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Abstract. The aim of this paper is to give an algebraic independence result for

the two infinite products involving the Lucas sequences of the first and second kind.

As a consequence, we derive that the two infinite products
Q∞

k=1(1 + 1/F2k ) andQ∞
k=1(1+1/L2k ) are algebraically independent over Q, where {Fn}n≥0 and {Ln}n≥0

are the Fibonacci sequence and its Lucas companion, respectively.

Key words: Infinite products, algebraic independence, Mahler-type functional equa-

tion, Fibonacci numbers.

1. Introduction and the results

Throughout this paper, we assume that α and β are algebraic numbers
with |α| > 1 and αβ = −1. Define

Un =
αn − βn

α− β
and Vn = αn + βn (n ≥ 0), (1)

which are the Lucas sequences of the first and second kind of parameters
α and β. When α = (1 +

√
5)/2, then Un = Fn and Vn = Ln are the

classical Fibonacci and Lucas sequences, respectively. Let d ≥ 2 be a fixed
integer. In [5], the second author gave necessary and sufficient conditions
for transcendence of the infinite products

∞∏

k=1

(
1 +

ak

Udk

)
and

∞∏

k=1

(
1 +

ak

Vdk

)
,

where {ak}k≥1 is a sequence of algebraic numbers satisfying a certain prop-
erties. As applications, both

∏∞
k=1(1 + 1/F2k) and

∏∞
k=1(1 + 1/L2k) are

transcendental. Necessary and sufficient conditions for the sets of infinite
products
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∞∏

k=1
U

dk 6=−bi

(
1 +

bi

Udk

)
(1 ≤ i ≤ m) or

∞∏

k=1
V

dk 6=−bi

(
1 +

bi

Vdk

)
(1 ≤ i ≤ m)

to be algebraically independent over Q, where b1, . . . , bm are nonzero inte-
gers, were given in [2]. In particular, the two numbers

∏∞
k=1(1+1/F2k) and∏∞

k=2(1− 1/F2k) are algebraically independent over Q.
In this paper, we prove the algebraic independence of the infinite prod-

ucts generated by the two Lucas sequences. Our main results are the fol-
lowing.

Theorem 1 Let {Un}n≥0 and {Vn}n≥0 be the sequences defined by (1). Let
d1, d2 ≥ 2 be integers and γ1, γ2 nonzero algebraic numbers with (d2, γ2) 6=
(2,−1), (2, 2). Then the numbers

∞∏

k=1
U

d1k 6=−γ1

(
1 +

γ1

Ud1
k

)
,

∞∏

k=1
V

d2k 6=−γ2

(
1 +

γ2

Vd2
k

)

are algebraically independent over Q.

Remark 1 (cf. [5]) In the cases when (d2, γ2) = (2,−1) or (2, 2), we have

∞∏

k=1

(
1− 1

V2k

)
=

α4 − 1
α4 + α2 + 1

,

∞∏

k=1

(
1 +

2
V2k

)
=

α2 + 1
α2 − 1

,

by cancellation and using the formula

∞∏

k=1

(1 + x2k

) =
1

1− x2
(|x| < 1).

In particular,

∞∏

k=1

(
1− 1

L2k

)
=
√

5
4

, and
∞∏

k=1

(
1 +

2
L2k

)
=
√

5.

Corollary 1 For any integer d ≥ 2 and for any nonzero algebraic numbers
γ1, γ2 with (d, γ2) 6= (2,−1), (2, 2), the infinite products
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∞∏

k=1
F

dk 6=−γ1

(
1 +

γ1

Fdk

)
,

∞∏

k=1
L

dk 6=−γ2

(
1 +

γ2

Ldk

)

are algebraically independent over Q.

Example 1 The numbers

∞∏

k=1

(
1 +

1
F2k

)
,

∞∏

k=1

(
1 +

1
L2k

)

are algebraically independent over Q.

Example 2 The numbers

∞∏

k=1

(
1 +

1 + i

F2k

)
,

∞∏

k=1

(
1 +

1− i

L2k

)

are algebraically independent over Q.

Example 3 Let {Pn}≥1 and {Qn}n≥0 be the Pell sequence defined by
Pn+2 = 2Pn+1 + Pn (n ≥ 0), P0 = 0, P1 = 1, and its Pell companion,
respectively. Then the numbers

∞∏

k=1

(
1 +

1
P2k

)
,

∞∏

k=1

(
1 +

1
Q2k

)

are algebraically independent over Q.

