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Self-adjointness of the generalized spin-boson Hamiltonian

with a quadratic boson interaction
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Abstract. We consider an abstract model which describes an interaction of non-

relativistic particles with a Bose field. We show that the essential self-adjointness

of the generalized spin-boson Hamiltonian with a quadratic boson interaction for all

coupling constant and the Hamiltonian is self-adjoint if it is bounded from below under

some conditions.
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1. Introduction

In this paper, we consider an abstract model which describes an in-
teraction of non-relativistic particles with a Bose field. Arai and Hirkawa
[1] introduced an abstract non-relativistic quantum field model which is
a generalization of the spin-boson model and it is called the generalized
spin-boson model. Miyao and Sasaki [8] added φ2 term to the generalized
spin-boson Hamiltonian. They showed that the Hamiltonian is self-adjoint
for small coupling constants by applying the Kato-Rellich theorem. How-
ever these restrictions on the coupling constants could be removed because
some other non-relativistic quantum field Hamiltonians are self-adjoint for
arbitrary coupling constants. For the Nelson models, it is clear since the
interaction term is infinitely small with respect to the free Hamiltonian [9].
For the Pauli-Fiertz models, Arai [3] showed that Pauli-Fierz Hamiltonian in
the dipole approximation is self-adjoint for arbitrary values of coupling con-
stants by means of the Nelson commutator theorem. Hiroshima [7] proved
that the full Pauli-Fierz Hamiltonian is self-adjoint for all coupling constants
by using the functional integration. Hasler and Herbst [6] give another proof
of the self-adjointness of the Pauli-Fierz Hamiltonian by operator theoret-
ical methods. It is known that the standard spin-boson Hamiltonian is
self-adjoint for any coupling constants.
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Arai and Kawano [2] proved the self-adjointness of the Hamiltonian of
the generalized spin-boson model for some coupling constants by using an
unitary transformation and strong commutativity of some operators. How-
ever we hope that the strong commutativity should be removed. Therefore
we study the self-adjointness of the Hamiltonian of the generalized spin-
boson model with a quadratic boson interaction in a more general frame-
work. In particular, we are interested in when the Hamiltonian is (essen-
tially) self-adjoint without assuming the commutativity of some operators.

In this paper, we first prove the essential self-adjointness of a Hamilto-
nian for all coupling constants under some natural conditions. By using this
result, roughly speaking, we also show that semi-boundedness of the Hamil-
tonian implies the self-adjointness of it. These results improve the existing
ones.

The outline of the present paper is as follows. In Section 2, we set up
notation and terminology. In the third section, we define the GSB model.
In Section 4, we show that the semi-boundedness and some commutativities
imply the (essential) self-adjointness of the Hamiltonian. In addition we give
a condition for semi-boundedness without strong commutativity. This con-
dition for coupling constants is weaker than the condition which is obtained
by using the Kato-Rellich theorem.

2. Preliminaries

Let X be a complex Hilbert space. We denote the inner product and
the norm of the Hilbert space X by 〈 · , · 〉X and ‖ · ‖X respectively. For
simplicity of notation, we may omit the subscript X in 〈 · , · 〉X and ‖ · ‖X if
there is no confusion. In this paper, the inner product is antilinear in the
first variable.

For a linear operator T on a Hilbert space X , we denote its domain
by D(T ). In this article, “an operator” means “a linear operator”. We use
standard conventions for the sum and the composition of two operators:
D(T + S) := D(T ) ∩ D(S) and D(TS) := {Ψ ∈ D(S) | SΨ ∈ D(T )}. We
recall that an operator T on a Hilbert space is said to be relatively bounded
with respect to an operator S or simply S-bounded if D(S) ⊂ D(T ) and
there exist nonnegative constants a, b ∈ R such that

‖TΨ‖ ≤ a‖SΨ‖+ b‖Ψ‖, for all Ψ ∈ D(S). (1)
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The greatest lower bound a0 of all possible constants a in (1) will be called
the relative bound of T with respect to S.

