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Fold singularities on spacelike CMC surfaces
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Abstract. Fold singular points play important roles in the theory of maximal sur-
faces. For example, if a maximal surface admits fold singular points, it can be extended
to a timelike minimal surface analytically. Moreover, there is a duality between cone-
like singular points and folds. In this paper, we investigate fold singular points on
spacelike surfaces with non-zero constant mean curvature (spacelike CMC surfaces).
‘We prove that spacelike CMC surfaces do not admit fold singular points. Moreover, we
show that the singular point set of any conjugate CMC surface of a spacelike Delaunay
surface with conelike singular points consists of (2, 5)-cuspidal edges.

Key words: Spacelike CMC surface, constant mean curvature, fold, (2,5)-cuspidal
edge.

1. Introduction

An immersed surface in the Lorentz-Minkowski 3-space L? is called of
zero mean curvature if it is locally a graph z¢ = f(z1, x2) satisfying

(1 - aczg)fxwfl +2f11f$2fm1$2 + (1 - w21)f$2372 = O

or a plane parallel to zg-axis, where we regard L3 as an affine space R® =
{(z0,x1,22)} with the Lorentz metric of signature (—,+,+), and denote
fo, = O0f/0x1, and so on. At the point satisfying 1 — f2 — f2 > 0 (resp.
1- 121 - f§2 < 0), the zero mean curvature surface is spacelike maximal
(resp. timelike minimal). Although any complete maximal surface in L? is
a spacelike plane [3], there are nontrivial zero mean curvature surfaces of
mixed type ([23], [11], [27], [22], [20], [6], [9], [8], [7], [4] and [5]), where a
(connected) surface in L3 is called of mized type if its spacelike and timelike
parts are both non-empty.

According to Gu [11], [12], [13], Klyachin [22] and Kim-Koh-Shin-Yang
[20], on a neighborhood of a non-degenerate type-changing point of a zero
mean curvature surface of mixed type, its spacelike part is a mazface with
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Maximal helicoid. Zero mean curvature helicoid.

Figure 1. The left figure is the spacelike maximal helicoid whose singular point
set consists of fold singular points. The right figure is the zero mean curvature
helicoid of mixed type which is an extension of the left maximal helicoid.

fold singular points [7] (cf. Definition 3.4), where a ‘maxface’ is a maximal
surface with admissible singular points introduced by Umehara-Yamada [29].
Conversely, a maxface with fold singular points can be extended analytically
to a zero mean curvature surface which changes causal type. For the defini-
tion of non-degenerate type-changing points, see [12], [13] and [7]. Roughly
speaking, there is a one-to-one correspondence between fold singular points
and zero mean curvature surfaces of mixed type.

In this paper, we consider fold singular points on non-maximal spacelike
surfaces of constant mean curvature (i.e. spacelike CMC surfaces). Space-
like CMC surfaces have a significant importance in physics [24]. Umeda [28§]
introduced a class of spacelike CMC surfaces with admissible singularities
called ‘generalized spacelike CMC' surfaces’ (cf. Definition 3.1), and investi-
gated their singularities. On the other hand, Brander defined and investi-
gated spacelike CMC surfaces with singularities using the DPW method [2].
Although Umeda [28] and Brander [2] exhibited various examples of space-
like CMC surfaces with singularities (such as cuspidal edges, swallowtails,
cuspidal cross caps and conelike singular points), spacelike CMC surfaces
with fold singular points were not known. Here, we show the following;:

Theorem 1.1  Generalized spacelike CMC' surfaces do not admit any fold
stngular points.

By this theorem, we can not expect the existence of CMC surfaces of
mixed type. In fact, in [17], Kokubu, Umehara and Yamada, the first and
second authors have proved that there do not exist (connected) CMC sur-
faces of mixed type.

On the other hand, it is known that for a maxface with conelike singular
points, its conjugate has fold singular points, and vice versa ([21], [7]).
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Maximal catenoid. Maximal helicoid.

Figure 2. The left figure is a maximal catenoid which is a maxface with conelike
singular points. The right figure is a maximal helicoid which is the conjugate of a
maximal catenoid. Its singular point set consists of fold singular points.
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A spacelike Delaunay surface. The conjugate.

Figure 3. The left figure is a spacelike Delaunay surface whose axis is timelike.
Its singular point set consists of conelike singular points. The right figure is the
conjugate of the left. Its singular points are not fold.

Although fold singular points never appear on generalized spacelike
CMC surfaces by Theorem 1.1, there exist generalized spacelike CMC sur-
faces having conelike singular points (cf. Figure 3, Remark 4.5). Therefore,
it is natural to ask as follows: What are the singular points which appear on
the conjugate of generalized spacelike CMC' surfaces with conelike singular
points? We answer to this problem in the case of generalized spacelike CMC
surfaces of revolution (i.e., spacelike Delaunay surfaces).

Theorem 1.2  For a spacelike Delaunay surface with conelike singular

points, its conjugate has (2,5)-cuspidal edges.

We remark that maxfaces do not admit any (2,5)-cuspidal edges (cf.
Remark 4.9). By Theorem 1.1 and Theorem 1.2, we may conclude that
the singularity types of spacelike CMC surfaces are different from those of
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maximal surfaces.

For the proof of Theorem 1.2, we give a criterion for (2, 5)-cuspidal edges
in Theorem 4.1. A criterion for (2,5)-cusps of plane curves can be found
in [25, Theorem 1.23]. Recently, Ishikawa-Yamashita found an interesting
example [19, Example 9.4] of tangent surface having (2, 5)-cuspidal edges in
non-projectively-flat 3-space.