2. Mahler-type functional equations

Let d1, d2 ≥ 2 be nonzero integers and γ1, γ2 be nonzero algebraic num-
bers with (d2, γ2) 6= (2,−1), (2, 2). We put

η :=
∞∏

k=1
U

d1k 6=−γ1

(
1 +

γ1

Ud1
k

)
, ν :=

∞∏

k=1
V

d2k 6=−γ2

(
1 +

γ2

Vd2
k

)
,
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where {Un}n≥0 and {Vn}n≥0 are given in (1). Define K = Q(α, γ1, γ2) and

Φ(x) =
∞∏

k=0

(
1+

(α− β)γ1x
d1

k

1− (−1)d1x2d1
k

)
, Ψ(x) =

∞∏

k=0

(
1+

γ2x
d2

k

1 + (−1)d2x2d2
k

)
,

which converge in |x| < 1 and satisfy the functional equations

Φ(xd1) = c1(x)Φ(x), Ψ(xd2) = c2(x)Ψ(x), (2)

with

c1(x) =
1− (−1)d1x2

1 + (α− β)γ1x− (−1)d1x2
, c2(x) =

1 + (−1)d2x2

1 + γ2x + (−1)d2x2
,

respectively. Let K(x) be the field of rational functions over K. Then both
the functions Φ(x) and Ψ(x) are transcendental over K(x). To see why,
suppose on the contrary that Φ(x) is algebraic over K(x). Then, by the
functional equation (2) and [4, Theorem 1.3] with C = Q, we see that Φ(x)
is a rational function over some algebraic number field L ⊇ K. Hence, at
least one of the conditions in [5, Theorem 7] must be satisfied for Φ(x),
which is impossible by the assumptions of α, β, and γ1. Also in the case of
Ψ(x) we get a contradiction by using (d2, γ2) 6= (2,−1), (2, 2).

By (2), we have for any integers k1, k2 ≥ 1

Φ
(
xd1

k1 )
= Φ(x)

k1−1∏

i=0

c1

(
xd1

i)
, Ψ

(
xd2

k2 )
= Ψ(x)

k2−1∏

j=0

c2

(
xd2

j )
. (3)

Take an integer N with the property that min{|Udk |, |Vdk |} > max{|γ1|, |γ2|}
for all k ≥ N . Then, using (3), we get

η = Φ
(
α−d1

N ) N−1∏

k=1
U

dk 6=−γ1

(
1 +

γ1

Ud1
k

)

= Φ(α−1)
N−1∏

i=0

c1

(
α−d1

i) N−1∏

k=1
U

dk 6=−γ1

(
1 +

γ1

Ud1
k

)
, (4)
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ν = Ψ
(
α−d2

N ) N−1∏

k=1
V

d2k 6=−γ2

(
1 +

γ2

Vd2
k

)

= Ψ(α−1)
N−1∏

j=0

c2

(
α−d2

j ) N−1∏

k=1
V

d2k 6=−γ2

(
1 +

γ2

Vd2
k

)
. (5)

In what follows, we distinguish two cases according to whether log d1/ log d2

is an irrational number or a rational number, respectively. Let K[[x]] be the
ring of formal power series with coefficients in the field K.

3. The case when log d1/ log d2 ∈/ Q
In this section, under the condition of log d1/ log d2 /∈ Q, we prove The-

orem 1. We need the following lemma.

Lemma 1 (A special case of Nishioka [3, Theorem 1]) Let K be an alge-
braic number field and d1, d2 ≥ 2 integers with log d1/ log d2 /∈ Q. Suppose
that f1(x), f2(x) ∈ K[[x]] are transcendental over K(x) and satisfy the func-
tional equations

fi(xdi) = ci(x)fi(x) + bi(x) (i = 1, 2),

where ci(x), bi(x) ∈ K(x), ci(0) = 1. If γ is an algebraic number with
0 < |γ| < 1, ci(γdi

k

) 6= 0 (k ≥ 0) and fi(x) converge at x = γ, then the
values f1(γ) and f2(γ) are algebraically independent over Q.

Proof of Theorem 1. Applying Lemma 1 to the transcendental functions
f1(x) := Φ(x) and f2(x) := Ψ(x) satisfying the functional equations (3)
with k1 = k2 = N , we can deduce immediately that the values Φ(α−1) and
Ψ(α−1) are algebraically independent over Q. Hence, by (4) and (5), so are
the numbers η and ν, which finishes the proof of Theorem 1. ¤

4. The case when log d1/ log d2 ∈ Q
Let K be an algebraic number field. For an integer d ≥ 2, we define the

subgroup Hd of the group K(x)× of nonzero elements of K(x) by
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Hd =
{

g(xd)
g(x)

∣∣∣∣ g(x) ∈ K(x)×
}

.

We use the following lemmas for the proof of Theorem 1.