To describe the Bose fields, one uses the Boson Fock space over a Hilbert
space X :

Fb(X ) : =
∞⊕

n=0

⊗n
s X

=
{

ψ = {ψ(n)}∞n=0

∣∣∣∣
for all n ∈ N, ψ(n) ∈ ⊗n

s X
and

∑∞
n=0 ‖ψ(n)‖2 < ∞

}
,

where
⊗n

s X is the n-fold symmetric tensor product of X , i.e., for the
symmetrization operator Sn := (1/n!)

∑
σ∈Sn

Uσ on
⊗n X , where Sn is

the symmetric group of degree n and Uσ(ψ1, . . . , ψn) := (ψσ(1), . . . , ψσ(n)),⊗n
s X := Sn(⊗nX ) with

⊗0
s X = C. Let us define the finite particle sub-

space

Fb,0(X ) : =
{

ψ ∈ Fb(X )
∣∣∣∣

there exists a number n0 ∈ N
such that ψ(n) = 0 for all n ≥ n0

}

=
∞∐

n=0

⊗n
s X .

This is dense in Fb(X ) and a fundamental subspace in the Fock space.
Similarly, for a linear subspace D ⊂ X , we define a linear subspace Fb(D) ⊂
Fb(X );

Fb, fin(D) :=
∞∐

n=0

⊗̂n
sD.

(Here, ⊗̂ is the algebraic tensor product and ⊗̂sX := Sn(⊗̂nX ).)
Basic objects on Fb(X ) are the creation and annihilation operators.

We denote the annihilation operator by a(f) (f ∈ X ) (see, e.g., [10]). The
creation operator a∗(f) is the adjoint of annihilation operator a(f). For all
f, g ∈ X , these operators obey the canonical commutation relations

[a(f), a∗(g)] = 〈f, g〉X , [a(f), a(g)] = 0, [a∗(f), a∗(g)] = 0 (2)
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on Fb,0(X ), where [X, Y ] := XY − Y X.
The Segal field operator is defined as

φ(f) :=
a(f) + a∗(f)√

2
, f ∈ X .

This operator φ(f) is known to be essentially self-adjoint on Fb,0(X ) [10,
Theorem X.41 (a)]. We will denote its closure by the same symbol φ(f).
From equalities (2), we have the following identity on Fb,0(X ),

[φ(f), φ(g)] = i Im〈f , g〉, f, g ∈ X . (3)

The second quantization of a densely defined closable operator S is
denoted by dΓ(S) and defined by

dΓ(S) :=
∞⊕

n=0

S(n),

where S(n) is defined as follows:

S(0) := 0,

S(n) :=
n∑

j=1

I ⊗ · · · ⊗ I ⊗ S
(j th)

⊗ I ⊗ · · · ⊗ I

∣∣∣∣b⊗n
s D(T )

, if n ≥ 1.

(T means the closure of the operator T , I denotes the identity operator, and
T |M is the restriction of the operator T on a subspace M .) The domain of
the second quantization operator dΓ(S) is

{
ψ ∈ Fb(X ) | ψ(n) ∈ D(S(n)),

∞∑
n=0

‖S(n)ψ(n)‖ < ∞
}

.

It is easy to see that, if S is self-adjoint or nonnegative, then so is dΓ(S).
The next lemma describes well known properties of φ(f) and dΓ(S) (see,
e.g., [4], [5]).

Lemma 2.1 Let S be a densely defined, injective, nonnegative self-adjoint
operator on a Hilbert space X .



