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Log Néron models over surfaces, II
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Abstract. We prove that an admissible normal function over a surface and the zero

section simultaneously extend to sections of a log Néron model. This gives a new proof

of the surface base case of the algebraicity of zero loci of admissible normal functions.
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Introduction

In [10], we prove that, for a given admissible normal function ν ([11])
over a surface, there is a log Néron model which “graphs” it, in the sense
that ν extends to a section of the model.

A next natural problem is to construct a model which graphs two given
admissible normal functions simultaneously.

In this paper, we study the special case of this problem where one of
the two functions is the zero section. As an application, we give an al-
ternative, simple proof of the case of the surface base of the theorem by
P. Brosnan and G. Pearlstein [1] on the algebraicity of zero loci of admissible
normal functions (independently proved by C. Schnell [13] and by K. Kato,
C. Nakayama, and S. Usui [6]).

In Section 1, we state the main result. From Section 2 to Section 4, we
prove it. The proof goes roughly as follows. Let ν be an admissible normal
function over a surface. Let σ be the local monodromy cone associated to
ν. Let σ′0 be the cone associated to the zero section. The problem is to
prove that there is a finite subdivision of σ for each member τ of which, the
translations of τ and those of the zero section τ ′0 by GZ make a single weak
fan. Here GZ is the group of automorphisms of the lattice and “weak fan”
is a relaxed concept of fan, which admits some overlappings of cones. The
proof of the existence of the subdivision is similar to that of [10]. A key
ingredient is a property of polarized nilpotent orbits of two variables, which
was proved in [10].
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In the last section (Section 5), as an application, we give an alternative,
simple proof of the algebraicity of the zero locus of an admissible normal
function in the surface case. We remark that, if one would generalize the
construction in this paper to the case of the base of any dimension, it would
give an alternative proof of the algebraicity over the general base.

As we explained in the introduction in [10], there are two ways to for-
mulate log Néron models, i.e., an absolute formulation and a relative formu-
lation (cf. [3] and [7, Section 5] respectively). We worked with the absolute
formulation in [10]. Since we adopt the relative formulation in this paper,
the result in [10] is not contained in the result in this paper.

Notation and Terminology. All combinatorial notions are the rational
ones, i.e., are considered over Q. For example, a polyhedral cone is a finitely
generated, cancellative Q≥0-monoid. A fan in a Q-vector space V is a set Σ
of strictly convex polyhedral cones in V satisfying: (1) A face of a member
of Σ also belongs to Σ. (2) For σ, σ′ ∈ Σ, the intersection σ ∩ σ′ is a face
of σ. A finite subdivision of a polyhedral cone σ in V is a finite fan Σ in V

whose support coincides with σ.
Let N : V → V ′ be a map of sets. For a subset A of V and a subset A′ of

V ′, we write NA for N(A) and N−1A′ for N−1(A′). For example, for maps
N1, N2 : V → V ′, the symbol (N2N

−1
1 )2A′ means N2(N−1

1 (N2(N−1
1 (A′)))).

1. Main results

1.1 First we review the definition of weak fans. As is explained in [7, Sec-
tion 2] and in ibid. Section 5 respectively, there are an absolute formulation
and a relative formulation of weak fans. In this paper, we use weak fans in
the relative setting, that is, the ones in [7, Section 5]. Thus the following
definition is the same as the one in [7, Section 5] except that we work over
Q, which does not yield any difference in essence.

1.2 We fix a free Z-module H ′
Z of finite rank and define HZ := H ′

Z ⊕ Z.
Let W be the increasing filtration on HQ := HZ ⊗ Q characterized by
grW
−1(HQ) = H ′

Q and grW
0 (HQ) = Q. Let 〈 , 〉−1 : H ′

Z × H ′
Z → Q be a

non-degenerate anti-symmetric pairing. Let 〈 , 〉0 be the pairing Z × Z →
Q; (a, b) 7→ ab. Let (hp,q)p,q are non-negative integers given for any p, q ∈ Z
satisfying the following conditions (1)–(4).

(1) hp,q = 0 unless p + q = −1 or p = q = 0.
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(2) h0,0 = 1.
(3)

∑
p+q=−1 hp,q = rankZ H ′

Z.
(4) hp,q = hq,p for any p, q.

Let D be the associated classifying space of mixed Hodge structures
with polarized graded quotients, introduced by S. Usui [14].

1.3 For A = Z,Q, let G′A be the group of the A-automorphisms of
(H ′

A, 〈 , 〉−1). Let GA be the group of the A-automorphisms of (HA,W ∩
HA, 〈 , 〉−1, 〈 , 〉0).

Let g′Q be the Lie algebra associated to G′Q and gQ the Lie algebra
associated to GQ.

1.4 Let P be a sharp fs monoid. Let σ′ := Hom(P,Qadd
≥0 ) be the dual cone,

where Qadd
≥0 is the monoid of non-negative rational numbers with respect to

addition.
Let Γ′ be the abelian group Hom(P gp,Z). Assume that a homomor-

phism

a : Γ′ → G′Z,u (1)

of groups is given, where G′Z,u is the unipotent part of G′Z. Let

σ′ → g′Q

be the homomorphism of monoids induced by the logarithm of a.

1.5 A nilpotent cone is a polyhedral cone σ in the fiber product

σ′ ×g′Q gQ

whose image σg in gQ is a nilpotent cone in the absolute sense, i.e., a poly-
hedral cone consisting of mutually commutative nilpotent elements (cf. [10,
1.4]).

We say that σ is admissible if σg is admissible.
Let σ be a nilpotent cone and let F be an element of the compact dual

Ď of D. We say that (σ, F ) generates a nilpotent orbit if (σg, F ) generates
a nilpotent orbit in the absolute sense ([10, 1.4]).

