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Abstract. It is well known that, at each point of a 4-dimensional Einstein Rieman-

nian manifold (M, g), the tangent space admits at least one so-called Singer-Thorpe

basis with respect to the curvature tensor R at p. K. Sekigawa put the question “how

many” Singer-Thorpe bases exist for a fixed curvature tensor R. Here we work only

with algebraic structures (V, 〈, 〉, R), where 〈, 〉 is a positive scalar product and R is

an algebraic curvature tensor (in the sense of P. Gilkey) which satisfies the Einstein

property. We give a partial answer to the Sekigawa problem and we state a reasonable

conjecture for the general case. Moreover, we solve completely a modified problem:

how many there are orthonormal bases which are Singer-Thorpe bases simultaneously

for a natural 5-dimensional family of Einstein curvature tensors R. The answer is

given by what we call “the universal Singer-Thorpe group” and we show that it is a

finite group with 2304 elements.
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1. Introduction

Singer and Thorpe, see [8], have proved the following:

Theorem 1 If (M, g) is a 4-dimensional Einstein Riemannian manifold
and R its curvature tensor at some fixed point p, then there is an orthonor-
mal basis B = {e1, e2, e3, e4} in TpM such that the complementary sectional
curvatures are equal, i.e. K12 = K34, K13 = K24, K14 = K23, and all cor-
responding components Rijkl with exactly three distinct indices are equal to
zero.

Such a basis is referred to, standardly, as a Singer-Thorpe basis or,
shortly, as an S-T basis. In the following, we shall study S-T bases in a
purely algebraic way. Following P. Gilkey (see [4, p. 17]), we introduce the
following

Definition 2 An algebraic curvature tensor on a vector space V with a
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positive scalar product 〈, 〉 is a tensor R of the type (0, 4) on V which satis-
fies the same symmetries and antisymmetries as the Riemannian curvature
tensor of a Riemannian manifold, i.e.

R(U, V,W,Z) = −R(V, U,W,Z) = R(W,Z, U, V ),

R(U, V,W,Z) + R(V, W,U,Z) + R(W,U, V, Z) = 0 (1)

for all U, V,W,Z ∈ V. Further, a triplet (V, 〈, 〉, R) as above (or, an algebraic
curvature tensor R on V) is said to be Einstein if the corresponding Ricci
tensor ρ on V satisfies the identity ρ = λ〈, 〉 for some λ ∈ R.

Now, analogously as in [8], one can prove the following algebraic version
of Theorem 1:

Theorem 3 Let V be a 4-dimensional vector space provided with a positive
scalar product 〈, 〉. Let R be an Einstein algebraic curvature tensor on V.
Then there is an orthonormal basis B = {e1, e2, e3, e4} of V such that the
nontrivial components of R with respect to B are, up to standard symmetries
and antisymmetries, the following :

R1212 = R3434 = A, R1313 = R2424 = B, R1414 = R2323 = C,

R1234 = F, R1423 = G, R1324 = F + G, (2)

where A,B, C, F, G are some constants. On the other hand, all components
Rijkl with exactly three distinct indices are equal to zero.

Definition 4 An orthonormal basis B = {e1, e2, e3, e4} of V with the
properties given above is called an S-T basis on V corresponding to the
curvature tensor R.

Definition 5 Let (V, 〈, 〉, R) be an Einstein triplet. Then V is called
2-stein if

F(X) =
n∑

i,j=1

(R(X, ei, X, ej))2 (3)

is independent on the choice of the unit vector X ∈ V, where B =
{e1, . . . , en} is any orthonormal basis. (Cf. [1].)
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Then, we have the following (cf. Lemma 7 in [7]):

Proposition 6 An Einstein triplet (V, 〈, 〉, R) of dimension 4 is 2-stein if
and only if

±F = A− τ/12, ∓(F + G) = B − τ/12, ±G = C − τ/12 (4)

hold with respect to any S-T basis of V. Here τ =
∑n

i=1 ρ(ei, ei).

