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The inverse limit of the Burnside ring for a family of subgroups

of a finite group
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Abstract. Let G be a finite nontrivial group and A(G) the Burnside ring of G.
Let F be a set of subgroups of G which is closed under taking subgroups and taking
conjugations by elements in G. Then let § denote the category whose objects are
elements in F and whose morphisms are triples (H, g, K) such that H, K € F and
g € G with gHg™! C K. Taking the inverse limit of A(H), where H € F, we obtain
the ring A(F) and the restriction homomorphism res?_— : A(G) — A(F). We study this
restriction homomorphism.
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1. Introduction

Let G be a finite group. Let S(G) denote the set of all subgroups of
G and 6 the subgroup category whose objects are all subgroups of G and
whose morphisms are all triples (H,g, K) such that H, K € S(G) and
g € G with gHg~! C K. Here the source object of (H,g,K) is H, the
target object of (H, g, K) is K, and for morphisms (H,a, K) and (K,b, L)
in &, the composition (K,b,L) o (H,a,K) in & is defined to be (H,ba, L).
We remark that morphisms (H,g,K) in & are not maps. Let 2 denote
the category of abelian groups whose objects are all abelian groups and
whose morphisms are all (group) homomorphisms. Let A(G) denote the
Burnside ring of G, i.e. the Grothendieck group of the category of finite
G-sets. For a = [X] — [Y] € A(G) and H € S(G), the integer ypu(«) is
defined to be |X| — |[YH|, where X and Y are finite G-sets, and |X |
stands for the number of elements in the H-fixed point set X of X. Let
A= (A, A"): 6 — 2A denote the Burnside ring functor, where A, and A*
are covariant and contravariant functors respectively. That is, A = (A, A*)
is a Mackey functor in the sense of [2] and A(H) (= A.(H) = A*(H))
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is the Burnside ring of H for each H € S(G). Moreover A = (A,, A*¥)
can be regarded as a Green ring functor in the sense of [2]. Let F be a
subset of S(G) such that F is closed under taking subgroups and taking
conjugations by elements in G. Let § denote the full subcategry of & such
that Obj(§) = F. Then we obtain the inverse limit A(F) = lim A(—) in the

sense of [1, p.243], i.e. A(F) consists of all elements (rz) of [] ;. A(H),
where xyy € A(H), such that A*((H, g, K))(zx) = xp for all H, K € F, and
g € G with gHg=! C K. The restriction homomorphisms res§ : A(G) —
A(H) yield the homomorphism res? : A(G) — [[ycr A(H) and we readily
see Im(res$) C A(F).

Finite G-CW complexes X and Y are called y-equivalent if x(XH) =
x(YH) for all H € S(G), where x(X) stands for the Euler characteristic
of the H-fixed point set X of X. Let Q(G) denote the set of x-equivalence
classes of finite G-CW complexes. By assigning to an element [X] — [Y] €
A(G) the element [Z] € Q(G) such that x(Z) = |XH| — |[YH]| for all
H € §(G), we obtain a map A(G) — Q(G), where X and Y are finite G-
sets and Z is a finite G-CW complex. This map A(G) — ) is a bijection,
see e.g. [5], [8]. Therefore we identify Q(G) with A(G) via the map. Let M =
(Mp)mer be a tuple consisting of compact (smooth) H-manifolds My. For
each H € F we have the element [Mpy] in Q(H) = A(H) determined by My,
and hence ([Mpy])mer lies in [[ ;.- A(H). If there exists a G-manifold Mg
such that res$ 71 M¢ is H-diffeomorphic to My for all H € F, then the element
([Mu))mer belongs to Im(res?) (C A(F)). Thus the coset o(M) including
(IMu))rer in ([1ger A(H))/Im(res?) can be regarded as an obstruction
to extend M to ‘a G-manifold’. Set A(G)|r = Im(res$) and observe the
exact sequence

A3)/A(G) u%(HA ) |fH>(HA )

HeF HeF

In the theory of the Burnside ring, see e.g. [5], it is well-known
that J]ycrA(H) is a free Z-module and it is readily seen that
(ITger A(H))/A(S) is also a free Z-module, where Z is the ring of inte-
gers.

