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Abstract. Recently the behavior of operator monotone functions on unbounded in-

tervals with respect to the relation of strictly positivity has been investigated. In this

paper we deeply study such behavior not only for operator monotone functions but

also for operator convex functions on bounded intervals. More precisely, we prove that

if f is a nonlinear operator convex function on a bounded interval (a, b) and A, B are

bounded linear operators acting on a Hilbert space with spectra in (a, b) and A − B

is invertible, then sf(A) + (1 − s)f(B) > f(sA + (1 − s)B). A short proof for a sim-

ilar known result concerning a nonconstant operator monotone function on [0,∞) is

presented. Another purpose is to find a lower bound for f(A) − f(B), where f is a

nonconstant operator monotone function, by using a key lemma. We also give an esti-

mation of the Furuta inequality, which is an excellent extension of the Löwner–Heinz

inequality.

Key words: Löwner–Heinz inequality, Furuta inequality and operator monotone func-

tion.

1. Introduction

Let (H , 〈·, ·〉) be a complex Hilbert space and B(H ) denote the algebra
of all bounded linear operators on H equipped with the operator norm ‖·‖.
An operator A ∈ B(H ) is called positive if 〈Ax, x〉 ≥ 0 holds for every
x ∈ H and then we write A ≥ 0. For self-adjoint operators A,B ∈ B(H ),
we say A ≤ B if B − A ≥ 0. Further, we write A > B if A ≥ B and A−B

is invertible. When A > 0, we call A strictly positive.
Let f be a real-valued function defined on an interval J . If for any

self-adjoint operators A,B ∈ B(H ) with spectra in J ,

• A ≤ B implies f(A) ≤ f(B), then f is said to be operator monotone;
• f(λA + (1− λ)B) ≤ λf(A) + (1− λ)f(B) for all λ ∈ [0, 1], then f is

said to be operator convex.

Let us state our main terminology.
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Definition A continuous real valued function f defined on an interval
J = (a, b) is called

( i ) strictly operator monotone if A < B implies f(A) < f(B) for all
self-adjoint operators A,B ∈ B(H ) with spectra in J .

( ii ) strictly operator convex if f(λA + (1 − λ)B) < λf(A) + (1 − λ)f(B)
for all 0 < λ < 1 and all selfadjoint operators A,B with spectra in J

such that A−B is invertible.

Kwong [9] showed that f(t) = tr is strictly operator monotone whenever
0 < r ≤ 1. In addition, Uchiyama [13] studied strictly operator convex
functions.

Recall that if f is an operator monotone function on [0,∞), then f can
be represented as

f(t) = f(0) + βt +
∫ ∞

0

λt

λ + t
dµ(λ),

where β ≥ 0 and µ is a positive measure on [0,∞). If f is an operator
convex function on [0,∞), then f can be represented as

f(t) = f(0) + βt + γt2 +
∫ ∞

0

λt2

λ + t
dµ(λ),

in which γ ≥ 0, β = f ′+(0) = limt→0+((f(t) − f(0))/t) and µ is a positive
measure on [0,∞). The integral representations of operator convex and
operator monotone functions on bounded intervals are different as we will
see later.

The Löwner–Heinz inequality is one of the most important facts in the
theory of operator inequalities. It says that the function tp is operator
monotone for p ∈ [0, 1]; cf. [7]. Recently the behavior of operator monotone
functions on unbounded intervals with respect to the relation of strictly
positivity has been investigated. In [11], an estimation of the Löwner–Heinz
inequality was proposed as follows.

Theorem A If A > B ≥ 0 and 0 < r ≤ 1, then Ar − Br ≥ ‖A‖r −
(‖A‖ −m)r > 0, and log A − log B ≥ log ‖A‖ − log(‖A‖ −m) > 0, where
m = ‖(A−B)−1‖−1.

Very recently, the following generalization of Theorem A is given in [2],
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see also [5].

Theorem B If A > B ≥ 0 and f is a non-constant operator monotone
function on [0,∞), then f(A) − f(B) ≥ f(‖B‖ + m) − f(‖B‖) > 0, where
m = ‖(A−B)−1‖−1.

As a consequence, we have the following improvement of Theorem A.

Theorem C If A > B ≥ 0 and 0 < r ≤ 1, then

Ar −Br ≥ (‖B‖+ m)r − ‖B‖r > 0

and log A− log B ≥ log(‖B‖+m)− log ‖B‖ > 0, where m = ‖(A−B)−1‖−1.