Now, let {J1, J2, J3} be a quaternionic structure on (V, 〈, 〉) compatible
with a fixed orientation defined by

J1X = −x2e1 + x1e2 − x4e3 + x3e4,

J2X = −x3e1 + x4e2 + x1e3 − x2e4,

J3X = −x4e1 − x3e2 + x2e3 + x1e4 (5)

for any X = x1e1 + x2e2 + x3e3 + x4e4 ∈ V, where {e1, . . . , e4} is an S-T
basis compatible with the given orientation. Then, the following fact is also
well known ([5], [6]):

Proposition 7 Let (V, 〈, 〉, R) be an Einstein triplet. Then the following
two assertions are equivalent :

( i ) For any quaternionic structure on V given by (5) and any unit vector
X ∈ V, the quadruplet {X, J1X, J2X, J3X} is an S-T basis for R.

(ii) (V, 〈, 〉, R) is 2-stein.

Motivated by this result and also by research in so-called weakly Einstein
spaces (see [2], [3]), K. Sekigawa put the following, more general question:
Let (M, g) be a 4-dimensional Einstein manifold, not necessarily 2-stein, and
{e1, . . . , e4} be an arbitrary fixed S-T basis at any point p ∈ M . Determine
the relation between all S-T bases {ē1, . . . , ē4} at p and the fixed S-T basis
{e1, . . . , e4}.

2. Algebraic preliminaries

We first notice that the relation between two S-T bases is characterized
by an orthogonal transformation (i.e., by an orthogonal matrix). Let P =
(pi

j) ∈ O(4) be the matrix of an orthogonal transformation acting on the set
of orthonormal bases of (V, 〈, 〉) in the natural way. Hence, if B = {ei}4i=1
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is an orthonormal basis, the new orthonormal basis BP = B′ = {e′j}4j=1 is
given as e′j =

∑4
i=1 eip

i
j . Let us denote by P ij

kl the 2 × 2 submatrix of the
matrix P formed by the elements in the rows i, j and in the columns k, l.
Let us denote by dij

kl its determinant. For each pair ij of indices, by ij we
mean the complementary pair of indices from the set {1, 2, 3, 4}.
Lemma 8 Any matrix P ∈ O(4) satisfies

dij
kl · dij

kl = dij

kl
· dij

kl
,

(
dij

kl

)2 =
(
dij

kl

)2 (6)

for arbitrary pairs ij and kl of indices from the set {1, 2, 3, 4}.
Proof. We denote by PT the transpose of the matrix P and by E the unit
matrix corresponding to the identity transformation of V. We write down
the condition PPT = E in the block form and we obtain

(
P 12

12 (P 12
12 )T + P 12

34 (P 12
34 )T , P 12

12 (P 34
12 )T + P 12

34 (P 34
34 )T

P 34
12 (P 12

12 )T + P 34
34 (P 12

34 )T , P 34
12 (P 34

12 )T + P 34
34 (P 34

34 )T

)
=

(
E N
N E

)
,

where N is the zero 2× 2 matrix. Now, from the condition

P 12
12 (P 34

12 )T = −P 12
34 (P 34

34 )T ,

we obtain

d12
12 · d34

12 = d12
34 · d34

34.

In the similar way, we write down the condition PT P = E. We obtain in
particular

d12
12 · d12

34 = d34
12 · d34

34.

The last two equations together give us

(d12
12)

2 = (d34
34)

2, (d12
34)

2 = (d34
12)

2.

The formula for arbitrary pairs of indices ij and kl can be obtained easily
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by the permutation of lines or columns in the matrix P . ¤

Lemma 9 Let B be an S-T basis for an Einstein algebraic curvature tensor
R in which the components of R are given by (2). Then the components of
the tensor R in the basis B′ = BP are given by the formula

R′ijkl = (d12
ij · d12

kl + d34
ij · d34

kl ) A + (d13
ij · d13

kl + d24
ij · d24

kl )B

+ (d14
ij · d14

kl + d23
ij · d23

kl ) C

+ (d12
ij · d34

kl + d34
ij · d12

kl + d13
ij · d24

kl + d24
ij · d13

kl ) F

+ (d14
ij · d23

kl + d23
ij · d14

kl + d13
ij · d24

kl + d24
ij · d13

kl ) G. (7)

Proof. It follows by the straightforward check using formulas

R′ijkl = R(e′i, e
′
j , e

′
k, e′l),

where the components of the vector e′i are pu
i (the i-th column of the given

matrix P ). ¤

Corollary 10 Let B be an S-T basis for an Einstein algebraic curvature
tensor R. For any matrix P ∈ O(4), the components of the tensor R in the
basis B′ = BP satisfy

R′1212 = R′3434, R′1313 = R′2424, R′1414 = R′2323.

