4

x = (x1 + 3x2)[D4/D4] + x4([D4/C2] + [D4/C ′2] + [D4/C ′′2 ])

+ (x3 + 3x5)[D4/E],

resG
C3

x = (x1 + x3)[C3/C3] + (x2 + x3 + 2x4 + 4x5)[C3/E].

Set S = {D4, C3}. Then we have

A(F)′ = {(y, z) | α, β, γ, δ ∈ Z, u = α + 6β + 4γ − 3δ};
y = α[D4/D4] + β([D4/C2] + [D4/C ′2] + [D4/C ′′2 ]) + γ[D4/E]

∈ A(D4), and

z = u[C3/C3] + δ[C3/E] ∈ A(C3).

Here we remark that resD4
E y = resC3

E z. Using these equalities, we can readily
see the equality A(F)′ = A(G)|S . ¤

3. Basic observation of A(G)|F and A(F)

For each subgroup H of G, we have the homomorphism χH : A(G) → Z
defined by χH([X] − [Y ]) = |XH | − |Y H | for finite G-sets X and Y . Let
(
∏

H∈S(G) Z)G denote the G-conjugation invariant subset of
∏

H∈S(G) Z.
We get the homomorphism uχ : A(G) → (

∏
H∈S(G) Z)G by assigning

(χH(x))H∈S(G) to x ∈ A(G). We recall the next two lemmas, see e.g. [5, I
(2.18), I Proposition 2, IV (5.1)–(5.7)], [8, (2.2), (5.1)–(5.3)].

Lemma 3.1 The homomorphism uχ : A(G) → (
∏

H∈S(G) Z)G is injective.

Lemma 3.2 (Burnside Congruence) An element (yH)H∈S(G) ∈
(
∏

H∈S(G) Z)G lies in the image of uχ : A(G) → (
∏

H∈S(G) Z)G if and
only if

∑

s∈WH

yK ≡ 0 mod |WH|

for all H ∈ S(G), where WH = NG(H)/H and K is the subgroup of NG(H)
such that K ⊃ H and K/H = 〈s〉 ≤ WH.

For L ∈ F , we denote by ϕL the composition
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A(F) incl //
∏

H∈F
A(H) proj // A(L)

χL // Z.

Lemma 3.3 The homomorphism

ϕF =
∏

(H)⊂F ϕH : A(F) //
∏

(H)⊂F Z

is injective.

Proof. Let x = (xH)H∈F , where xH ∈ A(H), be an element of A(F) such
that ϕF (x) = 0, i.e. χL(xL) = 0 for all L ∈ F . For H ∈ F and L ≤ H, we
have

χL(xH) = χL(resH
L xH) = χL(xL) = 0.

By Lemma 3.1, we get xH = 0 in A(H). This implies x = 0 in A(F). Thus
ϕF is injective. ¤

We are ready for proving Proposition 1.2.

Proof of Proposition 1.2. Let a and b denote the numbers of G-conjugacy
classes of elements in F and S(G) r F , respectively. The Burnside ring
A(G) is a free Z-module, and hence Ker(resG

F ) and A(G)|F both are free Z-
modules. The module A(G) has the Z-basis {[G/H] | (H) ⊂ S(G)}, where
(H) is the G-conjugacy class of H ∈ S(G). It is clear that rankA(G) = a+b.

Since ϕF is injective and A(G)|F ⊂ A(F), we get

rankA(G)|F ≤ rankA(F) ≤ a. (3.1)

The injectivity of uχ and ϕF imply that the homomorphism

∏

(K)⊂S(G)rF
χK : Ker(resG

F ) →
∏

(K)⊂S(G)rF
Z

is injective. Thus we get

rankKer(resG
F ) ≤ b. (3.2)

Putting these together, we have
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a + b = rankA(G) = rankA(G)|F + rankKer(resG
F ) ≤ a + b, (3.3)

which implies rankA(G)|F = a and rankKer(resG
F ) = b. ¤

The proof above implies the next fact.

Proposition 3.4 The Z-rank of A(F) is equal to the number of G-
conjugacy classes of subgroups belonging to F .

The next lemma is essentially due to [9, Lemma 8]. We remark that in
the case where G is an elementary abelian p-group for a prime p, the lemma
can be proved by explicit calculation, and in the case where G is a nontrivial
perfect group, the lemma immediately follows from Lemma 3.2.

