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Projection of generic 1 and 2-parameter families of space curves
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Abstract. The present paper deals with the study of the geometrical properties of

generic 1 and 2-parameter families of space curves by using projections into planes.

It presents directions of projection and conditions on the coefficients of these families

such that the projection exhibits Morsifications of the A4, A6 and E6 singularities and

transitions between the Morsifications of the E8 singularity.
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1. Introduction

Given a C∞ embedded space curve γ : I → R3 where I ⊂ R is an
open interval, we can look at the orthogonal projections of γ into planes.
David [4] showed that there is a residual subset Ω ⊂ C∞(I,R3) endowed
with the Whitney C∞-topology such that the only singularities that can
appear in any orthogonal projection of γ are the following 10 A-classes:
A0, A1, . . . , A5, D4, D5, D6 and Ẽ7. Moreover, each one of these 10 singu-
larities corresponds to a geometric phenomenon of the space curve γ (zero
torsion point, cross tangent, trisecant line, etc.). The curves in the subset Ω
are called projection-generic by David in [4] (see also [12] and more recently
[13]). We say that γ is generic if it is projection-generic in the above sense.

In [5] we obtained a classification of the singularities of orthogonal pro-
jections of a generic space curve γ : I → R3, which takes into account the flat
geometry of the projected plane curve α. This classification is a refinement
of the one in [4]. (See also [11]). With the additional information on the ge-
ometry of γ, we showed that the above classes split into several Ah-classes,
totalling 17 classes for generic space curves. A geometric characterization of
each of the Ah-classes is given in [5] in terms of the geometry of both space
curve and direction of projection.

Given a projection-generic curve γ, it follows from genericity that it is
an embedding and moreover, for any t ∈ I, γ′(t) and γ′′(t) are not collinear.
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In particular, it has a well defined Frenet frame. A line ` in R3 which meets
the curve γ in 2, 3 or 4 points is said to be a secant, trisecant or quadrisecant
line, respectively. A cross tangent is a secant line which is tangent to one of
the points. A plane π in R3 which is tangent to the curve in 2 or 3 points
is called a bitangent or tritangent plane, respectively. Finally, we say that
π has contact of order n with γ at t0 provided that γ(k)(t0) is parallel to π

for all 1 ≤ k ≤ n and γ(n+1)(t0) is not parallel to π. A brief review of the
generic curves and projections is presented in Section 2.

In this paper we study the geometric properties of generic 1 and 2-
parameter families of space curves by the transition analysis of the bifurca-
tion set of projections. This study is presented in Sections 3 and 4, see for
example: Figures 1, 2, 4, 5 and their comments. By observing the bifur-
cation set of projections we find regions where the germ of projection has
a maximal number of real double points (this is called Morsification). It
was proved in Gusein-Zade [7] and A’Campo [1] that in the case of germs
of plane curves always exist such Morsifications and Mond [8] proved the
maximum number m of double points that appear in a real deformation of
a quasi-homogeneous singularity is given by

m = Ae-cod(f) + r − 1, (1)

where r is the number of branches of the curve.
Here we find explicitly the directions of projections and conditions on

the coefficients of a generic family of space curves such that the projec-
tion exhibits Morsifications of the A4, A6, E6 singularities and transitions
between the Morsifications of the E8 singularity. This study is presented in
Section 5.

2. Generic curves and projections

The geometry of a space curve γ : I → R3 can be described by analyz-
ing the contacts of curves with the straight lines and planes in R3. These
contacts can be studied with the help of the following functions:

Definition 2.1 Let γ be a regular space curve. Then we define the func-
tions

K(t) = ‖γ′(t)× γ′′(t)‖2 and T (t) = det
(
γ′(t), γ′′(t), γ′′′(t)

)
.
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Note that these are the numerators of the curvature and torsion of γ, re-
spectively.

The properties of these functions were studied in [9] and [10]. Observe
that K vanishes at t0 if and only if γ has contact of order at least 2 with its
tangent line at t0. Provided that K(t0) 6= 0, we have T (t0) = 0 if and only
if the osculating plane has contact at least 3 with γ at t0.

Definition 2.2 Let t0 be an element of I. We say that γ has an n-
flattening at t0, n ≥ 1, if T (i)(t0) = 0, i = 0, . . . , n, T (n+1)(t0) 6= 0.

Definition 2.3 We say that γ with an n-flattening at t0 is of type A when
K(t0) 6= 0 (i.e., the curvature is not zero) and of type B when K(t0) = 0
(i.e., when the curvature vanishes).

Remark 2.4 Consider

γ(t) = (t, f(t), g(t)) = (t, a2t
2 + a3t

3 + O(t4), b3t
3 + b4t

4 + O(t5)).

Suppose that γ has a 1-flattening at t0 = 0. Then

T (0) = 0 ⇔ a2b3 = 0 and T ′(0) = 0 ⇔ a2b4 = 0.

If γ has a 1-flattening of type A, then b3 = b4 = 0 and

T ′′(0) 6= 0 ⇔ a2b5 6= 0.

Thus, we can write f(t) = a2t
2+O(t3) and g(t) = b5t

5+O(t6) with a2b5 6= 0.
On the other hand, if γ has a 1-flattening of type B, then a2 = 0 and

T ′′(0) 6= 0 ⇔ a3b4 − a4b3 6= 0.

Therefore, we can write f(t) = a3t
3 + a4t

4 + O(t5) and g(t) = b3t
3 + b4t

4 +
O(t5) with a3b4 − a4b3 6= 0. Analogously, if γ has a 2-flattening of type A
we can write f(t) = a2t

2 + O(t3) and g(t) = b6t
6 + O(t7) with a2b6 6= 0.

If γ has a 2-flattening of type B, by using an isometry in R3, we can write
f(t) = a3t

3 + O(t4) and g(t) = b5t
5 + O(t6) with a3b5 6= 0.