Self-adjointness of the generalized spin-boson Hamiltonian 413

( i ) If f ∈ D(S−1/2), then D
(
dΓ(S)1/2

)⊆ D
(
φ(f)

)
and

∥∥φ(f)(dΓ(S) + 1)−1/2
∥∥ ≤

√
2
(‖f‖+ ‖S−1/2f‖). (4)

( ii ) If f, g ∈ D(S−1/2), then D(dΓ(S)) ⊆ D(φ(f)φ(g)) and

∥∥φ(f)φ(g)(dΓ(S) + 1)−1
∥∥

≤ 4
(‖f‖+ ‖S−1/2f‖)(‖g‖+ ‖S−1/2g‖). (5)

(iii) If f ∈ D(S), then

[dΓ(S), φ(f)] = −iφ(iSf) on Fb,0(X ) ∩D(dΓ(S)). (6)

3. Definition of a Hamiltonian

Let H and K be Hilbert spaces. We take a Hilbert space

F := H⊗Fb(K).

Let A be a self-adjoint operator on H which is a Hamiltonian of a quantum
system, W an injective, self-adjoint and nonnegative operator on K which
is a one-particle Hamiltonian of the Bose field, Bj (j = 1, . . . , n) be self-
adjoint operators on H such that D(A)∩⋂n

j=1 D(Bj) is dense in H, fj ∈ K
(j = 1, . . . , m), gj ∈ K (j = 1, . . . , n) and λ, µ ∈ R. We consider the
following operator as the total Hamiltonian of the coupled system:

H(λ, µ) := A⊗ I + I ⊗ dΓ(W ) + λ
n∑

j=1

Bj ⊗ φ(gj) + µ
m∑

j=1

I ⊗ φ(fj)2. (7)

This Hamiltonian H(λ, µ) was studied by Miyao and Sasaki [8]. In the case
of µ = 0, it was introduced in [1] and called the generalized spin-boson
(abbreviated as GSB) Hamiltonian.

In this paper, we need the following conditions.

(H1) A is a nonnegative self-adjoint operator onH and B1, . . . , Bn are A1/2-
bounded symmetric operators.

(H2) W is a nonnegative, injective and self-adjoint operator.
(H3) There exists a core D for A such that D ⊂ ⋂

j

(
D(ABj)∩D(BjA)

)
and
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[A,Bj ]|D is A1/2-bounded for each j.
(H4) fj and gj ∈ D(W−1/2) ∩D(W ) for all j

Conditions (H1), (H2), and (H4) are standard condition in the GSB model.

4. (Essential) Self-Adjointness

In this section, we study the self-adjointness of the operator H(λ, µ).
For simplicity, we set

H0 := H(0, 0) + 1 = A⊗ I + I ⊗ dΓ(W ) + 1.

In what follows, we sometimes write an operator T (resp. S) for T ⊗I (resp.
I ⊗ S). Let us first prove that the essential self-ajointness of H(λ, µ).

Proposition 4.1 Suppose that (H1)–(H4) hold. Then H(λ, µ) is essen-
tially self-adjoint on any core for H0.

Proof. Let D′ be a core for W and D0 := D ⊗̂Fb, fin(D′). Then D0 is a
core for H0. To prove this proposition we use Nelson’s commutator theorem
[10, Theorem X.37]. We verify that H(λ, µ) and H0 satisfy the condition of
the commutator theorem. In the following inequalities, C denotes a constant
which may change from one inequality to the next. By using (i) and (ii) in
Lemma 2.1, we have the following inequalities for all Ψ ∈ D0,

‖H(λ, µ)Ψ‖ ≤ ∥∥(A⊗ I + I ⊗ dΓ(W ))Ψ
∥∥ + |λ|

n∑

j=1

∥∥Bj ⊗ φ(gj)Ψ
∥∥

+ |µ|
m∑

j=1

∥∥I ⊗ φ(fj)2Ψ
∥∥

≤
∥∥(A⊗ I + I ⊗ dΓ(W ) + 1)Ψ

∥∥

+ C
n∑

j=1

∥∥(A + 1)1/2 ⊗ (dΓ(W ) + 1)1/2Ψ
∥∥

+ C
m∑

j=1

‖I ⊗ (dΓ(W ) + 1)Ψ‖

≤ ‖H0Ψ‖+ C
〈
(A + 1)⊗ I Ψ, I ⊗ (dΓ(W ) + 1)Ψ

〉1/2 + C‖H0Ψ‖
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≤ C‖H0Ψ‖+ C‖(A + 1)⊗ I Ψ‖1/2‖I ⊗ (dΓ(W ) + 1)Ψ‖1/2