Proof. From Lemma 9 and formula (6) written for the matrix PT , we
obtain

R′1212 = R′3434 =
(
(d12

12)
2 + (d34

12)
2
)
A +

(
(d13

12)
2 + (d24

12)
2
)
B

+
(
(d14

12)
2 + (d23

12)
2
)
C + 2

(
d12
12 · d34

12 + d13
12 · d24

12

)
F

+ 2
(
d14
12 · d23

12 + d13
12 · d24

12

)
G,

R′1313 = R′2424 =
(
(d12

13)
2 + (d34

13)
2
)
A +

(
(d13

13)
2 + (d24

13)
2
)
B

+
(
(d14

13)
2 + (d23

13)
2
)
C + 2

(
d12
13 · d34

13 + d13
13 · d24

13

)
F

+ 2
(
d14
13 · d23

13 + d13
13 · d24

13

)
G,
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R′1414 = R′2323 =
(
(d12

14)
2 + (d34

14)
2
)
A +

(
(d13

14)
2 + (d24

14)
2
)
B

+
(
(d14

14)
2 + (d23

14)
2
)
C + 2

(
d12
14 · d34

14 + d13
14 · d24

14

)
F

+ 2
(
d14
14 · d23

14 + d13
14 · d24

14

)
G. ¤

3. The basic finite group of transformations

Let B = {e1, e2, e3, e4} be an S-T basis for an Einstein algebraic curva-
ture tensor R on (V, 〈, 〉). We are interested in transformations P ∈ O(4)
such that the components of the tensor R in the new bases B′ = BP have all
components with just three different indices equal to zero, namely R′ijkl = 0
for the following 12 choices of i, j, k, l:

1213,

1214, 1314,

1223, 1323, 1424, 2324,

1224, 1334, 1434, 2334, 2434. (8)

Equivalently, all the bases B′ = BP should be new S-T bases for the tensor
R. Let us denote by H1 ⊂ O(4) the group of all permutation matrices
(i.e., the orthogonal matrices corresponding to permutations of the vectors
e1, e2, e3, e4) and by H2 ⊂ O(4) the group of all diagonal matrices with ±1
on the diagonal. We will denote by |H| the number of elements of a group
H. Obviously, |H1| = 24 and |H2| = 16. We further denote H3 = H1 · H2 =
H2 · H1. We easily see that H3 is a group and |H3| = 16 · 24 = 384. It is
not hard to verify that, for all P ∈ H3, BP are S-T bases for R.

Let us consider the two special transformations given by the matrices

P4 =
1
2




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 , P5 =

1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 .

The direct calculation using formula (7) shows that the components of the
tensor R in the basis B′ = BP4 are
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A′ = R′1212 = R′3434 = 1/2(B + C − F − 2G),

B′ = R′1313 = R′2424 = 1/2(A + C − F + G),

C ′ = R′1414 = R′2323 = 1/2(A + B + 2F + G),

F ′ = R′1234 = 1/2(−B + C + F ),

G′ = R′1423 = 1/2(−A + B + G). (9)

and R′ijkl = 0 for all ijkl from (8). In the basis B′ = BP5, the components
of the tensor R are

A′ = R′1212 = R′3434 = A,

B′ = R′1313 = R′2424 = 1/2(B + C + F + 2G),

C ′ = R′1414 = R′2323 = 1/2(B + C − F − 2G),

F ′ = R′1234 = F,

G′ = R′1423 = 1/2(B − C − F ) (10)

and R′ijkl = 0 for all ijkl from (8). We see that both BP4 and BP5 are S-T
bases for R. Let us denote by P ′4 the transformation which has the first
three columns same as the transformation P4 and the last column with the
opposite sign. Obviously, P ′4 ∈ P4H2 and BP ′4 is also an S-T basis for R.

Lemma 11 The group H4 generated by H3 and P4 is the union of cosets
H3 ∪H3P4 ∪H3P

′
4.

Proof. Let x ∈ P4H3. We can write x = P4ps, where p ∈ H1 and s ∈ H2.
There is an element p′ ∈ H1 such that p′P4 = P4p and hence x ∈ H3P4s.
If s has an even number of entries equal to −1, then there is an element
y ∈ H3 such that P4s = yP4. If s has on odd number of entries equal to
−1, then there is an element y ∈ H3 such that P4s = yP ′4. Hence either
x ∈ H3P4 or x ∈ H3P

′
4. Let x ∈ P4H3P4. Either x ∈ H3P4P4 = H3E = H3

or x ∈ H3P
′
4P4 = H3P

′
4, because P ′4P4 = sP ′4 for s ∈ H2. It finishes the

proof. ¤

Corollary 12 It holds |H4| = 3 · 384 = 1152.

