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On coretractable modules
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Abstract. Let R be any ring. We prove that every right R-module is coretractable

if and only if R is right perfect and every right R-module is small coretractable if and

only if all torsion theories on R are cohereditary. We also study mono-coretractable

modules. We show that coretractable modules are a proper generalization of mono-

coretractable modules.
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1. Introduction

Let M be an R-module. M is called coretractable if Hom(M/N, M)
is nonzero for all proper submodules N of M (see [2]). Amini, Ershad and
Sharif study these modules and proved in [2, Theorem 2.14] that R is a right
Kasch ring if and only if RR is a coretractable module. Recall that a module
M is a Kasch module if every simple module in σ[M ] can be embedded in M

(see [3]). Therefore RR is a Kasch module if and only if RR is a coretractable
module by [2, Theorem 2.14]. In Section 2, firstly we generalize this result
(see Theorem 2.1). Mainly the purpose of Section 2 is to investigate rings
whose all right modules are coretractable (see Theorem 2.7). We also prove
that being coretractable is a Morita invariant property.

Let R be any ring and let M be any module. We will call M mono-
coretractable if for every submodule N of M there is a monomorphism from
M/N to M . Mono-coretractable modules are defined as co-epi-retractable
modules in [7]. We should also note that saying “RR is mono-coretractable”
is the same with saying “R is a co-pri ring” in [7]. In Section 3, we study
mono-coretractable modules. We are giving an example of a coretractable
module which is not mono-coretractable (see Example 3.6).

Throughout this paper rings will have a nonzero identity element and
modules will be unitary right modules. We follow [1], [4] and [5] for the
terms not defined here.
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2. Coretractable Modules

Let M be an R-module. M is called coretractable if Hom(M/N, M)
is nonzero for all proper submodules N of M . Let R be a commutative
domain. Then RR cannot be coretractable. For, let A be a nonzero proper
right ideal of R. Let f : R/A −→ R be any R-homomorphism. Since
f(R/A)A = 0, f = 0. This is also clear by [10, Proposition 1.44]. Let
MR be a module such that any simple module in σ[M ] is M -cyclic, i.e.,
isomorphic to a factor module of M . In this case if M is coretractable, then
M is a Kasch module. Because, let S be a simple module in σ[M ]. Then
S ∼= M/N for some submodule N of M . Since M is coretractable, there is
a nonzero homomorphism from M/N to M . Thus there exists a nonzero
homomorphism, which is a monomorphism, from S to M . Therefore M

is Kasch. On the other hand, if M is a finitely generated Kasch module,
then it is easy to see that M is a coretractable module. So we can give the
following result which generalizes [2, Theorem 2.14]:

Theorem 2.1 Let MR be a finitely generated self-generator module. Then
M is coretractable if and only if it is Kasch.

Theorem 2.1 gives us several examples as we see in the following:

Example 2.2 (1) Let F be a field. Then the ring R = FxFxFx · · · is
not a Kasch ring and so R is not coretractable as an R-module.

(2) Suppose that R is a semiperfect ring in which Soc(RR) is essential in RR.
Then R is right Kasch by [10, Lemma 1.48], and so RR is coretractable.

(3) Assume that R is a right self-injective, semiperfect ring with Soc(RR)
essential in RR. Then R is right and left Kasch by [10, Lemma 1.49]
and so RR and RR are coretractable.

(4) (see [10, Page, 214]) Let DVD and DPD be nonzero bimodules over a
division ring D, and suppose a bimap V xV −→ P is given. Write
R = [D, V, P ] = D ⊕ V ⊕ P and define a multiplication on R by

(d + v + p)(d1 + v1 + p1) = dd1 + (dv1 + vd1) + (dp1 + vv1 + pd1).

Then R is a (an associative) ring. The ring R has a matrix representation
as
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R =








d v p
0 d v
0 0 d


 : d ∈ D, v ∈ V, p ∈ P



 .

By [10, Proposition 9.14], R is right and left Kasch, and so RR and RR

are coretractable.

