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Abstract. Our aim in this paper is to deal with the boundedness of the Hardy-

Littlewood maximal operator in non-homogeneous central Morrey spaces of variable

exponent. Further, we give Sobolev’s inequality and Trudinger’s exponential integra-

bility for generalized Riesz potentials.
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1. Introduction

Let RN be the Euclidean space. In [4], Beurling introduced the space
Bp(RN ) to extend Wiener’s ideas [21], [22] which describes the behavior of
functions at infinity. Feichtinger [8] gave an equivalent norm on Bp(RN ),
which is a special case of norms in Herz spaces Kα,r

p (RN ) introduced by

Herz [12]. Precisely speaking, Bp(RN ) = K
−N/p,∞
p (RN ) (see also [11]). In

[10], Garćıa-Cuerva studied the boundedness of the maximal operator on
the space Bp(RN ). As an extension of the space Bp(RN ), Garćıa-Cuerva
and Herrero [11] introduced the central Morrey spaces Bp,ν(RN ) (see also
[3]). Alvarez, Guzmán-Partida and Lakey [3] obtained the boundedness of
a class of singular integrals operators on the central Morrey spaces (see also
Komori [13]), which are more singular than Calderón-Zygmund operators
and include pseudo-differential operators.

Variable exponent Lebesgue spaces and Sobolev spaces were introduced
to discuss nonlinear partial differential equations with non-standard growth
condition. Our first aim in this paper is to introduce the non-homogeneous
central Morrey spaces of variable exponent, and study the boundedness
of the Hardy-Littlewood maximal operator (see Theorem 3.1), in a way
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different from Almeida and Drihem [2].
In classical Lebesgue spaces, we know Sobolev’s inequality :

‖Iαf‖
Lp]

(RN )
≤ C‖f‖Lp(RN )

for f ∈ Lp(RN ), 0 < α < N and 1 < p < N/α, where Iα is the Riesz kernel
of order α and 1/p] = 1/p− α/N (see, e.g. [1, Theorem 3.1.4]). This result
was extended to the central Morrey spaces by Fu, Lin and Lu [9, Proposition
1.1] (see also Matsuoka and Nakai [15]).

To obtain general results, for 0 < α < N and an integer k, we define the
generalized Riesz potential Iα,kf of order α of a locally integrable function
f on RN by

Iα,kf(x) =
∫

RN\B(0,1)

{
Iα(x− y)−

∑

{µ:|µ|≤k−1}

xµ

µ!
(DµIα)(−y)

}
f(y) dy,

where Iα(x) = |x|α−n (see [16], [17]). Remark here that

Iα,kf(x) =
∫

RN\B(0,1)

Iα(x− y)f(y) dy

when k ≤ 0.
In Section 4, when p+ < N/α (see Section 2 for the definition of

p+), we shall give Sobolev’s inequality for Iα,kf with functions in the non-
homogeneous central Morrey spaces of variable exponent (see Theorem 4.5);
for related result, we refer the reader to Fu, Lin and Lu [9, Theorem 2.1].

In the last section, when p = N/α, we treat Trudinger’s exponential
integrability for Iα,kf (see Theorem 5.1).

2. Preliminaries

Consider a function p(·) on RN such that

(P1) 1 < p− := infx∈RN p(x) ≤ supx∈RN p(x) =: p+ < ∞;
(P2) p(·) is log-Hölder continuous, namely

|p(x)− p(y)| ≤ cp

log(e + 1/|x− y|) for x, y ∈ RN

with a constant cp ≥ 0;
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(P3) p(·) is log-Hölder continuous at ∞, namely

|p(x)− p(∞)| ≤ c∞
log(e + |x|) whenever |x| > 0

with constants p(∞) > 1 and c∞ ≥ 0;

p(·) is referred to as a variable exponent.
For ν ≥ 0, we denote by Bp(·),ν(RN ) the class of locally integrable

functions f on RN satisfying

‖f‖Bp(·),ν(RN ) = sup
R≥1

R−ν/p(∞)‖f‖Lp(·)(B(0,R)) < ∞,

where

‖f‖Lp(·)(B(0,R)) = inf
{

λ > 0 :
∫

B(0,R)

( |f(y)|
λ

)p(y)

dy ≤ 1
}

.