Proposition 1.1 Let G be a nontrivial finite group of order n. Then
nA(g) is contained in A(G)|r.
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This proposition immediately follows from Lemmas 3.2 and 3.3. Thus
A(F)/A(G)| £ is a finite abelian group.
The next result also follows from the theory of the Burnside ring.

Proposition 1.2  The exact sequence

G
res o

0 — Ker(res%) A(G) AG) | ——=0
splits as Z-modules and the Z-rank of A(G)|# (resp. Ker(res%)) is equal to
the number of G-conjugacy classes of subgroups in F (resp. S(G) \ F).

For the convenience of readers, we will give a proof in Section 3.

For a finite nontrivial group G, let F¢ and §¢ denote the set S(G)~{G}
and the full subcategory of & such that Obj(Fg) = Fg, respectively. Let
ke be the integer defined in R. Oliver [9, Lemma 8], i.e. the product of
primes p such that G possesses a normal subgroup with index p. If G is a
nontrivial perfect group then kg is equal to 1.

Proposition 1.3 Let G be a finite nontrivial group, F = Fg, and § =
Sa. Then Ker(res$) is generated by a unique element v € A(G) such that
xc(7) = ke

Our main result in the paper is

Theorem 1.4 Let G be a finite nontrivial nilpotent group, F = Fg, and
§=38c. Then A(G)|F coincides with A(F) if and only if G is a cyclic group
of which the order is a prime or a product of distinct primes.

We will prove Proposition 1.3 in Section 3 and Theorem 1.4 in Section 4.

2. Examples of A(G)|x and A(%)

For the Burnside ring functor A = (A,, A*) : & — 2 and a morphism
(H,9,K) in &, we use (H,g,K). and (H,g,K)* instead of A.((H, g, K))
and A*((H,g,K)), respectively. Furthermore, (H,e, K), and (H, e, K)*,
where e is the identity element of G, are denoted by indg and res®. For a
finite ordered set F', let Fi,.x denote the set of all maximal elements in F.

Let S be a set of subgroups of G and M a set of morphisms in &, i.e.
M C Mor(6). Then we define the inverse limit A(S, M) by



430 Y. Hara and M. Morimoto

A(S, M) ={(zk)kes | vk € A(K) for K € 5,
ffexg = g xr whenever K, L€ S, f =(H,a,K) € M,
g=(H,b,L) € M for some H € S(G), a, b € G}.
Let F and § be those in Section 1. In the case where S is a set of com-
plete representatives of conjugacy classes of groups in Fp,ax, it is clear that
the canonical projection A(F) — A(S,Mor(&)) is an isomorphism. In addi-

tion, we have the restriction homomorphism resg : A(G) — A(S, Mor(&))
and the diagram

A(G)

y &
=

A(S,Mor(&))

A(S)

proj
commutes. Thus we can study A(F) and A(G)|r via
A(3) = A(S,Mor(8)) and A(G)|s = Im[res§ : A(G) — A(3)'],

respectively.
In the rest of this section, let F, §, and S be Fg, §¢, and a set of
complete representatives of conjugacy classes of groups in Fax, respectively.

Proposition 2.1  Let p be a prime and G a group of order p. Then A(G)|r
coincides with A(F).

One can readily prove this proposition.
Let E denote the unit group, i.e. E = {e}. For an integer m > 1, let
C., be a cyclic group of order m.

Proposition 2.2 Let p be a prime and G an elementary abelian p-group
of order p?, i.e. G = Cp, x Cp. Then A(F)/A(G)|F is isomorphic to Z, as
modules.

Proof. Let uw and v be elements of order p in G generating G, i.e. G =
(u,v). Set C(® = (v) and C*) = (uv*) for k = 1,2,...,p. Then S = {C*) |
k=0,1,...,p} and
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A®B) = {(ao[C?/CO] + bo[CV/E),
(ag + p(bo — b1))[CY /CD] + b [CV/E],. ... :
(ao + p(bo — b)) [CP) JCW)] + b,[CP)/E]) | ag, b; € Z}. (2.1)

For w = 2[G/G] + 38 _, yk[G/C®] + 2[G/ E], we have

resénw = (2 + pyx) [CH /CH] 4 <Zy —yr + p2> [C®/E].  (22)

i=0
Since
P P P
Z( yi—yk+pz)=p<2yi+(p+1)Z)7 (2.3)
k=0 \i=0 i=0
we obtain A(F)'/A(G)|s = Zy. O

Proposition 2.3 Let p be a prime and G an elementary abelian p-group
of order p"™ with n > 2. Then there exists an element w = (Wg)xer n
A(F) satisfying wix = [K/E] € A(K) for all K € Fax, where Fiax 1 the
set of subgroups of G with index p. In addition this element w does not lie

in A(G)| 7.

