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On the character table of 2-groups
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Abstract. We shall show that there are infinite pairs of non-direct product 2-groups

with the same character. They are not pairs of the generalized quaternion group and

dihedral group.
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Let Qm and Dm denote the generalized quaternion group and the di-
hedral group of order 2m+1 (m ≥ 2), respectively. For each prime p, there
exists a pair of p-groups which aren’t isomorphic but have the same charac-
ter. If p = 2, they are Dm and Qm. In this paper we study pairs of 2-groups
which satisfy such a property.

We use the following notation throught this paper.

1. The dihedral group

Dm = 〈a, b | a2m

= 1, b2 = 1, b−1ab = a−1〉 (m ≥ 2).

2. The generalized quaternion group

Qm = 〈a, b | a2m

= 1, b2 = a2m−1
, b−1ab = a−1〉 (m ≥ 2).

To state our results, we have to introduce the following groups:

3. GF(2n)⊗ log2 D2 = (GF(2n)3, ∗D) with

x ∗D y = (x1 + y1, x2 + y2, x3 + y3 + x2y2 + x2y1)

for x = (x1, x2, x3) and y = (y1, y2, y3). D stands for this group when n

is obvious under discussion.
4. GF(2n)⊗ log2 Q2 = (GF(2n)3, ∗Q) with

x ∗Q y = (x1 + y1, x2 + y2, x3 + y3 + x1y1 + x2y2 + x2y1)
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for x = (x1, x2, x3) and y = (y1, y2, y3). Q stands for this group when n

is obvious under discussion.

The logarithm log is a continuous differentiable map and it’s a group
homomorphism of the multiplicative group R× of positive numbers to the
additive group R+ of real line. Caluculating finite p-groups with some gen-
erators and relations, it follows that each element is represented by a unique
vector in GF(p)t with t ∈ N and the set of thier vectors is GF(p)t itself
and that the operator constructs of polynomial functions. Hence we employ
log as a group homomorphism from a p-group with generators and relations
into the associated vector space with polynomial functions. ⊗ is short for
⊗GF(p) and is the same as the usual tensor product of vector spaces.

It is easy to see that GF(2)⊗ log2 D2
∼= D2 and GF(2)⊗ log2 Q2

∼= Q2.
If n | e then we have

GF(2e)⊗ log2 D2 ⊇ GF(2n)⊗ log2 D2 and

GF(2e)⊗ log2 Q2 ⊇ GF(2n)⊗ log2 Q2.

Our main theorem is the following:

Theorem Let n ∈ N. If n is odd, then GF(2n) ⊗ log2 D2 and GF(2n) ⊗
log2 Q2 are not isomorphic but have the same character table. If n is even,
then two groups are isomorphic. They are not direct product groups of some
Dm and Qm.

The organization of the paper is as follows. First, we find conjugacy
classes of two groups in Proposition 1 and 2. Next, we make an isomorphic
decision in Proposition 3. Last, we prove that they are not direct product.

We shall find conjugacy classes of two groups.

Proposition 1 Let D = GF(2n)⊗ log2 D2. For (x1, x2) 6= (0, 0), we have

xD = {(x1, x2, y3) | y3 ∈ F}.

Proof. Let F = GF(2n). Write q = 2n. For x = (x1, x2, x3), g = (g1, g2, g3)
∈ F3, we have

g−1xg = (x1, x2, x3 + g2x1 − x2g1).

When x2 6= 0, we set g1 = (y3 − x3)/x2 and g2 = 0. One gets
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x ∼D (x1, x2, y3).

When x1 6= 0, we set g1 = 0 and g2 = (y3 − x3)/x1. One gets

x ∼D (x1, x2, y3). ¤

Therefore D has q2 + q − 1 conjugacy classes.

Proposition 2 Let Q = GF(2n)⊗ log2 Q2. For (x1, x2) 6= (0, 0), we have

xQ = {(x1, x2, y3) | y3 ∈ F}.

The proof is the same one given in Proposition 1. Therefore Q has
q2 + q − 1 conjugacy classes.

Proposition 3 If n is odd, then we have

GF(2n)⊗ log2 D2 6∼= GF(2n)⊗ log2 Q2.

If n is even, then we have

GF(2n)⊗ log2 D2
∼= GF(2n)⊗ log2 Q2.

Proof. By counting the number of involutions of D and Q, one can say
that the first statement is true.

Case Dihedral. Let q = 2n. When (x1, x2) = (0, 0), all x with x3 6= 0
are central involution. The number of elements of the form (0, 0, x3) is q−1.

When x1 = 0, x2 6= 0, one gets x2 6= 0 from the third coordinate of x2.
They are of order 4 and the number of elements of the form (0, x2, x3) is
(q − 1)q.

When x1 6= 0 and x2 = 0, such x is of order 2 and the number of
elements of the form (x1, 0, x3) is (q − 1)q.

When x1 6= 0 and x2 6= 0, if x2 = 0, we have x2
2 + x2x1 = 0. Hence

x1 = x2. The number of elements of the form (x1, x1, x3) is q(q − 1).
Therefore, the number of involutions in D is (q − 1)(2q + 1).