The space Bp(·),ν(RN ) is referred to as a non-homogeneous central Mor-
rey spaces of variable exponent. If p(·) is a constant and ν = N , then
Bp(·),ν(RN ) = Bp(RN ).

Throughout this paper, let C denote various constants independent of
the variables in question. The symbol g ∼ h means that C−1h ≤ g ≤ Ch

for some constant C > 0.

Lemma 2.1 Set

‖f‖B̃p(·),ν(RN ) = inf
{

λ > 0 : sup
R≥1

R−ν

∫

B(0,R)

( |f(y)|
λ

)p(y)

dy ≤ 1
}

.

Then

‖f‖Bp(·),ν(RN ) ∼ ‖f‖B̃p(·),ν(RN )

for all f ∈ L1
loc(R

N ).

Proof. We may assume that ν > 0. First we find a constant C > 0 such
that

‖f‖Bp(·),ν(RN ) ≤ C‖f‖B̃p(·),ν(RN )
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for all f ∈ L1
loc(R

N ). Let f be a nonnegative function on RN with
‖f‖B̃p(·),ν(RN ) ≤ 1. Then note that

R−ν

∫

B(0,R)

f(y)p(y) dy ≤ 1

for all R ≥ 1. To end the proof, it is sufficient to find a constant C > 0 such
that

∫

B(0,R)\B(0,1)

(
R−ν/p(∞)f(y)

)p(y)
dy ≤ C

for all R ≥ 1. For this purpose, let R ≥ 1 and take an integer j0 ≥ 1 such
that 2−j0R ≤ 1 < 2−j0+1R. We have

∫

B(0,R)\B(0,1)

(
R−ν/p(∞)f(y)

)p(y)
dy

≤
j0∑

j=0

∫

B(0,2−j+1R)\B(0,2−jR)

(
R−ν/p(∞)f(y)

)p(y)
dy

≤
j0∑

j=0

(2−j)ν/p(∞)

∫

B(0,2−j+1R)\B(0,2−jR)

{
(2−jR)−ν/p(∞)f(y)

}p(y)
dy

≤
j0∑

j=0

(2−j)ν/p(∞)(2−jR)ν

∫

B(0,2−j+1R)

f(y)p(y) dy

≤ C

j0∑

j=0

(2−j)ν/p(∞) ≤ C

since |y|−p(y) ≤ C|y|−p(∞) for y ∈ B(0, 2−j+1R)\B(0, 2−jR) and 0 ≤ j ≤ j0
by (P3).

Next we prove the converse inequality. Then it is sufficient to find a
constant C > 0 such that

R−ν

∫

B(0,R)\B(0,1)

f(y)p(y) dy ≤ C
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for all R ≥ 1 and f ≥ 0 on RN with

sup
R>1

∫

B(0,R)

(
R−ν/p(∞)f(y)

)p(y)
dy ≤ 1.

For this purpose, let R > 1 and take an integer j0 ≥ 1 such that 2−j0R ≤
1 < 2−j0+1R as before. We find

∫

B(0,R)\B(0,1)

(
R−ν/p(y)f(y)

)p(y)
dy

≤
j0∑

j=0

(2−j)ν

∫

B(0,2−j+1R)\B(0,2−jR)

{
(2−jR)−ν/p(y)f(y)

}p(y)
dy

≤
j0∑

j=0

(2−j)ν

∫

B(0,2−j+1R)

{
(2−jR)−ν/p(∞)f(y)

}p(y)
dy

≤ C

j0∑

j=0

(2−j)ν ≤ C

since |y|−1/p(y) ≤ C|y|−1/p(∞) for y ∈ B(0, 2−j+1R) \ B(0, 2−jR) and 0 ≤
j ≤ j0 by (P3). Thus the proof is completed. ¤

3. Boundedness of maximal operators

For a locally integrable function f on RN , the Hardy-Littlewood maxi-
mal function Mf is defined by

Mf(x) = sup
r>0

1
|B(x, r)|

∫

B(x,r)

|f(y)| dy,

where B(x, r) is the ball in RN with center x and of radius r > 0, and
|B(x, r)| denotes its Lebesgue measure. The mapping f 7→ Mf is called the
maximal operator.

