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Regular homeomorphisms of R3 and of S3
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Abstract. This paper is the paper announced in [Be2, References [2]]. We show that

every compact abelian group of homeomorphisms of R3 is either zero-dimensional or

equivalent to a subgroup of the orthogonal group O(3). We prove a similar result if we

replace R3 by S3, and we study regular homeomorphisms that are conjugate to their

inverses.
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1. Introduction

A homeomorphism h of a metric space (E, d) onto itself is called

(a) periodic if hn is the identity for some integer n ∈ N;
(b) regularly almost periodic if for every ε > 0, there exists an integer

n > 0 such that d(hmn(x), x) < ε for all x ∈ E and all m ∈ N;
(c) almost periodic if for every ε > 0, there exists an integer N > 0 such

that every block of N consecutive integers contains an integer m ∈ Z
such that d(hm(x), x) < ε, for all x ∈ E;

(d) recurrent if for every ε > 0, there exists an integer n > 0 such that
d(hn(x), x) < ε for all x ∈ E;

(e) regular provided that the family {hm, m ∈ Z} is equicontinuous; this
means that for every x ∈ E and for every ε > 0, there exists η > 0,
such that: ∀ m ∈ Z, ∀ y ∈ E, d(x, y) ≤ η ⇒ d(hm(x), hm(y)) < ε.

The homeomorphism h is said to be positively regular if the family {hm, m ∈
N} is equicontinuous. Clearly the implications (a) ⇒ (b) ⇒ (c) ⇒ (d) and
(e) hold. Moreover, if E is compact we also have (c) ⇔ (e) ([GH]).

The homeomorphism h is said to be pointwise periodic if for every x ∈ E,
there exists an integer n 6= 0 depending on x such that hn(x) = x. It is said
to be pointwise regularly almost periodic if for each x ∈ E, h is regularly
almost periodic at x, i.e., for each ε > 0 there exists a positive integer n
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depending on x such that d(hmn(x), x) < ε for all m ∈ N.
We denote by Homeo(E) the group of all homeomorphisms of the metric

space E onto itself equipped with the compact-open topology, and by id the
identity map. Let x ∈ E. For h ∈ Homeo(E), the orbit of x under h is
defined by

Ox = {hn(x) | n ∈ Z};

and for a subgroup G of Homeo(E), the orbit of x under G is G(x) = {g(x) |
g ∈ G}.

Two elements f and h (resp. two subgroups G1 and G2) of Homeo(E)
are said to be topologically equivalent (equivalent) or conjugate if there
exists ϕ ∈ Homeo(E) satisfying f = ϕhϕ−1 (resp. G1 = ϕG2ϕ

−1).
The following results are well known:

• For E = S1, S2, or R2, every almost periodic homeomorphism of E

is topologically equivalent to an isometry ([F], [Br1], [Rit]).
• Every compact subgroup of Homeo(S2) is equivalent to a closed sub-

group of the orthogonal group O(3) ([Ke1], [Ke2], [Ko]).
• Recurrent homeomorphisms of R2 are periodic ([OT]).
• If E is compact, then every almost periodic homeomorphism h of E

is the uniform limit of a sequence (hn)n of regularly almost periodic
homeomorphisms such that for each integer n, hn is the limit of some
sequence (hpn,k)k of iterates of h ([GH]).

• If E is a 2-dimensional manifold, then every regularly almost periodic
homeomorphism of E is periodic ([MZ2]).

Note that an irrational rotation of the circle S1 (or the sphere S2) is an
almost periodic homeomorphism which is neither periodic nor regularly al-
most periodic; indeed, from [GH], for pointwise regularly almost periodic
homeomorphisms, the orbit-closures are zero-dimensional.

In dimension 3, one can ask similar questions:

(1) Is a recurrent homeomorphism of R3 necessarily periodic?
(2) How are compact subgroups of Homeo(R3) or of Homeo(S3) charac-

terized?

In this paper we give partial answers to questions (1) and (2). More precisely,
we show the following results:
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1. Let h be a recurrent homeomorphism of R3. If h commutes with the
group < of all rotations around the z-axis, then h is periodic (Theorem
2.2).

2. Let G be a compact abelian subgroup of Homeo(S3) with a fixed
point. Then G is either finite or equivalent to a subgroup of O(4)
(Theorem 3.9).
In particular, regular homeomorphisms of R3 or of S3 with nonempty
fixed point set are completely characterized. Moreover, we show the
following statement:

3. Every regular (resp. positively regular) homeomorphism of R3 with
a bounded orbit (resp. of S3 with a fixed point) is either periodic or
the product of two involutions (Theorem 4.7 and Theorem 4.11).

We use a unified notation < for two groups of rotations: on R3 = C ×
R, < means the group of rotations R : (z, u) 7−→ (zeiθ, u) around the z-
axis, and on R4 = C × C, < means the group of rotations R : (z1, z2) 7−→
(z1e

iθ, z2). The notation Rθ or R means an element of <, and the notation ρ

means, on R3 the reflection (x, y, u) 7−→ (x, y,−u), and on R4 the reflection
(x, y, u, v) 7−→ (x, y,−u, v). We denote by C(<) the subgroup of Homeo(R3)
consisting of elements h that commute with elements of <;

C(<) = {h ∈ Homeo(R3) | hR = Rh, ∀ R ∈ <}.

