Bi-flows on a network

Hisayasu Kurata and Maretsugu Yamasaki

(Received March 6, 2013)

Abstract

Flows on a network play an important role in the theory of discrete harmonic functions. In the study of discrete bi-harmonic functions, we encounter a concept of bi-flows. In this paper, we are concerned with minimization problems for bi-flows which are analogous to those for flows.

Key words: discrete potential theory, bi-harmonic Green function, bi-flows on a network.

1. Introduction

In the theory of discrete potential theory on networks, it is well-known that flows have played an important role related to discrete harmonic functions. For example, a minimizing problem related to flows from a node to the ideal boundary with unit strength characterizes the harmonic Green function. In this paper, we introduce an arc-arc incidence matrix $b\left(y, y^{\prime}\right)$ of two arcs y and y^{\prime} and an operator B_{r} related to it. We say that a function w on arcs is a bi-flow if $B_{r} w$ is a flow. If u is a bi-harmonic function defined on nodes, then we see that the discrete derivative $w=d u$ is a bi-flow. We shall consider two minimizing problems related to bi-flows from a node to the ideal boundary. The optimal solution of each minimizing problem characterizes the bi-harmonic Green function.

We organize this paper as follows: Some properties of b and B_{r} will be given in Section 3. We define bi-flows as well as weak bi-flows in Section 4. Two minimizing problems related to bi-flows are given in Sections 5 and 6.

2. Preliminaries

Let $N=\{X, Y, K, r\}$ be an infinite network which is connected and locally finite and has no self-loops. Here X is the set of nodes and Y is the set of arcs. The node-arc incidence matrix K is a function on $X \times Y$ and $K(x, y)=-1$ if x is the initial node $x^{-}(y)$ of $y ; K(x, y)=1$ if x

[^0]is the terminal node $x^{+}(y)$ of y; otherwise $K(x, y)=0$. The resistance r is a strictly positive function on Y. Let $L(X)$ be the set of all real valued functions on X and let $L_{0}(X)$ be the set of all $u \in L(X)$ with finite supports. We define $L(Y)$ and $L_{0}(Y)$ similarly.

For $u \in L(X)$ and $w \in L(Y)$, we define $d u \in L(Y)$ and $\partial w \in L(X)$ by

$$
\begin{aligned}
d u(y) & =-r(y)^{-1} \sum_{x \in X} K(x, y) u(x) \\
\partial w(x) & =\sum_{y \in Y} K(x, y) w(y)
\end{aligned}
$$

Also we define the Laplacian $\Delta u \in L(X)$ and the bi-Laplacian $\Delta^{2} u \in L(X)$ for $u \in L(X)$ by

$$
\Delta u=\partial(d u), \quad \Delta^{2} u=\Delta(\Delta u)
$$

For $y \in Y$, let $e(y)=\{x \in X ; K(x, y) \neq 0\}=\left\{x^{+}(y), x^{-}(y)\right\}$. For $a \in X$, denote by $X(a)$ the set of nodes $x \in X$ such that $K(a, y) K(x, y) \neq 0$ for some $y \in Y$.

We shall study the bi-Laplacian and bi-flows on a network by using an arc-arc incidence function b on $Y \times Y$.

3. An arc-arc incidence function

An arc-arc incidence function b on $Y \times Y$ is defined by

$$
b\left(y, y^{\prime}\right)=\sum_{z \in X} K(z, y) K\left(z, y^{\prime}\right)=\sum_{z \in e(y) \cap e\left(y^{\prime}\right)} K(z, y) K\left(z, y^{\prime}\right) .
$$

Proposition 3.1 The arc-arc incidence function b has the following properties:
(i) $b\left(y, y^{\prime}\right)=b\left(y^{\prime}, y\right)$ for all $y, y^{\prime} \in Y$;
(ii) $b(y, y)=2$;
(iii) $b\left(y, y^{\prime}\right)=K(x, y) K\left(x, y^{\prime}\right)$ if y and y^{\prime} meet only one node x, i.e., $e(y) \cap e\left(y^{\prime}\right)=\{x\} ;$
(iv) $b\left(y, y^{\prime}\right)=0 \quad$ if $e(y) \cap e\left(y^{\prime}\right)=\emptyset$;

In case $e(y)=e\left(y^{\prime}\right)$ and $y \neq y^{\prime}$,
(v) $b\left(y, y^{\prime}\right)=2 \quad$ if $x^{+}(y)=x^{+}\left(y^{\prime}\right)$ and $x^{-}(y)=x^{-}\left(y^{\prime}\right)$;
(vi) $b\left(y, y^{\prime}\right)=-2 \quad$ if $x^{+}(y)=x^{-}\left(y^{\prime}\right)$ and $x^{-}(y)=x^{+}\left(y^{\prime}\right)$.

Define a linear operator B_{r} from $L(Y)$ to $L(Y)$ by

$$
B_{r} w(y)=r(y)^{-1} \sum_{y^{\prime} \in Y} b\left(y, y^{\prime}\right) w\left(y^{\prime}\right) .
$$

Lemma 3.1 $\quad B_{r} w=-d \partial w$ on Y.
Proof. A simple calculation shows that

$$
\begin{aligned}
B_{r} w(y) & =r(y)^{-1} \sum_{y^{\prime} \in Y}\left(\sum_{z \in X} K(z, y) K\left(z, y^{\prime}\right)\right) w\left(y^{\prime}\right) \\
& =r(y)^{-1} \sum_{z \in X} K(z, y)\left(\sum_{y^{\prime} \in Y} K\left(z, y^{\prime}\right) w\left(y^{\prime}\right)\right) \\
& =r(y)^{-1} \sum_{z \in X} K(z, y) \partial w(z)=-d \partial w(y)
\end{aligned}
$$

Define $c(x, z)$ for $x, z \in X$ by

$$
c(x, z)=\sum_{y \in Y} r(y)^{-1} K(x, y) K(z, y)
$$

Lemma 3.2 (i) $c(x, z) \neq 0$ if and only if $z \in X(x)$.
(ii) $\sum_{z \in X} c(x, z)=0$.
(iii) $\Delta u(x)=-\sum_{z \in X} c(x, z) u(z)$.