This paper is organized as follows. In Section 2, we recall some basic
facts on spacelike CMC surfaces and surfaces with singularities. In Section
3, we review generalized spacelike CMC surfaces and prove Theorem 1.1. In
Section 4, we give a criterion for (2,5)-cuspidal edges (cf. Theorem 4.1) and
show Theorem 1.2.

2. Preliminaries

Denote by L? = (R?, (,)) the Lorentz-Minkowski 3-space with the
Lorentzian inner product (z,x) = —x3 + 23 + 23, where = (29,1, 22) €
L3. We set H? and H? as

H*:={pelL®; (pp)=—1}

and H3 := H? N L3, respectively, where L3 = {(z,71,72) € L?; 79 =
0}. That is, H? is the union of two hyperbolic planes. The stereographic
projection 7 : H?> — C' is defined by

T1 + 122

: = (x0, 1, ¥2) € H?, 2.1
= p = (o, 71, T2) (2.1)

m(p) =

where C := C U {oc} is the Riemann sphere. If we denote by D = {z €
C'; |z| < 1} the unit disk, each of the restrictions

7r|H3:HE—>D, W‘HiHi_)é\D

gives diffeomorphisms onto the image, and hence 7(H?) = €\ S', where
D=DuUS"and S' = {z € C; |z| = 1}. Therefore C may be considered
as a compactification of H?.

We denote by ¥ an oriented smooth 2-manifold. In this paper, a surface
in L3 is defined to be an immersion X of ¥ into L2. We denote by ds? =
X*(, ) the first fundamental form of X. If ds® defines a Riemannian metric
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on X, X is called spacelike. Taking a (timelike) unit normal vector field
v:Y — H? C L3 along X, the second fundamental form of X is given
by II = (—dv,df). Then, the mean curvature function H is defined by
H = (k1 + k2)/2, where k1, ko are the principal curvatures of X. We call
the composition g :=mov : ¥ — C the Gauss map of X, where 7 is the
stereographic projection given by (2.1).

If we take a conformal coordinate system (U; z = u+iv) of the Riemann
surface (X, ds?), we may write ds® and II as

ds? = e*dz dz, II=Q+ Q+ Hds?,

where Q = qdz? (¢ = (f..,v)) is the Hopf differential of X. Then, the
Gauss and Codazzi equations are given by

40,5 = e H? — 4727 |q|?, .= H,, 2.2
q q

respectively. According to the fundamental theorem of surface theory, if the
triplet (ds?, H,Q = qdz?) defined on a simply connected domain U C C
satisfies (2.2), there exists a conformal immersion X : U — L3 such that
ds? is the first fundamental form, @ is the Hopf differential, and H is the
mean curvature of X.

2.1. Spacelike CMC surface, associate family, Kenmotsu-type
representation formula

A spacelike surface in L? is said to be CMC-H or CMC, if its mean
curvature is identically a constant H. In particular, a surface is called
mazimal if its mean curvature is identically zero. Let X : ¥ — L2 be
a spacelike CMC-H surface of which the triplet is given by (ds?, H, Q).
If ¥ is simply connected, there exists a family of spacelike CMC-H sur-
faces {Xgloesr = {Xp : ¥ — L3}pcs1, where the triplet of Xy is given by
(ds?, H, Qp = €"Q) for each 6 € S*. The family {Xp}pes: is called the
associate family of X. We call X# := X7 /2 the conjugate of X.

A smooth map g : ¥ — 7(H?) defined on a Riemann surface ¥ is called
harmonic if it satisfies

29
9zz t 1_7|g|29z92 =0, (2.3)

where z is a local conformal coordinate of ¥. Akutagawa-Nishikawa [1]
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proved the Kenmotsu-type representation formula for spacelike CMC sur-
faces as follows.

Fact 2.1 ([1]) Let X : ¥ — L3 be a conformal non-mazximal CMC-H
immersion defined on a simply connected Riemann surface . Then there
exists a harmonic map g = g(z) such that

Re/ —29,1+¢%i(1 - ¢g%))w, (2.4)

w = waz w = 2)2 . .

Conversely, take a non-holomorphic harmonic map g : ¥ — w(H?) defined
on a simply connected Riemann surface ¥ and a base point zg € 3. Then
the integration in (2.4) does not depend on the choice of a path joining zo
and z, and X in (2.4) is a spacelike CMC-H immersion whose Gauss map
is g. Furthermore, the first and second fundamental forms are given by

ds? = (1— |gP)?wl?, HT=Q+Q+Hds® (Q=—wdyg),

respectively.

2.2. Surface with singularities

For a smooth map X : ¥ — R? of a smooth 2-manifold ¥, a point p € &
is called singular, if X is not an immersion at p. A non-singular point is
called regular. We denote by S(X) (resp. R(X)) the set of singular (resp.
regular) points of X.