Case Quaternion. We have

x2 = (0, 0, x2
1 + x2

2 + x1x2).
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Let f(x1, x2) = x2
1 +x2

2 +x1x2. When (x1, x2) = (0, 0), all x with x3 6= 0 are
central involution. The number of elements of the form (0, 0, x3) is q − 1.

When x1 = 0 and x2 6= 0, one gets f(0, x2) = x2
2 6= 0. All the elements

of the form (0, x2, x3) are of order 4.
When x1 6= 0 and x2 = 0, one gets f(x1, 0) = x2

1 6= 0. All the elements
of the form (x1, 0, x3) are of order 4.

When x1 6= 0 and x2 6= 0, one gets f(x1, x2) 6= 0 if n is odd. If
f(x1, x2) = 0 then x1/x2 is a primitive element of GF(4) and is in the
coefficient field GF(2n) of the group Q. We have 2 | n. They are of order 4.

Let α be a primitive element of GF(4). If n is even, The set of the
nontrivial solutions of the equation

f(x1, x2) = 0

are given by the set {(x1, αx1), (x1, (α + 1)x1) | x1 ∈ F\{0}}. All elements
in the set {(x1, αx1, x3), (x1, (α + 1)x1, x3) | x1 ∈ F\{0}, x3 ∈ F} are involu-
tions. The number is 2q(q − 1).

Therefore, the number of involutions in Q is q − 1 if n is odd and
(q − 1)(2q + 1) otherwise.

Consequently, if n is odd, then we have

D 6∼= Q.

Let α be a primitive element of GF(4). If n is even, we define a map f

of D to Q by setting

f(x) = (x1, αx1 + x2, x3 + αx1x2).

It is easy to see that f is an isomorphism of D onto Q.
Therefore, if n is even, then we have

D ∼= Q. ¤

Proposition 4 Let F = GF(2n) and let q = 2n. The irreducible characters
of D and Q are

χu,v(u, v ∈ F), and φu(u ∈ F\{0}).

where for all x ∈ F3,
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χu,v(x) = (−1)x1·u+x2·v,

φu(x) =
{

q(−1)x3·u, if x1 = x2 = 0,

0, otherwize,

and the dot product · is the inner product when F is regarded as the vector
space over GF(2) with the natural bases.

Proof. Let G ∈ {D, Q}. G is a non-abelian group of order q3. Write
Z = Z(G). Z(G) = {(0, 0, c) | c ∈ F} ∼= (F,+).

G/Z = {(r, s, 0)Z | r, s ∈ F} ∼= (F2,+)

and in particular, every element of G is of the form (x1, x2, x3) ∈ F3.
By Theorem 9.8 in [1], the irreducible characters of G/Z are ψu,v (u, v ∈

F), where

ψu,v(xZ) = (−1)x1·u+x2·v

The lift to G of ψu,v is the linear character χu,v which appears in the state-
ment of the theorem.

Let H = {(x1, 0, x3) | x1, x2 ∈ F}, so that H is abelian subgroup of
order q2. For u ∈ F\{0}, choose a character ψu of H which satisfies

ψu(0, 0, t) = (−1)u·t (t ∈ F\{0}).

We shall calculate ψu ↑ G.
Let r be an element with r ∈ F\{0}. By Proposition 1 and 2, we have

(r, 0, 0)G = {(r, 0, t) | t ∈ F}.

Then by Proposition 21.23 in [1],

(ψu ↑ G)(r, 0, t) =
∑

s∈F
ψu(r, 0, s)

= ψu(r, 0, 0)
∑

s∈F
ψu(0, 0, s)

= ψu(r, 0, 0)
∑

s∈F
(−1)u·s

= 0.
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Also,

(ψu ↑ G)(0, 0, t) = qψu(0, 0, t) = q(−1)u·t, and

(ψu ↑ G)(g) = 0 if g 6∈ H.

We have now established that if φu = ψu ↑ G, then φu takes the values
stated in the theorem. We find that

〈φu, φu〉G =
1
q3

∑

g∈G

φu(g)φu(g)

=
1
q3

∑

g∈Z

φu(g)φu(g)

=
1
q3

∑

g∈Z

q2

= 1.

Therefore φu is irreducible.
Clearly the irreducible characters χu,v(u, v ∈ F) and φu(u ∈ F\{0}) are

all distinct, and the sum of the squares of their degrees is

q2 · 1 + (q − 1) · q2 = |G|.

Hence we have found all the irreducible characters of G. ¤

Proposition 5 Let G be a non-abelian group of order q3, as above. G is
not direct product.

Proof. This follows from the character table of G. Another proof of this
result is the following. Suppose that G = G1 × G2 for two proper normal
subgroups G1 and G2 of G. Let a ∈ G be an element of order 4. It may be
supposed that a ∈ G1. From aG ⊆ G1 and q = |aG| one gets a−1aG = Z(G).
Thus we have Z(G) ⊆ G1. By Lemma 26.1 in [1], 1 6= G2 ∩ Z(G). This
yields G1 ∩G2 6= 1 a contradiction. Therefore G is not direct product. ¤

This completes the proof of the Theorem.
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