On the character table of 2 -groups

Shousaku Abe

(Received March 23, 2012; Revised September 3, 2012)

Abstract

We shall show that there are infinite pairs of non-direct product 2-groups with the same character. They are not pairs of the generalized quaternion group and dihedral group.

Key words: p-groups, characters.

Let Q_{m} and D_{m} denote the generalized quaternion group and the dihedral group of order $2^{m+1}(m \geq 2)$, respectively. For each prime p, there exists a pair of p-groups which aren't isomorphic but have the same character. If $p=2$, they are D_{m} and Q_{m}. In this paper we study pairs of 2-groups which satisfy such a property.

We use the following notation throught this paper.

1. The dihedral group

$$
D_{m}=\left\langle a, b \mid a^{2^{m}}=1, b^{2}=1, b^{-1} a b=a^{-1}\right\rangle(m \geq 2)
$$

2. The generalized quaternion group

$$
Q_{m}=\left\langle a, b \mid a^{2^{m}}=1, b^{2}=a^{2^{m-1}}, b^{-1} a b=a^{-1}\right\rangle(m \geq 2) .
$$

To state our results, we have to introduce the following groups:
3. $\mathrm{GF}\left(2^{n}\right) \otimes \log _{2} D_{2}=\left(\mathrm{GF}\left(2^{n}\right)^{3}, *_{D}\right)$ with

$$
x *_{D} y=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}+x_{2} y_{2}+x_{2} y_{1}\right)
$$

for $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right) . D$ stands for this group when n is obvious under discussion.
4. $\mathrm{GF}\left(2^{n}\right) \otimes \log _{2} Q_{2}=\left(\mathrm{GF}\left(2^{n}\right)^{3}, *_{Q}\right)$ with

$$
x *_{Q} y=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}+x_{1} y_{1}+x_{2} y_{2}+x_{2} y_{1}\right)
$$

for $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right) . Q$ stands for this group when n is obvious under discussion.

The logarithm log is a continuous differentiable map and it's a group homomorphism of the multiplicative group \mathbb{R}^{\times}of positive numbers to the additive group \mathbb{R}^{+}of real line. Caluculating finite p-groups with some generators and relations, it follows that each element is represented by a unique vector in $\operatorname{GF}(p)^{t}$ with $t \in \mathbb{N}$ and the set of thier vectors is $\operatorname{GF}(p)^{t}$ itself and that the operator constructs of polynomial functions. Hence we employ \log as a group homomorphism from a p-group with generators and relations into the associated vector space with polynomial functions. \otimes is short for $\otimes_{\mathrm{GF}(p)}$ and is the same as the usual tensor product of vector spaces.

It is easy to see that $\mathrm{GF}(2) \otimes \log _{2} D_{2} \cong D_{2}$ and $\mathrm{GF}(2) \otimes \log _{2} Q_{2} \cong Q_{2}$. If $n \mid e$ then we have

$$
\begin{aligned}
& \mathrm{GF}\left(2^{e}\right) \otimes \log _{2} D_{2} \supseteq \mathrm{GF}\left(2^{n}\right) \otimes \log _{2} D_{2} \quad \text { and } \\
& \mathrm{GF}\left(2^{e}\right) \otimes \log _{2} Q_{2} \supseteq \mathrm{GF}\left(2^{n}\right) \otimes \log _{2} Q_{2} .
\end{aligned}
$$

Our main theorem is the following:
Theorem Let $n \in \mathbb{N}$. If n is odd, then $\mathrm{GF}\left(2^{n}\right) \otimes \log _{2} D_{2}$ and $\mathrm{GF}\left(2^{n}\right) \otimes$ $\log _{2} Q_{2}$ are not isomorphic but have the same character table. If n is even, then two groups are isomorphic. They are not direct product groups of some D_{m} and Q_{m}.

The organization of the paper is as follows. First, we find conjugacy classes of two groups in Proposition 1 and 2. Next, we make an isomorphic decision in Proposition 3. Last, we prove that they are not direct product.