The set of all fixed points under h ∈ Homeo(E) is

Fix(h) = {x ∈ E | h(x) = x},

and for G ⊂ Homeo(E), Fix(G) = {x ∈ E | g(x) = x, ∀ g ∈ G}.
Let Homeo+(R3) = {orientation preserving elements of Homeo(R3)},

and Homeo−(R3) = {orientation reversing elements of Homeo(R3)}. If G

is a subgroup of Homeo(R3), we shall make use of the following notations:
G+ = G ∩ Homeo+(R3), G− = G ∩ Homeo−(R3), and for h ∈ G,

〈h〉 = {hn | n ∈ Z} is the subgroup of G generated by h, its closure 〈h〉 is
called the monothetic group generated by h.

2. Recurrent elements of C(<) are periodic

In [OT], Oversteegen and Tymchatyn showed that recurrent homeomor-
phisms of the plane are periodic. The main result of this section is to extend
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this result to recurrent elements of C(<).
Let

R+ = {r ∈ R | r > 0} ; (oz) = {(0, 0, z) ∈ R3 | z ∈ R},

and let (x, y, z), (r, z, θ) be respectively the cartesian coordinates and the
cylindrical coordinates. For every (x, y, z) ∈ R3 \ (oz), there exists a unique
(r, z, θ) ∈ R+ × R× [0, 2π[ such that (x, y, z) = (r cos θ, r sin θ, z).

For h ∈ C(<), the form of the restriction of h to R3 \ (oz) is described
in the following lemma.

Lemma 2.1 Let h ∈ Homeo(R3). The following statements are equivalent

(a) h ∈ C(<).
(b) For every (r, z, θ) ∈ R+ ×R× [0, 2π[, h(r, z, θ) = (f(r, z), θ + g(r, z));

where f ∈ Homeo(R+ × R) and g is a map from R+ × R to [0, 2π[.

Proof. We have Fix(<) = (oz). If h ∈ C(<), then h((oz)) = (oz) and
the restriction h|R3\(oz) is a homeomorphism of R3 \ (oz). There exist three
maps h1, h2, and h3 from R+×R× [0, 2π[ to R+, R, and [0, 2π[ respectively
satisfying: for every (r, z, θ) ∈ R+ × R× [0, 2π[,

h(r, z, θ) = (h1(r, z, θ), h2(r, z, θ), h3(r, z, θ)).

Since h ∈ C(<), for every θ ∈ [0, 2π[, we have

hRθ(r, z, 0) = Rθh(r, z, 0), ∀ (r, z) ∈ R+ × R.

Then

h(r, z, θ) = (f(r, z), θ + g(r, z)), ∀ (r, z, θ) ∈ R+ × R× [0, 2π[;

where f(r, z) = (h1(r, z, 0), h2(r, z, 0)) and g(r, z) = h3(r, z, 0).
We will show that f is a homeomorphism. For proving the continuity of

f , let (r, z) ∈ R+×R, and let ((rn, zn)) be a sequence in R+×R converging
to (r, z). Since h is continuous, we obtain that h(rn, zn, 0) −→ h(r, z, 0),
in particular, h1(rn, zn, 0) −→ h1(r, z, 0) and h2(rn, zn, 0) −→ h2(r, z, 0).
Which means that f(rn, zn) −→ f(r, z). Thus, f is continuous. Now, let
(r, z), (r′, z′) ∈ R+ × R such that f(r, z) = f(r′, z′). Since h|R3\(oz) is
surjective there exist θ, θ′ ∈ [0, 2π[ such that h(r, z, θ) = (f(r, z), 0) and
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h(r′, z′, θ′) = (f(r′, z′), 0), and since h is injective we obtain that (r, z, θ) =
(r′, z′, θ′). Which implies that (r, z) = (r′, z′). So, f is injective. Moreover,
f is surjective since h is. Let f−1 denote the inverse map of f , we have
h−1(r, z, θ) = (f−1(r, z), θ − g(f−1(r, z))) and the continuity of h−1 implies
the continuity of f−1. Therefore, f ∈ Homeo(R+ × R). We conclude that
Item (a) implies Item (b). The converse implication is clear. ¤

Theorem 2.2 Let h be a recurrent homeomorphism of R3 commuting with
<. Then h is periodic.

Proof. First, we show that the homeomorphism f defined in Lemma 2.1
is recurrent. Let ε > 0. Since h is recurrent, there exists an integer n > 0
satisfying

‖hn(r, z, θ)− (r, z, θ)‖ < ε, ∀ (r, z, θ) ∈ R+ × R× [0, 2π[. (∗)

From Lemma 2.1 we have hn(r, z, θ) = (fn(r, z), θ + gn(r, z)); where gn is a
map from R+ × R to [0, 2π[. Then the inequality (∗) implies that

‖fn(r, z)− (r, z)‖ < ε, ∀ (r, z) ∈ R+ × R.

Thus, f is a recurrent homeomorphism of R+ × R.
The restriction of h to the z-axis (oz) is a recurrent homeomorphism of

(oz). Then h2
|(oz) = id. Assume that h|(oz) = id. By the continuity of h, the

homeomorphism f can be extended as follows:

f̃ : R2 −→ R2

(x, y) 7−→
{

f(x, y) if x > 0,

(x, y) if x ≤ 0;

It is easy to show that f̃ is a recurrent homeomorphism of the plane R2, and
by [OT] f̃ is periodic. Since f̃ coincides with the identity on a nonempty
open subset of R2, by [N], f̃ = id. Then f = id, it follows that for every
(r, z, θ) ∈ R2 \ {(0, 0)} × {z},

h(r, z, θ) = (r, z, θ + g(r, z)) ∈ R2 × {z}.