Lemma 3.5 Let G be a finite nontrivial group. Then there exists γ ∈ A(G)
such that χG(γ) = kG and resG

Hγ = 0 for all H < G.

Proof. Let ψ : S(G) → Z be the function uniquely defined by the condi-
tions

ψ(G) = kG, and
∑

K⊃H

ψ(K) = 0 for all H < G. (3.4)

R. Oliver [9, Lemma 8] proved that |NG(H)/H| divides ψ(H) for any H ∈
S(G). By the definition in [9, p. 159], ψ is an integral resolving function. By
the arguments used in [9, Proof of Theorem 1, p. 161, line 20–p. 162, line 2],
there exists a finite G-CW complex X such that

χ(XG) = 1 + ψ(G), and χ(XH) = 1 for all H < G, (3.5)

where χ(XH) is the Euler characteristic of XH . Let γ be the element of
A(G) satisfying

χH(γ) = χ(XH)− 1 for all H ∈ S(G), (3.6)

see [8, p. 129, (1.1)]. Then χG(γ) = kG and χH(γ) = 0 for all H < G. ¤

We obtain Proposition 1.3 from the lemma above as follows.

Proof of Proposition 1.3. Let γ ∈ A(G) be the element stated in
Lemma 3.5. It is clear that γ ∈ Ker(resG

F ). Let α be an element in
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Ker(resG
F ). If p is a prime and N is a normal subgroup of G with index

p, then χG(α) ≡ χN (α) = 0 mod p. This implies that χG(α) is divisible
by kG. By Lemma 3.1, α = mγ for some integer m. ¤

Proposition 3.6 Let p be a prime, G a nontrivial abelian group of p-
power order, and n a natural number prime to p. Then there exists an
element x ∈ A(G) such that χG(x) = 1 and resG

Hx ∈ nA(H) for all H < G.

Proof. By Lemma 3.5, we have an element γ ∈ A(G) such that χG(γ) = p

and resG
Hγ = 0 for all H < G. There exist integers a and b satisfying

ap + bn = 1. Set x = aγ + bn[G/G]. Then χG(x) = ap + bn = 1 and
resG

Hx = n(b[H/H]) for all H < G. ¤

Let N be a normal subgroup of G, L a subgroup of G containing N ,
and X a finite L-set. Then the N -fixed point set XN and the complement
X r XN are L-sets, and XN can be regarded as an L/N -set. For x =
[X]− [Y ] ∈ A(L), let xN denote the element [XN ]− [Y N ] in A(L/N). Then
we obtain a homomorphism

fixN
L : A(L) → A(L/N); x 7−→ xN .

For a finite group G and a prime p, let G{p} denote the smallest normal
subgroup of G such that G/G{p} is of p-power order.

Proposition 3.7 Let P be a cyclic group of order p2 or an elementary
abelian p-group of order ≥ p2, let G be the cartesian product P×P1×· · ·×Pm

such that for each i = 1, . . . , m, Pi is a nontrivial elementary abelian pi-
group, and let F = FG and F = FG. Then A(G)|F 6= A(F).

Proof. In the case that G = P , the conclusion follows from Propositions 2.5
and 2.3. Thus we may suppose m ≥ 1. Let G = FP , i.e. G = S(P ) r {P},
and G = FP , hence Obj(G) = G. For each i = 1, . . . m, by Proposition 3.6,
we can take an element ui ∈ A[Pi] satisfying

χPi
(ui) = 1, and resPi

K ui ∈ |P |A(K) for all K < Pi. (3.7)

Let w = (wK)K∈G ∈ A(G) be the element such that

wK = [K/E] for all K ∈ Gmax.
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We set u = u1 · · ·um ∈ A(G{p}) and

vKG{p} = wKu ∈ A(KG{p}) (K ∈ Gmax ).

Let H = S(G{p})r {G{p}}. Then for S ∈ Hmax, the element

resKG{p}
KS vKG{p} = wK

(
resG{p}

S u
)

lies in |P |A(KS). By Lemma 3.2, there exists an element vPS ∈ A(PS)
such that

resPS
KSvPS = resKG{p}

KS vKG{p} .