Following [12], if for any module M , Z(M) = ∩{N | M/N is small} =
M , then M is called noncosingular.

Proposition 2.3 Let R be a right perfect ring. Let M be a noncosingular
projective right R-module. Then M is coretractable if and only if M is
semisimple.

Proof. The sufficiency is clear. Conversely, suppose that M is core-
tractable. Let N be a proper submodule of M . Then there exists a nonzero
homomorphism f : M/N −→ M . Let Ker f = T/N . Since M/T is non-
cosingular by [12, Proposition 2.4], Im f is noncosingular. Then by [12,
Lemma 2.3(2)], Im f is coclosed in M . Since M is lifting, Im f is a direct
summand of M . So, T is a proper direct summand of M , which contains
N . This means that N cannot be essential in M . Thus M is semisimple. ¤

Lemma 2.4 Let M be a quasi-injective module and N ≤ M . Then N is
coretractable if and only if for all submodules L of M contained properly in
N , the set

AL = {f : M −→ M | f(N) ⊆ N, L ⊆ Ker f,N * Ker f}

is nonempty.

Proof. (⇒) Let N be coretractable and L a proper submodule of N . Then
there exists a nonzero homomorphism f : N/L −→ N . Let i : N −→ M

and iL : N/L −→ M/L be inclusion maps. Since M is M/L-injective,
there exists a nonzero homomorphism g : M/L −→ M such that giL = if .
Consider the nonzero homomorphism gπ : M −→ M , where π : M −→ M/L

is the natural epimorphism. It is easy to see that L ⊆ Ker gπ, N * Ker gπ

and gπ(N) ⊆ N . Therefore AL is nonempty.
(⇐) Let L be a proper submodule of N . By hypothesis, the set AL is

nonempty. Therefore there exists a nonzero homomorphism f : M −→ M

such that f(N) ⊆ N , L ⊆ Ker f and N * Ker f . Define the homomorphism
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g : N/L −→ N , g(n + L) = f(n). Clearly, g is nonzero. Thus N is core-
tractable. ¤

Proposition 2.5 Let RR be injective and I a nonzero proper right ideal
of R. Then IR is coretractable if and only if for any right ideal J of R with
J  I, there exists a nonzero element x of R such that 0 6= xI ⊆ I and
xJ = 0.

Proof. (⇒) Let IR be coretractable. Let J be any right ideal of R with
J  I. By Lemma 2.4, AJ is nonempty. Then there exists a nonzero
homomorphism f : R −→ R such that f(I) ⊆ I, J ⊆ Ker f and I * Ker f .
Let f(1) = x. Then x 6= 0, 0 6= xI ⊆ I and xJ = 0.

(⇐) Let L be a proper submodule of I. By hypothesis, there exists a
nonzero element x of R such that 0 6= xI ⊆ I and xL = 0. Define the
homomorphism f : R −→ R, f(r) = xr. Since f(1) = x 6= 0, f 6= 0. Since
f(I) = xI, then f(I) ⊆ I and I * Ker f . Since xL = 0, L ⊆ Ker f . By
Lemma 2.4, IR is coretractable. ¤

Let M be a module. We say that M is small coretractable if
Hom(M/N, M) is nonzero for all small submodules N of M .

Lemma 2.6 Let M be a module with projective cover (P, α). Then M

is small coretractable if and only if there exists a nonzero f ∈ Hom(P, M)
such that P/ Ker f is a small coretractable module.

Proof. Necessity: Since P/ Kerα ∼= M , this is clear.
Sufficiency: Let K be a small submodule of M . Then (α−1(K) + Ker f)/
Ker f ¿ P/ Ker f . Since P/ Ker f is small coretractable, there exists a
nonzero homomorphism β : P/(α−1(K) + Ker f) −→ P/ Ker f . Define the
homomorphism η : M/K −→ P/α−1(K) by m + K 7→ p + α−1(K) where
α(p) = m, p ∈ P and m ∈ M . It follows that Hom(M/K, M) is nonzero. ¤

Let R be a ring. If every right R-module is coretractable, then R is
right and left perfect and right Kasch (see [2, Theorems 2.14 and 3.10]). Let
R be any ring. We will say that R satisfies (C) if every right R-module is
coretractable. Now we give the following characterizations. Note that these
characterizations are left and right symmetric by [14, Theorem 2.4].