The first aim of this paper is to prove that a nonlinear operator convex
function on a bounded interval is strictly operator convex. The second
one is to give a precise consideration of Theorem B for operator monotone
functions on a finite interval. The third purpose is to extend Theorem C
to the Furuta inequality. We recall the unforgettable fact that the Furuta
inequality is a beautiful extension of the Löwner–Heinz inequality.

2. Strictly operator convex functions

In this section, we treat the behavior of operator convex functions on
bounded intervals with respect to the relation of strictly positivity. To this
end we need some lemmas.

Lemma 2.1 The function f(x) = 1/x is strictly operator convex on
(0,∞), that is, if A,B are strictly positive operators such that A − B is
invertible, then for each 0 < s < 1,

sA−1 + (1− s)B−1 > (sA + (1− s)B)−1.

Proof. Let s ∈ (0, 1). Put H = A1/2B−1A1/2 and K = sA−1 +(1− s)B−1

− (sA + (1− s)B)−1. Then

A1/2KA1/2 = s + (1− s)H − (s + (1− s)H−1)−1 = f(H),

where f(x) = s + (1 − s)x − (s + (1 − s)x−1)−1 for x > 0. It is clear that
f(x) > 0 for x > 0 except x = 1.

Now, since A− B is invertible, so is 1−H and thus 1 does not belong
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to the spectrum of H. Hence we have f(H) > 0, so K > 0, which is the
desired inequality. ¤

Lemma 2.2 For each λ with |λ| ≤ 1, the function fλ(x) = x2/(1− λx) is
strictly operator convex on J = (−1, 1).

Proof. We show that if A,B are selfadjoint operators with spectra in J

such that A−B is invertible, then

sfλ(A) + (1− s)fλ(B) > fλ(sA + (1− s)B)

holds for 0 < s < 1. Fix λ 6= 0. Since fλ(x) = (−x)/λ + (−1)/λ2 +
1/λ2(1− λx), we have

λ2(sfλ(A) + (1− s)fλ(B)− fλ(sA + (1− s)B))

= −sλA− s + s(1− λA)−1 − (1− s)λB − (1− s) + (1− s)(1− λB)−1

+ λ(sA + (1− s)B) + 1− (1− λ(sA + (1− s)B))−1

= s(1− λA)−1 + (1− s)(1− λB)−1 − (1− λ(sA + (1− s)B))−1.

Applying Lemma 2.1 to 1− λA and 1− λB, we reach the conclusion.
Incidentally, for the case λ = 0, i.e., f0(x) = x2, we have

sA2 + (1− s)B2 − (sA + (1− s)B)2

= sA2 + (1− s)B2 − s2A2 − (1− s)2B2 − s(1− s)(AB + AB)

= s(1− s)(A−B)2 > 0. ¤

Theorem 2.3 Any nonlinear operator convex function on a finite interval
(a, b) is strictly operator convex on (a, b).

Proof. We may assume that (a, b) = (−1, 1). It is known that any operator
convex function f on (−1, 1) can be represented as

f(x) = f(0) + αx +
∫ 1

−1

x2

1− λx
dµ(λ), (1)

where α ∈ R and µ is a positive measure on [−1, 1], [6, Theorem 4.5]. Since
f is nonlinear, we infer that µ 6= 0. By Lemma 2.2 we conclude that
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sf(A) + (1− s)f(B) > f(sA + (1− s)B)

for each 0 < s < 1 and selfadjoint operators A,B with spectra in (−1, 1)
such that A−B is invertible. ¤

3. Estimates of Operator Monotone Functions

We start this section with the following lemma. The first part is bor-
rowed from [11] and the second is another variant of it.

Lemma 3.1 Let A > B > 0 and m = ‖(A−B)−1‖−1. Then

( i ) B−1 −A−1 ≥ 1/(‖A‖ −m)− 1/‖A‖;
( ii ) B−1 −A−1 ≥ m/(‖B‖+ m)‖B‖.

Proof. (i) See Lemma 2.1 of [11].
(ii) Because of A−B ≥ m, we have

B−1 −A−1 ≥ B−1 − (B + m)−1 = mB−1(B + m)−1

≥ m

‖B‖(‖B‖+ m)
. ¤

Now we note that m = ‖(A − B)−1‖−1 is the maximum among c ≥ 0
such that A−B ≥ c.

Let us give an alternative proof of Theorem B by using integral repre-
sentation of operator monotone functions on [0,∞).