A smooth map X : ¥ — R? is called a frontal, if for any point p € ¥,
there exist an open neighborhood U of p and a smooth map n : U — S? such
that dX (v)-n(q) = 0 holds for each ¢ € U and v € T3, where the dot “-”
means the Euclidean inner product. Such a map n is called a (Euclidean)
unit normal vector field along X. (If (X, n) is an immersion, X is called a
front.) We call A := det(X,, X,, n) the signed area density function, where
(u,v) is the coordinates of U. A point p € U is a singular point of X if and
only if A(p) = 0. If dA(p) # 0, a singular point p is called non-degenerate.
We remark that if p is non-degenerate, then rank(dX), = 1 holds. By the
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implicit function theorem, there exists a regular curve v(¢) (|t| < €) on the
uv-plane such that 7(0) = p and the image of v coincides with the singular
point set S(X) near p, where ¢ > 0. We call y(¢) the singular curve and
v = dy/dt the singular direction. Then, there exists a non-zero smooth
vector field n(t) along y(t) such that n(t) is a null vector (i.e., dX (n(t)) = 0)
for each t. Such a vector field n(t) is called a null vector field. If ~'(0)
is not proportional to n(0), then p = v(0) is said to be the first kind. In
this setting, we can extend £(t) := +/(t) and 7n(t) to smooth vector fields
¢ =&(u,v) and n = n(u,v) on U, respectively.

The following two lemmas are well-known (see [14]). They play crucial
roles in Whitney [30] to give a criterion for a given smooth map to be a
cross cap. Let h(u,v) be a smooth function defined around the origin.

Fact 2.2 (Division Lemma) If h(u,0) vanishes for sufficiently small u,
then there exists a smooth function h(u,v) defined around the origin such
that h(u,v) = vh(u,v) holds.

Fact 2.3 (Whitney Lemma) If h(u,v) = h(—u,v) holds for sufficiently
small (u,v), then there exists a smooth function h(u,v) defined around the
origin such that h(u,v) = h(u?,v) holds.

Using Facts 2.2, 2.3, the following facts can be proved. (See [10, Theo-
rem 1.4].)

Fact 2.4 For a smooth function h(u,v), there exist smooth functions
a(u,v) and B(u,v) defined around the origin such that h(u,v) = a(u,v?) +
vB(u,v?) holds.

Fact 2.5 Let p = (0,0) be a non-degenerate singular point of a frontal
X : U — R? defined on a domain U C R*, y(t) (|t| < ¢) the singular
curve passing through p = (0), and n(t) a null vector field along y(t). If
p is of the first kind, then there exist diffeomorphisms ® defined on R>, ¢
on R?, and a smooth function h(u,v) defined around the origin such that
(® o X o p)(u,v) = (u,v?,v3h(u,v)) holds.

3. Generalized spacelike CMC surface and Fold singularity

In this section, first we review some definitions and introduce some
properties on singularities of generalized spacelike CMC surfaces. Then we
shall prove Theorem 1.1.
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3.1. Generalized spacelike CMC surface
Umeda [28] investigated singularities of spacelike CMC surfaces with
admissible singularities called generalized spacelike CMC' surfaces.

Definition 3.1 ([28]) Let ¥ be a Riemann surface. For a smooth map
g:3 — C,set S1(9) :={pe€X;|g(p) =1} and w as in (2.5).

e A smooth map ¢g: 3 — C is called a reqular extended harmonic map
if the following two conditions hold:

(1) w can be extended to a 1-form of class C'* across S;(g),
(2) g satisfies g.z + 2(1 — |g|?)gg.w = 0, where w = &(z) dz.

e For a non-holomorphic regular extended harmonic map g : ¥ — C
and a non-zero constant H # 0, if the map X : ¥ — L3 given by (2.4)
is well-defined, then X is called a generalized spacelike constant mean
curvature surface (or CMC, CMC-H).

The map g is called the Gauss map of X.

By the condition (1) in Definition 3.1, we have
9:(p) =0 for pe Si(g). (3.1)

Fact 3.2 ([28, Proposition 3.8]) Let X : & — L3 be a generalized spacelike
CMC surface with Gauss map g. Set Sxo(g) :={p € ¥ |g(p)| = oo}. Then,

(i) a point p € ¥\ Sx(g) is a singular point of X if and only if |g(p)| = 1
or w(p) = 0. In particular, if w(p) = 0, then rank(dX), = 0 holds.

(ii) a point p € Sx(g) is a singular point of X if and only if g?w = 0
holds at p. Moreover, in this case, rank(dX), = 0 holds.

In particular, if p € ¥ is a singular point of X satisfying rank(dX), = 1,
then |g(p)| =1 holds.

From the proof of [28, Theorem 4.1] and (3.1), the following lemma can
be proved easily.

Lemma 3.3 Let X : X — L2 be a generalized spacelike CMC surface with
the Gauss map g. A singular point p € S1(g) is non-degenerate if and only
if dg(p) # 0. In particular, g gives a local diffeomorphism on a neighborhood

of p.
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3.2. Proof of Theorem 1.1
First, we review the definition of fold singular points.

Definition 3.4 (Fold singular point) Let ¥ be a smooth 2-manifold and
X : ¥ — L3 asmooth map. A singular point p € ¥ of X is called fold if there
exist a local coordinate system (U;p) around p € ¥ and a diffeomorphism
® of L3 such that ® o X o o= = X¢1q, where Xo1q(u,v) = (u, v2, 0).

We use the following fact.

Fact 3.5 For a spacelike immersion X : ¥ — L of an oriented smooth
2-manifold X2, let v : ¥ — H? C L3 be a unit normal vector field, and H be
the mean curvature function. Then it holds that

Ay X = —2Huy, (3.2)

where Agg2 is the Laplacian of the first fundamental form ds®.

Proof of Theorem 1.1. Let X : ¥ — L3 be a generalized spacelike CMC
surface with Gauss map ¢g. Using a suitable homothety, we may assume that
its mean curvature H is 1/2 without loss of generality.