The maximal operator is a classical tool in harmonic analysis and study-
ing Sobolev functions and partial differential equations, and it plays a central
role in the study of differentiation, singular integrals, smoothness of func-
tions and so on (see [5], [13], [14], [20], etc.).
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It is well known that the maximal operator is bounded in the Lebesgue
space Lp(RN ) when p > 1 (see [20]). We present the boundedness of maxi-
mal operator in the central Morrey spaces of variable exponent.

Theorem 3.1 Let 0 ≤ ν ≤ N . Then the maximal operator : f → Mf is
bounded from Bp(·),ν(RN ) to Bp(·),ν(RN ), that is,

‖Mf‖Bp(·),ν(RN ) ≤ C‖f‖Bp(·),ν(RN ) for all f ∈ Bp(·),ν(RN ).

When 0 ≤ ν < N , this theorem is essentially proved by Almeida and
Drihem [2, Corollary 4.7]. But, for the readers’ convenience, we give a proof
of Theorem 3.1 different from [2].

Before doing this, we prepare the following results.

Lemma 3.2 ([7, Corollary 4.5.9]) For all R ≥ 1,

‖1‖Lp(·)(B(0,R)) ∼ RN/p(∞),

that is, 1 ∈ Bp(·),N (RN ).

Lemma 3.3 There exists a constant C > 0 such that

1
|B(0, R)|

∫

B(0,R)\B(0,R/2)

f(y) dy ≤ CR−(N−ν)/p(∞)

for all R ≥ 1 and f ≥ 0 such that ‖f‖Bp(·),ν(RN ) ≤ 1.

Proof. Let f be a nonnegative function on RN such that ‖f‖Bp(·),ν(RN ) ≤
1. Then we see from Lemma 2.1 that

R−ν

∫

B(0,R)\B(0,R/2)

f(y)p(y) dy ≤ C

for all R ≥ 1. Hence we find by (P3)

1
|B(0, R)|

∫

B(0,R)\B(0,R/2)

f(y) dy

≤ R−(N−ν)/p(∞) +
1

|B(0, R)|
∫

B(0,R)\B(0,R/2)

f(y)
(

f(y)
R−(N−ν)/p(∞)

)p(y)−1

dy
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≤ R−(N−ν)/p(∞)

+ CR(N−ν)(p(∞)−1)/p(∞) 1
|B(0, R)|

∫

B(0,R)\B(0,R/2)

f(y)p(y) dy

≤ CR−(N−ν)/p(∞)

for all R ≥ 1, as required. ¤

We denote by χE the characteristic function of E.

Lemma 3.4 Let 0 ≤ ν ≤ N . Then there exists a constant C > 0 such
that

M(fχRN\B(0,2R))(x) ≤ CR−(N−ν)/p(∞)

for all x ∈ B(0, R) with R ≥ 1 and f ≥ 0 with ‖f‖Bp(·),ν(RN ) ≤ 1.

Proof. Let f be a nonnegative function on RN such that ‖f‖Bp(·),ν(RN ) ≤
1. Let R ≥ 1 and x ∈ B(0, R). We have by Lemma 3.3

M(fχRN\B(0,2R))(x) = sup
r>R

1
|B(x, r)|

∫

B(x,r)\B(0,2R)

f(y) dy

≤ sup
r>R

1
|B(0, r)|

∑

{j≥1:2jR<2r}

∫

B(0,2j+1R)\B(0,2jR)

f(y) dy

≤ C sup
r>R

1
|B(0, r)|

∑

{j≥1:2jR<2r}
(2j+1R)N−(N−ν)/p(∞)

≤ C sup
r>R

1
|B(0, r)|r

N−(N−ν)/p(∞)

≤ CR−(N−ν)/p(∞),

as required. ¤

We know the following result.