Proof of Theorem B. Note that f admits the the following integral repre-
sentation:

f(t) = a + bt +
∫ 0

−∞

1 + ts

s− t
dm(s) = a + bt +

∫ 0

−∞

(
− s− 1 + s2

t− s

)
dm(s)

where b ≥ 0 and m(s) is a positive measure. Hence it follows from Lemma
3.1 (ii) that

f(A)− f(B) = b(A−B) +
∫ 0

−∞
(1 + s2)((B − s)−1 − (A− s)−1)dm(s)
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≥ bm +
∫ 0

−∞
(1 + s2)

(
1

‖B‖ − s
− 1
‖B‖ − s + m

)
dm(s)

= f(‖B‖+ m)− f(‖B‖) (> 0). ¤

Finally we propose an explicit lower bound of the difference f(A)−f(B)
for operator monotone functions on a finite interval (a, b) when A > B; see
[11, Proposition 2.2]. Let us mX = min sp(X) and MX = max sp(X) for a
self-adjoint operator X, where sp(X) denotes the spectrum of X. Note if
−1 < λ < 0 and −1 ≤ X ≤ 1, then 1− λX ≥ 0. Hence

‖1−λX‖ = max{1−λt : t ∈ sp(X)} = 1−λ max{t : t ∈ sp(X)} = 1−λMX .

Similarly if 0 < λ < 1 and −1 ≤ X ≤ 1, then ‖1− λX‖ = 1− λmX .
To achieve our main result we need the following key lemma. For λ ∈

(−1, 1), set

fλ(t) :=
t

1− λt
, t ∈ (−1, 1).

Lemma 3.2 If −1 < B < A < 1 and A−B ≥ m > 0, then

fλ(A)− fλ(B) ≥
{

fλ(MB + m)− fλ(MB) for − 1 < λ ≤ 0

fλ(mA)− fλ(mA −m) for 0 < λ < 1.

Proof. First of all, we have

f0(A)− f0(B) = A−B ≥ m = f0(MB + m)− f0(MB).

Next suppose that −1 < λ < 0. Since

(1− λA)− (1− λB) = −λ(A−B) ≥ −λm > 0,

it follows from Lemma 3.1 that

(1− λB)−1 − (1− λA)−1 ≥ ‖1− λB‖−1 − (‖1− λB‖ − λm)−1

= (1− λMB)−1 − (1− λMB − λm)−1,

whence
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fλ(A)− fλ(B) =
1
−λ

((1− λB)−1 − (1− λA)−1)

≥ 1
−λ

((1− λMB)−1 − (1− λ(MB + m))−1)

= fλ(MB + m)− fλ(MB).

Finally suppose that 0 < λ < 1. Since

(1− λB)− (1− λA) = λ(A−B) ≥ λm > 0,

it follows from Lemma 3.1 that

(1− λA)−1 − (1− λB)−1 ≥ ‖1− λA‖−1 − (‖1− λA‖+ λm)−1

= (1− λmA)−1 − (1− λmA + λm)−1.

Hence we have

fλ(A)− fλ(B) =
1
λ

((1− λA)−1 − (1− λB)−1)

≥ 1
λ

((1− λmA)−1 − (1− λ(mA −m))−1)

= fλ(mA)− fλ(mA −m). ¤

Theorem 3.3 Any non-constant operator monotone function on a finite
interval J is strictly operator monotone on J .

Proof. We may assume that J = (−1, 1). Put fλ(t) = t/(1 − λt) for
λ ∈ (−1, 1). An operator monotone function on (−1, 1) is represented as

f(t) = f(0) + f ′(0)
∫ 1

−1

fλ(t)dµ(λ),

where µ is a nonzero positive measure on (−1, 1). Since f is nonconstant,
we have f ′(0) > 0. We here decompose f as f = f(0) + g1 + g2, where

g1(t) = f ′(0)
∫ 0

−1

fλ(t)dµ(λ) and g2(t) = f ′(0)
∫ 1

0

fλ(t)dµ(λ).
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Then g1 (resp., g2) is an operator concave (resp. operator convex) increasing
function. Hence it follows from Lemma 3.2 that

f(A)− f(B) = f ′(0)
∫ 1

−1

(fλ(A)− fλ(B))dµ(λ)

= g1(A)− g1(B) + g2(A)− g2(B)

≥ g1(MB + ε)− g1(MB) + g2(mA)− g2(mA − ε) > 0. ¤

4. Furuta inequality

First of all, we cite the Furuta inequality (FI) established in [3] for
reader’s convenience, see also [1], [4], [8] and [12] for the best possibility of
it. It says that if A ≥ B ≥ 0, then for each r ≥ 0,

A(p+r)/q ≥ (Ar/2BpAr/2)1/q

holds for p ≥ 0, q ≥ 1 with

(1 + r)q ≥ p + r.