Thus the datum ((vPS)S∈Hmax , (vKG{p})K∈Gmax) determines an element v =
(vK)K∈F ∈ A(F).

For K ≤ L and y =
∑

(H)⊂S(L) aH [L/H] ∈ A(L), let d(y, L/K) denote
the coefficient aH of [L/K].

Assume that there exists an element x ∈ A(G) such that resG
Fx = v.

Then we readily obtain

d(resG
KG{p}x,KG{p}/G{p}) = d(vKG{p} ,KG{p}/G{p}),

d(resG
KG{p}x,KG{p}/G{p}) = d(resP

K(xG{p}
),K/E),

and

d(vKG{p} ,KG{p}/G{p}) = d(vG{p}
KG{p} ,K/E) = d(wK ,K/E) = 1

from (3.7). By the arguments proving (2.6), we get

∑

K∈Gmax

d(resP
KxG{p}

,K/E) is divisible by p. (3.8)

However, since |Gmax| ≡ 1 mod p, the arguments proving (2.7) show

∑

K∈Gmax

d(wK ,K/E) ≡ 1 mod p. (3.9)

The property (3.8) contradicts the property (3.9), and hence v does not
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belong to A(G)|F . ¤

4. Observation of A(G/N)|F and A(F)

Throughout this section, let F = FG and F = FG. Let N be a proper
normal subgroup of G, Q = G/N , π : G → Q the projection, F = FQ, and
F = FQ. Then the projection π induces the homomorphism π∗ : A(Q) →
A(G);

π∗([Q/H]) = [G/π−1(H)] (H ∈ S(Q)).

We readily see that fixN
G ◦π∗ is the identity map on A(Q). For w = (wK)K∈F ,

consider the associated datum

(wK
N )K∈F, K⊃N .

This yields the homomorphism fixN
F : A(F) → A(F).

For x = (xH)H∈F ∈ A(Q)|F , take an element y ∈ A(Q) such that
resQ

F (y) = x and consider the element z = (zK)K∈F = resG
F (π∗y) in A(G)|F .

For any K ∈ F with K ⊃ N , zK
N is equal to zK in A(K) (⊃ A(K/N) via

π|∗K). Since A(Q)|F is a Z-free module, we can get a homomorphism

π∗B : A(Q)|F → A(G)|F

such that π∗B(x) = resG
F (π∗y) for x ∈ A(Q)|F and some y ∈ A(Q) with

resQ

F (y) = x. Then the diagram

A(Q)

id %%KKKKKKKKK
π∗ //

resQ

F

²²²²

A(G)

fixN
Gvvvvmmmmmmmmmmmmmm

resG
F

²²²²

A(Q)

²²²²

A(Q)|F

id %%JJJJJJJJJ

π∗B // A(G)|F

fixN
Fvvvvmmmmmmmmmmmmm

� � // A(F)

fixN
Fvvnnnnnnnnnnnnnn

A(Q)|F � � // A(F)

(4.1)
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commutes.
In the rest of this section, let L be a nontrivial subgroup of G, G = FL,

and G = FL.

Proposition 4.1 Let p be a prime and L a nontrivial subgroup of G such
that G = L×Cp, and p is prime to the order of L. If A(L)|G coincides with
A(G) then A(G)|F coincides with A(F).

Proof. We may regard Cp ⊂ G and G = L · Cp. Set B(G) = A(F) and
Q = G/Cp. Let π : G → Q be the projection. Since Q is isomorphic to L,
the restriction homomorphism resQ

F : A(Q) → B(Q) = A(F) is surjective,
i.e. A(Q)|F = A(F). Since B(L) = A(G) is a free Z-module and resG

G :
A(L) → B(L) is surjective, there is a homomorphism ιB : B(L) → B(G)
such that the diagram

A(L)
indG

L //

resL
G ²²²²

A(G)

resG
F

²²
B(L)

ιB

// B(G)

(4.2)

commutes. For a subgroup K of L, define the homomorphism

fK : A(K) → A(K · Cp)×A(K)

by

fK([K/H]) = ([(K · Cp)/H], p[K/H]) for H ≤ K.

Then we obtain the homomorphism

uf? =
∏

K<L

fK :
∏

K<L

A(K) →
∏

K<L

A(K · Cp)×
∏

K<L

A(K).