Lemma 3.5 ([6, Theorem 1.5]) There exists a constant c0 > 0 such that

‖Mf‖Lp(·)(RN ) ≤ c0‖f‖Lp(·)(RN )
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for all f ∈ Lp(·)(RN ).

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let f be a nonnegative function on RN such that
‖f‖Bp(·),ν(RN ) ≤ 1. For R ≥ 1, set

f = fχB(0,2R) + fχRN\B(0,2R) = f1 + f2.

First we find from Lemmas 3.2 and 3.4

‖Mf2‖Lp(·)(B(0,R)) ≤ CR−(N−ν)/p(∞)‖1‖Lp(·)(B(0,R))

≤ CR−(N−ν)/p(∞)RN/p(∞) = CRν/p(∞).

Next we obtain by Lemma 3.5

‖Mf‖Lp(·)(B(0,R)) ≤ ‖Mf1‖Lp(·)(B(0,R)) + ‖Mf2‖Lp(·)(B(0,R))

≤ C
{‖f‖Lp(·)(B(0,2R)) + Rν/p(∞)

}

≤ C
{
(2R)ν/p(∞) + Rν/p(∞)

} ≤ CRν/p(∞),

so that

sup
R≥1

R−ν/p(∞)‖Mf‖Lp(·)(B(0,R)) ≤ C.

Thus we establish the required result. ¤

Remark 3.6 If ν > N , then, as in the proof of Theorem 3.1, we find

sup
R≥1

R−ν/p(∞)‖M(fχB(0,R))‖Lp(·)(B(0,R)) ≤ C.

4. Sobolev’s inequality

For ν ≥ 0, take the integer k ≥ 0 such that

k − 1 ≤ α− (N − ν)/p(∞) < k (4.1)

and consider the generalized Riesz potential
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Iα,kf(x) =
∫

RN\B(0,1)

{
Iα(x− y)−

∑

{µ:|µ|≤k−1}

xµ

µ!
(DµIα)(−y)

}
f(y) dy

for a locally integrable function f on RN .
The following estimates are fundamental (see [17] and [19]).

Lemma 4.1 Let k ≥ 1 be an integer.

(1) If 2|x| < |y|, then

∣∣∣∣Iα(x− y)−
∑

{µ:|µ|≤k−1}

xµ

µ!
(DµIα)(−y)

∣∣∣∣ ≤ C|x|k|y|α−N−k;

(2) If |x|/2 ≤ |y| ≤ 2|x|, then

∣∣∣∣Iα(x− y)−
∑

{µ:|µ|≤k−1}

xµ

µ!
(DµIα)(−y)

∣∣∣∣ ≤ C|x− y|α−N ;

(3) If 1 ≤ |y| ≤ |x|/2, then

∣∣∣∣Iα(x− y)−
∑

{µ:|µ|≤k−1}

xµ

µ!
(DµIα)(−y)

∣∣∣∣ ≤ C|x|k−1|y|α−N−(k−1).

Lemma 4.2 Let k be the integer defined by (4.1). Then there exists a
constant C > 0 such that

∣∣Iα,k(fχRN\B(0,2R))(x)
∣∣ ≤ CRα−(N−ν)/p(∞)

for all x ∈ B(0, R) with R ≥ 1 and f ≥ 0 with ‖f‖Bp(·),ν(RN ) ≤ 1.

Proof. Let f be a nonnegative function on RN such that ‖f‖Bp(·),ν(RN ) ≤
1. Let R ≥ 1 and x ∈ B(0, R). First note from Lemma 4.1 (1) that

∣∣Iα,k(fχRN\B(0,2R))(x)
∣∣ ≤ CRk

∫

RN\B(0,2R)

|y|α−N−kf(y) dy.