Moreover, for every z ∈ R, h(0, 0, z) = (0, 0, z) since h|(oz) = id. Then
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h(R2 × {z}) = R2 × {z}, for every z ∈ R. In other words, every horizontal
plane Pz = R2 × {z} is invariant by h. Now, for every z, h|Pz

is a recurrent
homeomorphism of the plane Pz, and by [OT], it is periodic. Therefore, h

is pointwise periodic, and by [MZ2] h is periodic. If h|(oz) 6= id, we consider
the map h2 instead of h. So, we obtain that h2 is periodic, and then h is
periodic. ¤

3. Characterization of compact abelian sub-groups of
Homeo(R3) and of Homeo(S3)

3.1. Compact abelian sub-groups of Homeo(R3)
In this subsection we show that every compact abelian subgroup of

Homeo(R3) is either zero-dimensional or equivalent to a subgroup of O(3)
and we characterize regular homeomorphisms of R3 with bounded orbits.
We begin by characterizing compact abelian subgroups of Homeo+(R3) in
the following.

Proposition 3.1 Let G be an abelian compact subgroup of Homeo+(R3).
Then G is either zero-dimensional or equivalent to the group <.

Proof. Let G0 be the connected component of G containing the identity
map id. If G0 = {id}, then G is totally disconnected and from Theorem
12.3.1 of [Pal], G is zero-dimensional. If not, then by [MZ2], G0 is equivalent
to the group <. We can assume that G0 = <.

We will show that G = <. Let h ∈ G. Since G is abelian, then h ∈
C(<), and by Lemma 2.1, we have h(r, z, θ) = (f(r, z), θ + g(r, z)), for every
(r, z, θ) ∈ R+×R× [0, 2π[, where f ∈ Homeo(R+×R). Since G is compact,
then h is a regular homeomorphism of R3 with bounded orbits. It follows
that f is also regular and with bounded orbits (see Proof of Theorem 2.2).
We know that h((oz)) = (oz), then either h|(oz) = id or h|(oz) is equivalent
to the reflection z 7−→ −z.

Case 1. h|(oz) = id. Let f̃ be the extension of f on the plane R2 as in the
Proof of Theorem 2.2. It is easy to see that f̃ is a regular homeomorphism of
R2 with bounded orbits. Then by [Br2], f̃ is equivalent to either a rotation
or a reflection, and since P− = {(x, y) ∈ R2 | x ≤ 0} ⊂ Fix(f̃), then f̃ = id

and f = id. Thus, in the same way as in the Proof of Theorem 2.2, every
horizontal plane Pz = R2×{z} is invariant by h and h|Pz

(r, z, θ) = (r, z, θ +
g(r, z)). Which means that for every horizontal circle Cr = {(r, z, θ) ∈ Pz |
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θ ∈ [0, 2π[} in the plane Pz, the restriction h|Cr
is a rotation around the

z-axis through the angle g(r, z). By the fact that h|Pz
is regular all rotations

h|Cr
, r ∈ R+ must have the same angle g(r, z). Then for every z ∈ R, h|Pz

is
a rotation through an angle θz, and since h is regular, all rotations h|Pz

have
the same angle θz denoted simply by θ. Thus h = Rθ ∈ <. We conclude
that G ⊂ < and then G = <.

Case 2. h|(oz) is equivalent to the reflection z 7→ −z. Then h2
|(oz) = id,

and by case 1, h2 = R2
θ, for some Rθ ∈ <. Which means that hR−1

θ is an
orientation-preserving involution in G. By Smith [Sm], either Fix(hR−1

θ ) =
R3 and h = Rθ or Fix(hR−1

θ ) is a line L ⊂ R3 that will be invariant by <,
i.e., necessarily equal to (oz). Then, since Fix(Rθ) = (oz), in both cases, we
obtain that h|(oz) = id, which contradicts the hypothesis of Case 2. Thus,
we cannot have case 2.

We conclude that G is equivalent to <. ¤

Theorem 3.2 Let G be an abelian compact subgroup of Homeo(R3). Then
G is either zero-dimensional or equivalent to < or to < ∪ ρ<.

Proof. If G0 = {id}, then G is zero-dimensional. If not, G0 is equivalent
to < by [MZ2] and G0 ⊂ G+, then by Proposition 3.1, G+ is equivalent to
<. We have G = G+ ∪G−.

If G− = ∅, then G is equivalent to <.
If G− 6= ∅, we can assume that G = < ∪ G−. It is easy to see that

for every h ∈ G−, G− = h<. Let h ∈ G− (orientation-reversing) such
that h is nonperiodic. Then h2 ∈ < (orientation-preserving). Therefore,
we may write h2 = R2

θ for some irrational θ. Because G is abelian, hR−1
θ

is an involution. Since h reverses the orientation and R−1
θ preserves the

orientation, hR−1
θ is an orientation-reversing involution.

We know that h(r, z, θ) = (f(r, z), θ + g(r, z)) (Lemma 2.1), and that
the restriction h|(oz) is either the identity map or equivalent to the reflection
ρ|(oz). If h|(oz) = id, then by Smith [Sm], Fix(hR−1

θ ) will be a topological
plane containing (oz) and invariant by <, but such a plane cannot exist. So
h|(oz) is equivalent to ρ|(oz); which means that there exists u ∈ Homeo((oz))
satisfying uh|(oz)u

−1 = ρ|(oz). The homeomorphism u can be extended on R3

by v(x, y, z) = (x, y, u(z)), for every (x, y, z) ∈ R3. We have (vhv−1)|(oz) =
ρ|(oz). By remarking that v ∈ C(<) (i.e., it satisfies v<v−1 = <) and
that the group vGv−1 has the same properties as G, we can assume that
h|(oz) = ρ|(oz). Then, from the continuity of h, f can be extended as follows



358 K. B. Rejeb

f̃ : R2 −→ R2

(x, y) 7−→
{

f(x, y) if x > 0,

(x,−y) if x ≤ 0;

f̃ is a regular homeomorphism of R2 with bounded orbits and coinciding with
the reflection σ : (x, y) 7−→ (x,−y) on P−. Then f̃ is equivalent to σ. In
the same way as previously there exists γ ∈ C(<) satisfying γhγ−1(r, z, θ) =
(r,−z, θ + g(r, z)). We can assume that

h(r, z, θ) = (r,−z, θ + g(r, z)).