Lemma 13 The group H5 generated by H4 and P5 is the union of cosets
H4 ∪H4P5.
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Proof. By the direct calculations we obtain |H3P5H3| = 3 · 6 · 8 · 8 = 1152.
It is not hard to verify that H3P5H3 ⊂ H4P5 and H3P5H3 ⊂ P5H4, hence
we obtain H4P5 = H3P5H3 = P5H4. Obviously H5 = H4 ∪H4P5. ¤

Corollary 14 It holds |H5| = 2 · 1152 = 2304.

Because the group H5 is generated by the subgroup H3 and the matrices
P4, P

′
4, P5, we see that the conditions R′ijkl = 0 for the 12 choices of indices

ijkl as in (8) hold for any P ∈ H5. In other words, for all P ∈ H5, the bases
BP are S-T bases for R.

4. The universal Singer-Thorpe group

In the following, for a given matrix M ∈ O(4), all matrices from the set
H3MH3 will be called matrices of type M . In other words, a matrix M ′ of
type M arises by a permutation of the rows, a permutation of the columns
and by changing the sign of any row or column in the matrix M .

Let us now fix an orthonormal basis B of (V, 〈, 〉) and consider the set of
all algebraic curvature tensors for which B is an S-T basis. (These curvature
tensors depend on 5 parameters A,B, C, F, G and they are automatically
Einstein.) Let us denote by S the set of bases which are S-T bases for all
these tensors. Finally, let us denote by G the set of orthogonal matrices cor-
responding to all transformations between the bases from S when expressed
with respect to the basis B. Then, obviously, G ⊂ O(4) is a group and it is
independent of the initial basis B.

Theorem 15 The group G is just the group H5 of 2304 elements described
in Section 3.

Proof. We denote the coefficients in the formula (7) by A′ijkl, B′
ijkl, C ′ijkl,

F ′ijkl, G′ijkl and write the formula in the short form

R′ijkl = A′ijklA + B′
ijklB + C ′ijklC + F ′ijklF + G′ijklG. (11)

Because A,B, C, F, G can be considered as independent variables, it is clear
that for P ∈ G it must hold A′ijkl = B′

ijkl = C ′ijkl = F ′ijkl = G′ijkl = 0 for
the 12 choices of indices from (8). According to the end of Section 3, we
have the inclusion H5 ⊂ G. We only have to prove that G ⊂ H5. This will
be done, step by step, in the rest of this Section.
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Lemma 16 Let the transformation P satisfy A′ijkl = B′
ijkl = C ′ijkl = 0

for all 12 choices of ijkl from (8). Then there exist three pairs of indices,
not necessarily distinct, such that

d12
pr = d12

pr = d34
pr = d34

pr = 0,

d13
st = d13

st = d24
st = d24

st = 0,

d14
uv = d14

uv = d23
uv = d23

uv = 0. (12)

Proof. Let A′ijkl = 0 for all 12 choices of ijkl from (8). Let us rearrange
the columns of the matrix M corresponding to the transformation P in a
way that d12

12 6= 0. We rewrite the equalities

A′ijkl = d12
ij · d12

kl + d34
ij · d34

kl = 0 (13)

for the four choices of ijkl = 1213, 1214, 1223, 1224 in the forms

d12
13 = −d34

12 · d34
13/d12

12,

d12
14 = −d34

12 · d34
14/d12

12,

d12
23 = −d34

12 · d34
23/d12

12,

d12
24 = −d34

12 · d34
24/d12

12.

We now substitute these formulas into formulas (13) for ijkl equal to
1314, 1323, 1424, 2324, which are

d12
13 · d12

14 + d34
13 · d34

14 = 0,

d12
13 · d12

23 + d34
13 · d34

23 = 0,

d12
14 · d12

24 + d34
14 · d34

24 = 0,

d12
23 · d12

24 + d34
23 · d34

24 = 0.