Proof. (i) It is trivial that $z \notin X(x)$ implies $c(x, z)=0$. If $x=z$, then $K(x, y) K(z, y) \in\{0,1\}$ for all $y \in Y$ and $K(x, y) K(z, y)=1$ for some $y \in Y$. Therefore $c(x, z)>0$. Let $z \in X(x) \backslash\{x\}$. Then $K(x, y) K(z, y) \in\{0,-1\}$ for all $y \in Y$ and $K(x, y) K(z, y)=-1$ for some $y \in Y$. Therefore $c(x, z)<$ 0 .
(ii) Since $\sum_{z \in X} K(z, y)=0$ for every $y \in Y$, we have

$$
\sum_{z \in X} c(x, z)=\sum_{y \in Y} r(y)^{-1} K(x, y) \sum_{z \in X} K(z, y)=0
$$

(iii) $\begin{aligned} \sum_{z \in X} c(x, z) u(z) & =\sum_{z \in X} \sum_{y \in Y} r(y)^{-1} K(x, y) K(z, y) u(z) \\ & =\sum_{y \in Y} r(y)^{-1} K(x, y) \sum_{z \in X} K(z, y) u(z) \\ & =-\sum_{y \in Y} K(x, y) d u(y)=-\partial d u(x)=-\Delta u(x) .\end{aligned}$

4. Bi-flows

Let $a, b \in X$. We say that $w \in L(Y)$ is a flow from a to b of strength $I[w]$ if the following condition is fulfilled:

$$
\partial w(x)=\left(\varepsilon_{b}(x)-\varepsilon_{a}(x)\right) I[w],
$$

where $\varepsilon_{a}(x)=0$ if $x \neq a$ and $\varepsilon_{a}(a)=1$. Denote by $\mathbf{F}(a, b)$ the set of all flows from a to b.

Lemma 4.1 $\quad B_{r} w(y)=r(y)^{-1}(K(b, y)-K(a, y)) I[w]$ for $w \in \mathbf{F}(a, b)$.
Proof. We have by Lemma 3.1

$$
\begin{aligned}
B_{r} w(y) & =-d \partial w(y)=r(y)^{-1} \sum_{z \in X} K(z, y)\left(\varepsilon_{b}(z)-\varepsilon_{a}(z)\right) I[w] \\
& =r(y)^{-1}(K(b, y)-K(a, y)) I[w]
\end{aligned}
$$

We say that $w \in L(Y)$ is a bi-flow from a to b of strength $J[w]$ if $B_{r} w \in \mathbf{F}(a, b)$ and $J[w]=I\left[B_{r} w\right]$, i.e.,

$$
\partial B_{r} w(x)=\left(\varepsilon_{b}(x)-\varepsilon_{a}(x)\right) J[w] .
$$

Denote by $\mathbf{B F}(a, b)$ the set of all bi-flows from a to b.
Assume that $X(a) \cap X(b)=\emptyset$. We say that $w \in L(Y)$ is a weak bi-flow from a to b of strength $\tilde{J}[w]$ if

$$
\begin{gathered}
\partial B_{r} w(x)=0 \quad \text { for all } x \in X \backslash\{X(a) \cup X(b)\}, \\
\tilde{J}[w]=-\sum_{x \in X(a)} \partial B_{r} w(x)=\sum_{x \in X(b)} \partial B_{r} w(x) .
\end{gathered}
$$

Denote by $\operatorname{WBF}(a, b)$ the set of all weak bi-flows from a to b.
Denote by \mathbf{C} and \mathbf{C}_{B} the set of cycles on N and the set of bicycles on N,

$$
\mathbf{C}=\{w \in L(Y) ; \partial w=0\}, \quad \mathbf{C}_{B}=\left\{w \in L(Y) ; \partial B_{r} w=0\right\} .
$$

Denote by \mathbf{K}_{B} and \mathbf{H} the kernel of B_{r} and the set of all harmonic functions on X,

$$
\mathbf{K}_{B}=\left\{w \in L(Y) ; B_{r} w=0\right\}, \quad \mathbf{H}=\{u \in L(X) ; \Delta u=0\}
$$

Lemma $4.2 \quad\{d h ; h \in \mathbf{H}\} \subset \mathbf{C} \subset \mathbf{K}_{B} \subset \mathbf{C}_{B}$.
Proof. Let $h \in \mathbf{H}$. Then $\partial(d h)=\Delta h=0$, so that $d h \in \mathbf{C}$. Let $w \in \mathbf{C}$. Then by Lemma 3.1 $B_{r} w=-d \partial w=0$, so that $w \in \mathbf{K}_{B}$. The inclusion $\mathbf{K}_{B} \subset \mathbf{C}_{B}$ is trivial.

Proposition $4.1 \quad$ (i) $\mathbf{C} \subset \mathbf{F}(a, b)$ and $\mathbf{C}_{B} \subset \mathbf{B F}(a, b)$ for $a, b \in X$.
(ii) $\{w \in \mathbf{F}(a, b) ; I[w]=0\}=\mathbf{C}$ and $\{w \in \mathbf{B F}(a, b) ; J[w]=0\}=\mathbf{C}_{B}$ for $a, b \in X$.
(iii) $\mathbf{F}(a, a)=\mathbf{C}$ and $\mathbf{B F}(a, a)=\mathbf{C}_{B}$ for $a \in X$.
(iv) $\mathbf{F}\left(a_{1}, b_{1}\right) \cap \mathbf{F}\left(a_{2}, b_{2}\right)=\mathbf{C}$ and $\mathbf{B F}\left(a_{1}, b_{1}\right) \cap \mathbf{B F}\left(a_{2}, b_{2}\right)=\mathbf{C}_{B}$ for a_{1}, a_{2}, $b_{1}, b_{2} \in X$ with $\left\{a_{1}, b_{1}\right\} \neq\left\{a_{2}, b_{2}\right\}$.

Proof. We shall show the assertions for $\mathbf{F}(a, b)$; the assertions for $\mathbf{B F}(a, b)$ can be similarly proved. We easily have (i) and (ii).

To prove (iii), it suffices to show that $\mathbf{F}(a, a) \subset \mathbf{C}$. Let $w \in \mathbf{F}(a, a)$. Then $\partial w=\left(\varepsilon_{a}-\varepsilon_{a}\right) I[w]=0$, so that $w \in \mathbf{C}$.

We shall prove (iv). We need to show that $\mathbf{F}\left(a_{1}, b_{1}\right) \cap \mathbf{F}\left(a_{2}, b_{2}\right) \subset \mathbf{C}$. We may assume $a_{1} \notin\left\{a_{2}, b_{2}\right\}$. Using (iii) we may also assume that $a_{1} \neq b_{1}$ and $a_{2} \neq b_{2}$. Let $w \in \mathbf{F}\left(a_{1}, b_{1}\right) \cap \mathbf{F}\left(a_{2}, b_{2}\right)$. Then $\partial w\left(a_{1}\right)=-I[w]$ from $w \in \mathbf{F}\left(a_{1}, b_{1}\right)$ and $\partial w\left(a_{1}\right)=0$ from $w \in \mathbf{F}\left(a_{2}, b_{2}\right)$. We have $I[w]=0$, so that $\partial w=0$.