Assume p € ¥ is a fold singular point of X. Then, there exists a
local coordinate system (U;u,v) around p such that X(u,v) = X(u, —v)
holds for any (u,v) € U. Then, we have that X,(u,v) = —X,(u,—v),
and hence X,(u,0) = 0 holds. The singular point set S(X) is given by
S(X) = {(u,v) € U; v =0}. That is, y(t) = (£,0) gives a singular curve
and 1 = d, gives a null vector field of X.

Since fold singular points are non-degenerate, p = (0,0) is also non-
degenerate and rank(dX), = 1 holds. By Fact 3.2 and Lemma 3.3, we
have S(X) = {(u,0)} C Si(g) and g gives a local diffeomorphism around
p = (0,0). Hence, if |g(ug,vo)| > 1 holds at a point (ug,vg) € Uy, then
|g(up, —vo)| < 1 holds at (ug, —vo) € U_, where Uy := {(u,v) € U; v 2 0}.
Since the unit normal v of X is given by v =7 1o g, i.e.,

1
vV = ’9‘27_1(|g|2+1,—2Reg,—21mg),

we have v(ug,v9) € H? and v(ug, —vo) € H2.
However, by Fact 3.5, it holds that v = —A4,2 X on the regular point
set Uy UU_. Since (Ags2 X)(u,v) = (Ags2 X )(u, —v) holds on Uy UU_, we
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have v(ug,v) = v(ug, —vo) € H?, which is a contradiction. O

Remark 3.6 In the above proof of Theorem 1.1, we used the disconnect-
edness of H? where the unit normal vector field v of a spacelike surface takes
values. In the case of timelike surfaces, the unit normal vector fields take
values in the de Sitter plane S7 := {p € L3; (p,p) = 1}, which is connected.
Hence, a proof similar to that of Theorem 1.1 can not be applied directly to
the timelike case.

4. (2,5)-cuspidal edge

In this section, we shall prove Theorem 1.2. For the proof, we give a
criterion for (2, 5)-cuspidal edges (Theorem 4.1) and review the classification
of the conjugates of spacelike Delaunay surfaces (Facts 4.6, 4.7, 4.8).

4.1. Criterion for (2,5)-cuspidal edges

Let X : ¥ — R? be a smooth map defined on a smooth 2-manifold ¥.
A singular point p € ¥ of X is called (2,5)-cuspidal edge if there exist a
local coordinate system (U; ) around p € ¥ and a diffeomorphism & of R?
such that ® o X o o1 = X5 5), where X(95)(u,v) = (u, v, v°) which is
called the standard (2,5)-cuspidal edge.

Theorem 4.1 (A criterion for (2,5)-cuspidal edges) Let U be a domain
of R>, X : U — R? a frontal, and p € U a non-degenerate singular point
of the first kind. Moreover, let v(t) (|t| < &) be a singular curve passing
through p = v(0) and n(t) a null vector field along . Take smooth vector
fields € = &(u,v) and n = n(u,v) on U which are extensions of v'(t) and
n(t), respectively. Then, p = v(0) is a (2,5)-cuspidal edge if and only if

det(EX, mnX, nmnX)(v(t)) =0 (for each |t| <e), and (4.1)

det(¢X, 77X, 37° X — 10C7* X)(p) # 0 (4.2)

hold, where n* X implies k-times derivativen - --nX, 7 is a special null vector
field satisfying

(EX - 7°X)(p) = (€X -7’ X)(p) = 0 (4.3)

(the dot “-” means the Euclidean inner product), and C is a constant such
that
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1’ X(p) = C7* X (p) (4.4)

holds.

By the following lemma, we have the existence of a null vector field
satisfying (4.3).

Lemma 4.2 For a singular point p of the first kind, there exists a null
direction 1 satisfying the condition (4.3).

Proof.  Since p is of the first kind, we may take a coordinate system (u,v)
centered at p such that S(X) = {(u,v); v = 0} and dX(9,) = 0 hold. In
this situation, £ = 9, holds. Then, the vector field 7 = 9, + (au + bu2) Oy
is the desired null vector field, where

_Xv ' qu
X, - X,

Xv . (quu + 3aXuv)

0,0),  b=-Tgg

(0,0). O

a =

We shall prove Lemma 4.3 in Appendix A.

Lemma 4.3 The conditions (4.1) and (4.2) in Theorem 4.1 are indepen-
dent of choices of vector fields €, n and coordinate systems of R®.

Proof of Theorem 4.1. By Lemma 4.3, we have that a (2, 5)-cuspidal edge
satisfies the conditions (4.1) and (4.2). Thus, we here prove the converse.

By Fact 2.5, we may write X (u,v) as X (u,v) = (u,v?,v3h(u,v)). First,
we set

ho(u) := h(u,0), hi(u,v) := h(u,v) — ho(u).

