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Abstract. Our aim in this paper is to deal with the boundedness of the Hardy-
Littlewood maximal operator in non-homogeneous central Morrey spaces of variable
exponent. Further, we give Sobolev’s inequality and Trudinger’s exponential integra-
bility for generalized Riesz potentials.
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1. Introduction

Let RY be the Euclidean space. In [4], Beurling introduced the space
BP(RM) to extend Wiener’s ideas [21], [22] which describes the behavior of
functions at infinity. Feichtinger [8] gave an equivalent norm on BP(RY),
which is a special case of norms in Herz spaces Kg”(RN ) introduced by
Herz [12]. Precisely speaking, BP(RY) = Kp_N/p’OO(RN) (see also [11]). In
[10], Garcia-Cuerva studied the boundedness of the maximal operator on
the space BP(RY). As an extension of the space BP(RY), Garcfa-Cuerva
and Herrero [11] introduced the central Morrey spaces BP*(RY) (see also
[3]). Alvarez, Guzméan-Partida and Lakey [3] obtained the boundedness of
a class of singular integrals operators on the central Morrey spaces (see also
Komori [13]), which are more singular than Calderén-Zygmund operators
and include pseudo-differential operators.

Variable exponent Lebesgue spaces and Sobolev spaces were introduced
to discuss nonlinear partial differential equations with non-standard growth
condition. Our first aim in this paper is to introduce the non-homogeneous
central Morrey spaces of variable exponent, and study the boundedness
of the Hardy-Littlewood maximal operator (see Theorem 3.1), in a way
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different from Almeida and Drihem [2].
In classical Lebesgue spaces, we know Sobolev’s inequality :

H[afHLpu(RN) < CHfHLP(RN)

for f € LP(RY),0 < a < N and 1 < p < N/a, where I, is the Riesz kernel
of order o and 1/p* = 1/p — a/N (see, e.g. [1, Theorem 3.1.4]). This result
was extended to the central Morrey spaces by Fu, Lin and Lu [9, Proposition
1.1] (see also Matsuoka and Nakai [15]).

To obtain general results, for 0 < a < IV and an integer k, we define the

generalized Riesz potential I,  f of order « of a locally integrable function
f on RN by

Lat@= [ reen- X 0w

{p:lpl<k—1} 7

where I, (z) = |z|*"™ (see [16], [17]). Remark here that

Lo (2) = / Lo(z — )/ (y) dy
RN\ B(0,1)

when k£ < 0.

In Section 4, when pt < N/a (see Section 2 for the definition of
pt), we shall give Sobolev’s inequality for I, j f with functions in the non-
homogeneous central Morrey spaces of variable exponent (see Theorem 4.5);
for related result, we refer the reader to Fu, Lin and Lu [9, Theorem 2.1].

In the last section, when p = N/a, we treat Trudinger’s exponential
integrability for I, 1 f (see Theorem 5.1).

2. Preliminaries
Consider a function p(-) on RY such that

(P1) 1 <p™ :=inf,cgny p(x) < sup,egy p(z) = pt < o0;
(P2) p(-) is log-Hélder continuous, namely

Cp

< for z,y € RY
log(e + 1/[z —yl)

Ip(z) — p(y)

with a constant ¢, > 0;



Boundedness of mazximal operators and Sobolev’s theorem 187

(P3) p(-) is log-Hoélder continuous at co, namely

Coo

| < —————— whenever || >0
log(e + |x|)

Ip(z) — p(c0)

with constants p(co) > 1 and ¢ > 0;

p(+) is referred to as a variable exponent.
For v > 0, we denote by BP()¥(RN) the class of locally integrable
functions f on RY satisfying

£l oo vy = sup B™PO £l 1o 0,y < 005
R>1

where

p(y)
[ fllror (B(o,R)) = Inf ¢ A >0 / W)l dy <1¢.
’ BO,R) \ A

The space BP()(RYN) is referred to as a non-homogeneous central Mor-
rey spaces of variable exponent. If p(-) is a constant and v = N, then
BrO»(RN) = BP(RN).

Throughout this paper, let C' denote various constants independent of
the variables in question. The symbol g ~ h means that C~'h < g < Ch
for some constant C' > 0.

