Hisayasu Kurata and Maretsugu Yamasaki

(Received March 6, 2013)

Abstract. Flows on a network play an important role in the theory of discrete harmonic functions. In the study of discrete bi-harmonic functions, we encounter a concept of bi-flows. In this paper, we are concerned with minimization problems for bi-flows which are analogous to those for flows.

 $Key\ words:$ discrete potential theory, bi-harmonic Green function, bi-flows on a network.

1. Introduction

In the theory of discrete potential theory on networks, it is well-known that flows have played an important role related to discrete harmonic functions. For example, a minimizing problem related to flows from a node to the ideal boundary with unit strength characterizes the harmonic Green function. In this paper, we introduce an arc-arc incidence matrix b(y, y') of two arcs y and y' and an operator B_r related to it. We say that a function w on arcs is a bi-flow if $B_r w$ is a flow. If u is a bi-harmonic function defined on nodes, then we see that the discrete derivative w = du is a bi-flow. We shall consider two minimizing problems related to bi-flows from a node to the ideal boundary. The optimal solution of each minimizing problem characterizes the bi-harmonic Green function.

We organize this paper as follows: Some properties of b and B_r will be given in Section 3. We define bi-flows as well as weak bi-flows in Section 4. Two minimizing problems related to bi-flows are given in Sections 5 and 6.

2. Preliminaries

Let $N = \{X, Y, K, r\}$ be an infinite network which is connected and locally finite and has no self-loops. Here X is the set of nodes and Y is the set of arcs. The node-arc incidence matrix K is a function on $X \times Y$ and K(x, y) = -1 if x is the initial node $x^{-}(y)$ of y; K(x, y) = 1 if x

²⁰⁰⁰ Mathematics Subject Classification : Primary 31C20; Secondary 31C45.

is the terminal node $x^+(y)$ of y; otherwise K(x, y) = 0. The resistance r is a strictly positive function on Y. Let L(X) be the set of all real valued functions on X and let $L_0(X)$ be the set of all $u \in L(X)$ with finite supports. We define L(Y) and $L_0(Y)$ similarly.

For $u \in L(X)$ and $w \in L(Y)$, we define $du \in L(Y)$ and $\partial w \in L(X)$ by

$$du(y) = -r(y)^{-1} \sum_{x \in X} K(x, y)u(x),$$
$$\partial w(x) = \sum_{y \in Y} K(x, y)w(y).$$

Also we define the Laplacian $\Delta u \in L(X)$ and the bi-Laplacian $\Delta^2 u \in L(X)$ for $u \in L(X)$ by

$$\Delta u = \partial(du), \qquad \Delta^2 u = \Delta(\Delta u).$$

For $y \in Y$, let $e(y) = \{x \in X; K(x, y) \neq 0\} = \{x^+(y), x^-(y)\}$. For $a \in X$, denote by X(a) the set of nodes $x \in X$ such that $K(a, y)K(x, y) \neq 0$ for some $y \in Y$.

We shall study the bi-Laplacian and bi-flows on a network by using an arc-arc incidence function b on $Y \times Y$.

3. An arc-arc incidence function

An arc-arc incidence function b on $Y \times Y$ is defined by

$$b(y,y') = \sum_{z \in X} K(z,y) K(z,y') = \sum_{z \in e(y) \cap e(y')} K(z,y) K(z,y').$$

Proposition 3.1 The arc-arc incidence function b has the following properties:

- (i) b(y, y') = b(y', y) for all $y, y' \in Y$;
- (ii) b(y, y) = 2;
- (iii) b(y,y') = K(x,y)K(x,y') if y and y' meet only one node x, i.e., $e(y) \cap e(y') = \{x\};$
- $({\rm iv}) \ b(y,y')=0 \quad {\it if} \ e(y)\cap e(y')=\emptyset; \\$

In case e(y) = e(y') and $y \neq y'$,

$$\begin{array}{ll} (\ {\bf v}\) & b(y,y')=2 & if \ x^+(y)=x^+(y') \ and \ x^-(y)=x^-(y'); \\ ({\bf vi}\) & b(y,y')=-2 & if \ x^+(y)=x^-(y') \ and \ x^-(y)=x^+(y'). \end{array}$$

Define a linear operator B_r from L(Y) to L(Y) by

$$B_r w(y) = r(y)^{-1} \sum_{y' \in Y} b(y, y') w(y').$$

Lemma 3.1 $B_r w = -d\partial w \text{ on } Y.$

Proof. A simple calculation shows that

$$B_r w(y) = r(y)^{-1} \sum_{y' \in Y} \left(\sum_{z \in X} K(z, y) K(z, y') \right) w(y')$$
$$= r(y)^{-1} \sum_{z \in X} K(z, y) \left(\sum_{y' \in Y} K(z, y') w(y') \right)$$
$$= r(y)^{-1} \sum_{z \in X} K(z, y) \partial w(z) = -d \partial w(y).$$

Define c(x, z) for $x, z \in X$ by

$$c(x,z) = \sum_{y \in Y} r(y)^{-1} K(x,y) K(z,y).$$

Lemma 3.2 (i) $c(x,z) \neq 0$ if and only if $z \in X(x)$. (ii) $\sum_{z \in X} c(x,z) = 0$. (iii) $\Delta u(x) = -\sum_{z \in X} c(x,z)u(z)$.