Since hi(u,0) = h(u,0) — ho(u) = 0, by Fact 2.2, there exists a smooth
function Ai(u,v) defined around the origin such that hy(u,v) = vhi(u,v)
holds. Hence we have h(u,v) = ho(u) 4+ vhy(u,v). Applying Fact 2.4 to
hy(u,v), we have hy(u,v) = au,v?) + v3(u, v?), and hence

X (u,v) = (u, 0%, v*ho(u) + v'a(u,v?) +0°B(u,v?)) .
Using the diffeomorphism ®; : (z,y, 2) — (z,y, 2 — y?a(z,y)), we have

Dy 0 X(u,v) = (u,’uQ, v3ho(u) + USB(U,UQ)).
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Replace X (u,v) by ®;10X (u,v). Then the singular point set of X is {(u,0)}
and X, = 0. By Lemma 4.3, the conditions (4.1), (4.2) are independent of
the choice of vector fields (£,n). Thus we may put & = 9, n = 0,. Then,

£X(u,0) = (1,0,0), 7°X(u,0)=(0,1,0), n>X(u,0)=(0,0,6hq(u))

holds. By the condition (4.1), we have ho(u) = 0. Moreover, 0, also satisfies
(4.3), and hence we put 77 = 9,,. Then, C' = 0 holds, where C is the constant
as in (4.4). By the condition (4.2), we have (0, 0) # 0. Therefore, the map

b, - (1’,2/,2) — (.QI,y, Z/,B((L’,y))

gives a local diffeomorphism of R® around the origin. Replacing X (u,v) by
@y 0 X (u,v), we have X (u,v) = (u,v?,v5). O

4.2. Conjugate of spacelike Delaunay surfaces

A generalized spacelike CMC surface is called a spacelike Delaunay sur-
face with axis £ if it is invariant under the action of the group of motions
in L? which fixes each point of the line /. Spacelike Delaunay surfaces are
classified in [15], [18], [26] (see also [16]). The following fact gives those
surfaces with non-empty singular point set.

Fact 4.4 Let X : ¥ — L2 be a spacelike Delaunay surface of mean curva-
ture H such that the singular point set of X is not empty. If the axis of X
18

(I) timelike, there exists a constant k (# 1) such that X is congruent to

X(r,t) = 22( OT Tts\/%;ldr, rcos(2Ht), rsin(2Ht)>, (4.5)

where
5(r) = (r* +k+1)? — 4k. (4.6)

(IT) spacelike, there exists a constant k (# 1) such that X is congruent to

1 "2 —k+1
X(r,t) = oH (7’ cosh(2Ht), rsinh(2Ht), u i T>, (4.7)

—d
0o /(1)
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where

§(r) = (r* —k —1)* — 4k. (4.8)

(III) lightlike, X is congruent to

X(rt) = (C(r) - r(l + ?) —rt, C(r) + 7'(1 - g)) (4.9)

where ((r) is one of the followings:

¢(r) = 8]1{2 (— : -:7’2 +tan_1r), (4.10)
¢(r) = 8_;{2<1 _er — tanh ™! 7“). (4.11)

Remark 4.5 For any spacelike Delaunay surface, its singular point set
consists of conelike singularities [16].

k=2 k=05 k = 0.5 (half)

Figure 4. Spacelike Delaunay surfaces X (r, t) with timelike axis (cf. Fact 4.4 (I)).
If £ < 1, X has self-intersection.

The associate families, in particular, the conjugates of spacelike De-
launay surfaces are classified in [16] (see also [26]). Set Xp(r,t), Xs(r,t),
Xp(rt) as

XT(r7 t) = ()‘ + h¢7 p Cos (b? pSin ¢)7
Xs(r,t) = (psinh ¢, pcoshé, A+ h),
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3 3
Xﬂnﬂz(k—p—pﬁ,%M%A+p—p&)+h<¢-H¢¢2¢ ¢>

where h is a constant and p = p(r), A = A(r) (resp. ¢ = ¢(r,t)) are smooth
functions of r (resp. (r,1)).

Fact 4.6 (The case of timelike axis) Let X be a spacelike Delaunay surface
given by (4.5) whose axis is timelike, and let X# be its conjugate. If

(Ii) k > —1 (resp. k < —1), then X# is congruent to Xr(r,t) (resp.
Xg(r,t)), where h=(1—k)/(2H|1 + k|), and

A(r) /‘Nmu+k
2H|k + 1| H\/5(T)A(T) ar.
4.12
TMm1+Mu—kﬁah_ |1+Mt (412
VO(T)A(T) 2

(I-ii) k= —1, then X7 is congruent to Xr(r,t), where h = H, and p(r) =
r/2,

p(r) =

o(r,t) =sen(k + 1)/0

dr,

) = /TTZ(\/m—}—TQ)
r) =
4H2\/74 + 4
\/7T+T

o(r,t) d+t

2H~/ T4 +

Here, we put A(r) = 2(k + 1)r?2 + (1 — k)? and 6(r) is a function given by
(4.6).

(4.13)

Fact 4.7 (The case of spacelike axis) Let X be a spacelike Delaunay surface
given by (4.7) whose axis is spacelike, and let X be its conjugate. If

(I-i) & > —1 (resp. k < —1), then X# is congruent to Xg(r,t) (resp.
Xr(r,t)), where h = (1—k)/(2H|1 + k|), and

_ VA V21 + k|7
P(T)—ma A(r) = —sgn(k + 1 /H\/—A dr,

o(r,t) / '2|1+k 1(_) dr —sgn(k +1) ‘1+2k‘t. (4.14)
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(II-ii) k = —1, then X¥ is congruent to X (r,t), where h = H, and p(r) =
r/2,

)\(T):/OTT (Vi +4+7 )d7_7

AH2 /7 + 4
P T
—————dr + t.
o 2H\TY+4
Here, we put A(r) = —2(k+1)r? + (1 —k)? and §(r) is a function given by
(4.8).