From here we obtain, after elementary operations with fractions, the formu-
las

[
(d34

12)
2 + (d12

12)
2
] · d34

13 · d34
14 = 0,

[
(d34

12)
2 + (d12

12)
2
] · d34

13 · d34
23 = 0,



450 Z. Dušek and O. Kowalski

[
(d34

12)
2 + (d12

12)
2
] · d34

14 · d34
24 = 0,

[
(d34

12)
2 + (d12

12)
2
] · d34

23 · d34
24 = 0.

To satisfy these conditions, it must hold d34
13 = d34

24 = 0 or d34
14 = d34

23 = 0.
According to formula (6), the first of these equalities imply d12

13 = d12
24 = 0

and the second equalities imply d12
14 = d12

23 = 0, which proves the conditions
in the first line of the statement. The conditions in the second and the third
line of the statement can be proved analogously using conditions B′

ijkl = 0
and C ′ijkl = 0. ¤

Obviously, the same statement must be true for the inverse transforma-
tion PT . We can reformulate it in the way that in any two rows, or columns,
there are two complementary subdeterminants which are both zero and in
the remaining two lines, or columns, the same subdeterminants are zero too.
In the sequel, we shall assume that in the lines 12 and 34 these determinants
belong to columns 12 and 34, hence d12

12 = d12
34 = d34

12 = d34
34 = 0. First, we

exclude the case when pairs of indices in Lemma 16 are not distinct.

Lemma 17 Let the matrix P ∈ O(4) satisfy d12
12 = d12

34 = d34
12 = d34

34 = 0.
If d13

12 = d13
34 = d24

12 = d24
34 = 0 or d14

12 = d14
34 = d23

12 = d23
34 = 0, then the matrix

P either belongs to H3 or it is of the type P5.

Proof. In the submatrix of P formed by columns 1 and 2, there must be
two independent rows, because this submatrix has rank 2. Let these rows
be the k-th and the l-th. According to the assumptions d12

12 = d34
12 = 0, we

cannot have kl = 12 or kl = 34. Further, according to the assumptions
d13
12 = d24

12 = 0, the remaining two rows are simultaneously multiples of the
k-th row and the l-th row. Hence they are zero vectors and the submatrix
P kl

12 is the zero matrix. In the same way, for the columns 3 and 4 we obtain
that the submatrix P kl

34 is the zero matrix. Without the loss of generality,
we will assume kl = 23. The matrix P ∈ O(4) is in the form




0 0 · ·
· · 0 0
· · 0 0
0 0 · ·


 .

Now, we obtain easily that C ′ijkl = 0 for all 12 choices of ijkl from (8) and
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A′ijkl = B′
ijkl = 0 for ij = 12 or kl = 34. The nonzero conditions are hence

A′ijkl = 0 and B′
ijkl = 0 for ijkl = 1314, 1323, 1424, 2324. Using formula

(7), these conditions are

d12
13 · d12

14 + d34
13 · d34

14 = 0, d13
13 · d13

14 + d24
13 · d24

14 = 0,

d12
13 · d12

23 + d34
13 · d34

23 = 0, d13
13 · d13

23 + d24
13 · d24

23 = 0,

d12
14 · d12

24 + d34
14 · d34

24 = 0, d13
14 · d13

24 + d24
14 · d24

24 = 0,

d12
23 · d12

24 + d34
23 · d34

24 = 0, d13
23 · d13

24 + d24
23 · d24

24 = 0.

Writing down the determinants dij
kl explicitly, we obtain

(p2
1)

2 · p1
3 · p1

4 + (p3
1)

2 · p4
3 · p4

4 = 0, (p3
1)

2 · p1
3 · p1

4 + (p2
1)

2 · p4
3 · p4

4 = 0,

(p2
2)

2 · p1
3 · p1

4 + (p3
2)

2 · p4
3 · p4

4 = 0, (p3
2)

2 · p1
3 · p1

4 + (p2
2)

2 · p4
3 · p4

4 = 0,

p2
1 · p2

2 · (p1
3)

2 + p3
1 · p3

2 · (p4
3)

2 = 0, p3
1 · p3

2 · (p1
3)

2 + p2
1 · p2

2 · (p4
3)

2 = 0,

p2
1 · p2

2 · (p1
4)

2 + p3
1 · p3

2 · (p4
4)

2 = 0, p3
1 · p3

2 · (p1
4)

2 + p2
1 · p2

2 · (p4
4)

2 = 0. (14)

In the case pi
j = 0 for some pi

j in formulas (14), we obtain from these
conditions and the condition P ∈ O(4) that P ∈ H3. In the case pi

j 6= 0 for
all pi

j which appear in formulas (14), we obtain by the elementary operations
the conditions

(p1
3)

2 · (p1
4)

2 = (p4
3)

2 · (p4
4)

2, (p1
3)

4 = (p4
3)

4, (p1
4)

4 = (p4
4)

4,

(p2
1)

2 · (p2
2)

2 = (p3
1)

2 · (p3
2)

2, (p2
1)

4 = (p3
1)

4, (p2
2)

4 = (p3
2)

4.