Lemma 2.1 Set

p(y)
TP inf{A >0 s R [ (f(y”) dy < 1}.
k21 B(0,R) A

Then
L0y ~ 0 e,
for all f € L}, (RN).

Proof. We may assume that v > 0. First we find a constant C' > 0 such
that

1m0 gy < ClFllwcrm y
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for all f € L} (RY). Let f be a nonnegative function on RY with

loc

Hngp<->,u(RN) < 1. Then note that

R Fly)P™ dy <1
B(0,R)
for all R > 1. To end the proof, it is sufficient to find a constant C' > 0 such
that

/ (R ()" dy < €
B(0,R)\B(0,1)

for all R > 1. For this purpose, let R > 1 and take an integer jo > 1 such
that 2770 R < 1 < 2790+ R We have

/ (Rfu/p(oo)f(y))p(y) dy
B(0,R)\B(0,1)

Jo
=0 B(0,2-7+1R)\B(0,2-7 R)

< i(Q—j)u/p(oo)/B {(Q—jR)—u/p(oo)f(y)}P(y) dy

§=0 (0,279t R)\B(0,277 R)

< Z(g*jy/p(oo)(ijR)u /B(O . f(y)P™) dy

since |y|7P®) < Cly|7P(>) for y € B(0,27 7t R)\ B(0,277R) and 0 < j < jo
by (P3).

Next we prove the converse inequality. Then it is sufficient to find a
constant C' > 0 such that

R / F@)P® dy < ©
B(0,R)\B(0,1)
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for all R > 1 and f > 0 on RY with

Sup/ (R_”/p(oo)f(y))p(y) dy < 1.
R>1.JB(0,R)

For this purpose, let R > 1 and take an integer jo > 1 such that 2770 R <
1 < 2770+ R as before. We find

/ (R—V/p(y)f(y))p(y) dy
B(0,R)\B(0,1)

<>evy [ [T R) /70 f(3) )" dy

=0 (0,279t R)\B(0,277 R)

Jo
<> {2 TRy o) 1)) ay
o B(0,2-3+1R)

Jo
<C> (@i)yr<ce
j=0

since |y|~/PW) < Cly|=1/P(>) for y € B(0,277*'R)\ B(0,277R) and 0 <
J < jo by (P3). Thus the proof is completed. O

3. Boundedness of maximal operators

For a locally integrable function f on R”, the Hardy-Littlewood maxi-
mal function M f is defined by

1

M f(x) = sup

|f(y)| dy,
r>0 | B(@,7)| B

where B(z,r) is the ball in RV with center x and of radius » > 0, and
| B(x, )| denotes its Lebesgue measure. The mapping f +— M f is called the
maximal operator.

The maximal operator is a classical tool in harmonic analysis and study-
ing Sobolev functions and partial differential equations, and it plays a central
role in the study of differentiation, singular integrals, smoothness of func-
tions and so on (see [5], [13], [14], [20], etc.).
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It is well known that the maximal operator is bounded in the Lebesgue
space LP(R™) when p > 1 (see [20]). We present the boundedness of maxi-
mal operator in the central Morrey spaces of variable exponent.

Theorem 3.1 Let 0 < v < N. Then the maximal operator: f — MFf is
bounded from BPC)V (RN) to BPOV(RN), that is,
IM fllgocrwmay < Clfllgsorw@mny  for all f € BPOV(RN).

When 0 < v < N, this theorem is essentially proved by Almeida and
Drihem [2, Corollary 4.7]. But, for the readers’ convenience, we give a proof
of Theorem 3.1 different from [2].

Before doing this, we prepare the following results.

Lemma 3.2 ([7, Corollary 4.5.9]) For all R > 1,

||1||LP<‘)(B(O,R)) ~ RN/p(OO)v

that is, 1 € BPC)N(RN).
Lemma 3.3 There exists a constant C > 0 such that

1

- f(y)dy < CR™WN=v)/p(e)
|B(0, R)| JB0,r)\B(0,R/2)

for all R>1 and f > 0 such that || f| grc).vmyy < 1.