Theorem 2.7 For a ring R the following are equivalent :

(1) R satisfies (C).
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(2) R is right perfect and every right R-module is small coretractable.
(3) R is right perfect and for every right R-module M , there exists a nonzero

f ∈ Hom(P, M) such that P/ Ker f is a small coretractable module,
where P is the projective cover of M .

(4) R is right perfect and for all right R-modules M and X, Hom(X, M) =
0 if and only if Hom(P, M) = 0, where P is the projective cover of X.

(5) All torsion theories on R are cohereditary.

Proof. (1) ⇒ (2) is clear.
(2) ⇔ (3) follows by Lemma 2.6.
(2) ⇒ (4): Let (P, α) be the projective cover of X. Assume Hom(P, M)

6= 0. Then there exists a nonzero homomorphism β from P to M . Since
Kerα ¿ P , (Ker α + Ker β)/ Kerβ ¿ P/ Kerβ. Then there exists a
nonzero homomorphism η : P/(Kerα + Ker β) −→ P/ Kerβ. Therefore
Hom(X, M) 6= 0. The converse is easy.

(4) ⇒ (5): Let (T ,F) be a torsion theory on R, N ≤ M ∈ F and
X ∈ T . Then Hom(X, M) = 0. By (4), Hom(P, M) = 0, where P is the
projective cover of X. Hence Hom(X, M/N) = 0, and so M/N ∈ F .

(5) ⇒ (1): Let M be a nonzero right R-module and N a proper sub-
module of M . Let (T ,F) be a torsion theory cogenerated by M . Note that
M ∈ F . By (5), M/N ∈ F . Thus Hom(M/N, M) 6= 0 (see [5, 7.2]). ¤

Given any ring R, we call a nonzero right R-module M a weak generator
for Mod-R if, for each nonzero right R-module X, Hom(M, X) 6= 0.

Theorem 2.8 Let R be a ring with Jacobson radical J such that the ring
R/J is simple artinian. Then the following are equivalent :

(1) R is right and left semi-artinian.
(2) every nonzero right (left) R-module is a weak generator for Mod-R.
(3) R satisfies (C).
(4) R is right and left perfect.

Proof. (1) ⇒ (2): By [11, Variation of Corollary 3.6].
(2) ⇒ (3) and (4) ⇒ (1) are clear.
(3) ⇒ (4): By [2, Theorem 3.10]. ¤

Note that HomR(M, N) = HomR/I(M, N) for each ideal I of R and
M, N ∈ Mod-R/I. Therefore the class of rings satisfying (C) is closed under
homomorphic images.
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Theorem 2.9 Being coretractable is a Morita invariant property.

Proof. Let R and S be two Morita equivalent rings. Assume that F : Mod-
R −→ Mod-S and G : Mod-S −→ Mod-R are two category equivalences.
Let MR be a coretractable object in Mod-R. Let N be a proper submodule
of F (M). Now we have the exact sequence

0 −→ N −→ F (M) −→ F (M)/N −→ 0

in Mod-S. By [1, Proposition 21.4],

0 −→ G(N) −→ M −→ G(F (M)/N) −→ 0

is exact in Mod-R. Therefore M/G(N) ∼= G(F (M)/N). Since MR is core-
tractable, HomR(M/G(N),M) 6= 0. Hence

HomR(M/G(N),M) ∼= HomS(F (M)/N, F (M))

implies that F (M) is coretractable in Mod-S. ¤

The following corollary is well-known for right Kasch rings:

Corollary 2.10 Let RR be a coretractable module (namely, R is right
Kasch). Then the ring Mn(R) of all n × n matrices with entries in R is
coretractable as a right module over itself (namely, it is right Kasch).