We say that σ is sharp if it is strictly convex, i.e., σ ∩ (−σ) = {0}.



368 C. Nakayama

1.6 Let N ′ ∈ g′Q. Let e be the standard generator 1 ∈ Z = grW
0 (HZ) ⊂

HZ. Then, there is a unique element N ′
0 ∈ gQ whose image in g′Q coincides

with N ′ and which satisfies N ′
0(e) = 0. Let

j : g′Q ↪→ gQ

be the injective homomorphism defined by j(N ′) = N ′
0.

Let τ ′ be a polyhedral subcone of σ′. Then, the 0-lift of τ ′, denoted by
τ ′0, is the nilpotent cone in σ′ ×g′Q gQ defined by

τ ′0 = {(x, j(N ′
x)) | x ∈ τ ′},

where N ′
x is the image of x by σ′ → g′Q.

1.7 A weak fan Σ in σ′×g′Q gQ is a non-empty set of sharp nilpotent cones
satisfying the following conditions (1) and (2).

(1) Any face of an element of Σ also belongs to Σ.
(2) Let σ1, σ2 ∈ Σ. Assume that they have a common interior point. As-

sume also that there is an F ∈ Ď such that (σ1, F ) and (σ2, F ) generate
nilpotent orbits. Then σ1 = σ2.

A fan in σ′ ×g′Q gQ is defined, as usual, by replacing (2) with the con-
dition that for σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of σ1.

Any fan is a weak fan ([7, 5.1.6], cf. [5, 1.7]), but the converse is not
valid in general.

1.8 Next we review log Néron models and their variants.
Let Γ := Γ′ ×G′Z GZ, which acts on σ′ ×g′Q gQ via

Ad(γ)((x, y)) = (x,Ad(γG)y) (γ ∈ Γ, (x, y) ∈ σ′ ×g′Q gQ).

Here γG is the image of γ in GZ.
Let Σ be a weak fan which is strongly compatible with Γ ([7, 5.1.8]).
Let B(log) be the category of the spaces which are locally isomorphic to

strong subspaces of fs log analytic spaces ([9, 3.2.4]).
Let S0 := E′

σ′ be the object in B(log) which is defined in [7, 5.1.1] from
the data (HZ,W, 〈 , 〉−1, 〈 , 〉0, (hp,q)p,q) in 1.2 and P, a in 1.4.

There is a canonical polarized log Hodge structure (PLH) of weight −1
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on S0.
Let ϕ : S → S0 be a strict morphism in B(log), where a morphism is

said to be strict if the pullback of the log structure on the target space is
naturally isomorphic to that on the source space.

Let H ′ be a PLH of weight −1 on S, and assume that we are given an
isomorphism ι of PLHs between H ′ and the pullback of the canonical PLH
of weight −1 on S0 by ϕ.

Let DS,Σ be the space of nilpotent orbits in the relative formulation ([7,
5.1.10]). The quotient JS,Σ := Γ \DS,Σ is endowed with the structure of an
object in B(log).

Then, main results in [7, Section 5] say that JS,Σ is a nice space in vari-
ous senses; for instance, by Theorem 5.2.8 of [7], the space JS,Σ is Hausdorff
if S is Hausdorff.

1.9 By another main theorem (Theorem 5.3.3) of [7], the space JS,Σ rep-
resents the following functor.

Let µ′ be the Γ′-level structure on H ′ via the isomorphism ι. Then, the
functor represented by JS,Σ associates to T ∈ B(log)/S the set of isomor-
phism classes of a log mixed Hodge structure (LMH) H on T satisfying the
following conditions (1) and (2).

(1) grW
w (H) is identified with the pullback of H ′, Z (the Tate’s Hodge struc-

ture), and 0 if w = −1, w = 0, and w 6= 0,−1, respectively.
(2) Under the identification in (1), for any t ∈ T log, if µ̃t : Ht

∼→ HZ (Ht here
denotes the stalk at t of the lattice of H) is any isomorphism preserving
the weight filtration whose grW

−1 belongs to µ′ and whose grW
0 is the

identity, then there exists a cone σ ∈ Σ such that σ contains the image
of the map π+

1 (τ−1τ(t)) → σ′ ×g′Q gQ whose first component is induced

by T → S
ϕ→ S0 = E′

σ′ and whose second component is induced by µ̃t

(cf. [7, 2.6.2]), and such that (σ, µ̃t(C ⊗Olog
T,t

Ft)) generates a nilpotent
orbit.

Here π+
1 (τ−1τ(t)) := Hom((MT /O×T )τ(t),N) ⊂ Hom((MT /O×T )τ(t),

Z) = π1(τ−1τ(t)), F is the Hodge filtration of H, and C ⊗Olog
T,t

Ft is

independent of the choice of a C-algebra homomorphismOlog
T,t → C. (We

also use the standard notation τ for the canonical projection X log → X

for an fs log analytic space X.)
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We have an embedding

Mor(−, JS,Σ) ⊂ Ext1(Z,H ′)

of functors from the category B(log)/S to the category of sets. Here Ext1 is
the sheaf T 7→ Ext1T (Z,H ′|T ) in the category of log mixed Hodge structures
on T . The image of this embedding consists of H satisfying the following
(3).

(3) For any t ∈ T log, if µ̃′t : H ′
t
∼→ H ′

Z (H ′
t here denotes the stalk at t

of the lattice of H ′) is a representative of the germ of µ′ at t, then
there exists a cone σ ∈ Σ such that σ contains the image of the map
π+

1 (τ−1τ(t)) → σ′ ×g′Q gQ induced by ϕ and µ̃′t ⊕ id, and such that
(σ, (µ̃′t ⊕ id)(C⊗O

T log,t
Ft)) generates a nilpotent orbit.