The family of orthogonal projections of γ : I → R3 is given by
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P : I × S2 → TS2

(t,v) 7→ (
v, γ(t)− 〈γ(t),v〉v)

where TS2 is the tangent bundle of the sphere S2. We denote the projection
of γ along the direction v to TvS2 by Pv(t) = γ(t)−〈γ(t),v〉v. We consider
a modified family of projections that is affine equivalent to P , so the flat
geometry of the projected curve is preserved. If the singularity is a local
one, we write

γ(t) = (t, f(t), g(t)) = (t, a2t
2 + a3t

3 + O(t4), b3t
3 + b4t

4 + O(t5)) (2)

and project along directions (
√

1− u2 − v2, u, v) near (1, 0, 0) to the fixed
plane (0, u, v). The modified family of projections is given by

P̃ : I × S2 → TS2

(t, (u, v)) 7→ (f(t)− ut, g(t)− vt). (3)

In particular, P̃(0,0)(t) = (f(t), g(t)), which is a singular germ. As
pointed out in the introduction, the A-classes of the singularities of P̃(0,0)

that can occur generically are those of Ae-codimension≤ 2. The family
P̃(u,v) is a versal unfolding of these singularities (see [6]). The bifurcation
set Bif(P̃ ) of P̃ is the set of (u, v) for which this map has A2, A3 or D4

singularities. We denote these sets by:

Cusp Curve (CC): projection of the curve in a direction containing a
tangent line (A2 singularity). This set consists of (u, v) for which

∂P̃(u,v)

∂t
(t) = 0. (4)

Tacnode Curve (TC): projection of the curve in a direction contained in
a bitangent plane and the direction given by the secant joining the tangency
points (A3 singularity). This set consists of (u, v) for which there are two
distinct points t and s such that:

P̃(u,v)(t)− P̃(u,v)(s)
t− s

= 0; (5)
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∂P̃(u,v)

∂t
(t) //

∂P̃(u,v)

∂s
(s). (6)

Triple Point Curve (TPC): projection of the curve in a trisecant direction
(D4 singularity). This set consists of (u, v) for which there are three distinct
points t, s and r such that:

P̃(u,v)(t)− P̃(u,v)(s)
t− s

= 0; (7)

1
s− r

(
P̃(u,v)(t)− P̃(u,v)(s)

t− s
− P̃(u,v)(t)− P̃(u,v)(r)

t− r

)
= 0. (8)

When we consider a generic 1 and 2-parameter family of space curves,
more degenerate singularities can occur in the projections. Bruce and
Gaffney [2] classified the simple singularities of irreducible plane curves and
their list is given in Table 1.

Table 1. Simple singularities of irreducible plane curves.

Name Normal form Ae-cod

Immersion (t, 0) 0

A2k (t2, t2k+1) k

E6k (t3, t3k+1) 3k

E6k+2 (t3, t3k+2) 3k + 1

− (t3, t3k+1 + t3p+2), k ≤ p < 2k, k, p > 1 k + p + 1

− (t3, t3k+1 + t3p+2), p ≤ k < 2p, k, p > 1 k + p + 1

W12 (t4, t5); (t4, t5 + t7) 6; 5

W18 (t4, t7); (t4, t7 + t9); (t4, t7 + t10) 9; 7; 8

W ]
1,2k−5 (t4, t6 + t2k+1), k ≥ 3. k + 3

The following proposition shows the conditions on the coefficients of γ

as in (2) so that projection P̃(0,0) given in (3) has relevant local singularities.
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Proposition 2.5 Consider γ as in (2). The projection P̃(0,0) has one of
the following singularities:

( i ) A2 ⇔ a2b3 6= 0,

( ii ) A4 ⇔ a2 6= 0, b3 = 0 and a2b5 − 2a3b4 6= 0,

(iii) A6 ⇔ a2 6= 0, b3 = 0, a2b5 − 2a3b4 = 0 and a2
2(a2b7 − 3b6a3) +

b4(3a3
3 − 2a2

2a5 + 4a2a3a4) 6= 0,

(iv) E6 ⇔ a2 = 0 and b3a4 − b4a3 6= 0,

(v ) E8 ⇔ a2 = 0, b3a4 − b4a3 = 0 and b3a5 − b5a3 6= 0.

Proof. (i) The 3-jet of the projection P̃(0,0)(t) is given by

j3P̃(0,0)(t) = (a2t
2 + a3t

3, b3t
3).

Thus, we have a A2 singularity if and only if a2b3 6= 0.
(ii) Consider the 5-jet of the projection with a2 6= 0 and b3 = 0. Other-

wise, we have a A2 singularity. Thus

j5P̃(0,0)(t) = (a2t
2 + · · ·+ a5t

5, b4t
4 + b5t

5).

With changes of coordinates in the source and target, we obtain that
j5P̃(0,0)(t) is A-equivalent to

(
t2, (a2b5 − 2a3b4)t5

)
.

Therefore the projection has a A4 singularity if and only if a2 6= 0, b3 = 0
and a2b5 − 2a3b4 6= 0.

(iii) The proof of the A6 singularity follows similarly.
(iv) Consider j4P̃(0,0)(t) with a2 = 0. Otherwise, we have a A2k singu-

larity. Thus

j4P̃(0,0)(t) = (a3t
3 + a4t

4, b3t
3 + b4t

4).

If P̃(0,0) has E6 singularity then b3a4 − b4a3 6= 0. Now, if b3a4 − b4a3 6= 0,
without loss of generality we can assume that a3 6= 0 or a4 6= 0. Consider
a3 6= 0. So with changes of coordinates in the source and target we obtain

j4P̃(0,0)(t) = (t3, (b3a4 − b4a3)t4).
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Therefore, we obtain the E6 singularity if and only if a2 = 0 and b3a4 −
b4a3 6= 0.

(v) The proof of the E8 singularity follows similarly. ¤

3. Projection of generic 1-parameter family of space curves

Consider a 1-parameter family of space curves

γ : R× R→ R3

(t, a) 7→ γa(t).

Correspondingly we have a 1-parameter families of functions:

K : R× R→ R T : R× R→ R

(t, a) 7→ K(t, a) = Ka(t). (t, a) 7→ T (t, a) = Ta(t).

For simplicity, we denote T0(0), ∂T0(0)/∂t, ∂2T0(0)/∂t2, . . . by T (0), T ′(0),
T ′′(0), . . . respectively. We will use the same notations for K. By using the
standard transversality techniques, see [10] or [12] for example, it is possible
to show the following results:

Proposition 3.1 The subset of families γ : R × R → R3 such that the
function T : R×R→ R has 0 as a regular value is residual in C∞(R×R,R3)
with the Whitney C∞-topology.