Corollary 2.11 Let R satisfy (C). Then the ring Mn(R) of all n × n

matrices with entries in R satisfies (C).

3. Mono-coretractable Modules

We call an R-module M mono-coretractable if for every submodule N of
M there is a monomorphism from M/N to M . Mono-coretractable modules
are defined as co-epi-retractable modules in [7]. Let I be a nonzero proper
ideal of a principal ideal domain R. Then it is easy to see that the R-module
R/I is mono-coretractable (see also [7, Corollary 1.5]). Firstly we give the
following easy characterization (may be it is known):

Lemma 3.1 The following are equivalent for a module M :

(1) M is mono-coretractable.
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(2) There exist monomorphisms M −→ N and N −→ M for some mono-
coretractable module N .

(3) There exists a monomorphism from M to K for some mono-
coretractable submodule K of M .

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (3): Let α : M −→ N , β : N −→ M be monomorphisms and N

a mono-coretractable module. Let Im β = K. Now we have the monomor-
phism βα : M −→ K. Since N ∼= K, K is a mono-coretractable submodule
of M .

(3) ⇒ (1): Let ϕ : M −→ K be a monomorphism with K a mono-
coretractable submodule of M . Let L be a submodule of M . Consider the
monomorphism α : M/L −→ K/N defined by α(m+L) = ϕ(m)+N , where
N = ϕ(L). Since K is mono-coretractable, there exists a monomorphism
θ : K/N −→ K. Now we have the monomorphism iθα : M/L −→ M , where
i : K −→ M is the inclusion map. Thus M is mono-coretractable. ¤

Note that the Prüfer p-group Z(p∞) and Q/Z are noncosingular and
mono-coretractable Z-modules. But they are not discrete. Now we give the
following:

Proposition 3.2 The following are equivalent for a noncosingular module
M :

(1) M is semisimple.
(2) M is discrete mono-coretractable.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1): Let N be a proper submodule of M . Then there exists a

monomorphism α : M/N −→ M . Since M/N is noncosingular, α(M/N) is
noncosingular and so it is a coclosed submodule of M . Since M is lifting,
α(M/N) is a direct summand of M , and since M has (D2), N is a direct
summand of M . Thus M is semisimple. ¤

Noncosingular condition in Proposition 3.2 is not superfluous:

Example 3.3 It is easy to see that the Z-module Z/4Z is mono-
coretractable. On the other hand, it is discrete, but not noncosingular and
not semisimple.
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Proposition 3.4 If R is a ring such that every projective right R-module
is mono-coretractable, then R is a QF -ring.

Proof. Let X be an injective right R-module. Since every module is an
epimorphic image of a free (projective) module, there exists an epimorphism
α : P −→ X with P projective. By hypothesis, P is mono-coretractable
and so P/ Kerα ∼= A ≤ P for some submodule A of P . Since P/ Kerα is
injective, A is a direct summand of P . Therefore A is projective. Thus X

is projective. Hence R is a QF -ring. ¤

Remark 3.5 (1) We should note that some of the dual results to the
results in this paper can be found in [6], [8] and [13].

(2) There exist projective modules which are not mono-coretractable. For
example, let R be the ring

[
F F
0 F

]
, where F is any field. Then RR is not

coretractable and so it is not mono-coretractable.
(3) Note that in [7, Corollary 1.9], it is proved that if RR and RR are mono-

coretractable, then R is a QF -ring. And it is given in Example 1.10 in
[7] that there exists a QF -ring R with RR not mono-coretractable. With
the help of this example we show that any coretractable module need
not be mono-coretractable.

Example 3.6 For any division ring K, let R be the 4-dimensional K-ring
consisting of matrices of the form

α =




a x 0 0
0 b 0 0
0 0 b y
0 0 0 a


 .

By [7, Example 1.10], RR is not mono-coretractable, but it is a QF -ring. By
[9, Corollary, 19.17], R is a cogenerator ring. Therefore RR is coretractable.
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