From here and from the condition P ∈ O(4) it follows that P is of the type
P5. ¤

We are left with the case when the pairs pr, st, uv of indices in Lemma
16 are distinct. Without the loss of generality we can assume pr = 12,

st = 13, uv = 14.

Lemma 18 Let the matrix P ∈ O(4) satisfy formulas (12) with pr = 12,

st = 13, uv = 14. Then it must be of the type P4.

Proof. First, we show that pi
j 6= 0 for all i, j = 1, . . . , 4. Let us suppose the
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opposite, hence p1
1 = 0. From the condition d12

12 = 0 we obtain either p1
2 = 0

or p2
1 = 0. From the condition d13

13 = 0 we obtain either p1
3 = 0 or p3

1 = 0.
From the condition d14

14 = 0 we obtain either p1
4 = 0 or p4

1 = 0. Using all 12
conditions (12), we obtain a contradiction with P ∈ O(4).

Hence it holds pi
j 6= 0 for all i, j = 1, . . . , 4. We can denote the entries

in the first row and the first column as p1
1 = a, p1

2 = ka, p1
3 = ra, p1

4 = ua

and p1
2 = xa, p2

3 = ya, p2
4 = za for nonzero a, x, y, z, k, r, u ∈ R. From

the conditions d12
12 = d13

13 = d14
14 = 0 we obtain the entries p2

2, p
3
3, p

4
4 and the

matrix P must be in the form



a ka ra ua

xa xka · ·
ya · yra ·
za · · zua


 .

Further, from the conditions d34
12 = d24

13 = d23
14 = 0 we obtain the other entries

and the matrix P is in the form



a ka ra ua

xa xka xsa xva

ya yla yra yva

za zla zsa zua




for some nonzero l, s, v ∈ R. Now, the conditions d12
34 = d13

24 = d14
23 = 0 and

d34
34 = d24

24 = d23
23 = 0 imply

rv = su, kv = lu, ks = lr,

ru = sv, ku = lv, kr = ls.

From here it follows r2 = s2, k2 = l2, u2 = v2. Each of the possibilities
k = l, r = s and u = v leads to a contradiction with P ∈ O(4), so it holds
k = −l, r = −s and u = −v. From the conditions

∑
s pi

sp
j
s = 0 for i 6= j we

obtain

1 + k2 − r2 − u2 = 0,

1− k2 + r2 − u2 = 0,

1− k2 − r2 + u2 = 0
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which implies

k2 = r2 = u2 = 1.

From the conditions
∑

s ps
i p

s
j = δij we obtain that we can choose a = 1/2

and we get x2 = y2 = z2 = 1. The statement follows easily. ¤

This completes the proof of Theorem 15. The group G = H5 can be
called the universal Singer-Thorpe group. ¤¤

5. The set of all S-T bases for a fixed tensor R

In this Section we try to assault the original problem put by K. Sekigawa,
i.e., the question what are the properties of the set of all S-T bases for a fixed
Einstein algebraic curvature tensor R. More precisely, we shall investigate
the structure of the set K(B, R) of all orthogonal matrices corresponding
to all transformations between a fixed S-T basis B and other S-T bases
(expressed with respect to B) for a fixed tensor R. In particular, we show
that, in a special case, the set K(B, R) may be infinite and not a group. In
any case, from Section 4 we see that always H5 ⊂ K(B, R). We were unable
to solve the problem in general, and so, we shall conclude our study with a
reasonable Conjecture. We shall start with the easiest special case, where
K(B, R) = O(4).