Proposition 3.2 There is a residual subset among the family of curves
satisfying the hypothesis of Proposition 3.1 for which if T (t) = T ′(t) = 0
then T ′′(t) 6= 0, for any t.

Definition 3.3 The family of curves described by Proposition 3.2 will be
called a generic 1-parameter family of curves.

It follows from Propositions 3.1 and 3.2 that the genericity condition of
the family of curves γa is given by

Ta(t) = T ′a(t) = 0 =⇒ ∂T

∂a
(t, a) 6= 0. (9)

Given a generic 1-parameter family, when taking a plane projection we
have a 3-parameter deformation of the plane curve singularity: one parame-
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ter is the parameter of the space curve family and the other two parameters
correspond to the direction of projection.

Henceforth we will consider the generic 1-parameter family given by

γa(t) = (t, f(t) + ap(a, t), g(t) + aq(a, t)) (10)

where p, q ∈ C∞(R2) and γ0(t) = (t, f(t), g(t)) = (t, a2t
2 + O(t3), b3t

3 +
O(t4)) has a 1-flattening at the origin. Therefore, similarly to equation (3),
the family of projections of γa is given by

P̃(u,v)(t) =
(
f(t) + ap(a, t)− ut, g(t) + aq(a, t)− vt

)
. (11)

Proposition 3.4 Let γa as in (10) and P̃(u,v) as in (11).

( i ) If γ0 is of type A, then the projection P̃(0,0) has an A4 singularity.
( ii ) If γ0 is of type B, then the projection P̃(0,0) has an E6 singularity.

These singularities are versally unfolded by the family of projections P(u,v).

Proof. The first part of the proof follows from Remark 2.4 and Proposi-
tion 2.5. In the second part, consider the generic 1-parameter family as in
equation (10). Therefore,

Ta(t) = det(γ′a(t), γ′′a (t), γ′′′a (t))

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 f ′(t) + a
∂p

∂t
(a, t) g′(t) + a

∂q

∂t
(a, t)

0 f ′′(t) + a
∂2p

∂t2
(a, t) g′′(t) + a

∂2q

∂t2
(a, t)

0 f ′′′(t) + a
∂3p

∂t3
(a, t) g′′′(t) + a

∂3q

∂t3
(a, t)

∣∣∣∣∣∣∣∣∣∣∣∣

.

By calculating the above determinant we have

Ta(t) =
(

f ′′(t) + a
∂2p

∂t2
(a, t)

)(
g′′′(t) + a

∂3q

∂t3
(a, t)

)

−
(

f ′′′(t) + a
∂3p

∂t3
(a, t)

)(
g′′(t) + a

∂2q

∂t2
(a, t)

)
.
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The genericity condition (9) of family γa is given by

∂T

∂a
(0, 0) = f ′′(0)

∂3q

∂t3
(0, 0) + g′′′(0)

∂2p

∂t2
(0, 0)

− f ′′′(0)
∂2q

∂t2
(0, 0)− g′′(0)

∂3p

∂t3
(0, 0) 6= 0.

When γ0 has a 1-flattening of type A, the projection of γa is given by

P̃(u,v)(t) = (a2t
2 + a3t

3 + O(t4) + ap(a, t)− ut, b5t
5 + O(t6) + aq(a, t)− vt)

and the genericity condition is given by

∂T

∂a
(0, 0) = 2a2

∂3q

∂t3
(0, 0)− 6a3

∂2q

∂t2
(0, 0) 6= 0.

Since P̃(0,0) has an A4 singularity at the origin, it follows from Proposition
2.5 that

j5
(
TAe(P̃(0,0)) + R{ ˙̃Pa, ˙̃Pu, ˙̃Pv}

)
⊇ J5(1, 2),

where ˙̃Pa = ∂P̃(0,0)(t)/∂a, except for terms (0, t2) and (0, t3). It is straight-

forward to check that ˙̃Pa and the genericity conditions span these terms,
so that the standard criterion for versality is satisfied (for details see [3]).
When γ0 has a 1-flattening of type B, the projection of γa is given by

P̃(u,v)(t) = (a3t
3+a4t

4+O(t5)+ap(a, t)−ut, b3t
3+b4t

4+O(t5)+aq(a, t)−vt),

with a3b4 − a4b3 6= 0. Thus, the genericity condition of γa is given by

∂T

∂a
(0, 0) = 6b3

∂2p

∂t2
(0, 0)− 6a3

∂2q

∂t2
(0, 0) 6= 0.

It is easy to show that the criterion for versality is satisfied if and only if
∂T (0, 0)/∂a 6= 0 and the proposition follows. ¤

Remark 3.5 Geometrically Proposition 3.4 can be reinterpreted by stat-
ing that the projection onto the normal plane at a degenerate torsion zero
(zero curvature) point has a singularity of type A4 (E6).
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In the following two subsections we study the geometrical properties of a
generic 1-parameter family such that γ0 is of types A and B. For simplicity,
a generic 1-parameter family such that γ0 is of type A (respectively, B) will
be denoted by 1-flattening of type A (respectively, B).

3.1. 1-flattening of type A
From Remark 2.4 and Proposition 3.4 we can write a 1-flattening of

type A in the form

γa(t) = (t, t2 + O(t3), t5 + at3 + O(t6)) (12)

and its projection is given by

P̃(u,v)(t) = (t2 − ut + O(t3), t5 + at3 − vt + O(t6)). (13)

The bifurcation set of projection P̃(u,v) in the plane (u, v) is given by the
following curves:

( i ) CC: (u, v) = (2t + O(t2), 5t4 + 3at2 + O(t5)).
It follows directly from the equation (4).

( ii ) TC: (u, v) = (t+O(t2),−5t4/4−at2/2−a2/4+O(t5)), where (5u2 +
2a) < 0.
We will consider only the initial terms of the projection given in (13).
In this case equation (5) is given by

(t2 − s2)− u(t− s)
t− s

= 0 and
(t5 − s5) + a(t3 − s3)− v(t− s)

t− s
= 0.