Therefore, for every horizontal plane Pz = R2 × {z}, we have h(Pz) = P−z.
In particular, h(P0) = P0 and the fixed points of h lie in P0. The plane
P0 divides the space R3 into two connected components E1 = {(x, y, z) ∈
R3 | z ≥ 0} and E2 = ρ(E1) satisfying h(E1) = E2. We know that h|P0 is
equivalent to either a rotation or a reflection, and the fact that Fix(h|P0) is
invariant by < implies that h|P0 is equivalent to a rotation. On the other
hand, we have h2

|E1
= R2

θ, then either h|P0 = Rθ or h|P0 = Rθ+π, in both

cases put simply h|P0 = Rθ. Let φ be the homeomorphism of R3 defined as
follows

φ : R3 −→ R3

x 7−→
{

x if x ∈ E1,

Rθρh−1(x) if x ∈ E2

We can easily show that the homeomorphism φ satisfies h = φ−1Rθρφ.
Which means that G = < ∪ φ−1Rθρφ<, equivalently, φGφ−1 = φ<φ−1 ∪
Rθρφ<φ−1. In particular, we have Rθρ ∈ φGφ−1, and since Rθ is irrational
we obtain that 〈R2

θ〉 = < ⊂ φGφ−1. Then, < ⊂ φ<φ−1 and < = φ<φ−1 . It
follows that φGφ−1 = < ∪ ρ<. This completes our proof. ¤

Lemma 3.3 Let h be a regular homeomorphism of the euclidean space Rn.
If h has a bounded orbit, then every orbit is bounded.

Proof. By equicontinuity of the family {hn, n ∈ Z}, the set

{x ∈ Rn | Ox is bounded}
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is both open and closed in Rn (see [EHS] for more details). ¤

Corollary 3.4 Let h be a regular homeomorphism of R3 with a bounded
orbit, then the following statements hold.

(1) h is either periodic or equivalent to Rθ or to ρRθ.
(2) If h commutes with an irrational rotation Rθ0 , then either h is a

rotation Rθ or h is equivalent to ρRθ and h is the product of a rotation
with an involution.

Proof.

(1) Let G = 〈h〉. By Lemma 3.3 the homeomorphism h is regular with
bounded orbits. Then by Ascoli’s Theorem G is a compact abelian
subgroup of Homeo(R3). In [Par], author showed that every locally
compact group acting effectively on a connected 3-manifold is a Lie
group. This result and Theorem 3.2 permit us to deduce that every
abelian compact subgroup of Homeo(R3) is either finite or equivalent
to < or to < ∪ ρ<. Then G is either finite or equivalent to < or to
<∪ρ<. Then h is either periodic or equivalent to an irrational rotation
Rθ if it is orientation-preserving or to ρRθ if it is orientation-reversing.

(2) Let G = 〈h,Rθ0〉 be the closure of the group generated by h and Rθ0 .
Since h commutes with Rθ0 and h is regular, the group 〈h,Rθ0〉 is
equicontinuous. Moreover, since every orbit Oh(x) is bounded, then
the diameter δ(Oh(x)) of Oh(x) is < +∞. So, for all n, p ∈ Z, we have
d(hnRp

θ0
(x), x) = d(hn(x), R−p

θ0
(x)) ≤ d(hn(x), x) + d(x,R−p

θ0
(x)) ≤

δ(Oh(x)) + δ(<(x)) < +∞. Therefore, every orbit 〈h,Rθ0〉(x) is
bounded and relatively compact. Then, by Ascoli’s Theorem, G is
a compact abelian subgroup of Homeo(R3). Then, G is either fi-
nite or equivalent to < or to < ∪ ρ<. Since Rθ0 ∈ G is irrational,
then < ⊂ G and either G = < or G = < ∪ αρα−1< for some home-
omorphism α of R3. Therefore, if h is orientation-preserving then
h = Rθ ∈ < and if h is orientation-reversing then h is equivalent to
ρRθ and h = αρα−1Rθ = τRθ; where Rθ ∈ < and τ = αρα−1. This
completes our proof. ¤

Remark 3.5 A periodic homeomorphism of R3 need not be equivalent to
an orthogonal map ([Bi] and [MZ1]); however, Corollary 3.4 says that for
every regular homeomorphism h of R3 with a bounded orbit, h is conjugate
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to an orthogonal map if and only if h commutes with a topological irrational
rotation αRθα

−1.

Proof. Assume that h is conjugate to an orthogonal map, then h =
αRθ0α

−1 or h = αRθ0ρα−1. Then for every irrational rotation Rθ, we
have hαRθα

−1 = αRθα
−1h. The converse is true by Corollary 3.4.(2). ¤

Corollary 3.6 Let h be a regular homeomorphism of R3. Then the fol-
lowing statements are equivalent.