Proof. (i) It is trivial that $z \notin X(x)$ implies c(x, z) = 0. If x = z, then $K(x, y)K(z, y) \in \{0, 1\}$ for all $y \in Y$ and K(x, y)K(z, y) = 1 for some $y \in Y$. Therefore c(x, z) > 0. Let $z \in X(x) \setminus \{x\}$. Then $K(x, y)K(z, y) \in \{0, -1\}$ for all $y \in Y$ and K(x, y)K(z, y) = -1 for some $y \in Y$. Therefore c(x, z) < 0.

(ii) Since $\sum_{z \in X} K(z, y) = 0$ for every $y \in Y$, we have

$$\sum_{z \in X} c(x, z) = \sum_{y \in Y} r(y)^{-1} K(x, y) \sum_{z \in X} K(z, y) = 0.$$

(iii)
$$\sum_{z \in X} c(x, z)u(z) = \sum_{z \in X} \sum_{y \in Y} r(y)^{-1} K(x, y) K(z, y)u(z)$$
$$= \sum_{y \in Y} r(y)^{-1} K(x, y) \sum_{z \in X} K(z, y)u(z)$$
$$= -\sum_{y \in Y} K(x, y)du(y) = -\partial du(x) = -\Delta u(x). \quad \Box$$

4. Bi-flows

Let $a, b \in X$. We say that $w \in L(Y)$ is a *flow* from a to b of strength I[w] if the following condition is fulfilled:

$$\partial w(x) = (\varepsilon_b(x) - \varepsilon_a(x))I[w],$$

where $\varepsilon_a(x) = 0$ if $x \neq a$ and $\varepsilon_a(a) = 1$. Denote by $\mathbf{F}(a, b)$ the set of all flows from a to b.

Lemma 4.1 $B_r w(y) = r(y)^{-1} (K(b, y) - K(a, y)) I[w]$ for $w \in \mathbf{F}(a, b)$.

Proof. We have by Lemma 3.1

$$B_r w(y) = -d\partial w(y) = r(y)^{-1} \sum_{z \in X} K(z, y) (\varepsilon_b(z) - \varepsilon_a(z)) I[w]$$
$$= r(y)^{-1} (K(b, y) - K(a, y)) I[w].$$

We say that $w \in L(Y)$ is a *bi-flow* from *a* to *b* of strength J[w] if $B_r w \in \mathbf{F}(a, b)$ and $J[w] = I[B_r w]$, i.e.,

$$\partial B_r w(x) = (\varepsilon_b(x) - \varepsilon_a(x))J[w].$$

Denote by $\mathbf{BF}(a, b)$ the set of all bi-flows from a to b.

Assume that $X(a) \cap X(b) = \emptyset$. We say that $w \in L(Y)$ is a *weak bi-flow* from a to b of strength $\tilde{J}[w]$ if

$$\partial B_r w(x) = 0$$
 for all $x \in X \setminus \{X(a) \cup X(b)\},$
 $\tilde{J}[w] = -\sum_{x \in X(a)} \partial B_r w(x) = \sum_{x \in X(b)} \partial B_r w(x).$

Denote by $\mathbf{WBF}(a, b)$ the set of all weak bi-flows from a to b.

Denote by \mathbf{C} and \mathbf{C}_B the set of cycles on N and the set of bicycles on N,

$$\mathbf{C} = \{ w \in L(Y); \partial w = 0 \}, \quad \mathbf{C}_B = \{ w \in L(Y); \partial B_r w = 0 \}.$$

Denote by \mathbf{K}_B and \mathbf{H} the kernel of B_r and the set of all harmonic functions on X,

$$\mathbf{K}_B = \{ w \in L(Y); B_r w = 0 \}, \quad \mathbf{H} = \{ u \in L(X); \Delta u = 0 \}.$$

Lemma 4.2 $\{dh; h \in \mathbf{H}\} \subset \mathbf{C} \subset \mathbf{K}_B \subset \mathbf{C}_B$.

Proof. Let $h \in \mathbf{H}$. Then $\partial(dh) = \Delta h = 0$, so that $dh \in \mathbf{C}$. Let $w \in \mathbf{C}$. Then by Lemma 3.1 $B_r w = -d\partial w = 0$, so that $w \in \mathbf{K}_B$. The inclusion $\mathbf{K}_B \subset \mathbf{C}_B$ is trivial.

Proposition 4.1 (i) $\mathbf{C} \subset \mathbf{F}(a, b)$ and $\mathbf{C}_B \subset \mathbf{BF}(a, b)$ for $a, b \in X$.

- (ii) $\{w \in \mathbf{F}(a,b); I[w] = 0\} = \mathbf{C} \text{ and } \{w \in \mathbf{BF}(a,b); J[w] = 0\} = \mathbf{C}_B \text{ for } a, b \in X.$
- (iii) $\mathbf{F}(a, a) = \mathbf{C}$ and $\mathbf{BF}(a, a) = \mathbf{C}_B$ for $a \in X$.
- (iv) $\mathbf{F}(a_1, b_1) \cap \mathbf{F}(a_2, b_2) = \mathbf{C}$ and $\mathbf{BF}(a_1, b_1) \cap \mathbf{BF}(a_2, b_2) = \mathbf{C}_B$ for $a_1, a_2, b_1, b_2 \in X$ with $\{a_1, b_1\} \neq \{a_2, b_2\}.$

Proof. We shall show the assertions for $\mathbf{F}(a, b)$; the assertions for $\mathbf{BF}(a, b)$ can be similarly proved. We easily have (i) and (ii).