Theorem 4.1 Assume that $X(a) \cap X(b)=\emptyset$.
(i) $\mathbf{B F}(a, b) \subset \mathbf{W B F}(a, b)$ and $J[w]=\tilde{J}[w]$ for $w \in \mathbf{B F}(a, b)$.
(ii) $\mathbf{F}(a, b) \subset \mathbf{W B F}(a, b)$ and $\tilde{J}[w]=0$ for $w \in \mathbf{F}(a, b)$.
(iii) $\mathbf{F}(a, b) \cap \mathbf{B F}(a, b)=\mathbf{C}$.

Proof. It is easy to see that (i) holds. We shall prove (ii). Let $w \in \mathbf{F}(a, b)$. By Lemma 4.1

$$
\begin{align*}
\partial B_{r} w(x) & =\sum_{y \in Y} K(x, y) r(y)^{-1}(K(b, y)-K(a, y)) I[w] \\
& =(c(x, b)-c(x, a)) I[w] \tag{1}
\end{align*}
$$

For $x \in X \backslash(X(a) \cup X(b))$ we have $\partial B_{r} w(x)=0$ by Lemma 3.2 (i). Also Lemma 3.2 (i) and (ii) show that $\sum_{x \in X(a)} \partial B_{r} w(x)=-\sum_{x \in X(a)} c(x, a) I[w]$ $=0$. Similarly $\sum_{x \in X(b)} \partial B_{r} w(x)=0$.

Next we prove (iii). Lemma 4.2 and Proposition 4.1 (i) show that $\mathbf{C} \subset$ $\mathbf{F}(a, b) \cap \mathbf{B F}(a, b)$. We shall show the converse. Let $w \in \mathbf{F}(a, b) \cap \mathbf{B F}(a, b)$. Let $x \in X(a) \backslash\{a\}$. Then the equation (1) shows that $0=\partial B_{r} w(x)=$ $-c(x, a) I[w]$. Lemma 3.2 (i) implies $I[w]=0$, which means $\partial w=0$.

Theorem 4.2 Suppose that $X(a) \cup X(b) \neq(X(a) \cap X(b)) \cup\{a, b\}$. Then $\mathbf{F}(a, b) \cap \mathbf{B F}(a, b) \subset \mathbf{C} \cap \mathbf{K}_{B}$.

Proof. It is clear that $(X(a) \cap X(b)) \cup\{a, b\} \subset X(a) \cup X(b)$. By our assumption, there exists $x_{0} \in X(a) \cup X(b)$ such that $x_{0} \notin(X(a) \cap X(b)) \cup$ $\{a, b\}$. We may assume that $x_{0} \in X(a), x_{0} \notin X(b)$ and $x_{0} \neq a$. Let $w \in \mathbf{F}(a, b) \cap \mathbf{B F}(a, b)$. Since $K\left(x_{0}, y\right) K(b, y)=0$ for all $y \in Y$, we have by Lemma 4.1

$$
\begin{aligned}
0 & =\partial B_{r} w\left(x_{0}\right)=\sum_{y \in Y} K\left(x_{0}, y\right) B_{r} w(y) \\
& =-I[w] \sum_{y \in Y} r(y)^{-1} K\left(x_{0}, y\right) K(a, y)=-I[w] c\left(x_{0}, a\right) .
\end{aligned}
$$

Lemma 3.2 (i) shows that $c\left(x_{0}, a\right) \neq 0$, and that $I[w]=0$. Thus $\partial w=0$ on X. Lemma 4.1 shows that $B_{r} w=0$ on Y.

5. Bi-flows to the ideal boundary

Now we recall some definitions related to the energy $H[w]$ of $w \in L(Y)$ and the Dirichlet sum $D[u]$ of $u \in L(X)$:

$$
\begin{aligned}
\left\langle w, w^{\prime}\right\rangle & =\sum_{y \in Y} r(y) w(y) w^{\prime}(y), \\
H[w] & =\langle w, w\rangle=\sum_{y \in Y} r(y) w(y)^{2}, \\
L_{2}(Y ; r) & =\{w \in L(Y) ; H[w]<\infty\}, \\
D\left[u, u^{\prime}\right] & =\left\langle d u, d u^{\prime}\right\rangle=\sum_{y \in Y} r(y) d u(y) d u^{\prime}(y), \\
D[u] & =D[u, u]=H[d u]=\sum_{y \in Y} r(y)(d u(y))^{2}, \\
\mathbf{D}(N) & =\{u \in L(X) ; D[u]<\infty\}
\end{aligned}
$$

Lemma $5.1\left\langle d u, d u^{\prime}\right\rangle=-\sum_{x \in X} u(x) \Delta u^{\prime}(x)$ for $u \in L_{0}(X)$ and for $u^{\prime} \in$ $\mathbf{D}(N)$.

Proof.

$$
\begin{aligned}
\left\langle d u, d u^{\prime}\right\rangle & =\sum_{y \in Y} r(y) d u(y) d u^{\prime}(y)=-\sum_{y \in Y} \sum_{x \in X} K(x, y) u(x) d u^{\prime}(y) \\
& =-\sum_{x \in X} u(x) \sum_{y \in Y} K(x, y) d u^{\prime}(y)=-\sum_{x \in X} u(x) \partial d u^{\prime}(x) \\
& =-\sum_{x \in X} u(x) \Delta u^{\prime}(x) .
\end{aligned}
$$

It is known that $\mathbf{D}(N)\left(L_{2}(Y ; r)\right.$ resp. $)$ is a Hilbert space with respect to the norm $\|u\|_{2}=\left(D[u]+u\left(x_{0}\right)^{2}\right)^{1 / 2}\left(H[w]^{1 / 2}\right.$ resp.) with a fixed node $x_{0} \in X$. Denote by $\mathbf{D}_{0}(N)$ the closure of $L_{0}(X)$ in the Hilbert space $\mathbf{D}(N)$ (see [3]).

The Green function $g_{a} \in L(X)$ with pole at $a \in X$ is defined as the unique function satisfying the conditions:

$$
g_{a} \in \mathbf{D}_{0}(N) \quad \text { and } \quad \Delta g_{a}=-\varepsilon_{a} \text { on } X
$$

We know that g_{a} exists for every a if and only if N is hyperbolic, i.e., $\mathbf{D}_{0}(N) \neq \mathbf{D}(N)$ (see [2]). Denote by $\mathbf{H D}(N)$ the set of all $u \in \mathbf{D}(N)$ such that $\Delta u=0$.