Lemma 2 (Kubota [1, Corollary 8]) f1(x), . . . , fm(x) ∈ K[[x]]\{0} satisfy
the functional equations

fi(xd) = ci(x)fi(x), ci(x) ∈ K(x)× (1 ≤ i ≤ m). (6)

Then f1(x), . . . , fm(x) are algebraically independent over K(x) if and only
if the rational functions c1(x), . . . , cm(x) are multiplicatively independent
modulo Hd.

Lemma 3 (Kubota [1], see also Nishioka [4, Theorem 3.6.4]) Suppose that
the functions f1(x), . . . , fm(x) ∈ K[[x]] converge in |x| < 1 and satisfy the
functional equations (6) with ci(x) defined and nonzero at x = 0. Let γ be an
algebraic number with 0 < |γ| < 1 such that ci(γdk

) are defined and nonzero
for all k ≥ 0. If f1(x), . . . , fm(x) are algebraically independent over K(x),
then the values f1(γ), . . . , fm(γ) are algebraically independent over Q.

In this section, we assume log d1/ log d2 ∈ Q in Theorem 1. Then there
exists a minimal pair of positive integers (`1, `2) such that

d`1
1 = d`2

2 := d. (7)

By the functional equations (3), we have

Φ(xd) = Φ(x)
`1−1∏

i=0

c1

(
xd1

i)
, Ψ(xd) = Ψ(x)

`2−1∏

j=0

c2

(
xd2

j )
. (8)

Suppose to the contrary that η and ν are algebraically dependent over Q.
Then, by (4) and (5), so are the values Φ(α−1) and Ψ(α−1). Since Φ(x) and
Ψ(x) satisfy the functional equations (8), they are algebraically dependent
over K(x) by Lemma 3. By Lemma 2, the rational functions

`1−1∏

i=0

c1

(
xd1

i)
,

`2−1∏

j=0

c2

(
xd2

j )
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are multiplicatively dependent modulo Hd, namely there exist integers e1, e2,
not both zero, and g(x) ∈ K(x)× such that

( `1−1∏

i=0

c1(xdi
1)

)e1
( `2−1∏

j=0

c2(xdj
2)

)e2

=
g(xd)
g(x)

, (9)

where g(x) is defined and nonzero at x = 0, since c1(0)c2(0) = 1.
The remaining part of the paper is dedicated to proving that a relation

such as (9) cannot hold.
Noting that Φ(x) and Ψ(x) are transcendental over K(x), we deduce

that e1e2 6= 0. Indeed, if e1 = 0, we then have, by (8) and (9),

g(x)Ψ
(
xdk)e2 = Ψ(x)e2g

(
xdk)

(k ≥ 0).

Taking the limit as k →∞, we obtain g(x) = Ψ(x)e2g(0) (|x| < 1), so that
Ψ(x) is algebraic over K(x). This is a contradiction. A similar contradiction
is deduced when e2 = 0.

To simplify the notation, we put γ := (α−β)γ1 and rewrite the equation
(9), as

F (x) =
( `1−1∏

i=0

1− (−1)d1x2di
1

1 + γxdi
1 − (−1)d1x2di

1

)e1

×
( `2−1∏

j=0

1 + (−1)d2x2dj
2

1 + γ2xdj
2 + (−1)d2x2dj

2

)e2

, (10)

where e1 and e2 are nonzero integers and

F (x) :=
A(xd)B(x)
A(x)B(xd)

, (11)

with A(x) and B(x) being polynomials without common roots with complex
coefficients obtained from g(x) = A(x)/B(x). We also assume that e1 > 0,
otherwise we replace the pair of exponents (e1, e2) by the pair (−e1,−e2)
and interchange A(x) and B(x).

So, in order to derive Theorem 1, we need to show that a relation such
as (10) does not hold. We proceed in a sequence of lemmas.
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Lemma 4 Let d ≥ 2 be the integer defined by (7), and A(x) and B(x) be
the polynomials given in (11). Then we have the following properties:

( i ) The polynomials A(x) and B(x) have the same degree.
( ii ) The value x = 1 is neither a root nor a pole of A(xd)B(x)/A(x)B(xd).
(iii) d is even.

Proof. (i). Observe that both c1(x) and c2(x) are of degree 0 as ratio-
nal functions, therefore the left–hand side of (10) is of degree 0 as a ra-
tional function. Thus, F (x) is also a degree 0. Since its degree is also
(d− 1)(deg(A)− deg(B)), it follows that deg(A) = deg(B).