To prove (iii), it suffices to show that $\mathbf{F}(a, a) \subset \mathbf{C}$. Let $w \in \mathbf{F}(a, a)$. Then $\partial w = (\varepsilon_a - \varepsilon_a)I[w] = 0$, so that $w \in \mathbf{C}$.

We shall prove (iv). We need to show that $\mathbf{F}(a_1, b_1) \cap \mathbf{F}(a_2, b_2) \subset \mathbf{C}$. We may assume $a_1 \notin \{a_2, b_2\}$. Using (iii) we may also assume that $a_1 \neq b_1$ and $a_2 \neq b_2$. Let $w \in \mathbf{F}(a_1, b_1) \cap \mathbf{F}(a_2, b_2)$. Then $\partial w(a_1) = -I[w]$ from $w \in \mathbf{F}(a_1, b_1)$ and $\partial w(a_1) = 0$ from $w \in \mathbf{F}(a_2, b_2)$. We have I[w] = 0, so that $\partial w = 0$.

Theorem 4.1 Assume that $X(a) \cap X(b) = \emptyset$.

(i) $\mathbf{BF}(a,b) \subset \mathbf{WBF}(a,b)$ and $J[w] = \tilde{J}[w]$ for $w \in \mathbf{BF}(a,b)$.

(ii) $\mathbf{F}(a,b) \subset \mathbf{WBF}(a,b)$ and $\tilde{J}[w] = 0$ for $w \in \mathbf{F}(a,b)$.

(iii) $\mathbf{F}(a,b) \cap \mathbf{BF}(a,b) = \mathbf{C}.$

Proof. It is easy to see that (i) holds. We shall prove (ii). Let $w \in \mathbf{F}(a, b)$. By Lemma 4.1

$$\partial B_r w(x) = \sum_{y \in Y} K(x, y) r(y)^{-1} (K(b, y) - K(a, y)) I[w]$$

= $(c(x, b) - c(x, a)) I[w].$ (1)

For $x \in X \setminus (X(a) \cup X(b))$ we have $\partial B_r w(x) = 0$ by Lemma 3.2 (i). Also Lemma 3.2 (i) and (ii) show that $\sum_{x \in X(a)} \partial B_r w(x) = -\sum_{x \in X(a)} c(x, a) I[w] = 0$. Similarly $\sum_{x \in X(b)} \partial B_r w(x) = 0$.

Next we prove (iii). Lemma 4.2 and Proposition 4.1 (i) show that $\mathbf{C} \subset \mathbf{F}(a,b) \cap \mathbf{BF}(a,b)$. We shall show the converse. Let $w \in \mathbf{F}(a,b) \cap \mathbf{BF}(a,b)$. Let $x \in X(a) \setminus \{a\}$. Then the equation (1) shows that $0 = \partial B_r w(x) = -c(x,a)I[w]$. Lemma 3.2 (i) implies I[w] = 0, which means $\partial w = 0$.

Theorem 4.2 Suppose that $X(a) \cup X(b) \neq (X(a) \cap X(b)) \cup \{a, b\}$. Then $\mathbf{F}(a, b) \cap \mathbf{BF}(a, b) \subset \mathbf{C} \cap \mathbf{K}_B$.

Proof. It is clear that $(X(a) \cap X(b)) \cup \{a, b\} \subset X(a) \cup X(b)$. By our assumption, there exists $x_0 \in X(a) \cup X(b)$ such that $x_0 \notin (X(a) \cap X(b)) \cup \{a, b\}$. We may assume that $x_0 \in X(a), x_0 \notin X(b)$ and $x_0 \neq a$. Let $w \in \mathbf{F}(a, b) \cap \mathbf{BF}(a, b)$. Since $K(x_0, y)K(b, y) = 0$ for all $y \in Y$, we have by Lemma 4.1

$$0 = \partial B_r w(x_0) = \sum_{y \in Y} K(x_0, y) B_r w(y)$$

= $-I[w] \sum_{y \in Y} r(y)^{-1} K(x_0, y) K(a, y) = -I[w] c(x_0, a).$

Lemma 3.2 (i) shows that $c(x_0, a) \neq 0$, and that I[w] = 0. Thus $\partial w = 0$ on X. Lemma 4.1 shows that $B_r w = 0$ on Y.

5. Bi-flows to the ideal boundary

Now we recall some definitions related to the energy H[w] of $w \in L(Y)$ and the Dirichlet sum D[u] of $u \in L(X)$:

$$\begin{split} \langle w, w' \rangle &= \sum_{y \in Y} r(y) w(y) w'(y), \\ H[w] &= \langle w, w \rangle = \sum_{y \in Y} r(y) w(y)^2, \\ L_2(Y; r) &= \{ w \in L(Y); H[w] < \infty \}, \\ D[u, u'] &= \langle du, du' \rangle = \sum_{y \in Y} r(y) du(y) du'(y), \\ D[u] &= D[u, u] = H[du] = \sum_{y \in Y} r(y) (du(y))^2, \\ \mathbf{D}(N) &= \{ u \in L(X); D[u] < \infty \}. \end{split}$$

Lemma 5.1 $\langle du, du' \rangle = -\sum_{x \in X} u(x) \Delta u'(x)$ for $u \in L_0(X)$ and for $u' \in \mathbf{D}(N)$.