Proof. Let f be a nonnegative function on R such that [ fllgecrw @y <
1. Then we see from Lemma 2.1 that

R flyyrWdy <
B(0,R)\B(0,R/2)

for all R > 1. Hence we find by (P3)

1
—_ J(y)dy
1B(0, R)| JB0,r)\B(0,R/2) @)

p(y)—1
< R-(N=1)/p(x) | 1 f() ) dy

—_— y —
|B(0, R)| JB(0,r)\B(0,R/2) (R(N”)/p("o)
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< RN =v)/p(c0)

4 CRWN=) (o)~ /ploe) 1

Fy)P¥) dy
|B(0, R)| /B(O,R)\B(O,R/Q)

< CR-(N=1)/p(x0)

for all R > 1, as required. O
We denote by x g the characteristic function of F.

Lemma 3.4 Let 0 < v < N. Then there exists a constant C > 0 such
that

M(fxr~\B,2r))(T) < CR—(N—v)/p(e0)

for all x € B(0, R) with R > 1 and f > 0 with || f||ge).» mvy < 1.

Proof. Let f be a nonnegative function on RY such that || f||gsc). myy <
1. Let R>1 and z € B(0, R). We have by Lemma 3.3

M(fxamv so2m) (@) = sup —— f(y)dy

>R | B(®,7)| )\ Bo.2R)

1
< sup o / f(y) dy
r>r |B(0,7)] (j>1:21 R<2r} Y BO2ZHIR\B(0,27 R)
1 .
<Csup ——— 97+1 RYN = (N—v)/p(0)
AT I DR
{j>1:29 R<2r}
1
< Csup ——— V- (N=)/p(0)
r>R ’B(Oa 7’)|
< CR-N=v)/p(e0)
as required. O

We know the following result.

Lemma 3.5 ([6, Theorem 1.5])  There exists a constant co > 0 such that

M fllLeer @may < coll fll e mavy
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for all f € LPO)(RN).
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let f be a nonnegative function on R”" such that
| fllgec).»(myy < 1. For R > 1, set

f=fxBo.2r) + fXrR¥\BO,2R) = f1 + fo
First we find from Lemmas 3.2 and 3.4

IM foll o> (0. R)) < CR™N /PN Loty (3(0.m))

< OR~(N=1)/p(s) pN/p(s0) _ (1 gr/p(0)

Next we obtain by Lemma 3.5

IM fll oo (Beo,ry) < 1M fill ey (B0,r)) + 1M fall oo (B0, R))

< C{(2R)"/P>) 4 R¥/P)\ < CRV/P(>),

so that
sup Rv/P(e<) HMfHLPM(B(o,R)) <C.
R>1
Thus we establish the required result. O

Remark 3.6 If v > N, then, as in the proof of Theorem 3.1, we find

;I;Ii RV/p(>) 1M (fxB0,R)ILre) (B(O,R) < C-

4. Sobolev’s inequality

For v > 0, take the integer k > 0 such that

k—1<a—(N-v)/p(x) <k (4.1)

and consider the generalized Riesz potential
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Lt = [ . {na-n- X S0

{uelui<h-1y 1
for a locally integrable function f on RY.
The following estimates are fundamental (see [17] and [19]).
Lemma 4.1 Let k > 1 be an integer.

(1) I/ 2] < |yl, then

xH _N_—
he=n)= X SO )| < Cle i
{lul<k-13 H

(2) If |x[/2 < |y| < 2|x|, then

zt a—
La-y- 3 w(D“Iax—y)\wr:c—yr v,
{p:lpl<k—13

(3) If 1<yl <|=[/2, then

m
L@y - Y “”.(D“fax—y)\scrx\’f—lry\“—N*’f—”.
{uelpi<h—1y

Lemma 4.2 Let k be the integer defined by (4.1). Then there exists a
constant C > 0 such that

|Ia7k(fXRN\B(0,QR))(x)‘ < CRo~(N=v)/p(e0)
for all x € B(0,R) with R > 1 and f > 0 with HfHBM,),V(RN) <1.