(ii). If A(1)B(1) 6= 0, the conclusion is clear. Suppose, without loss of
generality, that A(1) = 0. Then A(x) = (x− 1)eC(x), where e ≥ 1 is some
positive integer, and C(x) is a polynomial with C(1) 6= 0. Then

F (x) =
A(xd)B(x)
A(x)B(xd)

=
(

xd − 1
x− 1

)e
C(xd)B(x)
C(x)B(xd)

= (xd−1+ · · ·+1)e C(xd)B(x)
C(x)B(xd)

and since C(1) 6= 0 and B(1) 6= 0 (this last condition holds because A(x)
and B(x) do not have common roots), we get that F (1) = de.

(iii). Assume that d is odd. Then by an argument similar to the one
at (ii) above, we conclude that x = −1 is neither a root nor a pole of F (x).
Indeed, this is clear if A(−1)B(−1) 6= 0. Assume say that A(−1) = 0 and
write A(x) = (x + 1)eC(x) for some positive integer e and some polynomial
C(x) with C(−1) 6= 0. Then

F (x) =
(

xd + 1
x + 1

)e
C(xd)B(x)
C(x)B(xd)

= (xd−1 − xd−2 + · · ·+ 1)e C(xd)B(x)
C(x)B(xd)

,

so we see that F (−1) = de because C(xd), C(x), B(xd), B(x) all evaluate
to either C(−1) 6= 0, or to B(−1) 6= 0, when x = −1. Thus, F (−1) 6= 0.

Since d is odd, both d1 and d2 are odd. By the equation (10), since
x = −1 is a root of all the polynomials 1− x2dj

2 for j = 0, . . . , `1 − 1, but of
neither one of the polynomials 1+x2di

1 for i = 0, . . . , `1−1 or 1+γ2x
dj
2−x2dj

2

for j = 0, . . . , `2 − 1 (because γ2 6= 0), we get that in fact x = −1 should be
a root of 1 + γxdi

1 + x2di
1 for some i = 0, . . . , `1 − 1. Hence, we have γ = 2.

However, in this case, from (10), we deduce that x = 1 is either a root or a
pole of F (x) with multiplicity |e2|`2, which is impossible by (ii). ¤
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Lemma 5 γ2 = −2 and e1`1 = 2e2`2. In particular, e2 > 0.

Proof. We know from Lemma 4 (iii) that d1 and d2 are both even. Hence,
in the equation (10), the family of polynomials 1 − x2di

1 , i = 0, . . . , `1 − 1
all have x = 1 as a root. Since x = 1 is not a zero or a pole of the rational
function appearing in the right–hand side of (10) by Lemma 4 (ii), it follows
at least one (hence, all of them) of the `2 polynomials 1 + γ2x

dj
2 + x2dj

2 ,
j = 0, . . . , `2− 1 must have x = 1 as a root. Thus, γ2 = −2. So, in this case
the formula (10) becomes

F (x) =
( `1−1∏

i=0

1− x2di
1

1 + γxdi
1 − x2di

1

)e1
( `2−1∏

j=0

1 + x2dj
2

(1− xdj
2)2

)e2

. (12)

The multiplicity of x = 1 in the first factor in the right–hand side of (12)
is e1`1 and in the second factor is −2e2`2. Thus, e1`1 = 2e2`2 again by
Lemma 4 (ii). This finishes the proof of the lemma. ¤

Lemma 6 All roots of A(x) and B(x) are roots of unity.

Proof. We first deal with the roots of A(x). Say ζ is a root of A(x). Clearly,
ζ 6= 0, for if A(x) = xeC(x) for some positive integer e with C(x) a poly-
nomial such that C(0) 6= 0, then x = 0 is a root of A(xd)B(x)/A(x)B(xd)
with multiplicity e(d − 1) > 0, which is not possible by the equation (12)
since its left–hand side evaluates to 1 when x = 0. Assume now that ζ is
not a root of unity. Then all the numbers

ζ, ζ1/d, ζ1/d2
, . . .

are distinct for any choice of the dith power roots, since a relation of the type
ζ1/du

= ζ1/dv

for some nonegative integers u 6= v implies that ζdu−dv

= 1,
and du − dv 6= 0, so ζ is a root of unity. Choose a nonnegative integer `

maximal such that ζ1 = ζ1/d`

is a root of A(x). Thus, ζ
1/d
1 = ζ1/d`+1

is not a
root of A(x). Then F (x) has ζ2 = ζ

1/d
1 as a root because A(ζd

2 ) = A(ζ1) = 0,
but A(ζ2) 6= 0 and also B(ζd

2 ) = B(ζ1) 6= 0 because A(x) and B(x) do not
have roots in common. By the equation (12), ζ2 is a root of unity, therefore
ζ = ζd`+1

2 is also a root of unity. Thus, all the roots of A(x) are roots of
unity.
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A similar argument works for the roots of B(x). Let ζ be any root of
B(x) and look at the sequence

ζ, ζd, ζd2
, . . .