≤ C‖H0Ψ‖+ C
(‖(A + 1)⊗ I Ψ‖+ ‖I ⊗ (dΓ(W ) + 1)Ψ‖)

≤ C‖H0Ψ‖

Similarly,
∣∣〈H(λ, µ)Ψ, H0Ψ〉 − 〈H0Ψ, H(λ, µ)Ψ〉∣∣

≤ |λ|
n∑

j=1

∣∣〈Bj ⊗ φ(gj)Ψ, H0Ψ
〉− 〈

H0Ψ, Bj ⊗ φ(gj)Ψ
〉∣∣

+ |µ|
m∑

j=1

∣∣〈φ(fj)2Ψ, dΓ(W )Ψ
〉− 〈

dΓ(W )Ψ, φ(fj)2Ψ
〉∣∣

≤ |λ|
n∑

j=1

∣∣〈I ⊗ φ(gj)Ψ, [Bj , A]Ψ
〉

+
〈
BjΨ, I ⊗ [φ(gj), dΓ(W )]Ψ

〉∣∣

+ |µ|
m∑

j=1

∣∣〈[φ(fj),dΓ(W )
]
Ψ, φ(fj)Ψ

〉− 〈
φ(fj)Ψ,

[
dΓ(W ), φ(fj)

]
Ψ

〉∣∣

≤ |λ|
n∑

j=1

(‖I ⊗ φ(gj)Ψ‖ ‖[Bj , A]Ψ‖+ ‖BjΨ‖ ‖I ⊗ φ(iWgj)Ψ‖
)

+ |µ|
m∑

j=1

∣∣〈φ(iWfj)Ψ, φ(fj)Ψ〉+ 〈φ(fj)Ψ, φ(iWfj)Ψ〉
∣∣

≤ |λ|C
n∑

j=1

∥∥I ⊗ (dΓ(W ) + 1)1/2Ψ
∥∥(‖[Bj , A]Ψ‖+ ‖BjΨ‖

)

+ |µ|C
m∑

j=1

∥∥I ⊗ (dΓ(W ) + 1)1/2Ψ
∥∥2

≤ 2n|λ|C∥∥I ⊗ (dΓ(W ) + 1)1/2Ψ
∥∥∥∥(A + 1)1/2 ⊗ I Ψ

∥∥

+ m|µ|C∥∥I ⊗ (dΓ(W ) + 1)1/2Ψ
∥∥2

≤ (2n|λ|+ m|µ|)C
∥∥H

1/2
0 Ψ

∥∥2
.
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By Nelson’s commutator theorem, the operator H(λ, µ) is essentially self-
adjoint on the subspace D and any core for H0. ¤

We next show the self-adjointness of H(λ, µ). From the previous propo-
sition, we see that H(λ, µ) is essentially self-adjoint on the domain D(H0)
for any coupling constant under some condition. We infer that H(λ, µ) is
self-adjoint for any coupling constant under suitable condition even if A and
Bj are not commutative. Here we do not show that the self-adjontness of
the Hamiltonian for all coupling constant. However, in the next theorem, we
prove that the self-adjointness of H(λ, µ) follows from the semi-boundedness
of H(λ, 0) under natural conditions.

Theorem 4.2 Suppose that (H1)–(H3) hold. Assume, in addition, the
following conditions hold :

( i ) the core D ⊂ ⋂
j D(ABj) ∩D(A2) and [A1/2, Bj ]|D is bounded ;

( ii ) fj , gj ∈ D(W−1/2) ∩D(W 2) for all j.