Lemma 19 For any matrix P = (pα
β) ∈ O(4) it holds

A′ijkl + B′
ijkl + C ′ijkl

=
( ∑

α

pα
i pα

k

)
·
( ∑

β

pβ
j pβ

l

)
−

( ∑
γ

pγ
i pγ

l

)
·
( ∑

δ

pδ
jp

δ
k

)
(15)

for any fixed i, j, k, l from the set {1, 2, 3, 4}.
Proof. On the left-hand side, there are coefficients from the formula (11).
We use their long form from (7) and continue by the straightforward calcu-
lations:

A′ijkl + B′
ijkl + C ′ijkl

= (d12
ij · d12

kl + d34
ij · d34

kl ) + (d13
ij · d13

kl + d24
ij · d24

kl ) + (d14
ij · d14

kl + d23
ij · d23

kl )
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= (p1
i p

2
j − p1

jp
2
i )(p

1
kp2

l − p1
l p

2
k) + (p3

i p
4
j − p3

jp
4
i )(p

3
kp4

l − p3
l p

4
k)

+ (p1
i p

3
j − p1

jp
3
i )(p

1
kp3

l − p1
l p

3
k) + (p2

i p
4
j − p2

jp
4
i )(p

2
kp4

l − p2
l p

4
k)

+ (p1
i p

4
j − p1

jp
4
i )(p

1
kp4

l − p1
l p

4
k) + (p2

i p
3
j − p2

jp
3
i )(p

2
kp3

l − p2
l p

3
k)

= p1
i p

2
jp

1
kp2

l + p1
jp

2
i p

1
l p

2
k − p1

i p
2
jp

1
l p

2
k − p1

jp
2
i p

1
kp2

l + p3
i p

4
jp

3
kp4

l + p3
jp

4
i p

3
l p

4
k

− p3
i p

4
jp

3
l p

4
k − p3

jp
4
i p

3
kp4

l + p1
i p

3
jp

1
kp3

l + p1
jp

3
i p

1
l p

3
k − p1

i p
3
jp

1
l p

3
k − p1

jp
3
i p

1
kp3

l

+ p2
i p

4
jp

2
kp4

l + p2
jp

4
i p

2
l p

4
k − p2

i p
4
jp

2
l p

4
k − p2

jp
4
i p

2
kp4

l + p1
i p

4
jp

1
kp4

l + p1
jp

4
i p

1
l p

4
k

− p1
i p

4
jp

1
l p

4
k − p1

jp
4
i p

1
kp4

l + p2
i p

3
jp

2
kp3

l + p2
jp

3
i p

2
l p

3
k − p2

i p
3
jp

2
l p

3
k − p2

jp
3
i p

2
kp3

l

= p1
i p

1
kp2

jp
2
l + p1

jp
1
l p

2
i p

2
k + p1

i p
1
kp3

jp
3
l + p1

jp
1
l p

3
i p

3
k + p1

i p
1
kp4

jp
4
l + p1

jp
1
l p

4
i p

4
k

+ p2
i p

2
kp3

jp
3
l + p2

jp
2
l p

3
i p

3
k + p2

i p
2
kp4

jp
4
l + p2

jp
2
l p

4
i p

4
k + p3

i p
3
kp4

jp
4
l + p3

jp
3
l p

4
i p

4
k

− p1
i p

1
l p

2
jp

2
k − p1

jp
1
kp2

i p
2
l − p1

i p
1
l p

3
jp

3
k − p1

jp
1
kp3

i p
3
l − p1

i p
1
l p

4
jp

4
k − p1

jp
1
kp4

i p
4
l

− p2
i p

2
l p

3
jp

3
k − p2

jp
2
kp3

i p
3
l − p2

i p
2
l p

4
jp

4
k − p2

jp
2
kp4

i p
4
l − p3

i p
3
l p

4
jp

4
k − p3

jp
3
kp4

i p
4
l

=
( ∑

α

pα
i pα

k

)
·
( ∑

β

pβ
j pβ

l

)
−

( ∑
γ

pγ
i pγ

l

)
·
( ∑

δ

pδ
jp

δ
k

)
. ¤

Proposition 20 Let the components of the Einstein algebraic curvature
tensor R in the S-T basis B satisfy A = B = C and F = G = 0. Then
B′ = BP is an S-T basis for the tensor R for all transformations P ∈ O(4).
In all S-T bases B′ = BP , it holds F ′ = G′ = 0.