Proof.

$$\begin{aligned} \langle du, du' \rangle &= \sum_{y \in Y} r(y) du(y) du'(y) = -\sum_{y \in Y} \sum_{x \in X} K(x, y) u(x) du'(y) \\ &= -\sum_{x \in X} u(x) \sum_{y \in Y} K(x, y) du'(y) = -\sum_{x \in X} u(x) \partial du'(x) \\ &= -\sum_{x \in X} u(x) \Delta u'(x). \end{aligned}$$

It is known that $\mathbf{D}(N)$ $(L_2(Y; r)$ resp.) is a Hilbert space with respect to the norm $||u||_2 = (D[u] + u(x_0)^2)^{1/2}$ $(H[w]^{1/2}$ resp.) with a fixed node $x_0 \in X$. Denote by $\mathbf{D}_0(N)$ the closure of $L_0(X)$ in the Hilbert space $\mathbf{D}(N)$ (see [3]).

The Green function $g_a \in L(X)$ with pole at $a \in X$ is defined as the unique function satisfying the conditions:

$$g_a \in \mathbf{D}_0(N)$$
 and $\Delta g_a = -\varepsilon_a$ on X.

We know that g_a exists for every a if and only if N is hyperbolic, i.e., $\mathbf{D}_0(N) \neq \mathbf{D}(N)$ (see [2]). Denote by $\mathbf{HD}(N)$ the set of all $u \in \mathbf{D}(N)$ such that $\Delta u = 0$.

Lemma 5.2 $\mathbf{D}_0(N) \cap \mathbf{HD}(N) = \{0\}$ if and only if N is hyperbolic.

Proof. If N is parabolic, then $1 \in \mathbf{D}(N) = \mathbf{D}_0(N)$, which is also harmonic. This means $1 \in \mathbf{D}_0(N) \cap \mathbf{HD}(N)$.

Conversely, we assume that N is hyperbolic. Let $u \in \mathbf{D}_0(N) \cap \mathbf{HD}(N)$. Then both u = u + 0 and u = 0 + u are the Royden decompositions. The uniqueness of the Royden decomposition implies that u = 0.

We say that $w \in L(Y)$ is a *flow* from $a \in X$ to the ideal boundary with strength I[w] if

$$\partial w(x) = -\varepsilon_a(x)I[w].$$

Let $\mathbf{F}(a, \infty)$ be the set of all flows w from a to the ideal boundary. It is well-known that dg_a is characterized as the unique optimal solution to the following extremal problem:

$$d^*(a, \infty) = \inf\{H[w]; w \in \mathbf{F}(a, \infty), \ I[w] = 1\}.$$

We say that $w \in L(Y)$ is a *bi-flow* from $a \in X$ to the ideal boundary with strength J[w] if

$$\partial B_r w(x) = -\varepsilon_a(x) J[w].$$

Notice that

$$J[w] = \Delta \partial w(a).$$

Denote by $\mathbf{BF}(a, \infty)$ the set of all bi-flows from a to the ideal boundary of N.

Analogous to $d^*(a, \infty)$, we consider the following extremal problem:

$$d_B^*(a,\infty) = \inf\{H[w]; w \in \mathbf{BF}(a,\infty), \ \partial w \in \mathbf{D}_0(N), \ J[w] = 1\}.$$
(*)

The bi-harmonic Green function $q_a \in L(X)$ with pole at a is defined by

$$q_a(x) = \sum_{z \in X} g_a(z)g_z(x)$$

if the sum converges (see [1], [4]). Notice that

$$\Delta q_a = -g_a$$
 and $\Delta^2 q_a = \varepsilon_a$ on X ,

and that dq_a is a feasible solution to the problem (*).

We proved the following lemma in [6, Theorem 4.2]:

Lemma 5.3 Let N be parabolic and $u \in \mathbf{D}(N)$. If $\sum_{x \in X} |\Delta u(x)| < \infty$, then $\sum_{x \in X} \Delta u(x) = 0$.

Corollary 5.1 If $d_B^*(a, \infty) < \infty$, then N is hyperbolic and $\partial w = -g_a$ for all feasible solution w to the problem (*).

Proof. Let w be a feasible solution to the problem (*). Then $u = \partial w \in \mathbf{D}_0(N)$ and $\Delta u(x) = -\partial B_r w(x) = \varepsilon_a(x)$. By the above lemma, N must be hyperbolic and $u = -g_a$.

The next theorem is an extension of [4, Theorem 3.1], which shows that $q_a \in \mathbf{D}(N)$ is equivalent to $q_a \in \mathbf{D}_0(N)$.

Theorem 5.1 The following are equivalent:

(i) $q_a \in \mathbf{D}(N);$ (ii) $q_a \in \mathbf{D}_0(N);$ (iii) $d_B^*(a, \infty) < \infty.$

In this case dq_a is a unique optimal solution to the problem (*).

Proof. It is obvious that (ii) implies (i). Suppose that $q_a \in \mathbf{D}(N)$. Since dq_a is a feasible solution to the problem (*), it follows that $d_B^*(a, \infty) < \infty$. This shows that (i) implies (iii).