If H(λ, 0) is bounded from below for some λ, then for all λ′ with |λ′| < |λ|
and µ ≥ 0, H(λ′, µ) is a self-adjoint operator and D

(
H(λ′, µ)

)
= D(H0).

Proof. Without loss of generality, we can assume that 0 < λ′ < λ. It
follows from Proposition 4.1 that H(λ′, µ) is essentially self-adjoint on D(H0)
and D(H0) ⊆ D

(
H(λ′, µ)

)
.

Hence we only have to verify that D
(
H(λ′, µ)

)⊆ D(H0). Since 0 < λ′ <

λ, there exists a positive number η < 1 such that λ = λ′/(1− η). Let D′ be
a core for W 2, D0 := D ⊗̂Fb, fin(D′), µ′ := µ/(1− η), c the infimum of the
spectrum of H(λ, 0), that is, c := inf σ

(
H(λ, 0)

)
, and γ := sup ‖[A1/2, Bj ]‖.

For all Ψ ∈ D0,

∥∥(
H(λ′, µ) + η

)
Ψ

∥∥2 − η2

2
‖H0Ψ‖2

≥ η2

2
‖H0Ψ‖2 + (1− η)2‖H(λ, µ′)Ψ‖2

+ η(1− η)
(〈H0Ψ, H(λ, µ′)Ψ〉+ 〈H(λ, µ′)Ψ, H0Ψ〉

)

≥ η2

2
‖H0Ψ‖2
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+ η(1− η)
(
2
〈
A1/2Ψ,H(λ, 0)A1/2Ψ〉+ 2Re

〈
A1/2Ψ, [A1/2, H(λ, 0)]Ψ

〉

+ 2
〈
(dΓ(W ) + 1)1/2Ψ,H(λ, 0)(dΓ(W ) + 1)1/2Ψ

〉

+ 2Re
〈
(dΓ(W ) + 1)1/2Ψ,

[
(dΓ(W ) + 1)1/2,H(λ, 0)

]
Ψ

〉)

+ η(1− η)µ′
m∑

j=1

2Re
〈
(dΓ(W ) + 1)Ψ, φ(fj)2Ψ

〉
.

By the semi-boundedness of H(λ, 0), we have

〈
A1/2Ψ, H(λ, 0)A1/2Ψ

〉 ≥ c‖A1/2Ψ‖2,
〈
(dΓ(W ) + 1)1/2Ψ,H(λ, 0)(dΓ(W ) + 1)1/2Ψ

〉 ≥ c
∥∥(dΓ(W ) + 1)1/2Ψ

∥∥2
.

Hence we get the following inequality.

∥∥(
H(λ′, µ) + η

)
Ψ

∥∥2 − η2

2
‖H0Ψ‖2

≥ η2

2
‖H0Ψ‖2

+ η(1− η)
(
2c‖A1/2Ψ‖2 + 2c‖(dΓ(W ) + 1)1/2Ψ‖2)

− 2η(1− η)‖A1/2Ψ‖∥∥[H(λ, 0), A1/2]Ψ
∥∥

+ η(1− η)
〈
Ψ,

[
(dΓ(W ) + 1)1/2,

[
(dΓ(W ) + 1)1/2, H(λ, 0)

]]
Ψ

〉

+ 2η(1− η)µ′
m∑

j=1

〈
φ(fj)Ψ, (dΓ(W ) + 1)φ(fj)Ψ

〉

+ 2η(1− η)µ′
m∑

j=1

Re
〈
[φ(fj), dΓ(W )]Ψ, φ(fj)Ψ

〉

≥ η2

2
‖H0Ψ‖2

+ 2cη(1− η)
(‖A1/2Ψ‖2 +

∥∥(dΓ(W ) + 1)1/2Ψ
∥∥2)