We shall find conjugacy classes of two groups.
Proposition 1 Let $D=\operatorname{GF}\left(2^{n}\right) \otimes \log _{2} D_{2}$. For $\left(x_{1}, x_{2}\right) \neq(0,0)$, we have

$$
x^{D}=\left\{\left(x_{1}, x_{2}, y_{3}\right) \mid y_{3} \in \mathbb{F}\right\}
$$

Proof. Let $\mathbb{F}=\mathrm{GF}\left(2^{n}\right)$. Write $q=2^{n}$. For $x=\left(x_{1}, x_{2}, x_{3}\right), g=\left(g_{1}, g_{2}, g_{3}\right)$ $\in \mathbb{F}^{3}$, we have

$$
g^{-1} x g=\left(x_{1}, x_{2}, x_{3}+g_{2} x_{1}-x_{2} g_{1}\right)
$$

When $x_{2} \neq 0$, we set $g_{1}=\left(y_{3}-x_{3}\right) / x_{2}$ and $g_{2}=0$. One gets

$$
x \sim_{D}\left(x_{1}, x_{2}, y_{3}\right)
$$

When $x_{1} \neq 0$, we set $g_{1}=0$ and $g_{2}=\left(y_{3}-x_{3}\right) / x_{1}$. One gets

$$
x \sim_{D}\left(x_{1}, x_{2}, y_{3}\right)
$$

Therefore D has $q^{2}+q-1$ conjugacy classes.
Proposition 2 Let $Q=\operatorname{GF}\left(2^{n}\right) \otimes \log _{2} Q_{2}$. For $\left(x_{1}, x_{2}\right) \neq(0,0)$, we have

$$
x^{Q}=\left\{\left(x_{1}, x_{2}, y_{3}\right) \mid y_{3} \in \mathbb{F}\right\}
$$

The proof is the same one given in Proposition 1. Therefore Q has $q^{2}+q-1$ conjugacy classes.

Proposition 3 If n is odd, then we have

$$
\mathrm{GF}\left(2^{n}\right) \otimes \log _{2} D_{2} \not \approx \mathrm{GF}\left(2^{n}\right) \otimes \log _{2} Q_{2}
$$

If n is even, then we have

$$
\mathrm{GF}\left(2^{n}\right) \otimes \log _{2} D_{2} \cong \mathrm{GF}\left(2^{n}\right) \otimes \log _{2} Q_{2}
$$

Proof. By counting the number of involutions of D and Q, one can say that the first statement is true.

Case Dihedral. Let $q=2^{n}$. When $\left(x_{1}, x_{2}\right)=(0,0)$, all x with $x_{3} \neq 0$ are central involution. The number of elements of the form $\left(0,0, x_{3}\right)$ is $q-1$.

When $x_{1}=0, x_{2} \neq 0$, one gets $x^{2} \neq 0$ from the third coordinate of x^{2}. They are of order 4 and the number of elements of the form $\left(0, x_{2}, x_{3}\right)$ is $(q-1) q$.

When $x_{1} \neq 0$ and $x_{2}=0$, such x is of order 2 and the number of elements of the form $\left(x_{1}, 0, x_{3}\right)$ is $(q-1) q$.

When $x_{1} \neq 0$ and $x_{2} \neq 0$, if $x^{2}=0$, we have $x_{2}^{2}+x_{2} x_{1}=0$. Hence $x_{1}=x_{2}$. The number of elements of the form $\left(x_{1}, x_{1}, x_{3}\right)$ is $q(q-1)$.

Therefore, the number of involutions in D is $(q-1)(2 q+1)$.
Case Quaternion. We have

$$
x^{2}=\left(0,0, x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}\right) .
$$

Let $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}$. When $\left(x_{1}, x_{2}\right)=(0,0)$, all x with $x_{3} \neq 0$ are central involution. The number of elements of the form $\left(0,0, x_{3}\right)$ is $q-1$.