Proof. Let H € F and K € Fuax such that H C K. Then we have
res®[K/E] = |K/H|[H/E]. This implies that ([K/E])xer,., determines
the well-defined element w € A(§F) as in the proposition.

Let L € F. For K € Fax,

oo WKL (KoL)
resp[G/L] = {[K/(L NK) (K %L). (2.4)

Assume an element = € A(G) satisfies res%(z) = w. Then z has the form

r= Z ap[G/L) 4+ b[G/E] mod ([G/H] | H € S(G), |H| > p*)z
LeL

for some ar, b € Z, where L is the set of all subgroups of G of order p. For
K € Fiax, we have
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resGar = Z ar,[K/E]

P od pA(E) 1 {[K/H] | H € S(K), |H| > p)z, (25)

where Lic = {L € £] L ¢ K}. Since [£] = (7" = 1)/(p — 1), [£xc = p
and ’fmax‘ = (Pn - 1)/(]? — 1), we have

Z Z aL:p"_lzaL. (2.6)

KeFmax LELK Lel

On the other hand, since res%x = [K/E], we get

Z ar, =1 mod p,
LeLk

ie. ZLECK ar, = 1+ pmg for some myg € Z. Thus we have

7

Z Z arp = Z (14+pmg) = ];__11 (14 pmg)=1 mod p,

Kefmax LEK/K Ke-Fmax

(2.7)

which contradicts (2.6). Thus w does not belong to A(G)|x. O

Proposition 2.4 Let p and q be distinct primes. If G is a nontrivial
extension of Cy by Cp, i.e. Cp <G, G/C, = Cy and G ¥ Cpq, then A(G)|r
coincides with A(F).

Proof. Note that S(G) = {G,Cp,g9Cyg ', E | g € Cp}. For y € A(C))
with the form y = a;,[C},/Cp]| 4 a2[C,/E], we have

res"y = (a1 + azp)[E/E), (2.8)
and for z € A(C,) with the form z = b,[C,/C,| + b2[C,/E], we have
resg'z = (by + bag)[E/E. (2.9)

Then for S = {C,,C,}, we have
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A(S) = {(a1 [Cp/Cp) + az[Cyp/ E,
(a1 4+ pag — b2q)[Cq/Cql + b2 [Cq/E]) € A(Cyp) x A(Cq)}a (2.10)

where ay, a2, and by range over Z. For x € A(G) with the form
z = c1[G/G] + 2[G/Cy| + ¢3[G/Cy] + cu[G/ E],
we have

resg, © = (c1 + 2q)[Cp/Cp) + (3 + caq)[Cp/ B,

2.11
resgq:c = (1 +¢3)[Cy/Cq] + <02 + %(19(1_1) + C4p> [Cy/E]. 21

Thus res§ : A(G) — A(F)’ is surjective. O

Proposition 2.5 Let p be a prime, m a natural number, and G a cyclic
group of order p™. Then A(F)/A(G)|F is isomorphic to Z,*™ " as modules.

Proof. Let {e} = Hy < Hy < --- < H,, < Hp,+1 = G be the subgroups
of G. Set K = H,,. Then S = {K} and A(F) = A(K). Each element
z € A(G) has the form

r=a |G/ ]+ + am[G/Hpm] + amia1[G/Hpii]
with integers aq,...,am41. For the x;, we have
resix = play[K/Hyl+ - +am 1 [K/Hp 1)) +(amptam1) [K/Hy]. (2.12)

Thus we get A(F) /A(G)|s = 2, 1. O

Proposition 2.6 Let p and q be distinct primes, and G a cyclic group of
order pq. Then A(G)|£ coincides with A(F).