We shall show that (iii) implies (ii). We assume that $d_B^*(a, \infty) < \infty$. First we shall prove that there exists an optimal solution to the problem (*). Let $\{w_n\}$ be a minimizing sequence of (*). Then $(w_n + w_m)/2$ is a feasible solution to the problem (*), so that we have

$$d_B^*(a,\infty) \le H[(w_n + w_m)/2] \le H[(w_n + w_m)/2] + H[(w_n - w_m)/2]$$

= $(H[w_n] + H[w_m])/2 \to d_B^*(a,\infty)$

as $n, m \to \infty$. Thus $H[w_n - w_m] \to 0$ as $n, m \to \infty$. There exists $w^* \in L_2(Y; r)$ such that $H[w_n - w^*] \to 0$ as $n \to \infty$. Since $\{w_n\}$ converges pointwise to w^* and N is locally finite, we obtain $w^* \in \mathbf{BF}(a, \infty)$ and $J[w^*] = 1$. Also $\partial w_n = -g_a$ implies that

H. Kurata and M. Yamasaki

$$\partial w^* = \lim_{n \to \infty} \partial w_n = -g_a \in \mathbf{D}_0(N).$$

Therefore w^* is an optimal solution to the problem (*).

To prove the uniqueness of an optimal solution to the problem (*), let w' be another optimal solution to the problem (*). Then

$$\begin{aligned} d_B^*(a,\infty) &\leq H[(w^*+w')/2] \leq H[(w^*+w')/2] + H[(w^*-w')/2] \\ &= (H[w^*] + H[w'])/2 = d_B^*(a,\infty), \end{aligned}$$

so that $H[w^* - w'] = 0$. Hence $w^* = w'$.

For any $\omega \in L_0(Y) \cap \mathbf{C}(N)$ and any $t \in \mathbf{R}$, we see that $w^* + t\omega$ is a feasible solution to the problem (*). Thus

$$d_B^*(a,\infty) \le H[w^* + t\omega] = H[w^*] + 2t\langle w^*, \omega \rangle + t^2 H[\omega],$$

so that $\langle w^*, \omega \rangle = 0$. By the usual way, we see that there exists $u^* \in L(X)$ such that $w^* = du^*$ (see the proof of [6, Theorem 3.2] for details).

Since $D[u^*] = H[w^*] < \infty$, it follows that $u^* \in \mathbf{D}(N)$. Let $u^* = v^* + h$ be the Royden decomposition with $v^* \in \mathbf{D}_0(N)$ and $h \in \mathbf{HD}(N)$. Let $w' = dv^*$. Then w' is a feasible solution to the problem (*), so that

$$D[v^*] + D[h] = D[u^*] = H[w^*] \le H[w'] = D[v^*]$$

This means that D[h] = 0 and $H[w^*] = H[w']$, i.e., h is a constant function and $w^* = w' = dv^*$.

Let $\{N_n\}$ be an exhaustion of N and $g_a^{(n)}$ the Green function of N_n with pole at a. We have

$$\sum_{z \in X} g_a(z) g_x^{(n)}(z) = -\sum_{z \in X} \left(\Delta v^*(z) \right) g_x^{(n)}(z) = D[v^*, g_x^{(n)}].$$

Since $\{g_x^{(n)}\}_n$ converges to g_x (see [3, Section 3]), it follows that

$$\sum_{z \in X} g_a(z) g_x(z) \le \liminf_{n \to \infty} \sum_{z \in X} g_a(z) g_x^{(n)}(z) = \lim_{n \to \infty} D[v^*, g_x^{(n)}]$$
$$= D[v^*, g_x] \le D[v^*]^{1/2} D[g_x]^{1/2} < \infty.$$

In particular, we obtain $\sum_{z \in X} g_a(z)^2 < \infty$, so that $q_a \in L(X)$ by [4, Theorem 2.3].

Define f(x), $f_n(x)$ and $h_n(x)$ by

$$\begin{split} f(x) &= \sum_{z \in X} g_x(z) \Delta v^*(z) = -q_a(x) \in L(X) \\ f_n(x) &= \sum_{z \in X} g_z^{(n)}(x) \Delta v^*(z) \\ h_n &= v^* + f_n. \end{split}$$

Notice that h_n is harmonic on X_n and

$$D[h_n, f_n] = -\sum_{x \in X} (\Delta h_n(x)) f_n(x) = 0,$$

so that $D[v^*] = D[h_n] + D[f_n]$. We see by Lebesgue's dominated convergence theorem that $\{f_n(x)\}$ converges pointwise to f(x) for all $x \in X$. Since $\{D[f_n]\}\$ is bounded, we see by [5, Theorem 4.1] that $q_a = -f \in \mathbf{D}_0(N)$.

Let $f' = q_a - v^*$. Then

$$\Delta f' = \Delta q_a - \Delta v^* = -g_a + g_a = 0,$$

so that $f' \in \mathbf{D}_0(N) \cap \mathbf{HD}(N)$. Lemma 5.2 shows f' = 0. Therefore $q_a =$ $v^* \in \mathbf{D}_0(N)$ and $dv^* = dq_a$.

Another extremal problem 6.

Analogous to $d^*(a,\infty)$ and $d^*_B(a,\infty)$, we consider the following extremum problem:

$$d_B^{**}(a,\infty) = \inf\{H[w]; w \in \mathbf{BF}(a,\infty), \ J[w] = 1\}.$$
 (**)

Clearly $d_B^{**}(a,\infty) \leq d_B^*(a,\infty)$.

Theorem 6.1 Assume that $d_B^{**}(a, \infty) < \infty$. Then there exists a unique optimal solution w^{**} to the problem (**). Also there exists $v^{**} \in \mathbf{D}_0(N)$ such that $w^{**} = dv^{**}$.