If it is a finite sequence, then ζ is a root of unity. If it is infinite, then
there exists a nonnegative integer l maximal such that ζ1 = ζdl

is a root of
B(x). Thus, ζd

1 = ζdl+1
is not a root of B(x). But then ζ1 is a root of F (x)

because B(ζ1) = 0, B(ζd
1 ) 6= 0 and A(ζ1) 6= 0. Thus, by (12), ζ1 is a root of

1, therefore ζ is a root of unity. ¤

Lemma 7 The roots of 1 + γx − x2 are complex nonreal roots of unity.
Furthermore, γ2 is a negative real number.

Proof. In the equation (12) any root ζ of 1 + γx − x2 is either a root of
x2di

2 + 1 for some i = 0, . . . , `2 − 1, or a root of x2dj
1 − 1 for some j =

0, . . . , `1 − 1, or a root of A(x) or of B(xd), and whichever may be the case,
it is a root of unity. We cannot have ζ = ±1 since it would lead to γ = 0,
so ζ is complex nonreal. Let ζ and η be the two possibly equal roots of
1 + γx − x2. By the Vieté relations, η = −ζ−1 and γ = ζ + η. Writing
ζ = e2πiu/m for some integers m ≥ 3 and u ∈ {1, . . . , m− 1} coprime to m,
we get that

γ = e2πiu/m − e−2πiu/m = 2i sin(2πu/m),

so γ2 = −4 sin2(2πu/m) is a negative real number. ¤

Lemma 8 Let ζ = e2πiu/m with u and m coprime be a primitive root of
unity of order m. Then there are at least φ(d) primitive roots of unity of
order md which are roots of the polynomial xd − ζ.

Proof. All roots of xd − ζ are of the form

e2πi(u/dm+v/d), (13)

where v ∈ {0, 1, . . . , d− 1}. A number of the form (13) is a primitive root of
unity precisely when u + mv is coprime to md. Let p be a prime factor of d

and let αp be such that pαp‖d. If p divides m, then u is already coprime to
p, therefore u + pv ≡ u (mod p) is coprime to pαp . If p does not divide m,
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then m is invertible modulo pαp and we can choose v modulo pαp such that
v ≡ (ui−u)m−1 (mod pαp), where u1, . . . , uφ(pαp ) are all the residue classes
modulo pαp coprime to pαp . By the Chinese Remainder Theorem to deal
with all the prime powers pαp exactly dividing d, we get that the number
of congruence classes v modulo d such that the number shown at (13) is a
primitive root of unity of order md is

∏

p|d
p|m

pαp

∏

p|d
p-m

φ(pαp) ≥ φ(d). ¤

Lemma 9 Let mA be the maximal order of the roots of unity which are
roots of A(x). Then either mA = 1 and d1 = 2, or mA ≤ 2 and d2 ≤ 4.

Proof. Let ζ be a root of order mA of A(x). Then A(xd) is a multiple of
the polynomial xd − ζ, which has φ(d) ≥ 1 primitive roots of unity of order
mAd > mA by Lemma 8. These roots are not roots of A(x) or of B(xd), so
they are all roots of F (x). Looking in the right–hand side of (12), we get
that

mAd ≤ max
{
2d`1−1

1 , 4d`2−1
2

}
.

If the maximum above is 2d`1−1
1 , we then get mAd = (mAd1)d`1−1

1 ≤ 2d`1−1
1 ,

so mAd1 ≤ 2, giving mA = 1 and d1 = 2. If the maximum above is 4d`2−1
2 ,

we then get mAd = (mAd2)d`2−1
2 ≤ 4d`2−1

2 , so mAd2 ≤ 4, therefore mA ≤ 2
and d2 ≤ 4. These are the desired conclusions. ¤

Lemma 10 The polynomial B(x) is nonconstant and has at least one
complex nonreal root.