So u = (t + s) and v = (t4 + t3s + t2s2 + ts3 + s4) + a(t2 + ts + s2).
Then by changes of coordinates σ1 = t + s and σ2 = ts we obtain

u = σ1 and v = σ4
1 − 3σ2

1σ2 + σ2
2 + a(σ2

1 − σ2). (14)

Note that the condition σ2
1−4σ2 > 0 ensures that t 6= s. The equation

(6) with these values of u and v is given by (4σ2−σ2
1)(2σ2−3σ2

1−a) =
0. As σ2

1 − 4σ2 > 0 we obtain σ2 = (1/2)(3σ2
1 + a). Substituting the

value of σ2 into equation (14) we obtain
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v = −5
4
σ4

1 −
1
2
aσ2

1 −
1
4
a2.

Therefore u = σ1 and v = −5σ4
1/4 − aσ2

1/2 − a2/4. The condition
(5u2 + 2a) < 0 follows from condition σ2

1 − 4σ2 > 0 substituting
σ1 = u and σ2 = (1/2)(3σ2

1 + a).

Note that the TPC does not appear in this case. When a ≥ 0 the
TC does not occur, thus the bifurcation set is simply given by the CC in
Figure 1. When a = 0 the CC has a degenerate inflection at the origin
corresponding to a 1-flattening of type A (T = T ′ = 0).

Figure 1. Bifurcation set of P when a > 0 and a = 0.

When a < 0 the TC (dotted line in Figure 2) contains two inflection
points corresponding to the two bitangent osculating planes of γa. This
property is not detected by stratum A3. (See [5] for more details). The
CC has two inflection points corresponding to the two zero torsion points
of γa (see Figure 2). Similar results were obtained in [10] considering the
associated bitangency surfaces and the singularities of their projections onto
R.

Figure 2. Bifurcation set of P when a < 0.

When a < 0 we obtain a region in the plane (u, v) so that the projection
of γa has the maximum number of double points (Morsification) of the A4

singularity. In Section 5 presents the directions of projections where this
Morsification occurs.
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3.2. 1-flattening of type B
From Remark 2.4 and Proposition 3.4 we can write a 1-flattening of

type B in the form

γa(t) = (t, t3 + O(t4), t4 + at2 + O(t5)) (15)

and its projection is given by

P̃(u,v)(t) = (t3 − ut + O(t4), t4 + at2 − vt + O(t5)). (16)

A calculation shows that the bifurcation set of P̃(u,v) in the plane (u, v) is
given by the following curves:

( i ) CC: (u, v) = (3t2 + O(t3), 4t3 + 2at + O(t4)),
( ii ) TC: (u, v) = ((3t2 − a)/2 + O(t3), 2t3 + O(t4)), with (3t2 − 2a) > 0,

The calculations for the curves CC and TC are analogous to the
calculations in the previous cases and and will be omit here.

(iii) TPC: u = −a + O(u, v) with (4a3 + 27v2) < 0.

We will consider only the initial terms of the projection given in (16).
Here the equations (7) and (8) are given by

(t2 + ts + s2)− u = 0,

(t3 + s2t + t2s + s3) + a(t + s)− v = 0,

(sr + s2 + ts + tr + t2 + r2) + a = 0,

(s + t + r) = 0.

Then by changes of coordinates σ1 = t + s and σ2 = ts we obtain

(σ2
1 − σ2)− u = 0,

(σ3
1 − 2σ1σ2) + aσ1 − v = 0,

(r2 + rσ1 + σ2
1 − σ2) + a = 0, (17)

(r + σ1) = 0. (18)

From the equation (18), r = −σ1. Substituting into equation (17) we
obtain σ2

1 − σ2 + a = 0. Isolating σ2 and substituting into the other
equations we have
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u = −a,

σ3
1 + aσ1 + v = 0. (19)

So we have a triple point when u = −a and the equation (3) has
three real roots. This is equivalent to (4a3 + 27v2) < 0. Therefore,
(u, v) = (−a, v) with v satisfying the inequality (4a3 + 27v2) < 0.

When a ≥ 0 the TPC does not appear. In the inflection points of CC
(solid line in Figure 3) we have the points where the torsion of the curve
γa is zero. When a = 0, the two zero torsion points coalesce at the origin,
corresponding to the zero curvature points of γ0. (Figure 3).

Figure 3. Bifurcation set of P when a > 0 and a = 0.

When a < 0, the two zero torsion points disappear. On the other hand,
two new cross tangents appear at the intersection of three curves. The TC
(dotted line in Figure 4) has a cusp where an A5 singularity occurs. The
geometrical interpretation of the A5 singularity is given in [5]. Again, when
a < 0 we obtain a region in the plane (u, v) so that the projection of γa has
the maximum number of double points of the E6 singularity (see Figure 4).

4. Projection of a generic 2-parameter family of space curves

Consider a 2-parameter family of space curves

γ : R× R2 → R3

(t, a, b) 7→ γ(a,b)(t).

Correspondingly we have a 2-parameter families of functions:K : R×R2 →
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Figure 4. Bifurcation set of P when a < 0.

R, K(t, a, b) = K(a,b)(t) and T : R×R2 → R, T (t, a, b) = T(a,b)(t). Similarly
to Section 3 we have the following proposition.

Proposition 4.1

( i ) The subset of families γ : R × R2 → R3 such that the function T :
R × R2 → R has 0 as a regular value is residual in C∞(R × R2,R3)
with the Whitney C∞-topology.

( ii ) There is a residual subset among the families of curves satisfying the
hypothesis of item (i) for which if T (t) = T ′(t) = T ′′(t) = 0 then
T ′′′(t) 6= 0, for any t.

Definition 4.2 The family of curves described by Proposition 4.1 (ii) will
be called a generic 2-parameter family of curves.

We consider the generic 2-parameter families given by

γ(a,b)(t) =
(
t, f(t) + ap1(a, b, t) + bp2(a, b, t),

g(t) + aq1(a, b, t) + bq2(a, b, t)
)

(20)

where pi, qi ∈ C∞(R3), i = 1, 2 and γ(0,0)(t) = (t, f(t), g(t)) = (t, a2t
2 +

O(t3), b3t
3+O(t4)) has a 2-flattening at the origin. The family of projections

of γ(a,b) as in (20) is given by
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P̃(u,v)(t) =
(
f(t) + ap1(a, b, t) + bp2(a, b, t)− ut,

g(t) + aq1(a, b, t) + bq2(a, b, t)− vt
)
. (21)

Proposition 4.3 Consider γ(a,b) as in (20) and P̃(u,v) as in (21).