When $x_{1}=0$ and $x_{2} \neq 0$, one gets $f\left(0, x_{2}\right)=x_{2}^{2} \neq 0$. All the elements of the form $\left(0, x_{2}, x_{3}\right)$ are of order 4.

When $x_{1} \neq 0$ and $x_{2}=0$, one gets $f\left(x_{1}, 0\right)=x_{1}^{2} \neq 0$. All the elements of the form $\left(x_{1}, 0, x_{3}\right)$ are of order 4.

When $x_{1} \neq 0$ and $x_{2} \neq 0$, one gets $f\left(x_{1}, x_{2}\right) \neq 0$ if n is odd. If $f\left(x_{1}, x_{2}\right)=0$ then x_{1} / x_{2} is a primitive element of GF(4) and is in the coefficient field $\operatorname{GF}\left(2^{n}\right)$ of the group Q. We have $2 \mid n$. They are of order 4 .

Let α be a primitive element of GF(4). If n is even, The set of the nontrivial solutions of the equation

$$
f\left(x_{1}, x_{2}\right)=0
$$

are given by the set $\left\{\left(x_{1}, \alpha x_{1}\right),\left(x_{1},(\alpha+1) x_{1}\right) \mid x_{1} \in \mathbb{F} \backslash\{0\}\right\}$. All elements in the set $\left\{\left(x_{1}, \alpha x_{1}, x_{3}\right),\left(x_{1},(\alpha+1) x_{1}, x_{3}\right) \mid x_{1} \in \mathbb{F} \backslash\{0\}, x_{3} \in \mathbb{F}\right\}$ are involutions. The number is $2 q(q-1)$.

Therefore, the number of involutions in Q is $q-1$ if n is odd and $(q-1)(2 q+1)$ otherwise.

Consequently, if n is odd, then we have

$$
D \not \approx Q .
$$

Let α be a primitive element of $\mathrm{GF}(4)$. If n is even, we define a map f of D to Q by setting

$$
f(x)=\left(x_{1}, \alpha x_{1}+x_{2}, x_{3}+\alpha x_{1} x_{2}\right)
$$

It is easy to see that f is an isomorphism of D onto Q.
Therefore, if n is even, then we have

$$
D \cong Q
$$

Proposition $4 \quad$ Let $\mathbb{F}=\operatorname{GF}\left(2^{n}\right)$ and let $q=2^{n}$. The irreducible characters of D and Q are

$$
\chi_{u, v}(u, v \in \mathbb{F}), \quad \text { and } \quad \phi_{u}(u \in \mathbb{F} \backslash\{0\}) .
$$

where for all $x \in \mathbb{F}^{3}$,

$$
\begin{aligned}
\chi_{u, v}(x) & =(-1)^{x_{1} \cdot u+x_{2} \cdot v}, \\
\phi_{u}(x) & = \begin{cases}q(-1)^{x_{3} \cdot u}, & \text { if } x_{1}=x_{2}=0, \\
0, & \text { otherwize },\end{cases}
\end{aligned}
$$

and the dot product • is the inner product when \mathbb{F} is regarded as the vector space over GF(2) with the natural bases.

Proof. Let $G \in\{D, Q\}$. G is a non-abelian group of order q^{3}. Write $Z=Z(G) . Z(G)=\{(0,0, c) \mid c \in \mathbb{F}\} \cong(\mathbb{F},+)$.

$$
G / Z=\{(r, s, 0) Z \mid r, s \in \mathbb{F}\} \cong\left(\mathbb{F}^{2},+\right)
$$

and in particular, every element of G is of the form $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{F}^{3}$.
By Theorem 9.8 in [1], the irreducible characters of G / Z are $\psi_{u, v}(u, v \in$ \mathbb{F}), where

$$
\psi_{u, v}(x Z)=(-1)^{x_{1} \cdot u+x_{2} \cdot v}
$$

The lift to G of $\psi_{u, v}$ is the linear character $\chi_{u, v}$ which appears in the statement of the theorem.