Lemma 5.2 $\quad \mathbf{D}_{0}(N) \cap \mathbf{H D}(N)=\{0\}$ if and only if N is hyperbolic.
Proof. If N is parabolic, then $1 \in \mathbf{D}(N)=\mathbf{D}_{0}(N)$, which is also harmonic. This means $1 \in \mathbf{D}_{0}(N) \cap \mathbf{H D}(N)$.

Conversely, we assume that N is hyperbolic. Let $u \in \mathbf{D}_{0}(N) \cap \mathbf{H D}(N)$. Then both $u=u+0$ and $u=0+u$ are the Royden decompositions. The uniqueness of the Royden decomposition implies that $u=0$.

We say that $w \in L(Y)$ is a flow from $a \in X$ to the ideal boundary with strength $I[w]$ if

$$
\partial w(x)=-\varepsilon_{a}(x) I[w] .
$$

Let $\mathbf{F}(a, \infty)$ be the set of all flows w from a to the ideal boundary. It is well-known that $d g_{a}$ is characterized as the unique optimal solution to the following extremal problem:

$$
d^{*}(a, \infty)=\inf \{H[w] ; w \in \mathbf{F}(a, \infty), I[w]=1\}
$$

We say that $w \in L(Y)$ is a bi-flow from $a \in X$ to the ideal boundary with strength $J[w]$ if

$$
\partial B_{r} w(x)=-\varepsilon_{a}(x) J[w] .
$$

Notice that

$$
J[w]=\Delta \partial w(a)
$$

Denote by $\mathbf{B F}(a, \infty)$ the set of all bi-flows from a to the ideal boundary of N.

Analogous to $d^{*}(a, \infty)$, we consider the following extremal problem:

$$
\begin{equation*}
d_{B}^{*}(a, \infty)=\inf \left\{H[w] ; w \in \mathbf{B F}(a, \infty), \partial w \in \mathbf{D}_{0}(N), J[w]=1\right\} \tag{*}
\end{equation*}
$$

The bi-harmonic Green function $q_{a} \in L(X)$ with pole at a is defined by

$$
q_{a}(x)=\sum_{z \in X} g_{a}(z) g_{z}(x)
$$

if the sum converges (see [1], [4]). Notice that

$$
\Delta q_{a}=-g_{a} \quad \text { and } \quad \Delta^{2} q_{a}=\varepsilon_{a} \text { on } X
$$

and that $d q_{a}$ is a feasible solution to the problem $(*)$.
We proved the following lemma in [6, Theorem 4.2]:
Lemma 5.3 Let N be parabolic and $u \in \mathbf{D}(N)$. If $\sum_{x \in X}|\Delta u(x)|<\infty$, then $\sum_{x \in X} \Delta u(x)=0$.
Corollary 5.1 If $d_{B}^{*}(a, \infty)<\infty$, then N is hyperbolic and $\partial w=-g_{a}$ for all feasible solution w to the problem (*).

Proof. Let w be a feasible solution to the problem (*). Then $u=\partial w \in$ $\mathbf{D}_{0}(N)$ and $\Delta u(x)=-\partial B_{r} w(x)=\varepsilon_{a}(x)$. By the above lemma, N must be hyperbolic and $u=-g_{a}$.

The next theorem is an extension of [4, Theorem 3.1], which shows that $q_{a} \in \mathbf{D}(N)$ is equivalent to $q_{a} \in \mathbf{D}_{0}(N)$.

Theorem 5.1 The following are equivalent:
(i) $q_{a} \in \mathbf{D}(N)$;
(ii) $q_{a} \in \mathbf{D}_{0}(N)$;
(iii) $d_{B}^{*}(a, \infty)<\infty$.

In this case $d q_{a}$ is a unique optimal solution to the problem (*).
Proof. It is obvious that (ii) implies (i). Suppose that $q_{a} \in \mathbf{D}(N)$. Since $d q_{a}$ is a feasible solution to the problem $(*)$, it follows that $d_{B}^{*}(a, \infty)<\infty$. This shows that (i) implies (iii).

We shall show that (iii) implies (ii). We assume that $d_{B}^{*}(a, \infty)<\infty$. First we shall prove that there exists an optimal solution to the problem $(*)$. Let $\left\{w_{n}\right\}$ be a minimizing sequence of $(*)$. Then $\left(w_{n}+w_{m}\right) / 2$ is a feasible solution to the problem (*), so that we have

$$
\begin{aligned}
d_{B}^{*}(a, \infty) & \leq H\left[\left(w_{n}+w_{m}\right) / 2\right] \leq H\left[\left(w_{n}+w_{m}\right) / 2\right]+H\left[\left(w_{n}-w_{m}\right) / 2\right] \\
& =\left(H\left[w_{n}\right]+H\left[w_{m}\right]\right) / 2 \rightarrow d_{B}^{*}(a, \infty)
\end{aligned}
$$

as $n, m \rightarrow \infty$. Thus $H\left[w_{n}-w_{m}\right] \rightarrow 0$ as $n, m \rightarrow \infty$. There exists $w^{*} \in$ $L_{2}(Y ; r)$ such that $H\left[w_{n}-w^{*}\right] \rightarrow 0$ as $n \rightarrow \infty$. Since $\left\{w_{n}\right\}$ converges pointwise to w^{*} and N is locally finite, we obtain $w^{*} \in \mathbf{B F}(a, \infty)$ and $J\left[w^{*}\right]=1$. Also $\partial w_{n}=-g_{a}$ implies that

$$
\partial w^{*}=\lim _{n \rightarrow \infty} \partial w_{n}=-g_{a} \in \mathbf{D}_{0}(N)
$$

Therefore w^{*} is an optimal solution to the problem $(*)$.
To prove the uniqueness of an optimal solution to the problem $(*)$, let w^{\prime} be another optimal solution to the problem (*). Then

$$
\begin{aligned}
d_{B}^{*}(a, \infty) & \leq H\left[\left(w^{*}+w^{\prime}\right) / 2\right] \leq H\left[\left(w^{*}+w^{\prime}\right) / 2\right]+H\left[\left(w^{*}-w^{\prime}\right) / 2\right] \\
& =\left(H\left[w^{*}\right]+H\left[w^{\prime}\right]\right) / 2=d_{B}^{*}(a, \infty)
\end{aligned}
$$

so that $H\left[w^{*}-w^{\prime}\right]=0$. Hence $w^{*}=w^{\prime}$.
For any $\omega \in L_{0}(Y) \cap \mathbf{C}(N)$ and any $t \in \mathbf{R}$, we see that $w^{*}+t \omega$ is a feasible solution to the problem (*). Thus

$$
d_{B}^{*}(a, \infty) \leq H\left[w^{*}+t \omega\right]=H\left[w^{*}\right]+2 t\left\langle w^{*}, \omega\right\rangle+t^{2} H[\omega],
$$

so that $\left\langle w^{*}, \omega\right\rangle=0$. By the usual way, we see that there exists $u^{*} \in L(X)$ such that $w^{*}=d u^{*}$ (see the proof of [6, Theorem 3.2] for details).