(a) h has a bounded orbit.
(b) Every orbit is bounded.
(c) h has a fixed point.
(d) h has an almost periodic point.

Proof. (a) =⇒ (b). Follows from Lemma 3.3.
(b) =⇒ (c). By Corollary 3.4.(1), h is either periodic or equivalent to

Rθ or to ρRθ. By [Sm], every periodic homeomorphism of R3 must have a
fixed point, moreover Fix(Rθ) 6= ∅ and Fix(ρRθ) 6= ∅. So, h has a fixed
point.

(c) =⇒ (d). Let x ∈ Fix(h), then h(x) = x and so x is almost periodic.
(d) =⇒ (a). If x is an almost periodic point by h, then from [GH,

Theorem 4.09] the orbit Ox is relatively compact, so Ox is bounded. ¤

Remark 3.7 A translation T : x 7−→ x+a (a 6= 0) of R3 is a regular home-
omorphism without bounded orbits. Also, a nonregular homeomorphism of
R3 with bounded orbits need not have a fixed point ([Br2]).

3.2. Compact abelian sub-groups of Homeo(S3)
In this subsection, we characterize compact abelian subgroups of

Homeo(S3) with a fixed point.

Lemma 3.8 Let E and F be two locally compact metric spaces and let H
be a subset of Homeo(E). If H is compact, then, for every homeomorphism
ϕ : E −→ F , the subset ϕHϕ−1 is homeomorphic to H and is compact.

Proof. We will show that the map

φ : H −→ ϕHϕ−1

h 7−→ ϕhϕ−1.
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is a homeomorphism. It is clear that φ is bijective. Let h0 ∈ H. For showing
the continuity of φ at h0, let

BK(φ(h0), ε) = {g ∈ ϕHϕ−1 | dK(φ(h0), g) < ε}

be an open neighborhood of φ(h0) = ϕh0ϕ
−1 in ϕHϕ−1; where K is a

compact subset of F . Then ϕ−1(K) is compact in E. Since E is locally
compact the evaluation map e : Homeo(E)×E −→ E defined by e(h, x) =
h(x) is continuous. Then H(ϕ−1(K)) is compact since H is. For ε, there
exists η > 0 such that for all u, v ∈ Hϕ−1(K),

d(u, v) ≤ η =⇒ d(ϕ(u), ϕ(v)) ≤ ε. (∗)

For every g ∈ Bϕ−1(K)(h0, η) = {g ∈ H | dϕ−1(K)(h0, g) < η}, we have

d(h0ϕ
−1(x), gϕ−1(x)) ≤ η, ∀ x ∈ K.

Then by (∗), we obtain that dK(ϕh0ϕ
−1, ϕgϕ−1) ≤ ε, equivalently, φ(g) ∈

BK(φ(h0), ε). So φ is continuous. Since H is compact, then φ is a homeo-
morphism and φ(H) = ϕHϕ−1 is compact. ¤

Theorem 3.9 Let G be a compact abelian subgroup of Homeo(S3) with
nonempty fixed point set. Then G is either finite or equivalent to < or to
< ∪ ρ<.

Proof. Let a ∈ Fix(G), we can assume that a = (0, 0, 0, 1). Let ϕ :
S3 \ {a} −→ R3 be the stereographic projection. By Lemma 3.8, the group
G′ = ϕG|S3\{a}ϕ−1 is compact. So, G′ is either finite or equivalent to < or
to < ∪ ρ< (see Proof of Corollary 3.4.(1)). If G′ is finite, then G|S3\{a} is
finite and G is also finite. Now, assume that G′ is equivalent to <. This
means that there exists ψ ∈ Homeo(R3) such that G′ = ψ<ψ−1. Therefore,
for each g ∈ G, there exists Rθ ∈ < such that g|S3\{a} = ϕ−1ψRθψ

−1ϕ. If
we put β = ϕ−1ψϕ and R = ϕ−1Rθϕ, then g|S3\{a} = βRβ−1. Then, we
can easily see that the rotation R is defined by R(z1, z2) = (z1e

iθ, z2); we
recall that ϕ and its inverse ϕ−1 are defined respectively by

ϕ(x, y, u, v) =
1

1− v
(x, y, u), and
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ϕ−1(x, y, u) =
1

1 + x2 + y2 + u2
(2x, 2y, 2u, x2 + y2 + u2 − 1).

By compactness of S3 and by the fact that β is a homeomorphism of S3\{a},
β can be extended on S3 by β(a) = a, the extension is also denoted by β.
So, we have g = βRθβ

−1. It follows that G ⊂ β<β−1. In order to show
that β<β−1 ⊂ G, let g = βRθβ

−1 be a nonperiodic element in G. Then
β〈Rθ〉β−1 = β<β−1 ⊂ G since G is compact. We conclude that G = β<β−1.
In the same way, we can show that if G′ is equivalent to <∪ ρ< on R3 then
G is equivalent to < ∪ ρ< on S3; where ρ is the reflection of S3 defined by
ρ(x, y, u, v) = (x, y,−u, v). ¤

Regular homeomorphisms of S3 having a fixed point are characterized
in the following corollary, we recall that every orientation-reversing homeo-
morphism of S3 has a fixed point ([Sm]).

Corollary 3.10 Let h be a regular homeomorphism of S3 with a fixed
point. Then the following statements hold.

(1) h is either periodic or equivalent to Rθ or to Rθρ.
(2) If h commutes with an irrational rotation Rθ0 such that Fix(hRθ0) 6=

∅, then h is equivalent to Rθ or to Rθρ.