Proof. Let P and @ be Sylow p- and g-subgroups of GG, respectively. Since
the maximal proper subgroups of G are P and (), we have S = {P,Q} and

A(S)" = {(a1[P/E] + ag[P/P], b1[Q/E] + (a1p + az — b1¢)[Q/Q))
€ A(P) x A(Q) | a1, as, by € Z}. (2.13)
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Forz =3y qcnlG/H] € A(G), we have

(resG, resgm) = ((ceq + cQ)[P/E] + (cpq + cc)[P/P),
(cep + cp)[Q/E] + (cp + ¢a)[Q/Q)))- (2.14)

These equalities imply A(F) = A(G)|s. O

Proposition 2.7 Let p and q be distinct primes and G a cyclic group
of order p*q. Then the quotient of A(F)/A(G)|F is isomorphic to Z, as
modules.

Proof. Regard K = Cpy, P = Cp2, Q@ = Cy, L = Cp, and E = {e} as
groups in §(G). Since the maximal proper subgroups of G are K and P, we
have S = {K, P} and
AR) = {(n[K/E] + (c1p — b1g)[K/ Q) + ba[K/ L] + b3[ K/ K],
c1[P/E] 4 co[P/L] + (bs 4 baq — cap)[P/P]) € A(K) x A(P)}
(2.15)

where by, bz, b, 1, ¢z range over Z. For x = )", ag[G/H] € A(G), we
have -

resx = app[K/E] + aqplK/Q) + (ap + arp)[K/L] + (ac + axp)[K/K],

resga = (ag + apq)[P/E) + (ax + arq)[P/L] + (ag + apq)[P/P).
(2.16)

These equalities show A(F) /A(G)|s = Z,. O

Proposition 2.8 For G = Ay, the alternating group on four letters,
A(G)|# coincides with A(F).

Proof. We regard G as Dy x Cs, where Dy is a dihedral group of order
4. Then F = (D4) U (C3) U (C2) U (E) and S(Dy) = {D4, Cs, C}, CY,E},
where Co, C% and C4 are distinct subgroups of order 2. For

x = 21|G/G]| + 22[G/D4] + 3]G /C3] + 24|G/C2] + 25|G/E] € A(G),

we have
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res$, @ = (21 + 322)[Da/Da] + 24([Da/Ca] + [Da/C5] + [Da/C5))
+ (1‘3 + 3.’55)[D4/E],

resgsx = (:L‘l + 1:3)[03/03] + (1‘2 + T3 + 2.7;4 + 4x5)[C'3/E].
Set S = {Dy4,Cs}. Then we have

AR ={(y,2) | 0, 8,7,0 €Z, u=a+ 60+ 4y — 35};
y = a[Ds/Dy] + B([Ds/Cs] + [Da/C3] + [Ds/C3]) + v[Da/E]
€ A(Dy), and
2 = u[C3/Cs] + 8[C3/E] € A(Cy).

Here we remark that resg“y = res%”’z. Using these equalities, we can readily
see the equality A(F) = A(G)|s. O

3. Basic observation of A(G)|x and A(%)

For each subgroup H of G, we have the homomorphism xpg : A(G) — Z
defined by xg([X] — [Y]) = |XH| — |[YH] for finite G-sets X and Y. Let
(Ires 7)€ denote the G-conjugation invariant subset of Huese Z-
We get the homomorphism My : A(G) — ([lgesq) Z)¢ by assigning
(xu())Hes) to x € A(G). We recall the next two lemmas, see e.g. [5, I
(2.18), I Proposition 2, IV (5.1)~(5.7)], [8, (2.2), (5.1)—(5.3)].

Lemma 3.1  The homomorphism Tx : A(G) — (I1xesq) 7)€ is injective.

Lemma 3.2 (Burnside Congruence) An element (ym)mes) €
(HHes(G) 7)€ lies in the image of My : A(G) — (HHeS(G) Z)C if and
only if

Z yxk =0 mod |WH|
seWH

forall H € S(G), where WH = Ng(H)/H and K is the subgroup of N (H)
such that K D H and K/H = (s) < WH.

For L € F, we denote by ¢ the composition
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A(S)LCL}QJ;A(H) proj A(L) XL

Lemma 3.3 The homomorphism

$YF = H(H)C]-' o AF) —— H(H)C]—'Z
18 injective.