Since $D\left[u^{*}\right]=H\left[w^{*}\right]<\infty$, it follows that $u^{*} \in \mathbf{D}(N)$. Let $u^{*}=v^{*}+h$ be the Royden decomposition with $v^{*} \in \mathbf{D}_{0}(N)$ and $h \in \mathbf{H D}(N)$. Let $w^{\prime}=d v^{*}$. Then w^{\prime} is a feasible solution to the problem $(*)$, so that

$$
D\left[v^{*}\right]+D[h]=D\left[u^{*}\right]=H\left[w^{*}\right] \leq H\left[w^{\prime}\right]=D\left[v^{*}\right] .
$$

This means that $D[h]=0$ and $H\left[w^{*}\right]=H\left[w^{\prime}\right]$, i.e., h is a constant function and $w^{*}=w^{\prime}=d v^{*}$.

Let $\left\{N_{n}\right\}$ be an exhaustion of N and $g_{a}^{(n)}$ the Green function of N_{n} with pole at a. We have

$$
\sum_{z \in X} g_{a}(z) g_{x}^{(n)}(z)=-\sum_{z \in X}\left(\Delta v^{*}(z)\right) g_{x}^{(n)}(z)=D\left[v^{*}, g_{x}^{(n)}\right]
$$

Since $\left\{g_{x}^{(n)}\right\}_{n}$ converges to g_{x} (see $[3$, Section 3]), it follows that

$$
\begin{aligned}
\sum_{z \in X} g_{a}(z) g_{x}(z) & \leq \liminf _{n \rightarrow \infty} \sum_{z \in X} g_{a}(z) g_{x}^{(n)}(z)=\lim _{n \rightarrow \infty} D\left[v^{*}, g_{x}^{(n)}\right] \\
& =D\left[v^{*}, g_{x}\right] \leq D\left[v^{*}\right]^{1 / 2} D\left[g_{x}\right]^{1 / 2}<\infty
\end{aligned}
$$

In particular, we obtain $\sum_{z \in X} g_{a}(z)^{2}<\infty$, so that $q_{a} \in L(X)$ by [4, Theorem 2.3].

Define $f(x), f_{n}(x)$ and $h_{n}(x)$ by

$$
\begin{aligned}
f(x) & =\sum_{z \in X} g_{x}(z) \Delta v^{*}(z)=-q_{a}(x) \in L(X) \\
f_{n}(x) & =\sum_{z \in X} g_{z}^{(n)}(x) \Delta v^{*}(z) \\
h_{n} & =v^{*}+f_{n} .
\end{aligned}
$$

Notice that h_{n} is harmonic on X_{n} and

$$
D\left[h_{n}, f_{n}\right]=-\sum_{x \in X}\left(\Delta h_{n}(x)\right) f_{n}(x)=0
$$

so that $D\left[v^{*}\right]=D\left[h_{n}\right]+D\left[f_{n}\right]$. We see by Lebesgue's dominated convergence theorem that $\left\{f_{n}(x)\right\}$ converges pointwise to $f(x)$ for all $x \in X$. Since $\left\{D\left[f_{n}\right]\right\}$ is bounded, we see by [5, Theorem 4.1] that $q_{a}=-f \in \mathbf{D}_{0}(N)$.

Let $f^{\prime}=q_{a}-v^{*}$. Then

$$
\Delta f^{\prime}=\Delta q_{a}-\Delta v^{*}=-g_{a}+g_{a}=0
$$

so that $f^{\prime} \in \mathbf{D}_{0}(N) \cap \mathbf{H D}(N)$. Lemma 5.2 shows $f^{\prime}=0$. Therefore $q_{a}=$ $v^{*} \in \mathbf{D}_{0}(N)$ and $d v^{*}=d q_{a}$.

6. Another extremal problem

Analogous to $d^{*}(a, \infty)$ and $d_{B}^{*}(a, \infty)$, we consider the following extremum problem:

$$
\begin{equation*}
d_{B}^{* *}(a, \infty)=\inf \{H[w] ; w \in \mathbf{B F}(a, \infty), J[w]=1\} \tag{**}
\end{equation*}
$$

Clearly $d_{B}^{* *}(a, \infty) \leq d_{B}^{*}(a, \infty)$.
Theorem 6.1 Assume that $d_{B}^{* *}(a, \infty)<\infty$. Then there exists a unique optimal solution $w^{* *}$ to the problem $(* *)$. Also there exists $v^{* *} \in \mathbf{D}_{0}(N)$ such that $w^{* *}=d v^{* *}$.

Proof. Let $\left\{w_{n}\right\}$ be a minimizing sequence of $(* *)$. Then $\left(w_{n}+w_{m}\right) / 2$ is a feasible solution to the problem $(* *)$, so that we have

$$
\begin{aligned}
d_{B}^{* *}(a, \infty) & \leq H\left[\left(w_{n}+w_{m}\right) / 2\right] \leq H\left[\left(w_{n}+w_{m}\right) / 2\right]+H\left[\left(w_{n}-w_{m}\right) / 2\right] \\
& =\left(H\left[w_{n}\right]+H\left[w_{m}\right]\right) / 2 \rightarrow d_{B}^{* *}(a, \infty)
\end{aligned}
$$

as $n, m \rightarrow \infty$. Thus $H\left[w_{n}-w_{m}\right] \rightarrow 0$ as $n, m \rightarrow \infty$. There exists $w^{* *} \in$ $L_{2}(Y ; r)$ such that $H\left[w_{n}-w^{* *}\right] \rightarrow 0$ as $n \rightarrow \infty$. Since $\left\{w_{n}\right\}$ converges pointwise to $w^{* *}$ and N is locally finite, we obtain $w^{* *} \in \mathbf{B F}(a, \infty)$ and $J\left[w^{* *}\right]=1$. Therefore $w^{* *}$ is an optimal solution to the problem $(* *)$.