Proof. Let f be a nonnegative function on R such that [ £l gecrw mvy <
1. Let R > 1 and z € B(0, R). First note from Lemma 4.1 (1) that

Lot (F X Bo.2m) (@)] < CRY / N £ (y) dy.
RN\ B(0,2R)

Hence, we have by Lemma 3.3
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‘Ia,k(fXRN\B(O,QR))(x)‘
<crry” | [y N f () dy
= /B2t R\BO2R)
SCOR') (PR rpmamgy f(y) dy
jzl( ) |B(0,27T1 R)| Jp(0,20+1 R)\ B(0,29 R) )
< CRF Z(QJR)a—k—(N—v)/p(oo)
j=1

= OR35S gl k(N1 /p(e0))
j=1

< CRo-(N=v)/p(0).

as required. O

Lemma 4.3 Let k > 1 be an integer. Then there exists a constant C > 0
such that

(1) in case k—1 < a— (N —v)/p(0) <k,
o [ N0 f(y) dy < QRN -0/,
B(0,]=|/2)\B(0,1)
(2) incasek—1=a— (N —v)/p(0),
el " / ylo N BV f(y) dy < ORI/ log R
B(0,]z|/2)\B(0,1)

for all z € B(0, R) with R > 2 and f >0 with || f||ge)v @y < 1.

Proof. Let f be a nonnegative function on R such that [ fllgecrw myy <
1. Let R > 2,k > 1 and = € B(0,R). We may assume that |z| > 2. We
take an integer jo > 1 such that 2770 ~tz| < 1 < 2770 |z|,

First we show the case k — 1 < a — (N —v)/p(o0) < k. Then we have
by Lemma 3.3
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2] / N0 £ dy
B(0,|x|/2)\B(0,1)

Jjo
<[y /B N0 £ dy
j=1

(0,273 |2)\ B(0,279~1|])

1

< ClzlFt 27|yl
|| Z( |z[) |B(0,27|z|)| B(0,2-3|z|)\B(0,2-i~1|z|)

j=1

fy)dy

Jo
S CRk—l Z(2—jR)a_(k_1)_(N_V)/p(oo)

Jj=1

< ORY(N=v)/p(c0),

Next we deal with the case k — 1 = a — (N — v)/p(c0). Since jo <
log |z|/log2 < jo + 1, we see from Lemma 3.3 that

2] / N0 £ () dy
B(0,|x|/2)\B(0,1)

Jo
< CRF1 Z(2—jR)a—(k—1)—(N—V)/p(OO)

j=1
< CRa—(N—V)/p(OO)jO

< CRAIN=)/P() 1og R,

as required. O

Set
1/p*(z) = 1/p(z) — a/N.

Lemma 4.4 ([18, Theorem 4.1])  Suppose 1/pt — a/N > 0. Then there
exists a constant ¢1 > 0 such that

Mafll oo ey < tll oo )

for all f € LPO)(RN) with compact support.
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Now we show the Sobolev type inequality for generalized Riesz poten-
tials in the central Morrey spaces of variable exponents, as an extension of
Fu, Lin and Lu [9] in the constant exponent case.

Theorem 4.5 (cf. [9, Proposition 1.1])  Suppose 1/pt — a/N > 0 and
E—1<a—(N—-v)/p(c) < k. Then there ezists a constant C' > 0 such
that

—v/p(c0)
JStzuzle Hfa,kame(B(o,R)) <C

for all f >0 with || f||gecr.v mvy < 1.

Proof. Let f be a nonnegative function on RY such that || f||gocr.0 gy <
1. For R > 1, set

J = 7IXxB.2r) + [XR¥\B(0,2R) = f1 + f2.
First we find by Lemmas 3.2 and 4.2
a—(N—v 0o
HIa,kf?HLp”(-)(B(o,R)) <CR ( /ol )Hl”Lpﬁ(-)(B(o,R))

< ORO~(N=v)/p(o0) pN/p*(o0)

— O RV/P(o0)
Next, we see from Lemmas 4.1 and 4.3 (1) that
oo f1(®)] < [Tak (fXBO2007\BO0.212)(@)| + [ Tank(FXBO.212\BO0,12]/2)) (@)]

+ [ Ta e (fXB(0,121/2\B(0,1)) (@)
< C{Iafl (z) + Ra—(N—V)/p(OO)}

for x € B(0, R) since |z|F|y|*=N=F < Oz — y|*=N for 2|z| < |y|, so that we
have by Lemmas 3.2 and 4.4

Mok fll ot s (po,ry) < HakS1ll o) (50,r)) + HakS2ll Loty (0,R))

< C{(QR)V/P(OO) + RV/p(OO)} < CRV/p(OO)7
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so that

sup R™V/P() |1, e < C.
sup Mok f | Lo ) (B0, RY)

Thus we completes the proof. O

Remark 4.6 Suppose 1/pT™ —a/N >0and k—1=«a — (N —v)/p(c0).
Then there exists a constant C > 0 such that

sup R™/7(>)(log R)_lHIoc,kaLpﬁ(‘)(B(o,R)) <C

for all f >0 with || f|lgrc).v(mry < 1.