Proof. Let v = (xg)mer, where zg € A(H), be an element of A(F) such
that oz(z) =0, i.e. xp(zr) =0forall Le F. For H € F and L < H, we
have

xo(ry) = xp(resfay) = xp(zr) = 0.

By Lemma 3.1, we get xy = 0 in A(H). This implies z = 0 in A(F). Thus
pF is injective. U

We are ready for proving Proposition 1.2.

Proof of Proposition 1.2. Let a and b denote the numbers of G-conjugacy

classes of elements in F and S(G) \ F, respectively. The Burnside ring

A(QG) is a free Z-module, and hence Ker(res%) and A(G)|r both are free Z-

modules. The module A(G) has the Z-basis {[G/H] | (H) C S(G)}, where

(H) is the G-conjugacy class of H € S(G). It is clear that rank A(G) = a+b.
Since @z is injective and A(G)|z C A(F), we get

rank A(G)|r < rank A(F) < a. (3.1)

The injectivity of My and ¢+ imply that the homomorphism

H xk : Ker(res§) — H Z

(K)CS(G)NF (K)CS(G)NF
is injective. Thus we get

rank Ker(res%) < b (3.2)

Putting these together, we have
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a+b = rank A(G) = rank A(G)|# + rank Ker(res%) < a + b, (3.3)

which implies rank A(G)|7 = a and rank Ker(res$) = b. O
The proof above implies the next fact.

Proposition 3.4  The Z-rank of A(F) is equal to the number of G-
conjugacy classes of subgroups belonging to F.

The next lemma is essentially due to [9, Lemma 8]. We remark that in
the case where G is an elementary abelian p-group for a prime p, the lemma
can be proved by explicit calculation, and in the case where G is a nontrivial
perfect group, the lemma immediately follows from Lemma 3.2.

Lemma 3.5 Let G be a finite nontrivial group. Then there ezists vy € A(Q)
such that xa(v) = kg and res§y =0 for all H < G.

Proof. Let ¢ : S(G) — Z be the function uniquely defined by the condi-
tions

(@) =kg, and Y (K)=0 forall H<G. (3.4)
KDH

R. Oliver [9, Lemma 8] proved that |Ng(H)/H| divides (H) for any H €
S(G). By the definition in [9, p. 159], ¢ is an integral resolving function. By
the arguments used in [9, Proof of Theorem 1, p. 161, line 20—p. 162, line 2],
there exists a finite G-CW complex X such that

(XS =14+9(G), and y(XT)=1 forall H <G, (3.5)

where x(X*) is the Euler characteristic of X*. Let v be the element of
A(G) satistying

xu(y) = x(X7) =1 for all H € S(G), (3.6)

see [8, p.129, (1.1)]. Then x¢(vy) = kg and xg(y) =0forall H < G. O

We obtain Proposition 1.3 from the lemma above as follows.

Proof of Proposition 1.3. Let v € A(G) be the element stated in
Lemma 3.5. It is clear that v € Ker(res¥). Let a be an element in
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Ker(res$). If p is a prime and N is a normal subgroup of G with index
p, then xg(a) = xn(a) =0 mod p. This implies that yg(«) is divisible
by kg. By Lemma 3.1, « = m~y for some integer m. O

Proposition 3.6 Let p be a prime, G a nontrivial abelian group of p-
power order, and n a natural number prime to p. Then there exists an
element x € A(G) such that xg(x) =1 and resGx € nA(H) for all H < G.

Proof. By Lemma 3.5, we have an element v € A(G) such that xg(v) =p
and resGy = 0 for all H < G. There exist integers a and b satisfying
ap+bn = 1. Set x = ay + bn[G/G]. Then xg(z) = ap+ bn = 1 and
reséx = n(b[H/H)) for all H < G. O

Let N be a normal subgroup of G, L a subgroup of G containing N,
and X a finite L-set. Then the N-fixed point set X~ and the complement
X N XN are L-sets, and X" can be regarded as an L/N-set. For z =
[X]—[Y] € A(L), let ¥ denote the element [X"] —[Y™] in A(L/N). Then

we obtain a homomorphism
fix) : A(L) — A(L/N); z+— zN.
For a finite group G and a prime p, let G1?} denote the smallest normal
subgroup of G such that G/G1P} is of p-power order.