Proof. If B(x) is constant, then so is A(x) by Lemma 4 (i). In this case,
F (x) = 1. If B(x) is not constant but has only real roots, then since mA ≤ 2
by Lemma 9, it follows that all the roots of A(x)B(x) are in {−1, 1}. Hence,
{A(x), B(x)} = {a0(x − 1)e, b0(x + 1)e} holds with some positive integer e

and some nonzero complex numbers a0 and b0. In either case, F (x) ∈ R(x)
is a rational function with real coefficients. Separating out the denominator
of the first product in the right–hand side of (12) and using the fact that all
other components of the right–hand side of (12) have real coefficients, we
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get that

( `1−1∏

i=0

(1 + γxdj
1 − x2dj

1)
)e1

∈ R(x). (14)

Since the rational function appearing in the left–hand side of containment
(14) is in fact a polynomial, it follows that this polynomial is in R[x]. But
it is easy to see that

`1−1∏

i=0

(
1 + γxdj

1 − x2dj
1
)

= (−1)`1
(
x2+2d1+···+2d

`1−1
1 − γx1+2d1+···+2d

`1−1
1

+ smaller degree monomials
)
,

therefore the polynomial appearing in the left–hand side of containment of
(14) is a real polynomial of the form

(−1)`1e1
(
x2e1(1+d1+···+d

`1−1
1 ) − e1γx2e1(1+d1+···+d

`1−1
1 )−1

+ smaller degree monomials
)
,

showing that γ is real, which contradicts Lemma 7. ¤

Using the previous Lemmas 11 and 12, we prove d1 = 2.

Lemma 11 In the equation (12), we have d1 ∈ {2, 4, 6}.
Proof. Let ζ be some root of B(x) with maximal order m ≥ 3. Then B(xd)
is divisible by the polynomial xd− ζ, so it has at least φ(d) distinct roots of
order md by Lemma 8. By (12), such roots must be among the roots of

`1−1∏

j=1

(
1 + γxdi

1 − x2di
1
)
, (0 ≤ i ≤ `1 − 1), or xdj

2 − 1, (0 ≤ j ≤ `2 − 1).

The second polynomials have only roots of unity of order at most d`2−1
2 < d.

So, we look at the roots of the first polynomials. Let ζ1, ζ2 be such that
1 + γx− x2 = −(x− ζ1)(x− ζ2). Let

u1, . . . , uφ(d)
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be distinct integers coprime to md in {1, . . . , md} such that e2πiuk/md for
k = 1, . . . , φ(d) are primitive roots of unity of order md which are also roots
of B(xd). If e2πiuk/md is a root of 1+γxdj

1−x2dj
1 for some j = 0, 1, . . . , `1−1,

then

e2πiuk/m(d/dj
1) ∈ {ζ1, ζ2}.

In particular,

md`1−j
1 = m(d/dj

1) ∈ {ord(ζ1), ord(ζ2)}.

Here, for a root of unity ζ we write ord(ζ) for its order. The above con-
tainment shows that there are at most two possible values for j ∈ {0, 1, . . . ,

`1 − 1}; namely, we write ord(ζs) = md`1−js

1 for s = 1, 2, and then j ∈
{j1, j2}. Thus, our φ(d) distinct roots are to be found among the roots of

(
xd

j1
1 − ζ1

)(
xd

j2
1 − ζ2

)
,

which is a polynomial of degree dj1
1 + dj2

1 ≤ 2d`1−1
1 . We have thus arrived at

the inequality

φ(d) ≤ 2d`1−1
1 .

Since φ(d) = φ(d`1
1 ) = d`1−1

1 φ(d1), we get d`1−1
1 φ(d1) = φ(d) ≤ 2d`1−1

1 , so
φ(d1) ≤ 2, which leads to d1 ∈ {2, 4, 6}. ¤

Lemma 12 In the equation (12), we have d1 6= d2.

Proof. Assume that d1 = d2. Then `1 = `2 = 1 and in (12) we have
e1 = 2e2. Thus, the equation (12) is

F (x) =
(

(x2 + 1)(x + 1)2

(1 + γx− x2)2

)e2

. (15)

Let t be the number of distinct complex nonreal roots of B(x) and let these
roots be ζ1, . . . , ζt. Then the polynomial B(xd) is divisible by the polyno-
mial C(x) =

∏t
i=1(x

d− ζi), whose roots are all complex nonreal and simple.
Indeed, it is clear that all roots of C(x) are nonreal, and they are simple be-
cause xd−ζi has only simple roots for all i = 1, . . . , t, and if i 6= j, then xd−ζi



14 F. Luca and Y. Tachiya

and xd−ζj cannot have a common root ζ0, since the existence of such a root
will imply that ζi = ζd

0 = ζj , a contradiction. Thus, B(xd) has at least td

distinct complex nonreal roots, showing that F (x) = A(xd)B(x)/A(x)B(xd)
has at least td − t = t(d − 1) complex nonreal distinct poles (namely all of
the roots of C(x) with the possible exception of ζ1, . . . , ζt, which might get
cancelled in F (x)). Comparing this with the number of distinct complex
nonreal poles of the function appearing in the right–hand side of the for-
mula (15), we deduce that t(d− 1) ≤ 2. Since t ≥ 1 by Lemma 10, we have
that d ≤ 3. Thus, d = 2 by Lemma 11.