(4.15)
¢(Tv t) =

Fact 4.8 (The case of lightlike axis) Let X be a spacelike Delaunay surface
given by (4.9) whose azis is lightlike, and let X# be its conjugate. If ((r) is
given by

(ITI-i) (4.10), then X# is congruent to Xr(r,t), where h = —1/(2H) and

(r) = 22 +1 ) = —V2r +2v2tan" 1 r — tan—! /2r
A= "1 - 2H ’
2Ht
o(r,t) = 7 +v2tan"!r — tan~! V/2r. (4.16)
(I1-ii) (4.11), then X* is congruent to Xg(r,t), where h =1/(2H) and
(r) = V1 —2r2 () = V2r —2¢v/2tanh !t r + tanh~t 2r
P =" "7 2H ’
o(r,t) = Wi + V2tanh ™' 7 — tanh ™! V2r (4.17)

Proof of Theorem 1.2. Let X be a spacelike Delaunay surface with conelike
singular points and X# be its conjugate. First, we consider the case that
X is given by (4.5) and k > —1. Then, by Fact 4.6, X# is congruent to
X7(r,t). The Euclidean unit normal n of X# (r,t) is given by

n(r,t)

1
V2VAM)6(r) = (k+ 1)
- (\/(5(7“)\/A(1"), VoVE T 1 cos ¢(r, ) — (k — 1)\/3(r) sin (r, 1),
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—V2VE + 1r¥sing(r, t) + (k — 1)\/8(r) cos ¢(r, t)),

where A(r), ¢(r,t) are defined as in Fact 4.6 and (r) is given by (4.6). The
signed area density function A is calculated as

_T\/é(r) — (kE+1)r?
2H2\k + 1,/5(r)

which implies that the singular point set S(X#) of X#(r,t) is S(X#) =
{(r,t); r = 0}. Since d\ = —dr/(2H?\/k+ 1) holds on S(X#), all the
singular points of X# (r,t) are non-degenerate. Moreover, since the singular
curve «(t) and the null vector field n(t) along ~(¢) are given by v(t) = (0,1),
n(t) = 0y, respectively, all the singular points of X (r,t) are of the first kind.
The extensions of v/ and 7 are given by £ = 0; and n = 0,, respectively.

)\(T', t) = det ((X#)ra (X#)ta n) =

Then we have

det (EX#, mmX#, nmmX#) (1(t))

= det ((X#)ta (X#)rra (X#)rrr)(ovt) =0

for each t, and hence the condition (4.1) holds. By Lemma 4.2, the null
vector field 77 satisfying (4.3) is calculated as

5 272
=0 = (k— 1)k — 1|at'

Since 72 X#(0,t) = 0, the constant C' as in (4.4) is 0. Then we have

12
det (EX7#, 2 X# PP X#)(y(t)) = = #0

€ (6 » 1 y N )(ry( )) H3|k‘—1|3?é
for each t, and hence the condition (4.2) holds. Therefore, Theorem 4.1
yields that all the singular points of X#(r,t) are (2,5)-cuspidal edges. In
the case that X is given by (4.7), (4.9) or (4.5) with k < —1, we can prove
the desired result in a similar way. O

Remark 4.9 We should remark that maxfaces do not admit any (2,5)-
cuspidal edges. In fact, if we assume that a maxface admit a (2,5)-cuspidal
edge p, then by [29, Lemma 3.3] and [7, Lemma 2.17], one can show that p
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satisfies the condition of folds, which is a contradiction (see also [7, Defini-
tion 2.13]). Therefore, the singularity types of generalized spacelike CMC
surfaces are different from those of maxfaces.

Appendix A. Proof of Lemma 4.3

Let &, n be smooth vector fields which satisfy the assumptions in The-
orem 4.1. That is, let X : U — R? be a frontal, p € U a singular point of
the first kind, v(¢) (|t| < €) be a singular curve passing through p = ~(0),
and £ = &(u,v) and n = n(u,v) be smooth vector fields on U which are
extensions of the singular direction 74/(¢) and the null vector field 7(t), re-
spectively.

We shall prove Lemma 4.3 in the following two steps (Step I, Step II).

Step I  The conditions (4.1) and (4.2) in Theorem 4.1 are independent of
choices of vector fields &, 7.

Proof. If €, 7j are also vector fields satisfying the assumptions in Theorem
4.1, they can be expressed as a linear combination

E = al(uv ,U)‘S +a (U, ’0)777 n= bl (uv v)§ + b2(u7 0)777 (Al)
where a;, b; (j = 1,2) are smooth functions satisfying
as(u,v) = by(u,v) =0

on the singular point set S(X), and a; (u, v), ba(u, v) never vanish on S(X).
Then, it holds that

EX(p) = a1(p)éX(p), 71X (p) = ba(nb1€X + by X)(p).

First, we shall prove that the condition (4.1) is independent of the choice
of ¢ and 7. It suffices to show that det(£X, 77X, 777X )(p) is a non-zero
constant multiple of det(§X,nmX,nmnX)(p). Since we want to calculate
det(£X, 7 X, 71X ), we shall ignore the terms of £X (p), mnX (p) appearing
in X (p). As &n—né is tangent to S(X) and the image of dX is spanned
by £X on S(X), (én —n€)X is parallel to £X on S(X). Moreover, since
nX = 0 on S(X), we have that £nX = 0 on S(X). Therefore, we can also
ignore néX (p). In this situation, 777X (p) = (b2)3>nmmX (p) holds, and hence
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we have that the condition (4.1) is independent of choices of vector fields.