Now we proceed to state the results.
We first state the results in 1-dimensional base case for the readers’

convenience.

Proposition 1.10 Let P , σ′, Γ′, and a be as in 1.4. Let Γ be as in 1.8.
Assume that dimσ′ ≤ 1. Let σ be a nilpotent cone in σ′ ×g′Q gQ such that
σ → σ′ is bijective. Then, the set of the translations Ad(γ)(σ) of σ and
the translations Ad(γ)(σ′0) of the 0-lift σ′0 (1.6) by all the elements γ of Γ
together with the trivial cone {0} form a fan.

This is just because the dimensions of all these cones are 0 or 1.

Corollary 1.11 Let S be an object of B(log). Assume that the log rank
of S is equal to or less than 1, that is, the monoid (MS/O×S )s is isomorphic
to either N or {0} for any s ∈ S. Let H ′ be a PLH of weight −1 on S. Let
ν be an element of Ext1(Z,H ′) and ν0 ∈ Ext1(Z,H ′) the trivial extension.
Then, locally on S, there are Hodge data as in 1.2, P and a as in 1.4, a fan
Σ (being strongly compatible with Γ), and ϕ and ι as in 1.8 such that JS,Σ

graphs ν and ν0 simultaneously, which means that both ν and ν0 belong to
Mor(S, JS,Σ) ⊂ Ext1(Z,H ′).

We call such JS,Σ a log Néron model for ν and ν0.
We remark that in this case where the log rank is equal to or less than

1, the Néron model in the sense of [7] exists as a best model and satisfies
the same (or even stronger) conclusion. See [7, Corollary 6.1.6]. But we give
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here a proof of Corollary 1.11 based on Proposition 1.10 which is helpful to
understand the 2-dimensional correspondent Corollary 1.14 below.

Proof. Let s be a point of S and we work around s. Let P := (MS/O×S )s,
and σ′ := Hom(P,Qadd

≥0 ). By localizing S, we may assume that there is a
chart P → Γ(S,MS) such that the induced P → (MS/O×S )s is the identity.

As is explained in [7, 5.1.2], locally on S, we can find Hodge data as in
1.2, a homomorphism a as in 1.4, and data ϕ and ι as in 1.8.

Let H be the LMH corresponding to ν. Let t ∈ Slog such that s = τ(t).
Let µ̃′t be as in 1.9 (3). Then, via µ̃′t⊕id : Ht

∼→ HZ, the monoid π+
1 (τ−1(s))

acts on HZ.
Let σ be the local monodromy cone of H at s, that is, the cone in σ′×g′Q

gQ generated by the elements of the form (x, y), where y is the logarithm
of the action of x ∈ π+

1 (τ−1(s)) = Hom(P,N) ⊂ σ′. It is admissible, and
is determined up to the translation by an element of Γ. Further, dimσ ≤ 1
and the canonical map σ → σ′ is bijective.

Now we apply Proposition 1.10 which gives the fan Σ as in the statement
of Proposition 1.10. It is clearly strongly compatible with Γ.

We will show that JS,Σ graphs ν and ν0. For this, it suffices to verify
the condition (3) in 1.9 for ν and for ν0. We can take the local monodromy
cone σ for ν and the 0-lift σ′0 (1.6) for ν0 as the desired cone in the condition
(3) in 1.9. ¤

Corollary 1.12 Let S be a complex analytic manifold endowed with the
log structure defined by a smooth divisor Z. Then for any normal function
ν on U := S − Z which is admissible with respect to S ([11]), locally on S,
there are Hodge data as in 1.2, P and a as in 1.4, a fan Σ (being strongly
compatible with Γ), and ϕ and ι as in 1.8 such that ν and the trivial normal
function ν0 extend to sections of JS,Σ.

Proof. Let H ′ be the PHS corresponding to grW
−1(ν). By the nilpotent

orbit theorem of Schmid ([12]) reformulated as in [2, Proposition 2.5] or
[9, 2.5.13–Theorem 2.5.14], it extends uniquely to a PLH over S, which we
still denote by H ′. A normal function on U is nothing but an element of
Ext1U (Z,H ′). By the admissibility, it extends to an element of Ext1S(Z,H ′).
Hence this corollary is reduced to the previous one. (Note that the log rank
is equal to or less than 1 for Z is smooth.) ¤
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Again, the Néron model in the sense of [7] satisfies the same conclusion.
See [7, Corollary 6.1.8].

We proceed to the surface base case. The next is the main theorem in
this paper, which is proved in Section 4 after the necessary preparations.

Theorem 1.13 Let P , σ′, Γ′, and a be as in 1.4. Let Γ be as in 1.8.
Assume that dimσ′ = 2. Let σ be an admissible nilpotent cone in σ′×g′Q gQ

such that σ → σ′ is bijective. Then, there exists a finite subdivision of σ for
each member τ of which, the set Σ := {Ad(γ)(υ) | γ ∈ Γ, υ is a face of τ or
a face of τ ′0} is a weak fan. Here τ ′0 is the 0-lift (1.6) of the image of τ in
g′Q.

We expect that the conclusion in Theorem 1.13 would hold without the
assumption dimσ′ = 2. Another problem is to generalize Theorem 1.13 to
the case where σ → σ′ is only surjective.