To prove the uniqueness let w^{\prime} be another optimal solution to the problem $(* *)$. Then

$$
\begin{aligned}
d_{B}^{* *}(a, \infty) & \leq H\left[\left(w^{* *}+w^{\prime}\right) / 2\right] \leq H\left[\left(w^{* *}+w^{\prime}\right) / 2\right]+H\left[\left(w^{* *}-w^{\prime}\right) / 2\right] \\
& =\left(H\left[w^{* *}\right]+H\left[w^{\prime}\right]\right) / 2=d_{B}^{* *}(a, \infty)
\end{aligned}
$$

so that $H\left[w^{* *}-w^{\prime}\right]=0$. Hence $w^{* *}=w^{\prime}$.
For any $\omega \in L_{0}(Y) \cap \mathbf{C}(N)$ and any $t \in \mathbf{R}$, we see that $w^{* *}+t \omega$ is a feasible solution to the problem $(* *)$. Thus

$$
d_{B}^{* *}(a, \infty) \leq H\left[w^{* *}+t \omega\right]=H\left[w^{* *}\right]+2 t\left\langle w^{* *}, \omega\right\rangle+t^{2} H[\omega]
$$

so that $\left\langle w^{* *}, \omega\right\rangle=0$. By the usual way, we see that there exists $u^{* *} \in L(X)$ such that $w^{* *}=d u^{* *}$. Since $D\left[u^{* *}\right]=H\left[w^{* *}\right]<\infty, u^{* *} \in \mathbf{D}(N)$.

If N is hyperbolic type, then we let $u^{* *}=v^{* *}+h$ be the Royden decomposition with $v^{* *} \in \mathbf{D}_{0}(N)$ and $h \in \mathbf{H D}(N)$; otherwise let $v^{* *}=$ $u^{* *} \in \mathbf{D}(N)=\mathbf{D}_{0}(N)$. Let $w^{\prime}=d v^{* *}$. Then w^{\prime} is a feasible solution to the problem $(* *)$, so that

$$
D\left[v^{* *}\right]+D[h]=D\left[u^{* *}\right]=H\left[w^{* *}\right] \leq H\left[w^{\prime}\right]=D\left[v^{* *}\right] .
$$

This means that $D[h]=0$ and $H\left[w^{* *}\right]=H\left[w^{\prime}\right]$, i.e., h is a constant function and $w^{* *}=w^{\prime}=d v^{* *}$.

We say that a network N satisfies the condition (LD) if there exists a constant c such that $D[\Delta u] \leq c D[u]$ for all $u \in L_{0}(X)$. We say that a network N is of bounded degree if $\sup _{x \in X} \sum_{y \in Y}|K(x, y)|<\infty$.

Next proposition provides a sufficient condition for the condition (LD).
Proposition 6.1 Assume that $r \equiv 1$ and that N is of bounded degree. Then $D[\Delta u] \leq 8 \nu_{0}^{2} D[u]$ for all $u \in \mathbf{D}(N)$, where $\nu_{0}=\sup _{x \in X} \sum_{y \in Y}$ $\cdot|K(x, y)|$. Especially N satisfies the condition (LD).

Proof. First note that a simple calculation shows that

$$
\left(\sum_{j=1}^{n} \alpha_{j}\right)^{2} \leq n \sum_{j=1}^{n} \alpha_{j}^{2}
$$

for $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$.
Let $w=d u$ and $v=\Delta u$. Then

$$
d v(y)=-\sum_{y^{\prime} \in Y} b\left(y, y^{\prime}\right) w\left(y^{\prime}\right)=-\sum_{y^{\prime} \in Y} \sum_{x \in X} K(x, y) K\left(x, y^{\prime}\right) w\left(y^{\prime}\right)
$$

Since the number of $y^{\prime} \in Y$ with $\sum_{x \in X} K(x, y) K\left(x, y^{\prime}\right) w\left(y^{\prime}\right) \neq 0$ is at most $2 \nu_{0}$ for each y, it follows that

$$
\begin{aligned}
(d v(y))^{2} & =\left(\sum_{y^{\prime} \in Y} \sum_{x \in X} K(x, y) K\left(x, y^{\prime}\right) w\left(y^{\prime}\right)\right)^{2} \\
& \leq 2 \nu_{0} \sum_{y^{\prime} \in Y}\left(\sum_{x \in X} K(x, y) K\left(x, y^{\prime}\right) w\left(y^{\prime}\right)\right)^{2} .
\end{aligned}
$$

Since the number of $x \in X$ with $K(x, y) K\left(x, y^{\prime}\right) \neq 0$ is at most two for each $y, y^{\prime} \in Y$, we have $\left(\sum_{x \in X} K(x, y) K\left(x, y^{\prime}\right)\right)^{2} \leq 2 \sum_{x \in X}\left(K(x, y) K\left(x, y^{\prime}\right)\right)^{2}$. Using $\left|K(x, y) K\left(x, y^{\prime}\right)\right|^{2}=\left|K(x, y) K\left(x, y^{\prime}\right)\right|$ we obtain

$$
(d v(y))^{2} \leq 4 \nu_{0} \sum_{y^{\prime} \in Y}\left(\sum_{x \in X}\left|K(x, y) K\left(x, y^{\prime}\right)\right|\right) w\left(y^{\prime}\right)^{2}
$$

Let $Y(x)=\{y \in Y ; K(x, y) \neq 0\}$ for $x \in X$. Then $\sum_{x \in X} \sum_{y^{\prime} \in Y(x)} w\left(y^{\prime}\right)^{2}=$ $2 \sum_{y \in Y} w(y)^{2}$. By the above estimation, we have

$$
D[\Delta u]=H[d v]=\sum_{y \in Y}(d v(y))^{2}
$$

$$
\begin{aligned}
& \leq 4 \nu_{0} \sum_{y \in Y} \sum_{y^{\prime} \in Y}\left(\sum_{x \in X}\left|K(x, y) K\left(x, y^{\prime}\right)\right|\right) w\left(y^{\prime}\right)^{2} \\
& =4 \nu_{0} \sum_{y^{\prime} \in Y}\left(\sum_{x \in X}\left(\sum_{y \in Y}|K(x, y)|\right)\left|K\left(x, y^{\prime}\right)\right|\right) w\left(y^{\prime}\right)^{2} \\
& \leq 4 \nu_{0}^{2} \sum_{y^{\prime} \in Y} \sum_{x \in X}\left|K\left(x, y^{\prime}\right)\right| w\left(y^{\prime}\right)^{2} \\
& =4 \nu_{0}^{2} \sum_{x \in X} \sum_{y^{\prime} \in Y(x)} w\left(y^{\prime}\right)^{2}=8 \nu_{0}^{2} \sum_{y \in Y} w(y)^{2} \\
& =8 \nu_{0}^{2} D[u] .
\end{aligned}
$$

Lemma 6.1 Assume that N satisfies the condition (LD). If $u \in \mathbf{D}_{0}(N)$, then $\Delta u \in \mathbf{D}_{0}(N)$.