Then t ≤ 2. If t = 2, then B(xd) is divisible by C(x) = (x2−ζ1)(x2−ζ2).
Since the function appearing in the right–hand side of (15) has at most two
distinct complex poles, we conclude that both ζ1 and ζ2 are zeros of C(x).
Thus, either ζ2

1 = ζ1, or ζ2
2 = ζ2, or both ζ2

1 = ζ2 and ζ2
2 = ζ1. The first two

situations give ζ1 = 1, or ζ2 = 1, which are not acceptable. The last situation
gives that ζ4

1 = (ζ2
1 )2 = ζ2

2 = ζ1, so ζ3
1 = 1 and similarly ζ3

2 = 1. So, ζ1 and
ζ2 are the two complex cubic nonreal roots of unity and C(x) = x2 + x + 1.
But then x2 + γx − 1 is associated to C(x2)/C(x) = x2 − x + 1, which is
impossible.

Finally, if t = 1, then C(x) = x2 − ζ, and C(x) does not have ζ as a
root, otherwise we would get ζ2 = ζ, so ζ = 1, which is not acceptable. But
then x2 − ζ = x2 + γx− 1, which is also impossible. ¤

Lemma 13 In the equation (12), we have d1 = 2.

Proof. We let again ζ1, . . . , ζt be all the complex nonreal roots of B(x) and
look at C(x) =

∏t
i=1(x

d − ζi). As we have seen in the proof of Lemma 12,
F (x) has at least t(d−1) distinct nonreal poles. On the other hand, by (12),
all such poles are either roots of xd

`2−1
2 − 1, or of 1 + γxdi

1 − x2di
1 for some

i = 0, . . . , `1 − 1. Thus, we get

t(d− 1) ≤ d`2−1
2 + 2

`1−1∑

i=0

di
1 =

d

d2
+

2(d− 1)
d1 − 1

.

Thus,

t ≤ d

d2(d− 1)
+

2
d1 − 1

.
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If d1 = 6, then d2 ≥ 36, and we get

t ≤ 36
36(36− 1)

+
2
5

< 1,

a contradiction. If d1 = 4 and d2 ≥ 8, and we get

t ≤ 8
8(8− 1)

+
2
3

< 1,

a contradiction. If d1 = 4 and d2 = 2, then `1 = 1, `2 = 2, e1 = 4e2, so the
formula (12) becomes

F (x) =
(

(x2 + 1)(x4 + 1)(1 + x)2

(1 + γx− x2)4

)e2

,

and a contradiction can now be reached by counting again the complex
nonreal poles of F (x) as in the proof of Lemma 12. Hence, by Lemma 11,
we conclude that d1 = 2. ¤

Since now we know that d1 = 2, it follows that d2 = 2`1 for some `1 ≥ 2,
and `2 = 1. Further, the equation (12) becomes

F (x) =
(x + 1)`1e1(x2 + 1)(`1−1)e1+e2(x4 + 1)(`1−2)e1 · · · (x2`1−1

+ 1)e1

(1 + γx− x2)e1 · · · (1 + γx2`1−1 − x2`1 )e1
,

(16)

where e1 = 2e2/`1. Next, we prove that `1 = 2 by using Lemma 14.

Lemma 14 Let A(x) and B(x) be the polynomials given in (11). Then
the following properties hold :

( i ) There exist positive integer e and nonzero complex number a0 such
that A(x) = a0(x− 1)e.

( ii ) We have B(−1) 6= 0.

Proof. (i). If this would not be so, then, by Lemma 9, it would follow that
−1 is a root of A(x). Thus, xd + 1 = x2`1 + 1 is a divisor of A(xd) and
since d is even, xd +1 does not have any roots in common neither with A(x)
(whose only roots are −1 or 1), nor with B(xd), since A(x) and B(x) are
coprime. Thus, F (x) has roots which are primitive roots of unity of order
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2`1+1 = 2d. However, this is not possible by the formula (16).
(ii). Assume that x + 1 divides B(x). Then xd + 1 divides B(xd) and it

is coprime to A(x). Let ζ1, . . . , ζt be the t ≥ 1 complex nonreal roots of B(x)
and look at the polynomial (xd +1)C(x) = (xd +1)

∏t
i=1(x

d−ζi). Since d is
even, all the roots of this polynomial are complex nonreal and it is easy to see
that they are also simple. Thus, B(xd) has at least d(t+1) distinct complex
nonreal roots. Thus, F (x) has at least d(t + 1)− t = t(d− 1) + d ≥ 2d− 1
distinct poles. Comparing this observation with the number of poles of the
function appearing in the right–hand side of (16), we get

2d− 1 ≤ 2 + 4 + · · ·+ 2`1 = 2`1+1 − 2 = 2d− 2,

a contradiction. ¤

Lemma 15 In equation (16), we have `1 = 2.