To extend Theorem B, we remark that the case r = 0 in (FI) is just
the Löwner–Heinz inequality. Now we introduce a constant k(b,m, p, q, r)
for b,m, p, q, r ≥ 0 by

k(b,m, p, q, r) = (b + m)(p+r)/q−r − b(p+r)/q−r.

As a matter of fact, we have an extension of Theorem B in the form of Furuta
inequality. We denote by mA = ‖A−1‖−1, the minimum of the spectrum of
A.

Theorem 4.1 Let A and B be invertible positive operators with A−B ≥
m > 0. Then for 0 < r ≤ 1,

A(p+r)/q − (Ar/2BpAr/2)1/q ≥ k(‖B‖,m, p, q, r)mA
r

holds for p ≥ 0, q ≥ 1 with (1 + r)q ≥ p + r ≥ qr.

Proof. We note that q ≥ 1 and (1 + r)q ≥ p + r ≥ qr assure that the
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exponent (p + r)/q− r in the constant k(b,m, p, q, r) belongs to [0, 1]. Since
0 ≤ r ≤ 1, it follows from Theorem B that

A(p+r)/q − (Ar/2BpAr/2)1/q

= A(p+r)/q −Ar/2Bp/2(Bp/2ArBp/2)1/q−1Bp/2Ar/2

= A(p+r)/q −Ar/2Bp/2(B−p/2A−rB−p/2)1−1/qBp/2Ar/2

≥ A(p+r)/q −Ar/2Bp/2(B−p/2B−rB−p/2)1−1/qBp/2Ar/2

= A(p+r)/q −Ar/2Bp−(p+r)(1−1/q)Ar/2

= Ar/2(A(p+r)/q−r −B(p+r)/q−r)Ar/2

≥ k(‖B‖,m, p, q, r)Ar

≥ k(‖B‖,m, p, q, r)mA
r. ¤

Next we cosider the optimal case q = (1+r)/(p+r) with p ≥ 1, which is
the most important in the Furuta inequality, by virtue of the Löwner–Heinz
inequality. The proof of the following theorem is as same as that of the
Furuta inequality.

Theorem 4.2 Let A and B be invertible positive operators with A−B ≥
m > 0. Then

A1+r − (Ar/2BpAr/2)(1+r)/(p+r) ≥ mmA
r

holds for p ≥ 1 and r ≥ 0.

Proof. The conclusion for r ∈ [0, 1] is ensured by Theorem 4.1 because
k(b,m, p, (p + r)/(1 + r), r) = m. In particular, taking r = 1, we have

A2 − (A1/2BpA1/2)2/(p+1) ≥ mmA := m1.

Since A1 = A2 and B1 = (A1/2BpA1/2)2/(p+1) satisfy A1 − B1 ≥ m1 > 0,
we have, for an arbitrary s ∈ [0.1],

A1+s
1 − (A(1+s)/2

1 Bp
1A

(1+s)/2
1 )(1+s)/(p1+s) ≥ m1, where p1 =

p + 1
2

.
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Namely, it is proved that if A−B ≥ m > 0, then

A2(1+s) − (
A(1+2s)/2BpA(1+2s)/2

)2(1+s)/(p+1+2s)

≥ m1mA1
s = mmA

1+2s, (2)

that is, putting r = 1 + 2s, the conclusion holds for r ∈ [1, 3].
For the next step, if we put s = 1 in (2) and A2 = A4, B2 =

(A3/2BpA3/2)p2 , where p2 = (p + 3)/4, then A2 − B2 ≥ mmA
3 := m2

holds and for an arbitrary s ∈ [0, 1],

A1+s
2 − (

A
(1+s)/2
2 Bp

2A
(1+s)/2
2

)(1+s)/(p2+s) ≥ m2mA2
s.

Hence, putting r = 3+4s, we obtain that the conclusion holds for r ∈ [3, 7].
By repeating this method, we can complete the proof of the theorem. ¤

Corollary 4.3 Let A and B be invertible positive operators with A−B ≥
m > 0. Then for each r ≥ 0

A(p+r)/q − (Ar/2BpAr/2)1/q ≥ ‖A‖(p+r)/q − (‖A‖1+r −mmA
r)(p+r)/q(1+r)

holds for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p + r.

Proof. Since α = (p + r)/q(1 + r) ≤ 1, we apply Theorem A to A1 and A2

such that

A1 = A1+r > B1 = (Ar/2BpAr/2)(1+r)/(p+r)

by Theorem 4.2. Then we have

Aα
1 −Bα

1 ≥ ‖A1‖α − (‖A1‖ −mmA
r)α.

So we get the desired lower bound. ¤
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