Proof. The group G = 〈h〉 is compact since h is regular and S3 is compact.
Since Fix(h) 6= ∅, we have Fix(G) 6= ∅ and by Theorem 3.9, G is either
finite or equivalent to < or to < ∪ ρ<. It follows that h is either periodic
or equivalent to Rθ when it is orientation-preserving and to Rθρ when it is
orientation-reversing. So, Item (1) is true. For showing Item (2), assume
that hRθ0 = Rθ0h; where Rθ0 is irrational and Fix(hRθ0) 6= ∅. By Item (1),
it suffices to consider the case of h is periodic. Then, there exists an integer
q > 0 such that hq = id. Let a ∈ Fix(hRθ0). Thus, a = (hRθ0)

q(a) =
hqRq

θ0
(a) = Rq

θ0
(a) and since Rθ0 is irrational, we have Rθ0(a) = a. It

follows that h(a) = a. Let G = 〈h,Rθ0〉. Clearly a ∈ Fix(G) and G is
compact, abelian (see Proof of Corollary 3.4.(2)). Therefore, G is equivalent
to < or to <∪ ρ< since G contains Rθ0 which is irrational and G cannot be
finite. It follows that h is equivalent to Rθ if it is orientation-preserving and
to Rθρ if it is orientation-reversing. ¤
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4. Reversibility for regular homeomorphisms

Let G be a group and let id be its identity element. An element g ∈ G

is said to be

(a) reversible in G if it is conjugate to its own inverse in G, that is, if
there exists h ∈ G such that g−1 = hgh−1;

(b) strongly reversible in G if it is reversible in G by an involution, that
is, if there exists τ ∈ G such that τ2 = id and g−1 = τgτ .

Clearly the implication (b) =⇒ (a) holds and every involution is strongly
reversible. A subgroup G of Homeo(E) is said to be reversible (resp.
strongly reversible) in Homeo(E) if there exists h ∈ Homeo(E) (resp.
an involution τ ∈ Homeo(E)) such that for each element g ∈ G, we have
g−1 = hgh−1 (resp. g−1 = τgτ).

In this section, we determine the reversible elements in compact Lie
groups. On the other hand, for M = R3 or S3, we characterize regular
homeomorphisms of M that are reversible in Homeo(M).

Lemma 4.1 Let G be a group, and let g ∈ G. If g is reversible by a
periodic element of G, then one of the following statements holds.

(1) g2 = id.
(2) There exists an involution τ ∈ G such that g−1 = τgτ .
(3) g is reversible by a periodic element of G of period 2n; where n ≥ 2

and there exists an involution τ ∈ G such that g = τgτ .

Proof. Assume that there exists a periodic element h ∈ G such that

g−1 = hgh−1. (∗)

The period of h can be writen in the form 2nq; where n ∈ N∪{0}, q ∈ N and
q is odd. By equality (∗) we have h2gh−2 = h[hgh−1]h−1 = hg−1h−1 = g.
Then we can easily show by induction that for each integer p ∈ N, h2p

commutes with g. It follows that

g−1 = hqgh−q. (∗∗)

Then g is reversible by the periodic element hq of period 2n.
Case 1. n = 0. In this case we have hq = id, so g = g−1 and g2 = id.
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Case 2. n = 1. Then g is strongly reversible by the involution τ = hq;
g−1 = τgτ .

Case 3. n > 1. Let τ = h2n−1q. We have τ2 = id. Since n > 1, (2n−1q)
is even and the equality (∗) implies that τgτ = g. ¤

Lemma 4.2 Let G be a compact Lie group. Then the set of torsion ele-
ments T = {g ∈ G | g is periodic} is dense in G.

Proof. Let g ∈ G. The closure H = 〈g〉 is a compact abelian Lie group,
then the quotient of H by the connected component of the identity H0 is a
finite abelian subgroup A. It follows that H is an extension of A and H0.
But H0 is a torus, then the set of torsion elements of H0 is dense in H0.
Therefore, the set of torsion elements of H is dense in H. Thus, T is dense
in G. ¤

Theorem 4.3 Let G be a compact Lie group, and let g ∈ G. Then the
following statements hold.

(1) g is reversible in G if and only if g2 = id or g is reversible by a periodic
element f of G of period 2n; where n ∈ N.

(2) If g is reversible in G, then either g is strongly reversible in G or g
commutes with an involution τ ∈ G.

Proof.

(1) Let g ∈ G. Assume that g is reversible in G, then there exists h ∈ G

such that

g−1 = hgh−1. (∗)

The closure 〈h〉 is a compact Lie group since G is, and by Lemma 4.2
there exists a sequence (hn) of periodic elements in 〈h〉 such that hn

converges to h when n −→ +∞. We have

〈h〉 = 〈h2〉 ∪ h〈h2〉.

First, assume that hn ∈ 〈h2〉 for each integer n. Then for each integer
n, hn is the limit of a sequence (h2pk,n)k. The equality (∗) implies
that h2pk,ngh−2pk,n = g for each integer k. Then, when k −→ +∞,
we obtain that hnghn

−1 = g. So, when n −→ +∞, we obtain that
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hgh−1 = g and by equality (∗), we have g2 = id. Now, assume
that there exists an integer n such that hn ∈ h〈h2〉, then hn is the
limit of some sequence (h2pk,n+1)k and the equality (∗) implies that
h2pk,n+1gh−(2pk,n+1) = g−1 for each k. When k −→ +∞, we obtain
that hnghn

−1 = g−1. If we put H = hn, we have

g−1 = HgH−1; (∗∗)

where H is a periodic element in G. So, by Lemma 4.1, g is reversible
by a periodic element of G of period 2n; where n ∈ N ∪ {0}. The
converse is clear. We conclude that Item (1) is true.