Proposition 3.7 Let P be a cyclic group of order p*> or an elementary
abelian p-group of order > p?, let G be the cartesian product Px Py x---x Py,
such that for each i = 1,...,m, P; is a nontrivial elementary abelian p;-

group, and let F = Fg and § = §a. Then A(G)|r # A(F).

Proof.  In the case that G = P, the conclusion follows from Propositions 2.5
and 2.3. Thus we may suppose m > 1. Let G = Fp, i.e. G =S(P) ~ {P},
and ® = Fp, hence Obj(®) = G. For each i =1, ... m, by Proposition 3.6,
we can take an element u; € A[P;] satisfying

xp (u;) =1, and  resiiu; € |[PJA(K) for all K < P;. (3.7)
Let w = (wk)keg € A(®) be the element such that

wg = [K/E] for all K € Gpax.
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We set u=u1 -+ Uy, € A(G{p}) and
Vggiry = WKU € A(KG{p}) (K S Qmax )

Let H = S(GP}) < {G{P}}. Then for S € Hyax, the element

Kagir} air}
reSkg Vgagir} = WK (reSS U)

lies in |P|A(KS). By Lemma 3.2, there exists an element vpg € A(PS)
such that

PS KGtr?
IreSg qUps = ISk g Vgagir}-

Thus the datum ((vps)ser. (VkGir) ) Kegn., ) determines an element v =
(v )ker € A(F).

For K < Land y =3 csp) anlL/H] € A(L), let d(y, L/K) denote
the coefficient ay of [L/K].

Assume that there exists an element z € A(G) such that resGz = v.
Then we readily obtain

d(reng{p}x,KG{p}/G{p}) - d(vKG{th(;{p}/G{p})’
d(resG gy 7, KGUH /GO = d(resf (+7), K/ B),
and
dvicorn, KGW |G = A,y K/E) = d(wi, K/E) = 1
from (3.7). By the arguments proving (2.6), we get

Z d(resﬁmc{p} ,K/E) is divisible by p. (3.8)
Kegrn‘dx

However, since |Gnax| =1 mod p, the arguments proving (2.7) show

Z dlwg,K/E)=1 mod p. (3.9)

The property (3.8) contradicts the property (3.9), and hence v does not
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belong to A(G)|x. O

4. Observation of A(G/N)|z and A(F)

Throughout this section, let 7 = F¢ and § = §g. Let N be a proper
normal subgroup of G, @ = G/N, 7 : G — Q the projection, F = Fg, and
3= §¢. Then the projection 7 induces the homomorphism 7* : A(Q) —
A(G);

(Q/H]) = [G/=~'(H)]  (H€S(Q).

We readily see that ﬁxg o™ is the identity map on A(Q). For w = (wg)ker,
consider the associated datum

(wKN)Kef, KDN-

This yields the homomorphism ﬁxg D A(T) — A®T).

For x = (zg)yc7 € A(Q)|F take an element y € A(Q) such that

res%(y) = x and consider the element z = (2x) ke r = resE(7*y) in A(G)|£.

For any K € F with K D N, 2x™ is equal to zx in A(K) (D A(K/N) via
7|% ). Since A(Q)|Fz is a Z-free module, we can get a homomorphism

mp  AQ)lF — A(G)|#

such that 7j(z) = res%(n*y) for x € A(Q)|# and some y € A(Q) with

res%(y) = z. Then the diagram

AQ) i AG)
res2 AQ)
(4.1)
AQ)5 i AG)| = A®B)
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commutes.
In the rest of this section, let L be a nontrivial subgroup of G, G = Fp,
and & = §r.

Proposition 4.1 Let p be a prime and L a nontrivial subgroup of G such
that G = L x C), and p is prime to the order of L. If A(L)|g coincides with
A(®) then A(G)|x coincides with A(F).

Proof. We may regard C, C G and G = L - C,. Set B(G) = A(F) and

Q = G/C,. Let m: G — @ be the projection. Since @ is isomorphic to L,

the restriction homomorphism res% : A(Q) — B(Q) = A(3) is surjective,

ie. A(Q)lF = A(3). Since B(L) = A(®) is a free Z-module and res§ :
A(L) — B(L) is surjective, there is a homomorphism ¢p : B(L) — B(G)
such that the diagram

.G
ind}

A(L) 25 A(G)

reséi J{resg (4.2)
B(L) — B(G)

LB
commutes. For a subgroup K of L, define the homomorphism

fre 1 A(K) — A(K - C,) x A(K)

fr([K/H]) = ([(K - Cp)/H],plK/H]) for H < K.