( i ) If γ(0,0) is of type A and T (4)(0)K(0) − 5T ′′′(0)K ′(0) 6= 0, then the
projection P̃(0,0) has an A6 singularity.

( ii ) If γ(0,0) is of type B, then the projection P̃(0,0) has an E8 singularity.

These singularities are versally unfolded by the family of projection P̃(u,v) if
and only if

(iii) A6 : always.
(iv) E8 :

K ′′(0)
(

∂T(0,0)

∂b
(0)

∂3T(0,0)

∂t2∂a
(0)− ∂T(0,0)

∂a
(0)

∂3T(0,0)

∂t2∂b
(0)

)

+ T (3)(0)
(

∂T(0,0)

∂a
(0)

∂2K(0,0)

∂t∂b
(0)− ∂T(0,0)

∂b
(0)

∂2K(0,0)

∂t∂a
(0)

)
6= 0.

Proof. The proof of cases (i) and (ii) is analogous to the proof of Proposi-
tion 3.4.

(iii) When γ(0,0) has a 2-flattening of type A, the projection P̃(u,v) is
given by

P̃(u,v)(t) =
(
a2t

2 + a3t
3 + O(t4) + ap1(t, a, b) + bp2(t, a, b)− ut,

b6t
6 + b7t

7 + O(t8) + aq1(t, a, b) + bq2(t, a, b)− vt
)
,

with a2b6 6= 0. Since P̃(0,0) has an A6 singularity at the origin, it follows
from Proposition 2.5 that a2b7 − 3a3b6 6= 0. So

W = j7
(
TAe(P̃(0,0)) + R{ ˙̃Pa, ˙̃Pb,

˙̃Pu, ˙̃Pv}
)
⊇ J7(1, 2),

where ˙̃Pa = ∂P̃(0,0)(t)/∂a, except for terms (0, t2) and (0, t3). We can write
W by
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(
2a2t + 3a3t

2 + · · ·+ 8a8t
7

6b6t
5 + 7b7t

6 + 8b8t
7

)
ξ + η(a2t

2 + · · ·+ a7t
7, b6t

6 + b7t
7)

+ R{(p1(t, 0, 0), q1(t, 0, 0)), (p2(t, 0, 0), q2(t, 0, 0)), (t, 0), (0, t)},

where ξ ∈ C∞(R) and η(x, y) = (η1(x, y), η2(x, y)) with ηi ∈ C∞(R2).
We obtain (0, a2t

2 + a3t
3) taking η2(x, y) = x. On the other hand,

choosing p1(t, 0, 0) = p2(t, 0, 0) = q2(t, 0, 0) ≡ 0 and q1(t, 0, 0) = ã1t+ ã2t
2 +

O(t3), we have the term (0, ã2t
2 + ã3t

3). Thus, the remaining terms are
obtained when a2ã3 − ã2a3 6= 0, which is precisely the genericity condition

∂T

∂a
(0) = 2a2

∂3q1

∂t3
(0)− 6a3

∂2q1

∂t2
(0) 6= 0.

(iv) The proof is similar to the proof of item (iii), therefore we have
omitted it here. ¤

Remark 4.4

( i ) The condition of γ(0,0) being of types A and B in Proposition 4.3
means that the curve has degenerate zero of torsion (T (0) = T ′(0) =
T ′′(0) = 0) and degenerate zero of curvature, respectively, but the
remaining conditions are a bit of a mystery.

( ii ) It follows from Proposition 4.3 (i) that the condition for P̃(u,v) to be a
versal unfolding of the A6 singularity depends only on the parameters
a, u and v. Thus, we take

γ(a,0)(t) = (t, t2 + O(t3), t7 + t6 + at3 + O(t8))

as a generic 2-parameter family of type A.
(iii) A generic 2-parameter family of space curves with the hypotheses of

Proposition 4.3 is also residual in C∞(R×R2,R3) with the Whitney
C∞-topology.

4.1. 2-flattening of type A
From Remark 4.4 we can write a generic family of space curves with a

2-flattening of type A in the form

γ(a,0)(t) = (t, t2 + O(t3), t7 + t6 + at3 + O(t8)) (22)
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and its projection is given by

P̃(u,v)(t) = (t2 − ut + O(t3), t7 + t6 + at3 − vt + O(t8)). (23)

The bifurcation set of projection P̃(u,v) in the plane (u, v) is given by the
following curves:

( i ) CC: (u, v) = (2t + O(t2), 7t6 + 6t5 + 3at2 + O(t7)).
( ii ) The tacnode curve, TC, is given by the implicit equation:

− 49u12 − 168u11 − 228u10 − 140u9 + (210a− 36)u8 + 318au7

+ (192a− 378v)u6 + (36a− 648v)u5 − (432v + 57a2)u4

− (108v + 42a2)u3 + (54av − 9a2)u2 + (54au + 27v)v

+ 4a3 + O(u, v)13 = 0,

with the condition

(7u6 + 12u5 + 5u4 − au2 + 2au + 6v)(−7u4 − 8u3 − 3u2 + a) > 0.

Note that the TPC does not appear in this case.

Remark 4.5 The calculations for the curves CC and TC are analogous
to previous calculations and will be omit here. We observe that the curve
TC was found with the aid of the software Maple.

When a < 0 the TC (dotted line in Figure 5) contains two inflection
points corresponding to the two bitangent osculating planes of γa. The CC
(solid line in Figure 5) has two inflection points corresponding to the two
zero torsion points of γa. When a = 0 the CC (solid line) has a degenerate
inflection (κ(0) = κ′(0) = κ′′(0) = 0) corresponding to a degenerate zero
torsion point (T = T ′ = T ′′ = 0) of curve γ0. (Figure 5).

When 0 < a < 80/343 we obtain a region in the plane (u, v) so that
the projection of γa has the maximum number of double points of the A6

singularity. The TC has a cusp where an A5 singularity occurs. (Figure 6
left). The number 80/343 is obtained by calculating the contact between
the curves CC and TC.