− 2η(1− η)|λ|
n∑

j=1

‖A1/2Ψ‖∥∥[A1/2, Bj ]⊗ φ(gj)Ψ
∥∥ (8)
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− η(1− η)|λ|
n∑

j=1

∥∥BjΨ
∥∥

× ∥∥[
(dΓ(W ) + 1)1/2,

[
(dΓ(W ) + 1

)1/2
, φ(gj)

]]
Ψ

∥∥ (9)

− η(1− η)|µ′|
m∑

j=1

‖Ψ‖
∥∥[

[dΓ(W ), φ(fj)], φ(fj)
]
Ψ

∥∥. (10)

In the following arguments, we show that each term of (8)–(10) is greater
than or equal to −C(‖A1/2Ψ‖2 +‖I⊗ (dΓ(W )+1)1/2Ψ‖2) for some positive
constant C.

First, we estimate the term (8). Since [A1/2, Bj ] is bounded,

‖A1/2Ψ‖∥∥[A1/2, Bj ]⊗ φ(gj)Ψ
∥∥

≤ γ‖A1/2Ψ‖ ‖I ⊗ φ(gj)Ψ‖
≤ C‖A1/2Ψ‖∥∥(dΓ(W ) + 1)1/2Ψ

∥∥

≤ C
(‖A1/2Ψ‖2 +

∥∥(dΓ(W ) + 1)1/2Ψ
∥∥2)

.

Next, we consider the term (9). It is known that for a nonnegative
self-adjoint operator T on a Hilbert space,

T 1/2ψ =
(

1
π

∫ ∞

0

λ−1/2(T + λ)−1dλ

)
Tψ (11)

for any ψ ∈ D(T ) (see [11, Chapter VIII Problem 50 (c)]). Since Ψ ∈ D0 and
gj ∈ D(W 2), it is easy to see that (dΓ(W )+1)1/2Ψ, φ(gj)Ψ, φ(gj)(dΓ(W )+
1)1/2Ψ, and [(dΓ(W ) + 1)1/2, φ(gj)]Ψ are in D(dΓ(W )). Using the formula
(11), we can calculate as follow.

[
(dΓ(W ) + 1)1/2,

[
(dΓ(W ) + 1)1/2, φ(gj)

] ]
Ψ

=
1
π2

∫ ∞

0

dt

∫ ∞

0

ds
1√
ts

[
(dΓ(W ) + 1 + s)−1(dΓ(W ) + 1),

[
(dΓ(W ) + 1 + t)−1(dΓ(W ) + 1), φ(gj)

]]
Ψ
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=
1
π2

∫ ∞

0

dt

∫ ∞

0

ds
√

ts(dΓ(W ) + 1 + s)−1(dΓ(W ) + 1 + t)−1

× φ(W 2gj)(dΓ(W ) + 1 + t)−1(dΓ(W ) + 1 + s)−1Ψ.

Thus we get a bound of the term (9) from the following computation:

∥∥[
(dΓ(W ) + 1)1/2,

[
(dΓ(W ) + 1)1/2, φ(gj)

]]
Ψ

∥∥

≤ 1
π2

∫ ∞

0

dt

∫ ∞

0

ds

√
ts

(1 + t)(1 + s)

× ∥∥φ(W 2gj)(dΓ(W ) + 1 + t)−1(dΓ(W ) + 1 + s)−1Ψ
∥∥

≤ C

(
1
π

∫ ∞

0

ds

√
s

(1 + s)2

)2∥∥(dΓ(W ) + 1)1/2Ψ
∥∥.

Using Lemma 2.1 (iii) and the identity (3), we have an inequality about the
term (10),

∣∣〈Ψ,
[
[dΓ(W ), φ(fj)], φ(fj)

]
Ψ

〉∣∣ ≤ |〈Wfj , fj〉|‖Ψ‖2.