Hence, we have by Lemma 3.3
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∣∣Iα,k(fχRN\B(0,2R))(x)
∣∣

≤ CRk
∞∑

j=1

∫

B(0,2j+1R)\B(0,2jR)

|y|α−N−kf(y) dy

≤ CRk
∞∑

j=1

(2jR)α−k 1
|B(0, 2j+1R)|

∫

B(0,2j+1R)\B(0,2jR)

f(y) dy

≤ CRk
∞∑

j=1

(2jR)α−k−(N−ν)/p(∞)

= CRα−(N−ν)/p(∞)
∞∑

j=1

2j{α−k−(N−ν)/p(∞)}

≤ CRα−(N−ν)/p(∞),

as required. ¤

Lemma 4.3 Let k ≥ 1 be an integer. Then there exists a constant C > 0
such that

(1) in case k − 1 < α− (N − ν)/p(∞) < k,

|x|k−1

∫

B(0,|x|/2)\B(0,1)

|y|α−N−(k−1)f(y) dy ≤ CRα−(N−ν)/p(∞);

(2) in case k − 1 = α− (N − ν)/p(∞),

|x|k−1

∫

B(0,|x|/2)\B(0,1)

|y|α−N−(k−1)f(y) dy ≤ CRα−(N−ν)/p(∞) log R

for all x ∈ B(0, R) with R ≥ 2 and f ≥ 0 with ‖f‖Bp(·),ν(RN ) ≤ 1.

Proof. Let f be a nonnegative function on RN such that ‖f‖Bp(·),ν(RN ) ≤
1. Let R ≥ 2, k ≥ 1 and x ∈ B(0, R). We may assume that |x| ≥ 2. We
take an integer j0 ≥ 1 such that 2−j0−1|x| < 1 ≤ 2−j0 |x|.

First we show the case k − 1 < α − (N − ν)/p(∞) < k. Then we have
by Lemma 3.3
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|x|k−1

∫

B(0,|x|/2)\B(0,1)

|y|α−N−(k−1)f(y) dy

≤ |x|k−1

j0∑

j=1

∫

B(0,2−j |x|)\B(0,2−j−1|x|)
|y|α−N−(k−1)f(y) dy

≤ C|x|k−1
∞∑

j=1

(2−j |x|)α−(k−1) 1
|B(0, 2−j |x|)|

∫

B(0,2−j |x|)\B(0,2−j−1|x|)
f(y) dy

≤ CRk−1

j0∑

j=1

(2−jR)α−(k−1)−(N−ν)/p(∞)

≤ CRα−(N−ν)/p(∞).

Next we deal with the case k − 1 = α − (N − ν)/p(∞). Since j0 ≤
log |x|/ log 2 < j0 + 1, we see from Lemma 3.3 that

|x|k−1

∫

B(0,|x|/2)\B(0,1)

|y|α−N−(k−1)f(y) dy

≤ CRk−1

j0∑

j=1

(2−jR)α−(k−1)−(N−ν)/p(∞)

≤ CRα−(N−ν)/p(∞)j0

≤ CRα−(N−ν)/p(∞) log R,

as required. ¤

Set

1/p](x) = 1/p(x)− α/N.

Lemma 4.4 ([18, Theorem 4.1]) Suppose 1/p+ − α/N > 0. Then there
exists a constant c1 > 0 such that

‖Iαf‖
Lp](·)(RN )

≤ c1‖f‖Lp(·)(RN )

for all f ∈ Lp(·)(RN ) with compact support.



196 Y. Mizuta, T. Ohno and T. Shimomura

Now we show the Sobolev type inequality for generalized Riesz poten-
tials in the central Morrey spaces of variable exponents, as an extension of
Fu, Lin and Lu [9] in the constant exponent case.

Theorem 4.5 (cf. [9, Proposition 1.1]) Suppose 1/p+ − α/N > 0 and
k − 1 < α − (N − ν)/p(∞) < k. Then there exists a constant C > 0 such
that

sup
R≥1

R−ν/p(∞)‖Iα,kf‖
Lp](·)(B(0,R))

≤ C

for all f ≥ 0 with ‖f‖Bp(·),ν(RN ) ≤ 1.