(2) Follows from Item (1) and Lemma 4.1. ¤

In the remainder of this section we focus on reversibility of regular home-
omorphisms of M in Homeo(M); where M = R3 or S3. In [Sh], reversible
and strongly reversible maps have been determined in the isometry groups
of spherical, Euclidean and hyperbolic space in each finite dimension. In
particular, we have the following lemma.

Lemma 4.4 The group < ∪ ρ< is strongly reversible by the reflection
σ : (x, y, u) 7−→ (−x, y, u) on R3 (resp. σ : (x, y, u, v) 7−→ (−x, y, u, v) on
S3).

Lemma 4.5 Let h be a positively regular homeomorphism of a locally
compact metric space E. Then h is regular with relatively compact orbits if
one of the following conditions holds:

(a) E is compact.
(b) h is reversible with relatively compact positive orbits.

Proof. Let G = 〈h〉, G+ = {hn | n ∈ N ∪ {0}} and G− = {h−n | n ∈ N}.
We have G = G+ ∪ G− and G = G+ ∪ G−. In both cases (a) and (b),
every closure positive orbit G+(x) is compact, so by Ascoli’s Theorem G+

is compact.

(a) If E is compact, then Homeo(E) is a topological group and the map

φ : Homeo(E) −→ Homeo(E)

g 7−→ g−1
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is a homeomorphism. Which implies that φ(G+) = φ(G+) = G− is
compact. Thus G is compact. Since E is compact, every orbit is
relatively compact and by Ascoli’s Theorem h is regular.

(b) If h is reversible, then there exists f ∈ Homeo(E) such that h−1 =
fhf−1. Then, for each x ∈ E, we have O−x = {h−n(x) | n ∈ N} =
{fhnf−1(x) | n ∈ N} = f(O+

f−1(x)). Since f is a homeomorphism,

we have O−x = f(O+
f−1(x)) is compact since every positive orbit is

relatively compact. Then for each x ∈ E, Ox = O+
x ∪O−x is compact.

Moreover, G− = {fhnf−1 | n ∈ N} = fG+f−1 and by Lemma 3.8,
G− is relatively compact. So G is compact and h is regular. ¤

In the following Theorem we characterize positively regular homeomor-
phisms of R3 with bounded positive orbits that are reversible.

Theorem 4.6 Let h be a positively regular homeomorphism of R3 with a
bounded positive orbit. Then the following statements hold.

(1) If h is nonperiodic or h commutes with an irrational rotation. Then
the following are equivalent.
(a) h is reversible.
(b) h is strongly reversible.

(2) If h is reversible then h is either periodic or the product of two invo-
lutions.

Proof.

(1) (a) =⇒ (b). Assume that h is reversible. Since h is positively regular
with a bounded positive orbit, then by Lemma 3.3 every positive orbit
is relatively compact and from Lemma 4.5, h is regular with bounded
orbits. By Corollary 3.4.(1), h must be equivalent to an orthogonal
map, and by Lemma 4.4, h is strongly reversible.
(b) =⇒ (a). Trivial.

(2) Assume that h is reversible. If h is nonperiodic then by Item (1)
there exists an involution τ ∈ Homeo(R3) such that h−1 = τhτ .
Then (hτ)2 = id, and we have h = (hτ)τ ; where τ2 = id. ¤

In the following Theorem we study reversibility for positively regular
homeomorphisms of S3 with a fixed point.
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Theorem 4.7 Let h be a positively regular homeomorphism of S3 with a
fixed point, then the following statements hold.

(1) h is strongly reversible if one of the following conditions holds.
(a) h is nonperiodic.
(b) h commutes with an irrational rotation Rθ0 and Fix(hRθ0) 6= ∅.

(2) h is either periodic or the product of two involutions.

Proof.

(1) Since S3 is compact, from Lemma 4.5, h is regular. In both cases (a)
and (b) h must be equivalent to an orthogonal map by Corollary 3.10.
So, by Lemma 4.4, h is strongly reversible.

(2) Follows from Item (1). ¤

Lemma 4.8 (1) Every compact abelian subgroup of Homeo(R3) (resp.
of Homeo(S3) with a fixed point) is either finite or strongly reversible.

(2) Let G be a compact subgroup of Homeo(M) and let g ∈ G, then g is
either periodic or the product of two involutions if one of the following
conditions holds:
(a) M = R3.
(b) M = S3 and g has a fixed point.

Proof.

(1) Let M = R3 or S3. If G is infinite, then it is conjugate either to <
or to < ∪ ρ<, that is, there exists an element α ∈ Homeo(M) such
that G = α<α−1 or G = α(< ∪ ρ<)α−1. Let g ∈ G. Then either g =
αRθα

−1 or g = αRθρα−1 for some Rθ ∈ <. By Lemma 4.4, we have
R−1

θ = σRθσ and R−1
θ ρ = σ(Rθρ)σ. So, g−1 = (ασα−1)g(ασα−1).

We conclude that G is strongly reversible by the involution ασα−1.
(2) Follows from Item (1) by considering the compact abelian group 〈g〉.

¤

In the following theorem we study reversibility for equicontinuous flows.

Theorem 4.9 (1) Every positively equicontinuous flow on S3 with a
fixed point is strongly reversible.