Hence we see that

∥∥(
H(λ′, µ) + η

)
Ψ

∥∥2 − η2

2
‖H0Ψ‖2

≥ η2

2
‖H0Ψ‖2 − C

(‖A1/2Ψ‖2 +
∥∥(dΓ(W ) + 1)1/2Ψ

∥∥2 + ‖Ψ‖2)

=
η2

2
‖H0Ψ‖2 − C〈Ψ, H0Ψ〉 − C‖Ψ‖2

≥ −C‖Ψ‖2.

Since D0 is a core for H(λ′, µ), the above inequality implies

D
(
H(λ′, µ)

) ⊆ D(H0).

Thus H(λ′, µ) is self-adjoint and D
(
H(λ′, µ)

)
= D(H0). ¤

Our next aim is to prove the semi-boundedness of H(λ, 0). Next propo-
sition gives us a sufficient condition. To simplify notation, we write
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H(λ) := H(λ, 0) = A + dΓ(W ) + λ

n∑

j=1

Bj ⊗ φ(gj).

Proposition 4.3 Let A be a nonnegative self-adjoint operator on the
Hilbert space H, {Bj}n

j=1 is a family of self-adjoint operators on H, and W

a nonnegative injective self-adjoint operator on the Hilbert space K. Suppose
that A has a decomposition A =

∑n
j=1 Aj satisfying following conditions:

( i ) the operator Aj is a nonnegative self-adjoint operator with D(A) ⊂
D(Aj) for all j;

( ii ) each operator Bj is A
1/2
j -bounded ;

(iii) there exists a dense subset Dj ⊂ D(AjBj) ∩D(BjAj) which is a core
for Aj and the commutator [Aj , Bj ] on Dj is bounded for each j.

If gj ∈ D(W−3/2) ∩D(W ), eitBj⊗φ(iW−1gj)
(
D(Aj ⊗ I)

) ⊆ D(Aj ⊗ I) for all
t ∈ R and j, and there exists a {λj}n

j=1 such that 0 < λj < 1,
∑n

j=1 λj = 1,
and Aj − λ2λ−1

j ‖W−1/2gj‖2B2
j /2 is bounded from below for each j, then

H(λ) is bounded from below.

Proof. We first prove that D(Aj) ⊆ D(B2
j ) for all j. Since Bj is an A

1/2
j -

bounded operator, there exist positive constants cj and dj such that

‖BjΨ‖ ≤ cj‖A1/2
j Ψ‖+ dj‖Ψ‖ for all Ψ ∈ D(A1/2

j ).

Hence, for all Ψ ∈ Dj ⊂ D(AjBj) ∩D(BjAj) and ε > 0,

∥∥B2
j Ψ

∥∥ ≤ cj

∥∥A
1/2
j BjΨ

∥∥ + dj‖BjΨ‖

≤ cj

(∥∥[(Aj + 1)1/2, Bj ]Ψ
∥∥ +

∥∥Bj(Aj + 1)1/2Ψ
∥∥)

+ dj

(
cj

∥∥A
1/2
j Ψ

∥∥ + dj‖Ψ‖
)

≤ (
c2
j + 2εcjdj

)‖AjΨ‖

+
(

d2
j + 2cjdjc(ε) + c2

j + cj
1
π

∫ ∞

0

√
t

(1 + t)2
dt‖[Aj , Bj ]‖

)
‖Ψ‖.

Here c(ε) is a constant depending on ε which satisfies
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‖(Aj + 1)1/2Ψ‖ ≤ ε‖AjΨ‖+ c(ε)‖Ψ‖, for all Ψ ∈ D(Aj).

Since Dj is a core for Aj , B2
j is an Aj-bounded operator. From this it follows

that D(Aj) ⊆ D(B2
j ) for all j.

We set

H0j(λ) := Aj + λjdΓ(W ) + λBj ⊗ φ(gj),

Uj(λ) := exp
(
iλλ−1

j Bj ⊗ φ(iW−1gj)
)
.