Proof. Let f be a nonnegative function on RN such that ‖f‖Bp(·),ν(RN ) ≤
1. For R ≥ 1, set

f = fχB(0,2R) + fχRN\B(0,2R) = f1 + f2.

First we find by Lemmas 3.2 and 4.2

‖Iα,kf2‖Lp](·)(B(0,R))
≤ CRα−(N−ν)/p(∞)‖1‖

Lp](·)(B(0,R))

≤ CRα−(N−ν)/p(∞)RN/p](∞)

= CRν/p(∞).

Next, we see from Lemmas 4.1 and 4.3 (1) that

|Iα,kf1(x)| ≤
∣∣Iα,k(fχB(0,2R)\B(0,2|x|))(x)

∣∣ +
∣∣Iα,k(fχB(0,2|x|)\B(0,|x|/2))(x)

∣∣

+
∣∣Iα,k(fχB(0,|x|/2)\B(0,1))(x)

∣∣

≤ C
{
Iαf1(x) + Rα−(N−ν)/p(∞)

}

for x ∈ B(0, R) since |x|k|y|α−N−k ≤ C|x− y|α−N for 2|x| < |y|, so that we
have by Lemmas 3.2 and 4.4

‖Iα,kf‖
Lp](·)(B(0,R))

≤ ‖Iα,kf1‖Lp](·)(B(0,R))
+ ‖Iα,kf2‖Lp](·)(B(0,R))

≤ C
{‖f‖Lp(·)(B(0,2R)) + Rν/p(∞)

}

≤ C
{
(2R)ν/p(∞) + Rν/p(∞)

} ≤ CRν/p(∞),
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so that

sup
R≥1

R−ν/p(∞)‖Iα,kf‖
Lp](·)(B(0,R))

≤ C.

Thus we completes the proof. ¤

Remark 4.6 Suppose 1/p+ − α/N > 0 and k − 1 = α − (N − ν)/p(∞).
Then there exists a constant C > 0 such that

sup
R≥2

R−ν/p(∞)(log R)−1‖Iα,kf‖
Lp](·)(B(0,R))

≤ C

for all f ≥ 0 with ‖f‖Bp(·),ν(RN ) ≤ 1.

5. Exponential integrability

Our aim in this section is to discuss the exponential integrability.

Theorem 5.1 Let p = N/α and k − 1 < α− (N − ν)/p < k. Then there
exist constants c1, c2 > 0 such that

sup
R≥1

R−N

∫

B(0,R)

exp
({c1R

−ν/p|Iα,kf(x)|}p′) dx ≤ c2

for all f ≥ 0 with ‖f‖Bp,ν(RN ) ≤ 1.

Proof. Let f be a nonnegative function on RN such that ‖f‖Bp,ν(RN ) ≤ 1
and let x ∈ B(0, R). For R ≥ 1, set

f = fχB(0,2R) + fχRN\B(0,2R) = f1 + f2.

For 0 < δ ≤ R, write

Iαf1(x) =
∫

B(x,δ)

|x− y|α−Nf(y) dy +
∫

B(0,2R)\B(x,δ)

|x− y|α−Nf(y) dy

= U1(x) + U2(x).

First we find

U1(x) ≤ CδαMf1(x).
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Next we have by Hölder’s inequality

U2(x) ≤ C(log(2R/δ))1/p′‖f1‖Lp(B(0,2R)),

so that

Iαf1(x) ≤ C
{
δαMf1(x) + (log(2R/δ))1/p′Rν/p

}
.

Here, letting δ/(2R) = {R−ν/p+αMf1(x)}−1/α(log(R−ν/p+αMf1(x)))1/(αp′) <

1, we establish

Iαf1(x) ≤ C(log(R−ν/p+αMf1(x)))1/p′Rν/p;

if {R−ν/p+αMf1(x)}−1/α(log(R−ν/p+αMf1(x)))1/(αp′) ≥ 1, then, letting
δ = R, we have

Iαf1(x) ≤ CRν/p.