Corollary 1.14 Let S be an object of B(log). Assume that the log rank
of S is equal to or less than 2, that is, rankZ((Mgp

S /O×S )s) ≤ 2 for any
s ∈ S. Let H ′ be a PLH of weight −1 on S. Let ν be an element of
Ext1S(Z,H ′). Then, locally on S, there is a log modification ([9, 3.6]) S′ → S

and, locally on S′, there are Hodge data as in 1.2, P and a as in 1.4, a fan
Σ (being strongly compatible with Γ), and ϕ and ι as in 1.8 such that JS′,Σ

graphs ν|S′ ∈ Ext1S′(Z,H ′|S′) and the trivial extension ν0 ∈ Ext1S′(Z,H ′|S′)
simultaneously.

We call such JS,Σ a log Néron model for ν and ν0.

Proof. The proof is parallel to that of Corollary 1.11.
Let s be a point of S, P := (MS/O×S )s, and σ′ := Hom(P,Qadd

≥0 ).
Similarly as in Corollary 1.11, we work around s and may assume that there
are a chart P → Γ(S,MS) such that the induced P → (MS/O×S )s is the
identity, the Hodge data in 1.2, and a in 1.4, and ϕ and ι in 1.8.

Let H be the LMH corresponding to ν. Let t ∈ Slog with s = τ(t). The
monoid π+

1 (τ−1(s)) acts on HZ via µ̃′t⊕id, where µ̃′t is as in 1.9 (3).
Let σ ⊂ σ′ ×g′Q gQ be the local monodromy cone of H at s. Then,

dimσ ≤ 2 and the canonical map σ → σ′ is bijective.
Further, for any t′ ∈ Slog, π+

1 (τ−1τ(t′)) is regarded as a face of
π+

1 (τ−1(s)) (because (MS/O×S )τ(t′) is regarded as a quotient of (MS/O×S )s),
and the action of π+

1 (τ−1τ(t′)) on HZ factors through the action of
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π+
1 (τ−1(s)) on HZ modulo the translation by an element of Γ.

Now, take a log modification S′ of S according to the finite subdivision
of σ′ induced by that of σ which Theorem 1.13 gives. Let τ be as in The-
orem 1.13. Then we have a weak fan Σ in Theorem 1.13, which is strongly
compatible with Γ. By localizing S′, we may assume that Σ contains the
set of all local monodromy cones of H|S′ .

Then, JS′,Σ graphs ν|S′ and ν0. To see it, at each point of (S′)log, we
can take the local monodromy cone of ν|S′ (which is a face of τ) to verify
the condition (3) in 1.9 for ν, and the local monodromy cone of ν0 (which
is a face of the 0-lift τ ′0) for ν0. ¤

Corollary 1.15 Let S be an fs log analytic space which is log smooth over
C ([9, 2.1.11]). Assume that the log rank of S is equal to or less than 2. Let
U be the open subspace of S where the log structure is trivial. Then for any
normal function ν on U which is admissible with respect to S ([11]), locally
on S, there is a log modification S′ → S and, locally on S′, there are Hodge
data as in 1.2, P and a as in 1.4, a fan Σ (being strongly compatible with
Γ), and ϕ and ι as in 1.8 such that the morphism U

ν→ JS′,Σ and the trivial
normal function ν0 extend to morphisms S′ → JS′,Σ. (Note that, by the
definition of a log modification, the open subspace U of S can be regarded as
an open subspace of S′.)

Proof. Similarly to Corollary 1.12, this is reduced to the previous corollary.
¤

Remark 1.16 The example in [13, 6.3] shows that a log modification S′ →
S in the statement of Corollary 1.15 is indeed necessary. More precisely, let
U = (∆∗)2, and S = ∆2 endowed with the log structure defined by S − U .
Consider the normal functions ν there. Then, ν and the trivial normal
function ν0 cannot simultaneously extend over the origin to morphisms S →
JS,Σ for any Σ. On the other hand, our proof shows that after log blowing
up the origin of S, locally, they extend simultaneously.

2. Subdivision of cones

In this section, we prove a combinatorial lemma (Lemma 2.3), which
will be used in the proof of the main theorem (Theorem 1.13).

2.1 Let H be a finite dimensional Q-vector space. Let
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X = Q2
≥0 ×H.

Let h1, h2 ∈ H. Let

σ = Q≥0(1, 0, h1) + Q≥0(0, 1, h2) ⊂ X.

Let L be a finitely generated free Z-module. Let N1, N2 ∈ Hom(L,H). Let
L act on X by

l : (a1, a2, h) 7→ (a1, a2, h + (a1N1 + a2N2)(l)) (l ∈ L).

Note that, in applying the results in this section to the main theorem,
we take H ′

Q in the main theorem as the Q-vector space H here.
We introduce the following notation. For a rational number ε with

0 ≤ ε ≤ 1, let

H1+ε = Q≥0(1− ε, ε)×H.

In particular,

H1 = Q≥0 × {0} ×H, and

H2 = {0} ×Q≥0 ×H.

Lemma 2.2 Let the notation and the assumption be as in 2.1. Then the
intersection σ ∩ ({(0, 0)} ×H) is trivial, that is, {(0, 0, 0)}.
Proof. Let a1(1, 0, h1) + a2(0, 1, h2) = (a1, a2, a1h1 + a2h2) (a1, a2 ∈ Q≥0)
be an element of σ. If it belongs to {(0, 0)} ×H, both a1 and a2 must be
zero, and this element should be (0, 0, 0). ¤

Lemma 2.3 Let the notation and the assumption be as in 2.1. Then we
have the following.

(1) Assume that N1 is injective. Then there is a positive ε0 ≤ 1 such
that any positive rational number ε ≤ ε0 satisfies the following condition:
Let

σ′ = σ ∩ (H1 + H1+ε) = Q≥0(1, 0, h1) + Q≥0(1− ε, ε, (1− ε)h1 + εh2).