We remark that the diagram
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B(L)� _

²²

ιB // B(G)� _

²²∏
K<L A(K)

uf?

**UUUUUUUUUUUUUUUU

∏
T<G A(T )

proj

ttiiiiiiiiiiiiiiii

∏
K<L A(K · Cp)×

∏
K<L A(K) (4.3)

commutes.
Decompose F to F = F1 q F2 q {L}, where

F1 = {K ∈ F | K ⊃ Cp},
F2 = {K ∈ F | K 6⊃ Cp, K 6= L}.

Let x = ((xK)K∈F1 , (xK)K∈F2 , xL) ∈ B(G). Since K · Cp ∈ F1 for any
K ∈ F2, the element x is determined by the datum ((xK)K∈F1 , xL). Define
u = (uH)H∈F ∈ B(Q) by uπ(K) = fixCp

K xK for K ∈ F1. Set y = (yK)K∈F =
x− π∗B(u). For K ∈ F1, since yK

Cp = 0, yK has the form

yK =
∑

H∈S(K)∩F2

bH [K/H].

Let K{p} be the normal subgroup of K with index p. Define v =
(vK{p})K∈F1 by

vK{p} =
∑

H∈S(K)∩F2

bH [K{p}/H].

Then v belongs to B(L). Note that x has the form

x = π∗B(u) + ιB(v) + w (4.4)

with w = (wK)K∈F ∈ B(G) such that wK = 0 for all K 6= L. Since
u ∈ A(Q)|F and v ∈ A(L)|G , where F = S(Q)r {Q} and G = S(L)r {L},
π∗B(u) and ιB(v) both belong to A(G)|F , cf. the commutative diagrams
(4.1) and (4.2). Let τ : G → L be the canonical projection. Set z = τ∗(wL).
Then resG

L (z) = wL and resG
K(z) = 0 for all K ∈ S(G) r {G,L}. Thus
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resG
F : A(G) → B(G) is surjective. ¤

Corollary 4.2 Let G be a nontrivial cyclic group of which the order is a
prime or a product of distinct primes. Then A(G)|F coincides with A(F).

Proof. We obtain the corollary from Propositions 2.1 and 4.1. ¤

Proposition 4.3 Let G be a nontrivial finite group, N a proper normal
subgroup of G, and Q = G/N . If all maximal proper subgroups of G contain
N and A(G)|F coincides with A(F) then A(Q)|F coincides with A(F), where
F = FQ and F = FQ.

Proof. In this situation, the projection π : G → Q induces the homomor-
phism π∗F : A(F) → A(F) such that fixN

F ◦ π∗F is the identity map on A(F).
Since A(G)|F = A(F), we get A(Q)|F = A(F). ¤

Now we give the proof of Theorem 1.4.

Proof of Theorem 1.4. By Corollary 4.2, it suffices to prove that if
A(G)|F = A(F) then G is a cyclic group of which the order is a prime or
a product of distinct primes. Assume that G is a minimal nilpotent group
with respect to the order such that A(G)|F = A(F) but G is not a cyclic
group of which the order is a prime or a product of distinct primes. Write
G as the product P1×· · ·×Pm of Sylow pi-subgroups Pi. Let Ni denote the
intersection of all maximal proper subgroups of Pi and set N = N1 · · ·Nm.
First set Q = G/N . By Proposition 4.3, we obtain A(Q)|F = A(F) from
A(G)|F = A(F). It is readily seen that Q is a product of elementary abelian
pi-groups. Thus by Proposition 3.7, Q is a cyclic group of order p1 · · · · · pm.
This implies that each Pi admits a unique maximal proper subgroup Ni.
If Ni is nontrivial then there exists a subgroup C(i) of order pi such that
C(i) ⊂ Ni ∩ Zi, where Zi is the center of Pi. Now set Q = G/Ci. Using
Proposition 4.3, we obtain A(Q)|F = A(F) from A(G)|F = A(F). By the
minimal property of G, G/C(i) is a cyclic group of which the order is a
prime or a product of distinct primes. Thus if j 6= i then |Pj | = pj , and
Pi
∼= Cpi ×Cpi or Cp2

i
. By Proposition 3.7 we get A(G)|F 6= A(F), which is

a contradiction. ¤
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