Proof. Let $\{w_n\}$ be a minimizing sequence of (**). Then $(w_n + w_m)/2$ is a feasible solution to the problem (**), so that we have

$$\begin{aligned} d_B^{**}(a,\infty) &\leq H[(w_n + w_m)/2] \leq H[(w_n + w_m)/2] + H[(w_n - w_m)/2] \\ &= (H[w_n] + H[w_m])/2 \to d_B^{**}(a,\infty) \end{aligned}$$

as $n, m \to \infty$. Thus $H[w_n - w_m] \to 0$ as $n, m \to \infty$. There exists $w^{**} \in L_2(Y; r)$ such that $H[w_n - w^{**}] \to 0$ as $n \to \infty$. Since $\{w_n\}$ converges pointwise to w^{**} and N is locally finite, we obtain $w^{**} \in \mathbf{BF}(a, \infty)$ and $J[w^{**}] = 1$. Therefore w^{**} is an optimal solution to the problem (**).

To prove the uniqueness let w' be another optimal solution to the problem (**). Then

$$d_B^{**}(a,\infty) \le H[(w^{**} + w')/2] \le H[(w^{**} + w')/2] + H[(w^{**} - w')/2]$$
$$= (H[w^{**}] + H[w'])/2 = d_B^{**}(a,\infty),$$

so that $H[w^{**} - w'] = 0$. Hence $w^{**} = w'$.

For any $\omega \in L_0(Y) \cap \mathbf{C}(N)$ and any $t \in \mathbf{R}$, we see that $w^{**} + t\omega$ is a feasible solution to the problem (**). Thus

$$d_B^{**}(a,\infty) \le H[w^{**} + t\omega] = H[w^{**}] + 2t\langle w^{**}, \omega \rangle + t^2 H[\omega],$$

so that $\langle w^{**}, \omega \rangle = 0$. By the usual way, we see that there exists $u^{**} \in L(X)$ such that $w^{**} = du^{**}$. Since $D[u^{**}] = H[w^{**}] < \infty$, $u^{**} \in \mathbf{D}(N)$.

If N is hyperbolic type, then we let $u^{**} = v^{**} + h$ be the Royden decomposition with $v^{**} \in \mathbf{D}_0(N)$ and $h \in \mathbf{HD}(N)$; otherwise let $v^{**} = u^{**} \in \mathbf{D}(N) = \mathbf{D}_0(N)$. Let $w' = dv^{**}$. Then w' is a feasible solution to the problem (**), so that

$$D[v^{**}] + D[h] = D[u^{**}] = H[w^{**}] \le H[w'] = D[v^{**}].$$

This means that D[h] = 0 and $H[w^{**}] = H[w']$, i.e., h is a constant function and $w^{**} = w' = dv^{**}$.

We say that a network N satisfies the condition (LD) if there exists a constant c such that $D[\Delta u] \leq cD[u]$ for all $u \in L_0(X)$. We say that a network N is of bounded degree if $\sup_{x \in X} \sum_{u \in Y} |K(x,y)| < \infty$. Next proposition provides a sufficient condition for the condition (LD).

Proposition 6.1 Assume that $r \equiv 1$ and that N is of bounded degree. Then $D[\Delta u] \leq 8\nu_0^2 D[u]$ for all $u \in \mathbf{D}(N)$, where $\nu_0 = \sup_{x \in X} \sum_{y \in Y} |K(x,y)|$. Especially N satisfies the condition (LD).

Proof. First note that a simple calculation shows that

$$\left(\sum_{j=1}^{n} \alpha_j\right)^2 \le n \sum_{j=1}^{n} \alpha_j^2$$

for $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$.

Let w = du and $v = \Delta u$. Then

$$dv(y) = -\sum_{y' \in Y} b(y, y')w(y') = -\sum_{y' \in Y} \sum_{x \in X} K(x, y)K(x, y')w(y').$$

Since the number of $y' \in Y$ with $\sum_{x \in X} K(x, y) K(x, y') w(y') \neq 0$ is at most $2\nu_0$ for each y, it follows that

$$(dv(y))^2 = \left(\sum_{y'\in Y}\sum_{x\in X}K(x,y)K(x,y')w(y')\right)^2$$
$$\leq 2\nu_0\sum_{y'\in Y}\left(\sum_{x\in X}K(x,y)K(x,y')w(y')\right)^2.$$

Since the number of $x \in X$ with $K(x, y)K(x, y') \neq 0$ is at most two for each $y, y' \in Y$, we have $(\sum_{x \in X} K(x, y)K(x, y'))^2 \leq 2\sum_{x \in X} (K(x, y)K(x, y'))^2$. Using $|K(x, y)K(x, y')|^2 = |K(x, y)K(x, y')|$ we obtain

$$(dv(y))^2 \le 4\nu_0 \sum_{y' \in Y} \left(\sum_{x \in X} |K(x,y)K(x,y')| \right) w(y')^2.$$

Let $Y(x) = \{y \in Y; K(x, y) \neq 0\}$ for $x \in X$. Then $\sum_{x \in X} \sum_{y' \in Y(x)} w(y')^2 = 2 \sum_{y \in Y} w(y)^2$. By the above estimation, we have

$$D[\Delta u] = H[dv] = \sum_{y \in Y} (dv(y))^2$$

$$\leq 4\nu_0 \sum_{y \in Y} \sum_{y' \in Y} \left(\sum_{x \in X} |K(x, y)K(x, y')| \right) w(y')^2$$

= $4\nu_0 \sum_{y' \in Y} \left(\sum_{x \in X} \left(\sum_{y \in Y} |K(x, y)| \right) |K(x, y')| \right) w(y')^2$
 $\leq 4\nu_0^2 \sum_{y' \in Y} \sum_{x \in X} |K(x, y')| w(y')^2$
= $4\nu_0^2 \sum_{x \in X} \sum_{y' \in Y(x)} w(y')^2 = 8\nu_0^2 \sum_{y \in Y} w(y)^2$
= $8\nu_0^2 D[u].$

Lemma 6.1 Assume that N satisfies the condition (LD). If $u \in \mathbf{D}_0(N)$, then $\Delta u \in \mathbf{D}_0(N)$.