When 80/343 ≤ a < 135/343 the region of the Morsification disappears.
(Figure 6 right). The CC has a degenerate inflection (κ(0) = κ′(0) = 0)
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Figure 5. Bifurcation set of P when a < 0 and a = 0.

Figure 6. Bifurcation set of P when 0 < a < 80/343 and 80/343 ≤ a < 135/343.

Figure 7. Bifurcation set of P when a = 135/343 and a > 135/343.

when a = 135/343 corresponding to a degenerate zero torsion point (T =
T ′ = 0) of curve γ0. When a ≥ 135/343 the TC disappears. (Figure 7).

4.2. 2-flattening of type B
From Remark 2.4 and Proposition 4.3 we can write a generic family of

space curves with a 2-flattening of type B in the form

γ(a,b)(t) = (t, t3 + O(t4), t5 + at2 + bt4 + O(t6)) (24)

and its projection is given by P̃(u,v)(t) =
(
t3 − ut + O(t4), t5 + at2 + bt4 −

vt + O(t6)
)
.

In this case, the bifurcation set has many transitions, therefore it is
impractical to study the geometric properties of such families from the point
of view previously used. Thus we present only the curves that compose the
bifurcation set of projection in the plane (u, v).
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( i ) CC: (u, v) = (3t2 + O(t3), 5t4 + 4bt3 + 2at + O(t5)),
( ii ) The tacnode curve is given by the implicit equation

400u6 − 668b2u5 + (323b4 − 1040v − 704ba)u4

+ 4
(

223b2v − 37a2 − 8b6 +
319
2

b3a

)
u3

+ (896v2 − 48b5a + 533b2a2 − 66b4v + 880abv)u2

+ 6(24a2v + b3av − 4a2b4 + 33a3b− 40v2b2)u + 27v2b4 + 6vb2a2

− 192v2ab− 4a3b3 − 256v3 + 27a4 + O(u, v)7 = 0, with
(

100u7 − 517b2u6 + (−811ba− 160v + 523b4)u5

+
(

10129
8

ab3 + 572b2v − 8691
64

b6 − 1083
4

a2

)
u4

+
(

9947
8

b2a2 − 489
4

vb4 − 8241
32

b5a + 980vba + 64v2 + 9b8

)
u3

+
(

45
32

b6v − 9945
64

b4a2 +
4275

8
ba3 − 144v2b2 + 342va2

− 549
8

vb3a + 9b7a

)
u2

+
(

81a4 +
63
32

b5va− 288v2ba− 45
2

vb2a2 + 9/4a2b6

− 981
32

b3a3 + 63b4v2

)
u

+
81
32

vb4a2 − 27
64

b2a4 − 108v2a2 − 27
2

va3b− 243
64

v2b6 +
81
2

v2ab3

)

> 0.

(iii) TPC: v = u2− b2u− ab + O(u, v)3, with the condition (4u3− 27(a +
ub)2) > 0.
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5. Morsifications

This section describes the directions of projection of some space curves
(parametrized in a simple form) where the Morsifications for the singularities
A4, A6 and E6 occur and transitions between the Morsifications of the E8

singularity. More specifically, we will consider only the initial terms of the
generic families of the space curves given in (12), (15), (22) and (24). For
A4 and A6 singularities we have the following results:

Theorem 5.1 Let γa = (t, t2, t5 + at3). The projection of γa as in (13)
presents a Morsification of the A4 singularity if and only if the direction of
projection is given by v = (u, u4 + au2) with a < 0 and

−
√
−4a

11
< u <

√
−4a

11
.

Proof. If follows from equation (13) that the projection of γa is given by

P̃(u,v)(t) = (t2 − ut, t5 + at3 − vt).

Since an A4 singularity has an Ae-cod = 2, it follows from equation (1) that
P̃(u,v) has at most two double points. Without loss of generality, we can
assume that one double point occurs at the origin. Thus, the projection
P̃(u,v) presents a double point at the origin, given by t1 = 0 and s1 = u, if
and only if the direction is given by v = (u, u4 + au2). The other double
point of P̃(u,v) can be obtained by the system P̃(u,v)(t2) = P̃(u,v)(s2) with
t2 6= s2. So

{
s2 + t2 − u = 0,

s4
2 + s3

2t2 + s2
2t

2
2 + s2t

3
2 + t42 + a(s2

2 + s2t2 + t22)− v = 0.

Thus, s2 = u− t2 according to the first equation. Substituting the value of
s2 into the second equation and using the condition v = u4 + au2, we have

−t2(u− t2)(t22 − ut2 + 3u2 + a) = 0.

Therefore, P̃(u,v) has two double points if and only if the equation t22−ut2 +
3u2 + a has two real roots, which is equivalent to 11u2 + 4a < 0, and the
theorem follows. ¤
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Theorem 5.2 Let γ(a,0) = (t, t2, t7 + t6 + at3). The projection of γ(a,0)

as in (23) presents a Morsification of the A6 singularity if and only if the
direction of projection is given by v = (u, u6 + u5 + au2) with

− 6
11

< u < 0 and

−u3

(
57
16

u +
13
4

)
< a < u2

(
4u2 + 5u +

9
4

)
.

Proof. The proof is similar to the proof of Theorem 5.1, therefore we have
omitted it here. ¤

Unfortunately, the approach used in Theorems 5.1 and 5.2 is not satis-
factory to find Morsifications of the singularities E6 and E8, thus a different
one is required.

5.1. Morsification of the E6 singularity
The E6 singularity has two Morsifications as in Figure 8 which can be

viewed as a Gauss word as follows: Consider ti and si with i = 1, 2, 3, the
parameters for which a plane curve α has double points, that is α(t1) =
α(s1) = a, α(t2) = α(s2) = b and α(t3) = α(s3) = c.

Figure 8. (a) Morsification M1 and (b) Morsification M2.

Definition 5.3 We say that the Morsification of the E6 singularity is of
typeM1 when we have the Gauss word abbcca. We say that the Morsification
is of type M2 when we have the Gauss word abcabc.

Definition 5.3 yields a way to differentiate the two Morsifications of the
E6 singularity, as illustrated in Figure 8. In the next theorem we present
the directions of projection in which the Morsifications of the E6 singularity
are realized as projections of a generic family of space curves.