From an argument similar to that in Lemma 3.7 in [2], it follows that

Uj(−λ)H0j(λ)Uj(λ) = Aj − λ2

2λj
‖W−1/2gj‖2B2

j + λjdΓ(W ) + δAj(λ).

Here δAj(λ) := Uj(−λ)(Aj ⊗ I)Uj(λ) − Aj ⊗ I. We see that δAj(λ) is
infinitesimally small with respect to I ⊗ dΓ(W ). Indeed, by assumption of
gj ∈ D(W−3/2) and boundedness of [Aj , Bj ], the same proof of Lemma 3.10
in [2] works for δAj(λ). Since unitary transformation preserve the spectral
property, by the Kato-Rellich theorem, we see that H0j(λ) is bounded from
below for each j. Hence H(λ) =

∑
H0j(λ) is bounded from below. ¤

Corollary 4.4 Suppose that (H1)–(H3) hold. Assume, in addition, the
following conditions hold :

( i ) Bj is self-adjoint and eitBj⊗φ(iW−1gj)
(
D(A ⊗ I)

) ⊆ D(A ⊗ I) for all
t ∈ R and j;

( ii ) [A,Bj ]|D is a bounded operator for each j;
(iii) gj ∈ D(W−3/2) ∩D(W ) for all j.

If there exists a {λj}n
j=1 such that 0 < λj < 1,

∑n
j=1 λj = 1, and

A−λ2λ−2
j ‖W−1/2gj‖2B2

j /2 is bounded from below for each j, then H(λ) is
bounded from below.

Proof. Applying Proposition 4.3 with Aj = λjA for each j. ¤

Remark 4.5 Under the conditions of Corollary 4.4 except for existence
of the {λj}n

j=1, if |λ|∑n
j=1 cj‖W−1/2gj‖ <

√
2, then there exists a {λj}n

j=1

such that 0 < λj < 1,
∑n

j=1 λj = 1, and A − λ2λ−2
j ‖W−1/2gj‖2B2

j /2 is
self-adjoint and bounded from below for all j. Here cj is an A1/2-bound of
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Bj . Indeed, there exists a {λj}n
j=1 such that 0 < λj < 1,

∑n
j=1 λj = 1, and

|λ|cj‖W−1/2gj‖ <
√

2λj for all j whenever λ satisfies

|λ|
n∑

j=1

cj‖W−1/2gj‖ <
√

2.

From the proof of Proposition 4.3, we see that relative bound of B2
j with

respect to A is less than or equal to c2
j . Therefore, from the Kato-Rellich

theorem, we have the desired {λj}n
j=1. This condition is weaker than the

condition (A.3) in [1].

Finally, from the above results, we obtain the following corollary.

Corollary 4.6 Suppose that (H1), (H2) and (H4) hold. Assume, in addi-
tion, the following conditions hold :

( i ) Bj is self-adjoint and eitBj⊗φ(iW−1gj)(D(A ⊗ I)) ⊆ D(A ⊗ I) for all
t ∈ R and j;

( ii ) there exists a core D for A such that D ⊂ D(A2) ∩ ⋂
j D(ABj) and

[A,Bj ]|D is a bounded operator for each j;

If gj ∈ D(W−3/2) ∩ D(W 2) for all j, |λ|∑n
j=1 cj‖W−1/2gj‖ <

√
2, and

µ ≥ 0, then H(λ, µ) is a self-adjoint operator with D(H(λ, µ)) = D(H(0, 0)).

Proof. In the proof of Theorem 4.2, we can replace the term A1/2 by
(A + 1/2)1/2 and (dΓ(W ) + 1)1/2 by (dΓ(W ) + 1/2)1/2. Using the formlua
(11), it is easy to see that [(A + 1/2)1/2, Bj ]|D is bounded. Therefore we
see that similar argument in the proof of Theorem 4.2 work. From this and
Corollary 4.4 and Remark 4.5, we have the self-adjointness of H(λ, µ) and
D(H(λ, µ)) = D(H(0, 0)). ¤
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