Proof. Let $\{f_n\}$ be a sequence in $L_0(X)$ such that $||f_n - u||_2 \to 0$ as $n \to \infty$. Then $||f_n - f_m||_2 \to 0$ as $n, m \to \infty$ and $\{D[f_n]\}$ is bounded. By the condition (LD) there exists a constant c > 0 such that

$$D[\Delta f_n - \Delta f_m] \le c D[f_n - f_m] \to 0 \quad (n, m \to \infty).$$

Thus $\|\Delta f_n - \Delta f_m\|_2 \to 0$ as $n, m \to \infty$. Therefore $\{\Delta f_n\}$ is a Cauchy sequence in $\mathbf{D}_0(N)$. We can find $\varphi \in \mathbf{D}_0(N)$ such that $\|\Delta f_n - \varphi\|_2 \to 0$ as $n \to \infty$. Since $\{f_n(x)\}$ converges pointwise to u(x), it follows that $\{\Delta f_n(x)\}$ converges pointwise to $\Delta u(x)$. Since $\{\Delta f_n(x)\}$ also converges pointwise to $\varphi(x)$ and $\{D(\Delta f_n)\}$ is bounded, we see that $\Delta u = \varphi \in \mathbf{D}_0(N)$ by [5, Theorem 4.1].

Theorem 6.2 Assume that N satisfies the condition (LD). Then $d_B^{**}(a,\infty) = d_B^*(a,\infty)$. If $d_B^{**}(a,\infty) < \infty$, then dq_a is a unique optimal solution to the problem (**).

Proof. Since $d_B^{**}(a,\infty) \leq d_B^*(a,\infty)$, we shall show that $d_B^{**}(a,\infty) \geq d_B^*(a,\infty)$. We may assume that $d_B^{**}(a,\infty) < \infty$. Let w^{**} and v^{**} be the same as in Theorem 6.1. By Lemma 6.1, we see that $\Delta v^{**} \in \mathbf{D}_0(N)$. This means that $w^{**} = dv^{**}$ is a feasible solution to the problem (*). We have $d_B^*(a,\infty) \leq H[w^{**}] = d_B^{**}(a,\infty)$.

Assume that $d_B^{**}(a, \infty) < \infty$. Then N is hyperbolic by Corollary 5.1. Let $f' = q_a - v^{**}$. Since $q_a \in \mathbf{D}_0(N)$ by Theorem 5.1, it follows that $f' \in \mathbf{D}_0(N)$ and $\Delta f' = \Delta q_a - \Delta v^{**} = -g_a + g_a = 0$, so that $f' \in \mathbf{D}_0(N) \cap \mathbf{HD}(N)$. Hence f' = 0. This means that $dq_a = dv^{**}$ is a unique optimal solution to the problem (**).

7. An example

We show an example of $w \in \mathbf{BF}(a, \infty)$ for the following network:

Example 7.1 Let $X = \{x_n; n \ge 0\}, Y = \{y_n; n \ge 1\}, e(y_n) = \{x_{n-1}, x_n\}$ for $n \ge 1$. Let $K(x_n, y_n) = 1, K(x_{n-1}, y_n) = -1$ for $n \ge 1$ and K(x, y) = 0 for any other pairs. For a strictly positive function r on Y, $N = \{X, Y, K, r\}$ is an infinite network.

Let $r_n = r(y_n)$, $R_n = \sum_{k=n+1}^{\infty} r_k$ and $\rho_n = \sum_{k=1}^{n} r_k$. We assume that $\rho := \sum_{n=1}^{\infty} r_n < \infty$. Then it is easy to see that

$$g_{x_k}(x_n) = R_n \ (0 \le k \le n), \quad g_{x_k}(x_n) = R_k \ (k > n).$$

Let w be a feasible solution to the problem (**) with $a = x_0$ and let $v = \partial w$. Let $w_n = w(y_n)$ for $n \ge 1$. Let $v_n = v(x_n)$ for $n \ge 0$. We have

$$B_r w(y_n) = \frac{1}{r(y_n)} \sum_{x \in X} K(x, y_n) \partial w(x) = \frac{1}{r_n} (v_n - v_{n-1}),$$

$$\partial B_r w(x_0) = \sum_{y \in Y} K(x_0, y) B_r w(y) = -B_r w(y_1) = -\frac{1}{r_1} (v_1 - v_0),$$

$$\partial B_r w(x_n) = \sum_{y \in Y} K(x_n, y) B_r w(y) = B_r w(y_n) - B_r w(y_{n+1})$$

$$= \frac{1}{r_n} (v_n - v_{n-1}) - \frac{1}{r_{n+1}} (v_{n+1} - v_n).$$

Since $\partial B_r w(x_0) = -1$ and $\partial B_r w(x_n) = 0$ for $n \ge 1$, it follows that $r_n^{-1}(v_n - v_{n-1}) = 1$. Thus

$$v_n = \rho_n + v_0.$$

H. Kurata and M. Yamasaki

From

$$v_n = \sum_{y \in Y} K(x_n, y) w(y) = w_n - w_{n+1} \ (n \ge 1), \quad v_0 = -w_1,$$

it follows that $w_n - w_{n+1} = \rho_n + v_0$, and that

$$w_n = -\sum_{k=1}^{n-1} \rho_k - (n-1)v_0 + w_1 = -\sum_{k=1}^{n-1} \rho_k - nv_0.$$