Let $H=\left\{\left(x_{1}, 0, x_{3}\right) \mid x_{1}, x_{2} \in \mathbb{F}\right\}$, so that H is abelian subgroup of order q^{2}. For $u \in \mathbb{F} \backslash\{0\}$, choose a character ψ_{u} of H which satisfies

$$
\psi_{u}(0,0, t)=(-1)^{u \cdot t} \quad(t \in \mathbb{F} \backslash\{0\}) .
$$

We shall calculate $\psi_{u} \uparrow G$.
Let r be an element with $r \in \mathbb{F} \backslash\{0\}$. By Proposition 1 and 2 , we have

$$
(r, 0,0)^{G}=\{(r, 0, t) \mid t \in \mathbb{F}\}
$$

Then by Proposition 21.23 in [1],

$$
\begin{aligned}
\left(\psi_{u} \uparrow G\right)(r, 0, t) & =\sum_{s \in \mathbb{F}} \psi_{u}(r, 0, s) \\
& =\psi_{u}(r, 0,0) \sum_{s \in \mathbb{F}} \psi_{u}(0,0, s) \\
& =\psi_{u}(r, 0,0) \sum_{s \in \mathbb{F}}(-1)^{u \cdot s} \\
& =0 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \left(\psi_{u} \uparrow G\right)(0,0, t)=q \psi_{u}(0,0, t)=q(-1)^{u \cdot t}, \quad \text { and } \\
& \quad\left(\psi_{u} \uparrow G\right)(g)=0 \quad \text { if } g \notin H .
\end{aligned}
$$

We have now established that if $\phi_{u}=\psi_{u} \uparrow G$, then ϕ_{u} takes the values stated in the theorem. We find that

$$
\begin{aligned}
\left\langle\phi_{u}, \phi_{u}\right\rangle_{G} & =\frac{1}{q^{3}} \sum_{g \in G} \phi_{u}(g) \overline{\phi_{u}(g)} \\
& =\frac{1}{q^{3}} \sum_{g \in Z} \phi_{u}(g) \overline{\phi_{u}(g)} \\
& =\frac{1}{q^{3}} \sum_{g \in Z} q^{2} \\
& =1
\end{aligned}
$$

Therefore ϕ_{u} is irreducible.
Clearly the irreducible characters $\chi_{u, v}(u, v \in \mathbb{F})$ and $\phi_{u}(u \in \mathbb{F} \backslash\{0\})$ are all distinct, and the sum of the squares of their degrees is

$$
q^{2} \cdot 1+(q-1) \cdot q^{2}=|G|
$$

Hence we have found all the irreducible characters of G.
Proposition 5 Let G be a non-abelian group of order q^{3}, as above. G is not direct product.

Proof. This follows from the character table of G. Another proof of this result is the following. Suppose that $G=G_{1} \times G_{2}$ for two proper normal subgroups G_{1} and G_{2} of G. Let $a \in G$ be an element of order 4. It may be supposed that $a \in G_{1}$. From $a^{G} \subseteq G_{1}$ and $q=\left|a^{G}\right|$ one gets $a^{-1} a^{G}=Z(G)$. Thus we have $Z(G) \subseteq G_{1}$. By Lemma 26.1 in [1], $1 \neq G_{2} \cap Z(G)$. This yields $G_{1} \cap G_{2} \neq 1$ a contradiction. Therefore G is not direct product.

This completes the proof of the Theorem.

References

[1] James G. and Liebeck M., Representations and Characters of Groups Second Edition, Cambridge University Press, 2001.

Department of Mathematical Information Science
Tokyo University of Science
1-3 Kagurazaka
Shinjuku-ku, Tokyo 162-8601
Japan
E-mail: shousaku_abe@yahoo.co.jp