Then we obtain the homomorphism

nfe= [] fx: [] AE) = ] Ax-Cp) x [ AK).

K<L K<L K<L K<L

We remark that the diagram
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B(f) = B(f)
[lxcr AK) [Ir<cAT)
Mf« /
[xer AK -Cp) x [[gep A(K) (4.3)
commutes.

Decompose F to F = Fy L Fo L1 {L}, where

Fi={KeF|K>C},
Fo={KeF|K3C, K=+L}.

Let x = ((xK)KGJ'—la(mK)KGJ:Q):BL) € B(G) Since K - Cp € Fp for any
K € F;, the element x is determined by the datum ((zx)kezr,,zr). Define

u=(un)ycF € B(Q) by Un(K) = ﬁxlc(pa;K for K € Fi. Set y = (yx)ker =
r —mp(u). For K € F, since yr© = 0, yx has the form

YKk = Z by [K/H].

HeS(K)NFa

Let K{*} be the normal subgroup of K with index p. Define v =
(Vo)) er by

Vg iny = Z b [KPY/H.
HES(K)NFs

Then v belongs to B(L). Note that x has the form
r=rp(u)+ip(v)+w (4.4)

with w = (wkg)ker € B(G) such that wx = 0 for all K # L. Since
u € A(Q)|# and v € A(L)|g, where F = S(Q) ~ {Q} and G = S(L) ~ {L},
ng(u) and tp(v) both belong to A(G)|r, cf. the commutative diagrams
(4.1) and (4.2). Let 7 : G — L be the canonical projection. Set z = 7*(wy,).
Then res¢ (z) = wy, and res$(z) = 0 for all K € S(G) ~ {G,L}. Thus
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res$ : A(G) — B(G) is surjective. O

Corollary 4.2 Let G be a nontrivial cyclic group of which the order is a
prime or a product of distinct primes. Then A(G)|x coincides with A(F).

Proof. We obtain the corollary from Propositions 2.1 and 4.1. O

Proposition 4.3 Let G be a nontrivial finite group, N a proper normal
subgroup of G, and Q = G/N. If all maximal proper subgroups of G contain

N and A(G)|# coincides with A(F) then A(Q)|F coincides with A(§), where
F=Fg and § =3Fq.

Proof. 1In this situation, the projection 7 : G — @) induces the homomor-
phism 7% : A(F) — A(F) such that fix] o 7% is the identity map on A(F).

Since A(G)|F = A(F), we get A(Q)|7 = A(S). O
Now we give the proof of Theorem 1.4.

Proof of Theorem 1.4. By Corollary 4.2, it suffices to prove that if
A(G)|r = A(F) then G is a cyclic group of which the order is a prime or
a product of distinct primes. Assume that G is a minimal nilpotent group
with respect to the order such that A(G)|x = A(F) but G is not a cyclic
group of which the order is a prime or a product of distinct primes. Write
G as the product P; X - - - X P, of Sylow p;-subgroups P;. Let IN; denote the
intersection of all maximal proper subgroups of P; and set N = Ny --- N,,.
First set Q@ = G/N. By Proposition 4.3, we obtain A(Q)|# = A(F) from
A(G)|x = A(F). Tt is readily seen that @ is a product of elementary abelian
pi-groups. Thus by Proposition 3.7, Q is a cyclic group of order py - - - - - D -
This implies that each P; admits a unique maximal proper subgroup N;.
If N; is nontrivial then there exists a subgroup C of order p; such that
C" ¢ N; N Z;, where Z; is the center of P,. Now set Q = G/C;. Using
Proposition 4.3, we obtain A(Q)|z = A(F) from A(G)|r = A(F). By the
minimal property of G, G/C® is a cyclic group of which the order is a
prime or a product of distinct primes. Thus if j # ¢ then |P;| = p;, and
P; = Cy, x Cp, or Cp2. By Proposition 3.7 we get A(G)|# # A(F), which is
a contradiction. O
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