As in the proof of Theorem 4.5, we see from Lemmas 4.1 and 4.3 (1) that

|Iα,kf1(x)| ≤ C
{
Iαf1(x) + Rα−(N−ν)/p

}
= C

{
Iαf1(x) + Rν/p

}

for x ∈ B(0, R), since α = N/p. Therefore, we obtain

|Iα,kf1(x)| ≤ C
{
(log(e + R−ν/p+αMf1(x)))1/p′Rν/p + Rν/p

}
.

On the other hand, we obtain by Lemma 4.2

|Iα,kf2(x)| ≤ CRα−(N−ν)/p = CRν/p,

since α = N/p. Hence, we find

{c1R
−ν/p|Iα,kf(x)|}p′ ≤ log(e + R(N−ν)/pMf1(x)),

so that we have by boundedness of maximal operators on Lp(RN )

∫

B(0,R)

exp({c1R
−ν/p|Iα,kf(x)|}p′) dx ≤ C

∫

B(0,R)

[
1 + RN−ν{Mf1(x)}p

]
dx
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≤ C

(
RN + RN−ν

∫

RN

f1(y)p dy

)

≤ CRN ,

as required. ¤

Remark 5.2 Let p = N/α and k − 1 = α− (N − ν)/p. Then there exist
constants c1, c2 > 0 such that

sup
R≥2

R−N

∫

B(0,R)

exp
({c1R

−ν/p(log R)−1|Iα,kf(x)|}p′) dx ≤ c2

for all f ≥ 0 with ‖f‖Bp,ν(RN ) ≤ 1.

Remark 5.3 If p− ≥ p(∞), then Bp(·),ν(RN ) ⊂ Bp(∞),ν(RN ), and more-
over

‖f‖Bp(∞),ν(RN ) ≤ C‖f‖Bp(·),ν(RN ).

In fact, for R ≥ 1 and a > N/p(∞),

R−ν

∫

B(0,R)

|f(x)|p(∞) dx

= R−ν

∫

{x∈B(0,R):|f(x)|≥1}
|f(x)|p(∞) dx

+ R−ν

∫

{x∈B(0,R):(1+|x|)−a<|f(x)|≤1}
|f(x)|p(∞) dx

+ R−ν

∫

{x∈B(0,R):|f(x)|≤(1+|x|)−a}
|f(x)|p(∞) dx

≤ R−ν

∫

{x∈B(0,R):|f(x)|≥1}
|f(x)|p(x) dx

+ R−ν

∫

{x∈B(0,R):(1+|x|)−a<|f(x)|≤1}
|f(x)|p(x)|f(x)|p(∞)−p(x) dx

+ CR−ν

∫

B(0,R)

(1 + |x|)−ap(∞) dx
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≤ C

{
R−ν

∫

B(0,R)

|f(x)|p(x) dx + R−ν

}

≤ C

when ‖f‖Bp(·),ν(RN ) ≤ 1.
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[11] Garćıa-Cuerva J. and Herrero M. J. L., A theory of Hardy spaces assosiated

to the Herz spaces. Proc. London Math. Soc. 69 (1994), 605–628

[12] Herz C., Lipschitz spaces and Bernstein’s theorem on absolutely convergent

Fourier transforms. J. Math. Mech. 18 (1968), 283–324.

[13] Komori Y., Notes on singular integrals on some inhomogeneous Herz spaces.



Boundedness of maximal operators and Sobolev’s theorem 201

Taiwanese J. Math. 8 (2004), 547–556.

[14] Lewis J. L., On very weak solutions of certain elliptic systems. Comm.

Partial Differential Equations 18(9) (10) (1993), 1515–1537.

[15] Matsuoka K. and Nakai E., Fractional integral operators on Bp,λ with

Morrey-Campanato norms, Function Spaces IX (Krakow, Poland, 2009),

249–264, Banach Center Publications, Vol. 92, Institute of Mathematics,

Polish Academy of Sciences, Warszawa, 2011.

[16] Mizuta Y., Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
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