Theorem 5.4 Let γa = (t, t3, t4 + at2) and P̃(u,v) as in (16). The pro-
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jection P̃(u,v) has a Morsification of the E6 singularity if and only if the
direction of projection is given by v =

(
u,
√

u(u + a)
)

with a < 0, u 6= −a

and −4a/5 < u < (−3 − 6
√

3)a/11. Moreover, the projection P̃(u,v) has a
Morsification:

( i ) M1 when −a < u < ((−3− 6
√

3)/11)a.

( ii ) M2 when −4a/5 < u < −a.

Proof. It is easy to see that the projection P̃(u,v) presents a double point
at the origin, given by t3 = 0 and s3 =

√
u with u > 0, if and only if the

direction of projection is given by v = (u,
√

u(u+a)). Therefore, after some
calculations, the other double points are given by

t2 = −1
4

(√
5u + 4a +

√
u +

√
−2u− 12a− 6

√
u
√

5u + 4a
)
,

s2 = −1
4

(√
5u + 4a +

√
u−

√
−2u− 12a− 6

√
u
√

5u + 4a
)
,

t1 =
1
4

(√
5u + 4a−√u−

√
−2u− 12a + 6

√
u
√

5u + 4a
)
,

s1 =
1
4

(√
5u + 4a−√u +

√
−2u− 12a + 6

√
u
√

5u + 4a
)
.

These points are real, i.e., the projection has a Morsification of the E6

singularity if and only if −4a/5 < u < (−3 − 6
√

3)a/11. Note that when
u = −a the projection has a triple point at the origin. Now we prove (i)
and (ii).

(i) The increasing sequence of parameters t1 < t2 < s2 < t3 < s3 < s1

implies in the Gauss word abbcca. Inequalities t2 < s2 and t3 < s3 are
obvious. By hypothesis, (a + u) > 0, therefore

0 < 4(5u + 4a)(a + u) ⇒
0 < −11u2 − 6ua + 9a2 < 9u2 + 30ua + 25a2 ⇒
0 < −11u2 − 6ua + 9a2 < (3u + 5a)2 ⇒
(−2u− 12a + 6

√
u
√

5u + 4a)(−2u− 12a− 6
√

u
√

5u + 4a)
16

< (3u + 5a)2.

Since u < (−3− 6
√

3)a/11, then (3u + 5a) < 0, hence
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q
(−2u− 12a + 6

√
u
√

5u + 4a)(−2u− 12a− 6
√

u
√

5u + 4a) < 4(−3u− 5a) ⇒

−
`p−2u− 12a + 6

√
u
√

5u + 4a−
p
−2u− 12a− 6

√
u
√

5u + 4a
´2

2
+

− 2u− 12a < −12u− 20a ⇒

20u + 16a <
“q

−2u− 12a + 6
√

u
√

5u + 4a−
q
−2u− 12a− 6

√
u
√

5u + 4a
”2

⇒

2
√

5u + 4a <

q
−2u− 12a + 6

√
u
√

5u + 4a−
q
−2u− 12a− 6

√
u
√

5u + 4a ⇒
√

5u + 4a−
q
−2u− 12a + 6

√
u
√

5u + 4a

< −√5u + 4a−
q
−2u− 12a− 6

√
u
√

5u + 4a ⇒
t1 < t2.

We will prove now the inequality s2 < t3 = 0. By hypothesis, −u2 +a2 < 0,
therefore 4(−u2 + a2) < 0 implies (u + 2a)2 < u(5u + 4a). Since u < (−3−
6
√

3)a/11, then (u + 2a) < 0, hence

(−u− 2a) <
√

u(5u + 4a) ⇒

0 <
u

2
+ a +

√
u
√

5u + 4a

2
⇒

0 <

(
−
√

5u + 4a−√u

4

)2

−
(√

−2u− 12a− 6
√

u
√

5u + 4a

4

)2

⇒
(√

−2u− 12a− 6
√

u
√

5u + 4a

4

)2

<

(
−
√

5u + 4a−√u

4

)2

⇒
√
−2u− 12a− 6

√
u
√

5u + 4a

4
<

√
5u + 4a +

√
u

4
⇒

s2 < 0.

The proof of inequality s3 < s1 is analogous to the proof of the above case.
Thus, we have proved the existence of an increasing sequence of parameters
of type t1 < t2 < s2 < t3 < s3 < s1. According to Definition 5.3, the
Morsification M1 of the E6 singularity occurs.

(ii) Analogously to the previous case we can show that t1 < t2 < t3 <
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s1 < s2 < s3. Again according to Definition 5.3, the Morsification M2 of
the E6 singularity occurs. ¤

5.2. Morsification of the E8 singularity
There are three types of Morsifications of the E8 singularity (see [1] or

[7] for more details), which are denoted by M1,M2 and M3 as in Figure 9.

Figure 9. (a) Morsification M1, (b) Morsification M2 and (c) Morsification M3.

The transitions between these Morsifications have a triple point as in
Figure 10.

Figure 10. (a) Transition T12 and (b) Transition T23.

Definition 5.5 The transition between the Morsifications M1 and M2

(respectively, M2 and M3) will be denoted by T12 (respectively, T23).

Consider a generic family of space curves given by

γ(a,b)(t) = (t, t3, t5 + at2 + bt4) (25)

whose projection is given by

P̃(u,v)(t) =
(
t3 − ut, t5 + at2 + bt4 − vt

)
. (26)

We are seeking conditions on the coefficients of the family (25) such that
the projection (26) presents these transitions. Note that we can obtain the
Morsifications M1,M2 and M3 by small deformations in these directions of
projection. Consider t1, t2 and t3 the parameters for which the curve P̃(u,v)
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given by (26) has a triple point, that is P̃(u,v)(t1) = P̃(u,v)(t2) = P̃(u,v)(t3) =
a and t4 and t5 are the parameters for which P̃(u,v) has a double point, that
is P̃(u,v)(t4) = P̃(u,v)(t5) = b. See Figure 10.

Definition 5.6 We say that the transition is of type T12 when we have
the Gauss word abaab. We say that the transition is of type T23 when we
have the Gauss word abbaa.