With respect to the condition (4.2), let &, n be vector fields which satisfy
the assumptions in Theorem 4.1. Moreover, we assume that the condition
(4.3), that is nnX(p) = CnnX(p) holds. If &, 7 are also vector fields
satisfying these assumptions, they can be expressed as a linear combination
n (A.1). Then, we have

nbi(p) = nb1(p) = 0.

Under these assumptions, it holds that

X (p) = (b2)>mX(p), 77X (p) = (b2)*(3nbz + Cb2)(p)ynX (p).

Hence the constant C satisfying 77 f(p) = Cqif(p) is given by C =
(3nby + Cby) (p). Now we shall show that det(£X, 77X, 37° X — 10C7*X)(p)
is a non-zero constant multiple of det(¢X, nmX, 3n°X — 100n*X)(p). As
in the argument above, we shall ignore the terms which are parallel to
¢X(p),mX(p). Then, we have

7' X(p) = (b2)'n'X(p),  7°X(p) = (b2)"{10(1b2) (0" X) + b2 ° X } ()

Therefore, it holds that (37°X — 10C7*X)(p) = (b2)*(3n°X — 10Cn* X)(p),
and hence we have the conclusion. O

Step II  The conditions (4.1) and (4.2) in Theorem 4.1 are independent
of a choice of coordinate systems of R®.

Proof. Without loss of generality, we may assume that p = (0,0) and
X(p) = (0,0,0). Let & = (®!,®% ®3) be a diffeomorphism such that
®(0,0,0) = (0,0,0) and (x1,x2,73) a coordinate system of R>. In the
following, we denote by (®*);—; 23 the point (®!, ®2, ®3).

Since 7 is a null direction, we have

£(®o X) <Z<1>’f 5X) = dP(£X),

k=1,2,3

n(® o X) <Z(I>k nX) = dd(nX),

k=1,2,3
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S @le-) — 4D (5 X),

- k=1,2,3

> @MXZ«) = dP(n*X),
k=1,2,3

3 3
> 30k XX+ q’im4Xz'> :
k=1,2,3

i,j=1 i=1

3
(@ o X) < Z 1095, P XX, + @’;inf’Xi)
i,j=1 i=1 k=1,2,3
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Here, we regard d® : TR® — TR? as a GL(3, R)-valued map on R®. These
yield that the condition (4.1) is independent of a choice of coordinate system
of R*. Moreover, we have that the condition (4.3) is also independent of a

choice of coordinate system of R>.

From now on, we assume that 7 satisfies the condition (4.3). Since at

the origin
PX =Ci?X,  P(®oX)=Ch(®o X),
hold, we have 72(® o X) = d® (7> X), 7> (® 0 X) = d®(7>X), and hence
P (@ o X) - Ci?2(® o X) = do(iP X — Ci?X) = d®(Ci?X — Ci?X)
at the origin, which implies C=cC. Now, at the origin, it holds that

37°(® o X) — 10CH* (P 0 X)

3 3
= 3( Z 10(I)I;irj773Xi7]2Xj + Z (P];ln‘aXl)
k=1,2,3

ij=1 i=1

3
- 100( Z 308 L P X’ X; 4+ @’;in‘*xi)
k=1,2,3

1,5=1 i=1

<3o Z ok L X (n’ X, — Cn2Xi)>

i,j=1 k=1,2,3
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3
+ (Z ok (3°X, — 1ocn4xi)>
k=1,2,3

i=1

=d®(3n°X; — 10Cn*X;).

Thus, we have the condition (4.2) is independent of a choice of coordinate
system of R>. U

Acknowledgements The authors thank Professors Masaaki Umehara
and Kotaro Yamada for valuable comments. The first and the second au-
thors are partially supported by Grant-in-Aid for Challenging Exploratory
Research No. 26610016 of the Japan Society for the Promotion of Science.
The second author is partially supported by Grant-in-Aid for Scientific Re-
search (B) No. 25287012 and the third author by (C) No. 26400087 from
Japan Society for the Promotion of Science.

References

[1] Akutagawa K. and Nishikawa S., The Gauss map and spacelike surfaces
with prescribed mean curvature in Minkowski 3-space. Tohoku Math. J. (2)
42 (1990), 67-82.

[2] Brander D., Singularities of spacelike constant mean curvature surfaces in
Lorentz-Minkowski space. Math. Proc. Cambridge Philos. Soc. 150 (2011),
527-556.

[3] Calabi E., Examples of Bernstein problems for some nonlinear equations,
Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif.,
1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 223-230.

[4] Fujimori S., Kawakami Y., Kokubu M., Rossman W., Umehara M. and
Yamada K., Analytic extension of Jorge-Meeks type mazimal surfaces in
Lorentz-Minkowski 3-space. Osaka J. Math. 54 (2017), 249-272.

[5] Fujimori S., Kawakami Y., Kokubu M., Rossman W., Umehara M. and
Yamada K., Entire zero-mean curvature graphs of mixed type in Lorentz-
Minkowski 3-space. Q. J. Math. 67 (2016), 801-837.

[6] Fujimori S., Kim Y. W., Koh S.-E., Rossman W., Shin H., Takahashi H.,
Umehara M., Yamada K. and Yang S.-D., Zero mean curvature surfaces in
L3 containing a light-like line. C. R. Math. Acad. Sci. Paris 350 (2012),
975-978.