5. Exponential integrability

Our aim in this section is to discuss the exponential integrability.

Theorem 5.1 Letp=N/aandk—1<a— (N —v)/p<k. Then there
exist constants c1,co > 0 such that

sup R~V exp ({clR_”/pUa,kf(m)]}p/) dx < ¢y
R>1 B(0,R)

for all f >0 with || f|lgr.r@&y) < 1.

Proof. Let f be a nonnegative function on R" such that || f|| Brr@®N) <1
and let x € B(0, R). For R > 1, set

[ = fxB.2r) + [XR¥\B(0,2r) = f1 T [f2-

For 0 < § < R, write
— a—N a—N
Lofi(e) = / o — gl fy) dy + / z — 41" N f(y) dy
B(z,5) B(0,2R)\ B(z,5)

First we find

Ul ($) < C(SaMfl (l‘)
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Next we have by Holder’s inequality
Us(x) < C(log(2R/0) ' || 1]l o (B (0.2m)):
so that
I fi(x) < C{6%M fi(z) + (log(2R/5)) Y/ RV/?}.

Here, letting 0/(2R) = {R™/PTo M fy(x)} =1/ (log(R™¥/PTM f, (x))) /(@) <
1, we establish

Iofi(z) < Clog(R™/PT M fy(x))) /7 RV/?;

if {R=V/ProNf(z)} Y (log(R™7/PTeM f1(2)))Y/(@?) > 1, then, letting
6 = R, we have

Iofi(z) < CRY/P.

As in the proof of Theorem 4.5, we see from Lemmas 4.1 and 4.3 (1) that

o f1(2)] < C{Infi(2) + RN =/PY = {1 f1(x) + R*/P}
for z € B(0, R), since & = N/p. Therefore, we obtain

Takf1(@)] < C{(log(e + R™/PTM fi(2))) /7 RY/? 4 RV/7}.
On the other hand, we obtain by Lemma 4.2

ok fo()] < CRO-N=/P = CRYIP,
since « = N/p. Hence, we find
{erR/P Lo o f (@)} < log(e + RN /P [ (x)),

so that we have by boundedness of maximal operators on L?(RY)

/ exp({clR_”/pHa,kf(x)|}p/) de < C [1 + RN_”{Mfl(x)}p] dz
B(0,R) B(0,R)
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<C <RN + RNV f1(y)P dy>

RN
< CRY,
as required. O

Remark 5.2 Let p=N/aand k —1=a — (N —v)/p. Then there exist
constants c1,co > 0 such that

sup RN/ exp ({clR*”/p(log R)*llfmkf(:c)]}p,) dzx < co
R>2 B(O,R)
for all f > 0 with || f|ge.rmy) < 1.

Remark 5.3 If p~ > p(c0), then BPO)»(RN) ¢ BP(>)¥(RY), and more-
over

[fllocorv @y < Cllfllgeer»@mm):

In fact, for R > 1 and a > N/p(0),

R | ()P da
B(0,R)

— R F(@)[P da
{zeB(0,R):|f(x)|>1}

+ RV / | f ()P da
{z€B(0,R):(1+]a|)~a<|f(x)|<1}

+ R”/ ]f(x)]p(oo) dx
{z€B(0,R):|f(z)|<(1+|z[)~}

<RV |f(2)|P® da:

/{meB(OvR):f(w)>1}

+ R |f(@)[P] f (@) [P da
[e€B(O,R):(1+al) = <I ()| <1}

+CR™ (14 |z|)~9P(>®) dg
B(0,R)
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< C{R‘” / | f ()P da + R‘”}
B(0,R)
<C

when || f[|goc).v mvy < 1.
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