Lemma 5.7 Let γ(a,b) be as in (25) and P(u,v) as in (26). Then the
projection P̃(u,v) has a transition T12 or T23 if and only if the direction of
projection is given by

v = (u, v) =
(
−a

b
,
a2

b2

)
(27)

with u > 3b2/4 and b 6= 0.

Proof. Without loss of generality, we can assume that the triple point
occurs at the origin. Therefore

P̃(u,v)(ti) = (t3i − uti, t
5
i + at2i + bt4i − vti) = (0, 0) for i = 1, 2, 3.

The triple point occurs at t1 = −√u, t2 = 0 and t3 =
√

u if and only
if u > 0. Substituting these values in the second coordinate of P̃(u,v), we
obtain

{
u2
√

u + bu2 + au− v
√

u = 0,

−u2
√

u + bu2 + au + v
√

u = 0.

By solving the above system we have

{
v = u2,

a = −ub.

Therefore we obtain the equality given in (27) with b 6= 0. Now, the pro-
jection has a transition T12 or T23 if and only if there exists a double point
distinct from the origin. Consider

P̃(u,v)(ti) = (t3i − uti, t
5
i + at2i + bt4i − vti) = (x, y), (28)
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with i = 4, 5, (x, y) 6= (0, 0) and t4 6= t5. Equation (28) and condition (27)
are equivalent to system

{
t3i − uti = x,

(t3i − uti)(t2i + bti + u) = y, i = 4, 5.

Thus, we obtain the equations t2i + bti + u− y/x = 0 which have roots

t4 =
−bx +

√
b2x2 − 4ux2 + 4xy

2x
and t5 =

−bx−
√

b2x2 − 4ux2 + 4xy

2x
.

The condition ∆ = b2x2−4ux2+4xy > 0 ensures the existence of the double
point out of the origin. On the other hand, from equations (28), it follows

{
t34 − ut4 = t35 − ut5 = x,

(t34 − ut4)− (t35 − ut5) = 0.

Therefore, x = b(b2 − u) and y = (−b2 + 2u)x. Substituting the values of x

and y into ∆, we have

∆ = −3b2 + 4u > 0.

The lemma has been proved. ¤

In the proof of Lemma 5.7 we found that a triple point occurs at t1 =
−√u, t2 = 0 and t3 =

√
u. Substituting the values of x and y in t4 and t5

in the proof of Lemma 5.7 we have

t4 =
−b

2
− |b‖u− b2|√4u− 3b2

2b(u− b2)
and t5 =

−b

2
+
|b‖u− b2|√4u− 3b2

2b(u− b2)
.

Lemma 5.8 Consider u > 3b2/4 and the points ti, i = 1, . . . , 5 as above.

( i ) b < 0 and u > b2 if and only if t1 < t5 < t2 < t3 < t4.

( ii ) b > 0 and u > b2 if and only if t4 < t1 < t2 < t5 < t3.

(iii) b < 0 and u < b2 if and only if t4, t5 ∈
(
t1, t2

)
.

(iv) b > 0 and u < b2 if and only if t4, t5 ∈ (t2, t3).

Proof. We will prove only case (i). The remaining cases follow by using a
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similar argument and will be omitted here. Suppose b < 0 and u − b2 > 0.
Then we can write

t4 =
1
2
(− b +

√
4u− 3b2

)
and t5 =

1
2
(− b−

√
4u− 3b2

)
.

We first show that t5 ∈ (t1, t2). Note that

t5 =
−b−√4u− 3b2

2
>
−b−√4u

2
=
−b− 2

√
u

2
> −√u = t1.

On the other hand,

u > b2 ⇒ 4u− 3b2 > b2 ⇒
√

4u− 3b2 > |b|.

Since b < 0, then
√

4u− 3b2 > −b. Thus,

t5 =
−b−√4u− 3b2

2
<
−b

2
+

b

2
= 0 = t2.

The inequality t2 < t3 is obvious. In what follows we prove that t4 > t3 =√
u. It is easy to see that 4b(b +

√
u) < 0, therefore

−3b2 + 4u + 4b(b +
√

u) < −3b2 + 4u

b2 + 4b
√

u + 4u < −3b2 + 4u

(b + 2
√

u)2 < −3b2 + 4u (by hypothesis, b + 2
√

u > 0)

b + 2
√

u <
√

4u− 3b2

t3 =
√

u <
−b +

√
4u− 3b2

2
= t4.

Therefore, t4 > t3. Now, we prove the converse. Suppose t1 < t5 < t2 <

t3 < t4. In particular, t5 − t4 < 0 so

|b‖u− b2|√4u− 3b2

b(u− b2)
< 0

and conclude that b(u− b2) < 0. Therefore either b < 0 and u > b2 or b > 0
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and u < b2. We affirm that the second case does not occur, since otherwise
we would have

t4 = − b

2
− |b‖u− b2|√4u− 3b2

2b(u− b2)
=
−b +

√
4u− 3b2

2
< − b

2
+
√

u <
√

u = t3.

The lemma has been proved. ¤

Finally, we present the directions of projection in which the transitions
between the Morsifications of the E8 singularity occur.

Theorem 5.9 Let γ(a,b) be as in (25) and P̃(u,v) as in (26). The projection
P̃(u,v) in the direction

v = (u, v) =
(
−a

b
,
a2

b2

)

with u > 3b2/4 and b 6= 0, presents a transition:

( i ) T12 when u > b2.
( ii ) T23 when 3b2/4 < u < b2.

Proof. Since the direction of projection is given by

v =
(
−a

b
,
a2

b2

)
,

it follows by Lemma 5.7 that a triple point occurs at the origin. Moreover,
the triple point occurs when t1 = −√u, t2 = 0 and t3 =

√
u.

(i) When u > b2 it follows by Lemma 5.8 that either t4 > t3 and
t5 ∈ (t1, t2) or t4 < t1 and t5 ∈ (t2, t3). Thus we have one of two increasing
sequences of parameters

t1 < t5 < t2 < t3 < t4 or t4 < t1 < t2 < t5 < t3

and both sequences yield the Gauss word abaab. Therefore we obtain a
transition T12 according to Definition 5.6.

(ii) The proof of this item follows similarly to the previous one. ¤
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