Let

$$A_n = \sum_{k=1}^{n-1} \rho_k, \quad \alpha = \sum_{n=1}^{\infty} n^2 r_n, \quad \beta = \sum_{n=1}^{\infty} n r_n A_n, \quad \gamma = \sum_{n=1}^{\infty} r_n A_n^2.$$

Then

$$H[w] = \sum_{n=1}^{\infty} r_n w_n^2 = \sum_{n=1}^{\infty} r_n (-A_n - nv_0)^2 = \alpha v_0^2 + 2\beta v_0 + \gamma.$$
(2)

Now let w' be a feasible solution to the problem (*). In a similar way we let $w'_n = w'(y_n)$ and $v'_n = v'(x_n) = \partial w'(x_n)$ and obtain

$$v'_n = \rho_n + v'_0,$$

 $w'_n = -\sum_{k=1}^{n-1} \rho_k - nv'_0 = -A_n - nv'_0.$

Since $v' \in \mathbf{D}_0(N)$, we have $\lim_{n \to \infty} v'_n = 0$, or $v'_0 = -\rho$. Therefore

$$w_n' = -A_n + n\rho. \tag{3}$$

Since $\rho = R_0$ and $\rho_k = R_0 - R_k$ for $k \ge 1$, we have

$$w'_{n} = -\sum_{k=1}^{n-1} (R_{0} - R_{k}) + nR_{0} = \sum_{k=0}^{n-1} R_{k}.$$
(4)

Notice that this is a unique feasible solution to the problem (*). By (3)

$$d_B^*(a,\infty) = H[w'] = \sum_{n=1}^{\infty} r_n (-A_n + n\rho)^2 = \alpha \rho^2 - 2\beta \rho + \gamma$$

(a) Assume that all of α, β, γ converge. First we note that $\alpha \rho > \beta$. Indeed,

$$A_n = \sum_{k=1}^{n-1} \rho_k = \sum_{k=1}^{n-1} \sum_{j=1}^k r_j = \sum_{j=1}^{n-1} (n-j)r_j < n \sum_{j=1}^n r_j = n\rho_n,$$

and that

$$\beta = \sum_{n=1}^{\infty} nr_n A_n < \sum_{n=1}^{\infty} n^2 r_n \rho_n < \sum_{n=1}^{\infty} n^2 r_n \rho = \alpha \rho.$$

Now (2) is minimized at $v_0 = -\beta/\alpha$, so that

$$d_B^{**}(a,\infty) = \gamma - \frac{\beta^2}{\alpha}.$$

It follows that

$$d_B^*(a,\infty) - d_B^{**}(a,\infty) = \alpha \rho^2 - 2\beta \rho + \frac{\beta^2}{\alpha} = \alpha \left(\rho - \frac{\beta}{\alpha}\right)^2 > 0.$$

Theorem 6.2 implies that N does not satisfy the condition (LD).

(b) Taking $r_n = n^{-5/3}$ for $n \ge 1$, since $R_n = O(n^{-2/3})$, by (4) we have $w'_n = O(n^{1/3})$, and that $H[w'] = O(\sum_{n=1}^{\infty} n^{-5/3} (n^{1/3})^2) = \infty$. This means $d_B^*(a, \infty) = \infty$. On the other hand the bi-harmonic Green function q_a is given by

$$q_a(x_n) = \sum_{k=0}^{\infty} g_a(x_k) g_{x_k}(x_n) = \sum_{k=0}^{n} R_k R_n + \sum_{k=n+1}^{\infty} R_k^2 = O(n^{-1/3}).$$

Thus $q_a \in L(X)$ does not imply $d_B^*(a, \infty) < \infty$.

References

- Anandam V., Harmonic functions and potentials on finite or infinite networks. Lecture Notes of the Unione Matematica Italiana, vol. 12, Springer, Heidelberg, 2011.
- Yamasaki M., Parabolic and hyperbolic infinite networks. Hiroshima Math. J. 7 (1977), 135–146.
- [3] Yamasaki M., Discrete potentials on an infinite network. Mem. Fac. Sci. Shimane Univ. 13 (1979), 31–44.
- [4] Yamasaki M., Biharmonic Green function of an infinite network. Mem. Fac. Sci. Shimane Univ. 14 (1980), 55–62.
- [5] Yamasaki M., Discrete Dirichlet potentials on an infinite network. RIMS Kokyuroku 610 (1987), 51–66.
- [6] Yamasaki M., Nonlinear Poisson equations on an infinite network. Mem. Fac. Sci. Shimane Univ. 23 (1989), 1–9.

Hisayasu KURATA Yonago National College of Technology Yonago, Tottori, 683-8502 Japan E-mail: kurata@yonago-k.ac.jp

Maretsugu YAMASAKI address