[7] Fujimori S., Kim Y. W., Koh S.-E.,; Rossman W., Shin H., Umehara M.,
Yamada K. and Yang S.-D., Zero mean curvature surfaces in Lorentz-



[8]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

Fold singularities on spacelike CMC' surfaces 265

Minkowski 3-space and 2-dimensional fluid mechanics. Math. J. Okayama
Univ. 57 (2015), 173-200.

Fujimori S., Kim Y. W., Koh S.-E., Rossman W., Shin H., Umehara M.,
Yamada K. and Yang S.-D., Zero mean curvature surfaces in Lorentz-
Minkowski 3-space which change type across a light-like line. Osaka J. Math.
52 (2015), 285-297.

Fujimori S., Rossman W., Umehara M., Yamada K. and Yang S.-D., Em-
bedded triply periodic zero mean curvature surfaces of mized type in Lorentz-
Minkowski 3-space. Michigan Math. J. 63 (2014), 189-207.

Fujimori S., Saji K., Umehara M. and Yamada K., Singularities of mazimal
surfaces. Math. Z. 259 (2008), 827-848.

Gu C. H., The extremal surfaces in the 3-dimensional Minkowski space.
Acta Math. Sinica (N.S.) 1 (1985), 173-180.

Gu C. H., A global study of extremal surfaces in 3-dimensional Minkowski
space, Differential geometry and differential equations (Shanghai, 1985),
Lecture Notes in Math., vol. 1255, Springer, Berlin, 1987, pp. 26-33.

Gu C. H., Eztremal surfaces of mized type in Minkowski space R™
Variational methods (Paris, 1988), Progr. Nonlinear Differential Equations
Appl., vol. 4, Birkh&user Boston, Boston, MA, 1990, pp. 283-296.
Golubitsky M. and Guillemin V., Stable mappings and their singularities,
Springer-Verlag, New York-Heidelberg, 1973, Graduate Texts in Mathe-
matics, Vol. 14.

Hano J. and Nomizu K., Surfaces of revolution with constant mean curva-
ture in Lorentz-Minkowski space. Tohoku Math. J. (2) 36 (1984), 427-437.
Honda A., On associate families of spacelike Delaunay surfaces, Real and
complex singularities, 103—120, Contemp. Math., 675, Amer. Math. Soc.,
Providence, RI, 2016.

Honda A., Koiso M., Kokubu M., Umehara M. and Yamada K., Mized
type surfaces with bounded mean curvature in 3-dimensional space-times.
Differential Geom. Appl. 52 (2017), 64-77.

Ishihara T. and Hara F., Surfaces of revolution in the Lorentzian 3-space.
J. Math. Tokushima Univ. 22 (1988), 1-13.

Ishikawa G. and Yamashita T., Singularities of tangent surfaces to generic
space curves. J. Geom. 108 (2017), 301-318.

Kim Y. W., Koh S.-E.; Shin H. and Yang S.-D., Spacelike mazimal surfaces,
timelike minimal surfaces, and Bjorling representation formulae. J. Korean
Math. Soc. 48 (2011), 1083-1100.

Kim Y. W. and Yang S.-D., Prescribing singularities of maximal surfaces
via a singular Bjorling representation formula. J. Geom. Phys. 57 (2007),



266

[22]
(23]

[24]

(25]
(26]

[27]

(28]
(29]

(30]

A. Honda, M. Koiso and K. Saji

2167-2177.

Klyachin V. A.| Surfaces of zero mean curvature of mized type in Minkowski
space. Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), 5-20.

Kobayashi O., Mazimal surfaces in the 3-dimensional Minkowski space L°.
Tokyo J. Math. 6 (1983), 297-309.

Marsden J. E. and Tipler F. J., Mazimal hypersurfaces and foliations of
constant mean curvature in general relativity. Phys. Rep. 66 (1980), 109—
139.

Porteous I. R., Geometric differentiation. For the intelligence of curves and
surfaces, Second edition. Cambridge University Press, Cambridge, 2001.
Sasahara N., Spacelike helicoidal surfaces with constant mean curvature in
Minkowski 3-space. Tokyo J. Math. 23 (2000), 477-502.

Tkachév V. G. and Sergienko V. V., Doubly periodic maximal surfaces with
singularities, Proceedings on Analysis and Geometry (Russian) (Novosi-
birsk Akademgorodok, 1999), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat.,
Novosibirsk, 2000, pp. 571-584.

Umeda Y., Constant-mean-curvature surfaces with singularities in
Minkowski 3-space. Experiment. Math. 18 (2009), 311-323.

Umehara M. and Yamada K., Mazimal surfaces with singularities in
Minkowski space. Hokkaido Math. J. 35 (2006), 13-40.

Whitney H., The singularities of a smooth n-manifold in (2n — 1)-space.
Ann. of Math. (2) 45 (1944), 247-293.



Fold singularities on spacelike CMC' surfaces 267

Atsufumi HoNDA

National Institute of Technology
Miyakonojo College

Yoshio, Miyakonojo 885-8567, Japan
E-mail: atsufumi@cc.miyakonojo-nct.ac.jp

Current address:

Department of Applied Mathematics

Faculty of Engineering

Yokohama National University

79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
E-mail: honda-atsufumi-kp@ynu.jp

Miyuki Koiso

Institute of Mathematics for Industry

Kyushu University

744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
E-mail: koiso@math.kyushu-u.ac.jp

Kentaro SAJI

Department of Mathematics
Faculty of Science

Kobe University

Rokko, Kobe 657-8501, Japan
E-mail: saji@math.kobe-u.ac.jp