Then, for any l ∈ L, we have either (1, 0, 0) ∈ l(σ′) or l(σ′)∩ (Q2
≥0×{0}) =
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{(0, 0, 0)}.
(2) Assume that we are given an identification L⊗Q = H. We regard

N1 and N2 as elements of End(H) via this identification. Let J ⊂ H be a
Q-subspace satisfying N−1

1 N2J ⊂ J (cf. Notation and Terminology). Then
there is a positive ε0 ≤ 1 such that any positive rational number ε ≤ ε0

satisfies the following condition: Let

σ′ = σ ∩ (H1 + H1+ε) = Q≥0(1, 0, h1) + Q≥0(1− ε, ε, (1− ε)h1 + εh2).

Then, for any l ∈ L, we have either that (1, 0, h) ∈ l(σ′) (h ∈ H) implies
h ∈ N1J + N2J or l(σ′) ∩ (Q2

≥0 × {0}) = {(0, 0, 0)}.
Proof. (1) Since N1 is injective, there is a positive ε0 ≤ 1 such that for
any positive rational ε ≤ ε0, the operator (1− ε)N1 + εN2 is also injective.
Hence, by replacing N2 by (1 − ε0)N1 + ε0N2, and X by H1 + H1+ε0 , we
may assume that (1− ε)N1 + εN2 is injective for any 0 ≤ ε ≤ 1.

Next we show that we may further assume that (1 − ε)N1 + εN2 ∈
End(H) is bijective for any 0 ≤ ε ≤ 1. Take a free Z-submodule L′ of
H such that N1L ∩ L′ = {0} and N1L ⊕ L′ spans H over Q. Then, for
any sufficiently small ε, the submodule ((1− ε)N1 + εN2)L⊕ L′ also spans
H over Q. Hence, by replacing N2 and X again, we may assume that
((1 − ε)N1 + εN2)L ⊕ L′ spans H over Q for any 0 ≤ ε ≤ 1. By replacing
L by L ⊕ L′ and Nj by Nj ⊕ id (j = 1, 2), we may and will assume that
(1− ε)N1 + εN2 is bijective for any ε, as desired.

Take a basis (lj) of L. For each j, consider an interval Ij ⊂ R of
the form (a, a + 1] or [a, a + 1), where a is an integer depending on the
index j. Let C be the subset of X consisting of the elements of the form
(a1, a2, (a1N1 + a2N2)(

∑
cj lj)), where a1, a2 ∈ Q≥0, and cj ∈ Q belongs to

Ij .
The given cone σ is not necessarily contained in one of such a subset

C, but, after further replacing N2 and X (as in the first paragraph of this
proof), we may assume that it is the case, that is, there are Ij of the above
form such that the associated C contains σ. Then, for any rational number
ε with 0 ≤ ε ≤ 1, there are unique rational numbers cε,j such that

(
1 −

ε, ε, ((1− ε)N1 + εN2)(
∑

cε,j lj)
)

belongs to σ. Note that cε,j belongs to Ij .
We may assume further that

(∗) the subset {j | c0,j is an integer} of indices contains {j | cε,j is an
integer} for any positive ε ≤ 1.
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We prove that the desired condition is now satisfied with ε0 = 1 and
σ′ = σ. Assume that (1, 0, 0) is not in l(σ). It is enough to show that
(1 − ε, ε, 0) is also not in l(σ) for any positive rational number ε ≤ 1. Let
cε,j be the rational numbers such that

(
1−ε, ε, ((1−ε)N1 +εN2)(

∑
cε,j lj)

)
belongs to l(σ). Note that cε,j belongs to some fixed translation of Ij . Then,
these numbers satisfy the same condition (∗) as above. By assumption,
N1(

∑
c0,j lj) is not zero, so that, at least one of c0,j is not zero. By (∗) and

the fact that Ij contains only one integer, this implies that cε,j is also not
zero, and ((1−ε)N1 +εN2)(

∑
cε,j lj) is not zero for any positive ε ≤ 1. This

means that l(σ) has the trivial intersection with Q2
≥0 × {0}.

(2) Let A := N1J +N2J . Then, the action of L on X induces the action
of L/(J ∩ L) on

X := Q2
≥0 × (H/A)

because we have a1N1l + a2N2l ∈ A for a1, a2 ∈ Q≥0 if l ∈ J . Further, we
have the operators

Nj : L/(J ∩ L) → H/A

induced by Nj for j = 1, 2.
Let σ be the image of σ in X, and we are in the situation in 2.1 with

H/A,X, σ, L/(J ∩ L), N1, and N2 for H, X, σ, L, N1, and N2 there.
We prove that N1 is injective. Let l ∈ L with N1(l) ∈ A. Since A =

N1J + N2J , there are j1, j2 ∈ J such that N1(l) = N1(j1) + N2(j2). From
this, N1(l − j1) ∈ N2J , so l − j1 ∈ N−1

1 N2J ⊂ J by the assumption. Hence
l ∈ J , and N1 is injective.

Therefore, by (1), there is a positive ε0 ≤ 1 such that any positive
rational number ε ≤ ε0 satisfies the following condition: Let

σ′ = σ ∩ ((H/A)1 + (H/A)1+ε).

Then, for any l ∈ L, we have either (1, 0, 0) ∈ l(σ′) or l(σ′)∩ (Q2
≥0×{0}) =

{(0, 0, 0)}. Here and hereafter we denote by h the image of an element h of
H in H/A.