Proof. The right-hand side of the formula (15) is obviously zero whenever
at least three indices among i, j, k, l are distinct. Applying our assumptions
to formula (11), we get

R′ijkl = (A′ijkl + B′
ijkl + C ′ijkl) ·A = 0

for the 12 choices of ijkl from the list (8) and, moreover, F ′ = R′1234 = 0
and G′ = R′1423 = 0. ¤

Proposition 21 The property A = B = C is not invariant under the
transformation group H5 unless F = G = 0. The property F = G = 0 is
not invariant under the group H5 unless A = B = C.
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Proof. It follows for example from formulas (9) and (10) for transforma-
tions P4, P5 ∈ G. ¤

We conclude this easy special case by a straightforward Corollary:

Corollary 22 Let (M, g) be a 4-dimensional Einstein manifold. The fol-
lowing conditions are equivalent :

1) For any point p ∈ M , and for any S-T basis in TpM with respect to the
curvature tensor Rp, all components of Rp with four distinct indices are
zero;

2) (M, g) is a space of constant curvature.

We shall continue by the less special case, which is more interesting.

Proposition 23 Let the components of an Einstein algebraic curvature
tensor R in a given S-T basis B satisfy B = C, F = G = 0 and A be
arbitrary. Let us consider the group of matrices

M(s,t) =




cos(t) sin(t) 0 0
− sin(t) cos(t) 0 0

0 0 cos(s) sin(s)
0 0 − sin(s) cos(s)


 , s, t ∈ R.

The bases B′ = BM(s,t) are S-T bases for the tensor R and components of
R in all these bases satisfy A′ = A, B′ = C ′ = B, F ′ = G′ = 0.

Proof. For the transformations corresponding to the matrix M(s,t), we have
A′ijkl = d12

ij ·d12
kl +d34

ij ·d34
kl = 0 for all 12 choices of ijkl from (8). The formula

(15) implies, for the same indices, B′
ijkl +C ′ijkl = 0 and according to formula

(11) we obtain R′ijkl = 0 for all 12 choices of ijkl from (8). Hence all the
new bases are S-T bases. Using formulas (11) and (15), we calculate easily
A′ = A, B′ = C ′ = B, F ′ = G′ = 0. ¤

Corollary 24 Let the components of an Einstein algebraic curvature ten-
sor R in a given S-T basis B satisfy B = C, F = G = 0 and A 6= B be
arbitrary. Then the set K(B, R) contains the groups H5 and M(s,t), but it is
not a group in itself.

Proof. The first assertion is obvious from the text before Lemma 19 and
from Proposition 23. Let us consider the tensor R in a given S-T basis B
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whose components satisfy the assumptions. Now we apply the transforma-
tion P4 ∈ H5 to B. For the components of the tensor R in the basis BP4

we obtain, according to formula (9), G′ 6= 0. For the new components we
shall write again A,B, C, F, G instead of A′, B′, C ′, F ′, G′. Now we apply
the transformation M(s,t) depending on two parameters. Then a simple
generalization of Proposition 23 gives, in such a case,

A′ = A,

B′ = 2 cos(s) cos(t) sin(t) sin(s)(F + 2G) + B,

C ′ = −2 cos(s) cos(t) sin(t) sin(s)(F + 2G) + B,

F ′ = F,

G′ = (2 cos2(s) cos2(t)− cos2(s)− cos2(t))(F + 2G) + G

and, moreover,

R′1314 = − cos(t) sin(t)
[
(4 cos2(s)− 2)G + (2 cos2(s)− 1)F

]
,

R′1323 = − sin(s) cos(s)
[
(4 cos2(t)− 2)G + (2 cos2(t)− 1)F

]
.

Thus the product matrix P = P4M(s,t) applied to the S-T basis B gives us
the orthogonal basis B′ = BP which is usually not an S-T basis with respect
to R, because the components of the curvature tensor R with three distinct
indices in B′ are nonzero, in general. Hence the product P = P4M(s,t) falls
outside the set K(B, R), in general. On the other hand, both M(s,t) and P4

belong to K(B, R). We see that the basic group property for K(B, R) is not
satisfied. ¤

Proposition 25 If the structure (V, 〈, 〉, R) satisfies the 2-stein property
from Proposition 6 and B is an S-T basis, then we have the inclusion Sp(1) ⊂
K(B, R), where Sp(1) ⊂ O(4) is the compact symplectic group.

Proof. See Proposition 7. ¤

We shall conclude our study with the following, uneasy

Conjecture 26 We have either K(B, R) = O(4), or K(B, R) = Sp(1), or
K(B, R) contains SO(2)× SO(2) and it is not a group, or K(B, R) = H5.
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