Proof. Let $\left\{f_{n}\right\}$ be a sequence in $L_{0}(X)$ such that $\left\|f_{n}-u\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$. Then $\left\|f_{n}-f_{m}\right\|_{2} \rightarrow 0$ as $n, m \rightarrow \infty$ and $\left\{D\left[f_{n}\right]\right\}$ is bounded. By the condition (LD) there exists a constant $c>0$ such that

$$
D\left[\Delta f_{n}-\Delta f_{m}\right] \leq c D\left[f_{n}-f_{m}\right] \rightarrow 0 \quad(n, m \rightarrow \infty)
$$

Thus $\left\|\Delta f_{n}-\Delta f_{m}\right\|_{2} \rightarrow 0$ as $n, m \rightarrow \infty$. Therefore $\left\{\Delta f_{n}\right\}$ is a Cauchy sequence in $\mathbf{D}_{0}(N)$. We can find $\varphi \in \mathbf{D}_{0}(N)$ such that $\left\|\Delta f_{n}-\varphi\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$. Since $\left\{f_{n}(x)\right\}$ converges pointwise to $u(x)$, it follows that $\left\{\Delta f_{n}(x)\right\}$ converges pointwise to $\Delta u(x)$. Since $\left\{\Delta f_{n}(x)\right\}$ also converges pointwise to $\varphi(x)$ and $\left\{D\left(\Delta f_{n}\right)\right\}$ is bounded, we see that $\Delta u=\varphi \in \mathbf{D}_{0}(N)$ by [5, Theorem 4.1].

Theorem 6.2 Assume that N satisfies the condition (LD). Then $d_{B}^{* *}(a, \infty)=d_{B}^{*}(a, \infty)$. If $d_{B}^{* *}(a, \infty)<\infty$, then $d q_{a}$ is a unique optimal solution to the problem ($* *$).

Proof. Since $d_{B}^{* *}(a, \infty) \leq d_{B}^{*}(a, \infty)$, we shall show that $d_{B}^{* *}(a, \infty) \geq$ $d_{B}^{*}(a, \infty)$. We may assume that $d_{B}^{* *}(a, \infty)<\infty$. Let $w^{* *}$ and $v^{* *}$ be the same as in Theorem 6.1. By Lemma 6.1, we see that $\Delta v^{* *} \in \mathbf{D}_{0}(N)$. This means that $w^{* *}=d v^{* *}$ is a feasible solution to the problem $(*)$. We have $d_{B}^{*}(a, \infty) \leq H\left[w^{* *}\right]=d_{B}^{* *}(a, \infty)$.

Assume that $d_{B}^{* *}(a, \infty)<\infty$. Then N is hyperbolic by Corollary 5.1. Let $f^{\prime}=q_{a}-v^{* *}$. Since $q_{a} \in \mathbf{D}_{0}(N)$ by Theorem 5.1, it follows that $f^{\prime} \in$ $\mathbf{D}_{0}(N)$ and $\Delta f^{\prime}=\Delta q_{a}-\Delta v^{* *}=-g_{a}+g_{a}=0$, so that $f^{\prime} \in \mathbf{D}_{0}(N) \cap \mathbf{H D}(N)$. Hence $f^{\prime}=0$. This means that $d q_{a}=d v^{* *}$ is a unique optimal solution to the problem $(* *)$.

7. An example

We show an example of $w \in \mathbf{B F}(a, \infty)$ for the following network:
Example 7.1 Let $X=\left\{x_{n} ; n \geq 0\right\}, Y=\left\{y_{n} ; n \geq 1\right\}, e\left(y_{n}\right)=\left\{x_{n-1}, x_{n}\right\}$ for $n \geq 1$. Let $K\left(x_{n}, y_{n}\right)=1, K\left(x_{n-1}, y_{n}\right)=-1$ for $n \geq 1$ and $K(x, y)=0$ for any other pairs. For a strictly positive function r on $Y, N=\{X, Y, K, r\}$ is an infinite network.

Let $r_{n}=r\left(y_{n}\right), R_{n}=\sum_{k=n+1}^{\infty} r_{k}$ and $\rho_{n}=\sum_{k=1}^{n} r_{k}$. We assume that $\rho:=\sum_{n=1}^{\infty} r_{n}<\infty$. Then it is easy to see that

$$
g_{x_{k}}\left(x_{n}\right)=R_{n}(0 \leq k \leq n), \quad g_{x_{k}}\left(x_{n}\right)=R_{k}(k>n) .
$$

Let w be a feasible solution to the problem $(* *)$ with $a=x_{0}$ and let $v=\partial w$. Let $w_{n}=w\left(y_{n}\right)$ for $n \geq 1$. Let $v_{n}=v\left(x_{n}\right)$ for $n \geq 0$. We have

$$
\begin{aligned}
B_{r} w\left(y_{n}\right) & =\frac{1}{r\left(y_{n}\right)} \sum_{x \in X} K\left(x, y_{n}\right) \partial w(x)=\frac{1}{r_{n}}\left(v_{n}-v_{n-1}\right), \\
\partial B_{r} w\left(x_{0}\right) & =\sum_{y \in Y} K\left(x_{0}, y\right) B_{r} w(y)=-B_{r} w\left(y_{1}\right)=-\frac{1}{r_{1}}\left(v_{1}-v_{0}\right), \\
\partial B_{r} w\left(x_{n}\right) & =\sum_{y \in Y} K\left(x_{n}, y\right) B_{r} w(y)=B_{r} w\left(y_{n}\right)-B_{r} w\left(y_{n+1}\right) \\
& =\frac{1}{r_{n}}\left(v_{n}-v_{n-1}\right)-\frac{1}{r_{n+1}}\left(v_{n+1}-v_{n}\right) .
\end{aligned}
$$