We prove that this ε0 satisfies the desired condition. To see this, fix any
positive rational number ε ≤ ε0, and let
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σ′ = σ ∩ (H1 + H1+ε),

whose image in X is σ′. Let l ∈ L. Assume that (1, 0, 0) ∈ l(σ′). Then,
(1, 0, h) ∈ l(σ′) (h ∈ H) implies (1, 0, h) ∈ l(σ′), and h = 0, which means
h ∈ A = N1J + N2J . Otherwise, l(σ′) ∩ (Q2

≥0 × {0}) = {(0, 0, 0)}, which
contains the image of l(σ′)∩(Q2

≥0×{0}) in X. Hence, the image is {(0, 0, 0)}.
On the other hand, by Lemma 2.2 applied to l(σ′) as σ there (H1 + H1+ε

as X there), l(σ′) has the trivial intersection with the subset {(0, 0)} ×H.
Hence, l(σ′) ∩ (Q2

≥0 × {0}) is trivial. ¤

3. Polarized nilpotent orbits

One of the key facts which we will use later in the proof of the main
theorem (Theorem 1.13) is the following proposition (Proposition 3.2) on a
pure nilpotent orbit.

3.1 Let H ′
Z be a free Z-module of finite rank, let w be an integer, and let

〈 , 〉 be a non-degenerate (−1)w-symmetric pairing on H ′
Z. Let (hp,q)p+q=w

be non-negative integers satisfying hp,q = hq,p and
∑

hp,q = rankZ H ′
Z. Let

D be the associated Griffiths domain.
Let G′Q be the group of the Q-automorphisms of (H ′

Q, 〈 , 〉), and g′Q
the associated Lie algebra.

Let N1, N2 ∈ g′Q ⊂ EndQ(H ′
Q) be mutually commutative nilpotent

elements. Let F ∈ Ď. Assume that (N1, N2, F ) generates a nilpotent orbit
([9, 5.4.1]).

Note that, in applying the results in this section to the main theorem
in Section 4, we will use only the case w = −1.

We assume that the associated weight filtrations W (N1 + N2)[−w] and
W (N2)[−w] coincide. We denote by M this filtration.

Proposition 3.2 For any n ≥ 0, we have

Mw−1 ∩
∞⋂

j=0

(
Mw−2 + (N j

2 )−1(Im N j+1
1 )

) ∩ (N2N
−1
1 )n(Mw−2) ⊂ Mw−2.

This is [10, Proposition 3.2]. See [10, 3.3–14] for the proof.

Proposition 3.3 Let the assumption be the same as above. Let a1, a2 be
positive rational numbers, and let N ′

2 := a1N1 + a2N2.
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Consider the increasing sequence N−1
1 N2(0), (N−1

1 N2)2(0),
(N−1

1 N2)3(0), . . . of subspaces of H ′
Q, which is eventually stable, and

let J = (N−1
1 N2)k(0) (k À 0) be the stable subspace of H ′

Q. Let A = N2J .
Similarly, let J ′ = (N−1

1 N ′
2)

k(0) (k À 0) and A′ = N ′
2J
′. Then we have

J = J ′ and A = A′.

These two equalities are (3) and (4) in the proof of [10, Proposition
3.22], and proved there.

4. Proofs of main results

Here we prove Theorem 1.13.

Convention Below, we adopt the following general convention: For any
element N ∈ gQ, we denote its image in g′Q with the prime: N ′.

4.1 Let Γu be the kernel of the natural projection Γ → Γ′, which is natu-
rally isomorphic to the unipotent radical GZ,u (cf. [7, 5.1.7]), and also nat-
urally isomorphic to the additive group H ′

Z, via the correspondence Γu 3
γ ↔ γ(e) ∈ H ′

Z. Here e is the standard generator 1 ∈ Z ⊂ H ′
Z ⊕ Z = HZ.

Then, Γ is isomorphic to a semi-direct product of Γu and Γ′.

4.2 First we claim that, in the statement of Theorem 1.13, we can replace
“Γ” with “Γu”.

We prove this claim till the end of this subsection (Subsection 4.2).
Below, we denote the image of an element N ∈ σ (⊂ σ′ ×g′Q gQ) in gQ by
the same symbol, and the image of an element N ′ ∈ σ′ in g′Q by the same
symbol by abuse of notation.

Let N ′
1, . . . , N

′
m be a set of generators of the fs monoid σ′∩Γ′. For each

j with 1 ≤ j ≤ m, take the point Nj of σ whose image in σ′ is N ′
j . Let

hj := Nj(e).
Let σ′ ∩ Γ′ act on H ′

Q through the map Γ′ → g′Q ⊂ EndQ(H ′
Q), which

is induced by a in 1.4.
Since N ′

j is nilpotent, the set

S :=
{

N ′
j1
· · ·N ′

jk−1
(hjk

)

k!

∣∣∣∣ k ≥ 1, 1 ≤ j1, . . . , jk ≤ m

}

is finite, and there is an integer M > 0 such that the lattice (1/M)H ′
Z
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contains this finite set:

(∗) S ⊂ (1/M)H ′
Z.

If we replace the lattice H ′
Z with (1/M)H ′

Z, the groups G′Z, GZ, and
hence Γ become larger.

To prove the claim, we assume that the Γu-version of Theorem 1.13
holds. In particular, we assume that the Γu-version of Theorem 1.13 for
(1/M)H ′

Z holds. Note that this Γu for (1/M)H ′
Z is larger than the original

one.
Hence, to see our claim, it is enough to prove the following (1) and (2)

under this assumption because a subset of a weak fan is a weak fan if it is
closed under the operation of taking a face.

(1) The action on σ of any element of Γ′ coincides with that of some element
of the larger Γu.

(2) The action on σ′0 of any element of Γ′ coincides with that of some element
of the larger Γu.

Since (2) is the special case of (1), we prove only (1).
We see that, for any element N of σ, there are non-negative rational

numbers aj (1 ≤ j ≤ m) such that N ′ =
∑

ajN
′
j and that N(e) =

∑
ajhj .