(2) Every equicontinuous flow on R3 with a bounded orbit is strongly re-
versible.
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(3) Let G = {ht | t ∈ R} be a nontrivial positively equicontinuous flow
on R3 with a bounded positive orbit, then the following statements are
equivalent :
(a) h1 is reversible.
(b) G is strongly reversible.
(c) G is equivalent to <.

Proof.

(1) Let G = {ht | t ∈ R} be a positively equicontinuous flow on S3. We
have G = G+ ∪G−; where G+ = {ht | t ≥ 0} and G− = {ht | t < 0}.
Then G = G+ ∪G−. Since S3 is compact, G+ is compact and in the
same way as in the Proof of Lemma 4.5, G− is also compact. So, G is
compact, and by Lemma 4.8, G is either finite or strongly reversible.
If G is finite it must be trivial (i.e. G = {id}) since G is connected.
We conclude that G is strongly reversible.

(2) Let G be an equicontinuous flow on R3 with a bounded orbit, then G

is compact abelian, and in the same way as in Item (1), G is strongly
reversible.

(3) (a) =⇒ (c). Since G is positively equicontinuous with a bounded pos-
itive orbit, then h1 is positively regular with a bounded positive or-
bit and by Lemma 4.5, h1 is regular with bounded orbits. Then G

is equicontinuous with relatively compact orbits (see Proof of [Be1,
Corollary 2.6]). Therefore G is equivalent to <.
(c) =⇒ (b). Follows from Lemma 4.4.
(b) =⇒ (a). Trivial. ¤

Lemma 4.10 Let h be a regular homeomorphism of a metric space E such
that positive orbits are relatively compact. Then every orbit is relatively
compact.

Proof. Let G = {hn | n ∈ Z}, G+ = {hn | n ≥ 0}, and G− = {h−n |
n > 0}. We will show that every orbit G(x) is relatively compact. By As-
coli’s Theorem G+ is compact. We have G+(x) = G+(x) is compact and
G(x) = G+(x) ∪ G−(x). For showing that G−(x) is compact, let (yn)n be
every sequence in G−(x). Then, for each integer n, yn is the limit of some
sequence (h−pk,n(x))k. Since G+(x) is compact, for each integer k, the se-
quence (hpk,n(x))n has a subsequence (hpk,ϕ(n)(x))n converging to some point
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gk(x) ∈ G+(x). Now, the sequence (gk(x))k has a subsequence (gψ(k)(x))k

converging to some point g(x) ∈ G+(x). By the inequality

d(hpψ(k),ϕ(n)(x), g(x)) ≤ d(hpψ(k),ϕ(n)(x), gψ(k)(x)) + d(gψ(k)(x), g(x)),

we deduce that the sequence (hpψ(k),ϕ(n)(x))n,k converges to g(x), when
n, k −→ +∞. Let ε > 0. For ε, there exists η > 0 given by the regu-
larity of h at g(x). For η, there exists k0 > 0 and n0 > 0 such that for
each k ≥ k0 and for each n ≥ n0, d(hpψ(k),ϕ(n)(x), g(x)) < η, which im-
plies that d(x, h−pψ(k),ϕ(n)g(x)) < ε. By the fact that g commutes with h,
when k −→ +∞ we obtain that d(x, g(yϕ(n))) < ε for each n ≥ n0. Then
(g(yϕ(n)))n converges to x and (yϕ(n))n converges to g−1(x). Remark that
since g(x) ∈ G+(x), there exists a sequence (hpk(x))k in G+(x) converging
to g(x). Then g−1hpk(x) converges to x and since h is regular, h−pk(x) con-
verges to g−1(x), so g−1(x) ∈ G−(x). We conclude that G−(x) is compact
and so G(x) is compact. ¤

Theorem 4.11 Let h be an orientation-preserving homeomorphism of M ;
where M = R3 or S3. Consider the following statements:

(I) h is reversible.
(II) h is regular.

(III) h is equivalent to a rotation.
(IV) h is strongly reversible.
(V) h is embeddable in a flow, that is, there exists a flow G = {ht | t ∈ R}

on M such that h1 = h.

Then the following statements hold.

(1) If h is nonperiodic and positively regular, then
(a) If M = R3 and h has a bounded positive orbit, then (I), (II), (III)

and (IV) are equivalent, and (I) implies (V).
(b) If M = S3 and h has a fixed point, then (I), (II), (III), (IV) and

(V) hold.
(2) If h is periodic, then (III) is equivalent to (V), and (III) implies (IV).

Proof.

(1) Assume that h is nonperiodic and positively regular. For showing (a),
assume that M = R3 and h moreover has a bounded positive orbit.
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(I) =⇒ (II). If h is reversible then by Lemma 4.5, h is regular.
(II) =⇒ (III). If h is regular, then by Lemma 4.10, h has bounded
orbits and by Corollary 3.4.(1), h is equivalent to a rotation since h

is nonperiodic.
(III) =⇒ (IV). Follows from the fact that every rotation is strongly
reversible.
(IV) =⇒ (I). Trivial.
(I) =⇒ (V). If condition (I) holds, then h is regular and equivalent to
a rotation and by [Be1, Corollary 2.6.(1)] h is embeddable in a flow.
Item (b) is true since by Lemma 4.5, h is regular and by Corollary
3.10, h is equivalent to a rotation which implies that h is strongly
reversible and embeddable in a flow.

(2) (III) ⇐⇒ (V). Follows from [Be1, Corollary 2.6.(1)] if M = R3, and
if M = S3 it follows from Proof of [Be1, Corollary 2.6.(1)] and [Ric,
Theorem A]. (III) =⇒ (IV) is clear. ¤

The author would like to thank the referee for his valuable comments.
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