Since $\partial B_{r} w\left(x_{0}\right)=-1$ and $\partial B_{r} w\left(x_{n}\right)=0$ for $n \geq 1$, it follows that $r_{n}^{-1}\left(v_{n}-\right.$ $\left.v_{n-1}\right)=1$. Thus

$$
v_{n}=\rho_{n}+v_{0}
$$

From

$$
v_{n}=\sum_{y \in Y} K\left(x_{n}, y\right) w(y)=w_{n}-w_{n+1}(n \geq 1), \quad v_{0}=-w_{1}
$$

it follows that $w_{n}-w_{n+1}=\rho_{n}+v_{0}$, and that

$$
w_{n}=-\sum_{k=1}^{n-1} \rho_{k}-(n-1) v_{0}+w_{1}=-\sum_{k=1}^{n-1} \rho_{k}-n v_{0}
$$

Let

$$
A_{n}=\sum_{k=1}^{n-1} \rho_{k}, \quad \alpha=\sum_{n=1}^{\infty} n^{2} r_{n}, \quad \beta=\sum_{n=1}^{\infty} n r_{n} A_{n}, \quad \gamma=\sum_{n=1}^{\infty} r_{n} A_{n}^{2} .
$$

Then

$$
\begin{equation*}
H[w]=\sum_{n=1}^{\infty} r_{n} w_{n}^{2}=\sum_{n=1}^{\infty} r_{n}\left(-A_{n}-n v_{0}\right)^{2}=\alpha v_{0}^{2}+2 \beta v_{0}+\gamma \tag{2}
\end{equation*}
$$

Now let w^{\prime} be a feasible solution to the problem $(*)$. In a similar way we let $w_{n}^{\prime}=w^{\prime}\left(y_{n}\right)$ and $v_{n}^{\prime}=v^{\prime}\left(x_{n}\right)=\partial w^{\prime}\left(x_{n}\right)$ and obtain

$$
\begin{aligned}
v_{n}^{\prime} & =\rho_{n}+v_{0}^{\prime}, \\
w_{n}^{\prime} & =-\sum_{k=1}^{n-1} \rho_{k}-n v_{0}^{\prime}=-A_{n}-n v_{0}^{\prime} .
\end{aligned}
$$

Since $v^{\prime} \in \mathbf{D}_{0}(N)$, we have $\lim _{n \rightarrow \infty} v_{n}^{\prime}=0$, or $v_{0}^{\prime}=-\rho$. Therefore

$$
\begin{equation*}
w_{n}^{\prime}=-A_{n}+n \rho . \tag{3}
\end{equation*}
$$

Since $\rho=R_{0}$ and $\rho_{k}=R_{0}-R_{k}$ for $k \geq 1$, we have

$$
\begin{equation*}
w_{n}^{\prime}=-\sum_{k=1}^{n-1}\left(R_{0}-R_{k}\right)+n R_{0}=\sum_{k=0}^{n-1} R_{k} . \tag{4}
\end{equation*}
$$

Notice that this is a unique feasible solution to the problem (*). By (3)

$$
d_{B}^{*}(a, \infty)=H\left[w^{\prime}\right]=\sum_{n=1}^{\infty} r_{n}\left(-A_{n}+n \rho\right)^{2}=\alpha \rho^{2}-2 \beta \rho+\gamma
$$

(a) Assume that all of α, β, γ converge. First we note that $\alpha \rho>\beta$. Indeed,

$$
A_{n}=\sum_{k=1}^{n-1} \rho_{k}=\sum_{k=1}^{n-1} \sum_{j=1}^{k} r_{j}=\sum_{j=1}^{n-1}(n-j) r_{j}<n \sum_{j=1}^{n} r_{j}=n \rho_{n},
$$

and that

$$
\beta=\sum_{n=1}^{\infty} n r_{n} A_{n}<\sum_{n=1}^{\infty} n^{2} r_{n} \rho_{n}<\sum_{n=1}^{\infty} n^{2} r_{n} \rho=\alpha \rho .
$$

Now (2) is minimized at $v_{0}=-\beta / \alpha$, so that

$$
d_{B}^{* *}(a, \infty)=\gamma-\frac{\beta^{2}}{\alpha}
$$

It follows that

$$
d_{B}^{*}(a, \infty)-d_{B}^{* *}(a, \infty)=\alpha \rho^{2}-2 \beta \rho+\frac{\beta^{2}}{\alpha}=\alpha\left(\rho-\frac{\beta}{\alpha}\right)^{2}>0
$$

Theorem 6.2 implies that N does not satisfy the condition (LD).
(b) Taking $r_{n}=n^{-5 / 3}$ for $n \geq 1$, since $R_{n}=O\left(n^{-2 / 3}\right)$, by (4) we have $w_{n}^{\prime}=O\left(n^{1 / 3}\right)$, and that $H\left[w^{\prime}\right]=O\left(\sum_{n=1}^{\infty} n^{-5 / 3}\left(n^{1 / 3}\right)^{2}\right)=\infty$. This means $d_{B}^{*}(a, \infty)=\infty$. On the other hand the bi-harmonic Green function q_{a} is given by

$$
q_{a}\left(x_{n}\right)=\sum_{k=0}^{\infty} g_{a}\left(x_{k}\right) g_{x_{k}}\left(x_{n}\right)=\sum_{k=0}^{n} R_{k} R_{n}+\sum_{k=n+1}^{\infty} R_{k}^{2}=O\left(n^{-1 / 3}\right)
$$

Thus $q_{a} \in L(X)$ does not imply $d_{B}^{*}(a, \infty)<\infty$.

References

[1] Anandam V., Harmonic functions and potentials on finite or infinite networks. Lecture Notes of the Unione Matematica Italiana, vol. 12, Springer, Heidelberg, 2011.
[2] Yamasaki M., Parabolic and hyperbolic infinite networks. Hiroshima Math. J. 7 (1977), 135-146.
[3] Yamasaki M., Discrete potentials on an infinite network. Mem. Fac. Sci. Shimane Univ. 13 (1979), 31-44.
[4] Yamasaki M., Biharmonic Green function of an infinite network. Mem. Fac. Sci. Shimane Univ. 14 (1980), 55-62.
[5] Yamasaki M., Discrete Dirichlet potentials on an infinite network. RIMS Kokyuroku 610 (1987), 51-66.
[6] Yamasaki M., Nonlinear Poisson equations on an infinite network. Mem. Fac. Sci. Shimane Univ. 23 (1989), 1-9.

Hisayasu Kurata
Yonago National College of Technology
Yonago, Tottori, 683-8502 Japan
E-mail: kurata@yonago-k.ac.jp
Maretsugu Yamasaki
address

[^0]: 2000 Mathematics Subject Classification : Primary 31C20; Secondary 31C45.