In fact, take any aj such that N ′ =
∑

ajN
′
j . We prove N(e) =

∑
ajhj .

Consider the element
∑

ajNj . This is in σ and maps to N ′ so that it
coincides with N . Hence N(e) =

∑
ajNj(e) =

∑
ajhj .

Then the action of any element exp(L′) (L′ =
∑

mlN
′
l ,ml ∈ Z) of Γ′

on the H ′
Q-component of N is described as

∑
ajhj 7→

∑
ajhj + (exp(L′)− 1)

( ∑
ajhj

)

=
∑

ajhj +
∑

k≥1

L′k−1

k!
L′

( ∑
ajhj

)
.

But, we have

L′
( ∑

j

ajhj

)
=

( ∑

l

mlN
′
l

)( ∑

j

ajhj

)

=
∑

j,l

ajml(N ′
l (hj))
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=
∑

j,l

ajml(N ′
j(hl)) (by NlNj = NjNl)

=
( ∑

j

ajN
′
j

)( ∑

l

mlhl

)
.

Hence the action is

∑
ajhj 7→

∑
ajhj +

( ∑

j

ajN
′
j

) ∑

k≥1

L′k−1

k!

( ∑

l

mlhl

)
.

Since
∑

k≥1(L
′k−1/k!)(

∑
l mlhl) is in (1/M)H ′

Z by (∗), this action is
certainly realized by that of the corresponding element of the larger Γu,
which completes the proof of (1).

4.3 In the rest of this section, we prove the Γu-version of Theorem 1.13.
To prove it, we can replace σ′ by each member of a finite subdivision of
σ′ and replace σ by the inverse image of the member. Further, if such a
member is of one dimension, it causes no problems (cf. Proposition 1.10).
Hence, in the replacement, it is enough to consider only the members of
2-dimension.

Take a set of generators N ′
1, N

′
2 of σ′. In the following, let H ′

Z act on
gQ via the isomorphism H ′

Z
∼= Γu in 4.1.

Consider the sequence of subspaces Jj of HQ defined as: J0 = {0},
Jj+1 = N ′

1
−1N ′

2Jj (j ≥ 0). Since the correspondence X 7→ N ′
1
−1N ′

2X

(X ⊂ HQ) is order-preserving, the sequence Jj is increasing, and eventually
stable. Let J be the stable subspace, that is,

J := (N ′
1
−1N ′

2)
k(0)

for a sufficiently large k. Let

A := N ′
2J.

Recall that e is the standard generator 1 of Q of weight 0. Recall also
that σ′0 denotes the 0-lift of σ′.

First we prove that we may assume

(1) W (N ′
1+N ′

2) = W (N ′
2) and for any γ ∈ Γu, we have either N1(e) ∈ A
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or Ad(γ)(σ) ∩ σ′0 = {0}, where N1 is the unique element of Ad(γ)(σ) lying
over N ′

1 via the projection gQ → g′Q.

To see that we may assume (1), by the compactness argument as in [10,
6.6], it is enough to show (1) after replacing N ′

2 by (1 − ε)N ′
1 + εN ′

2 for
any sufficiently small ε > 0, that is, it is enough for us to work around N ′

1

because the set {(1−a)N ′
1+aN ′

2 | a ∈ Q, 0 ≤ a ≤ 1} is closed and bounded.
We may assume that W (N ′

1 + N ′
2) = W (N ′

2) by replacing N ′
2 by

(1/2)N ′
1 + (1/2)N ′

2 if necessary. Next, we want to apply Lemma 2.3 (2).
To do so, take H ′

Q,H ′
Z, N ′

1, N
′
2 as H, L,N1, N2 in 2.1. Identify σ′ with Q2

≥0

by the correspondence N ′
1 ↔ (1, 0), N ′

2 ↔ (0, 1). Then, the pullback of
σ′ by the projection gQ → g′Q, which is isomorphic to σ′ × H ′

Q, is identi-
fied with X in 2.1. Take J in the above as the subspace J in Lemma 2.3.
Then clearly N ′

1
−1N ′

2J = J . Apply Lemma 2.3 (2), and, since we have
N ′

1J + N ′
2J = N ′

2J = A, we see (1) after replacing N ′
2, as desired.

4.4 Hereafter we assume (1) in 4.3. We will prove that the set

{Ad(γ)(τ) | γ ∈ Γu, τ is a face of σ}
∪ {Ad(γ)(τ ′0) | γ ∈ Γu, τ is a face of σ}

is a weak fan.
Let σ1, σ2 be two elements of this set. It suffices to show that the

condition 1.7 (2) is satisfied. Since it is trivial if one of them is 0 or 1-
dimensional, we may assume that both are 2-dimensional.

First, suppose σ1 = Ad(γ)(σ′0) for some γ ∈ Γu and σ2 = σ′0. Then, the
condition 1.7 (2) is satisfied by [7, Theorem 6.2.1]. The proof of [7, Theorem
6.2.1] also works for σ1 = Ad(γ)(σ) for some γ ∈ Γu and σ2 = σ (see [8,
Theorem 3.1]).

Hence the rest is to show 1.7 (2) for σ1 = Ad(γ)(σ) for some γ ∈ Γu

and σ2 = σ′0. We may assume that γ = 1. If σ ∩ σ′0 = {0}, then 1.7 (2) is
clearly satisfied. Hence, by (1) in 4.3, what to see is the following (2), which
completes the proof of Theorem 1.13.

(2) Let F ∈ Ď. Assume that (σg, F ) and ((σ′0)g, F ) generate nilpotent
orbits, and that σ and σ′0 have a common interior point. Assume also that
N1(e) ∈ A, where N1 is the unique element of σ lying over N ′

1. Then, σ

coincides with σ′0.
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4.5 Let the notation and the assumption be as in 4.4 (2). We prove
N1(e) ∈ M−3, where M = M(N1 + N2,W ). First, the admissibility implies

(3) N1(e) ∈ Im(N ′
1).

In fact, take an element e + h (h ∈ H ′
Q) of M0. Then, N1(e) + N1(h) ∈

M−2 ∩W−1 = (W (N ′)[1])−2 ⊂ Im(N ′
1). Hence, (3) follows.

Next, since σ and σ′0 have a common interior point, there is a positive
rational number ε < 1 such that (1− ε)N1 + εN2 is in σ′0. Then,

(4)
(
(1− ε)N1 + εN2

)
(e) = 0.

Since e ∈ W0 and M = M((1 − ε)N1 + εN2,W ), by the well-known
property of the relative weight filtration (see, for example, [7, 1.2.1.3]), (4)
implies that

(5) e ∈ M0.

Since N1 sends Mw into Mw−2 for any w, we have

(6) N1(e) ∈ M−2.

Next, since σ is a nilpotent cone, we have N1N2 = N2N1. Hence, by
(4),

0 = N1

(
(1− ε)N1 + εN2

)
(e)

=
(
(1− ε)N1 + εN2

)
(N1(e))

=
(
(1− ε)N ′

1 + εN ′
2

)
(N1(e)).

Letting N ′′
2 := (1− ε)N ′

1 + εN ′
2, we have

(7) N1(e) ∈ Ker(N ′′
2 ).

On the other hand, by Proposition 3.3,

(8) N1(e) ∈ A = (N ′
2N

′
1
−1)k(0) = (N ′′

2 N ′
1
−1)k(0) (k À 0).

Combining (3), (6), (7) and (8), we see N1(e) ∈ M−2 ∩ Im(N ′
1) ∩

Ker(N ′′
2 ) ∩ (N ′′

2 N ′
1
−1)k(0).

Since Ker(N ′′
2 ) ⊂ ⋂∞

j=1

(
(N ′′

2
j)−1(Im N ′

1
j+1)

)
, by Proposition 3.2, we

conclude

(9) N1(e) ∈ M−3.
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4.6 We continue to work under the assumption in (2) in 4.4. Next we
prove that, using the Griffiths transversality, N1(e) is in F−1 ∩ F

−1
. Since

F (grW
0 )0 = C, there is an element h of H ′

C such that e + h ∈ F 0. Since
(σg, F ) generates a nilpotent orbit, we have N1(e)+N ′

1(h) ∈ F−1. Similarly,
since ((σ′0)g, F ) generates a nilpotent orbit, we have N ′

1(h) ∈ F−1. Hence,
N1(e) =

(
N1(e) + N ′

1(h)
) − N ′

1(h) ∈ F−1. Since this element is real, it is

also in F
−1

.
Together with (9) in 4.5, we see that N1(e) belongs to the subspace

F−1∩F
−1∩M−3, which vanishes by the fact that (M, F ) is a mixed Hodge

structure. Hence, N1(e) = 0. Thus, two 2-dimensional cones σ and σ′0 have
a common 1-face. Since they also have a common interior point by assump-
tion, they coincide, which completes the proof of (2) in 4.4 and Theorem
1.13. ¤

5. Algebraicity of zero loci

Here, as an application of Corollary 1.14, we give an alternative proof of
the following theorem, which is a special case of a theorem by P. Brosnan and
G. Pearlstein [1] (independently proved by C. Schnell [13] and by K. Kato,
C. Nakayama, and S. Usui [6]).

Theorem 5.1 Let S be a complex manifold. Let Y be a divisor with
normal crossings on S. Assume that for each point of S, there are at most
two components passing through it. Let H be a variation of PHS of weight
−1 and let J(H) be the associated intermediate Jacobian. Let ν : S∗ :=
S − Y → J(H) be an admissible normal function ([11]). Let Z(ν) ⊂ S∗ be
its zero locus. Then, the closure of Z(ν) in S is analytic.

Corollary 5.2 Let S∗ be a smooth complex algebraic surface. Let H be
a variation of PHS of weight −1 and let ν : S∗ → J(H) be an admissible
normal function. Then the zero locus Z(ν) ⊂ S∗ is algebraic.

5.3 To deduce Corollary 5.2 from Theorem 5.1, we take a smooth com-
pactification S of S∗ such that Y := S − S∗ satisfies the assumption in
Theorem 5.1. (Here, we correct a misprint in the part of [6] corresponding
to this step: In the second last paragraph in Introduction of [6], “k = 0, 1”
should be “k = 0, w, where w is the weight of H in 0.2”.)

To prove Theorem 5.1, we endow S with the log structure associated to
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Y .
Let ν0 : S∗ → J(H) be the zero section. Then, Z(ν) = {s ∈ S∗ | ν(s) =

ν0(s)}. It is enough to prove that there is a closed analytic subset Z such
that Z ∩ S∗ = Z(ν).

Since the problem is local on S and since we can replace S by a finite
ramified covering, we may and do assume that the local monodromy groups
along Y are unipotent. Then, H extends uniquely to a log mixed Hodge
structure on S, which is still denoted by H.

5.4 By Corollary 1.14, we may assume that there is a log Néron model
JS,Σ for ν and ν0. We denote by ν̃ and ν̃0 the extended sections, and let
Z := {s ∈ S | ν̃(s) = ν̃0(s)}. We may assume that S is Hausdorff. Then,
JS,Σ is also Hausdorff so that Z is a closed analytic subset by Proposition
in [4, Section 4]. Since Z(ν) = Z ∩S∗, this completes the proof of Theorem
5.1.
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