Proof. By (7), (16), and Lemma 14, we have

F (x) =
(

xd − 1
x− 1

)e
B(x)
B(xd)

,

where all the t distinct roots of B(x) are complex. It follows that all the
roots of B(xd) are also complex. So, identifying the multiplicity of x + 1
in (16), we get that e = `1e1. If `1 ≥ 3, then e2πi/8, which is a root of
x4 + 1 appears with multiplicity at least as large as e = `1e1 as a root of
F (x) (because A(xd) and B(xd) are coprime). However, (16) tells us that
this multiplicity is at most (`1 − 2)e1 < e, a contradiction. Thus, `1 ≤ 2.
If `1 = 1, then d1 = d2, which contradicts Lemma 12. Therefore we obtain
`1 = 2. ¤

Now d1 = 2, d2 = 4, d = 4, `1 = 2, `2 = 1, so the formula (16) becomes

F (x) =
(

(1 + x)2(1 + x2)2

(1 + γx− x2)(1 + γx2 − x4)

)e2

. (17)

Finally, we prove Theorem 1 in the case of log d1/ log d2 ∈ Q.

Proof of Theorem 1. We know, by Lemmas 6 and 14, that A(x) =
a0(x− 1)e and that B(x) has no real roots. So, we get, by (11) and (17),
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(
x4 − 1
x− 1

)e
B(x)
B(x4)

=
(

(1 + x)2(1 + x2)2

(1 + γx− x2)(1 + γx2 − x4)

)e2

.

Since e is the exact multiplicity as a root of x = −1 in F (x) by Lemma 14
(ii), we get that e = 2e2. Hence,

B(x4)
B(x)

= ((1 + γx− x2)(1 + γx2 − x4))e2 . (18)

The above equation tells us that B(x4)/B(x) is a polynomial. If we write
ζ1, . . . , ζt for all the roots of B(x), we then again have that C(x) =∏t

i=1(x
4 − ζi) is a divisor of B(x4) and it has 4t distinct roots. Thus,

B(x4)/B(x) has exactly 4t − t = 3t distinct roots. Comparing this with
the right–hand side of (18), we get 3t ≤ 6, so t ≤ 2. If t = 1, then
B(x) = b0(x− ζ1)e0 , so

B(x4)
B(x)

=
(

x4 − ζ1

x− ζ1

)e0

.

Since ζ1 is a root of B(x4), we get that ζ4
1 = ζ1, therefore ζ3

1 = 1. Since
(x2 − γx − 1)(x4 − γx2 − 1) has a totality of 3 distinct roots, it follows, in
particular, that x4 − γx2 − 1 has double roots. Such a root ζ satisfies

4ζ3 − 2ζγ = 0, therefore ζ2 = γ/2;

so

0 = ζ4 − γζ2 − 1 = (γ/2)2 − γ(γ/2)− 1,

therefore γ2 = −4. Thus, γ = ±2i. But in this case, x2 − xγ − 1 = (x± i)2

has a double root which is a root of unity of order 4 and this number cannot
be a root of B(x4) = b0(x4 − ζ1)e0 .

Finally, assume that t = 2. Then

B(x) = b0(x− ζ1)f1(x− ζ2)f2 .

So,

B(x4)
B(x)

=
(x4 − ζ1)f1(x4 − ζ2)f2

(x− ζ1)f1(x− ζ2)f2
.
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From what we have seen, B(x4) has exactly 8 distinct roots and two of them
are ζ1 and ζ2. Thus, B(x4)/B(x) has exactly 6 distinct roots showing that
(x2 − γx − 1)(x4 − γx2 − 1) has only distinct roots. Now x4 − ζ1 has four
distinct roots, two of which might be ζ1 and/or ζ2, but the other two roots
appear with multiplicity precisely f1 in B(x4)/B(x). So, f1 = e2. A similar
argument shows that f2 = e2, so in fact e2 = f1 = f2, and

(x4 − ζ1)(x4 − ζ2)
(x− ζ1)(x− ζ2)

= (x2 − γx− 1)(x4 − γx2 − 1). (19)

To rule out this last possibility, we deal with various cases.

Case 1. ζ4
1 = ζ1 and ζ4

2 = ζ2.
In this case, ζ3

1 = ζ3
2 = 1 and

B(x4)
B(x)

=
(x4 − ζ4

1 )(x4 − ζ4
2 )

(x− ζ1)(x− ζ2)
= (x3 + ζ1x

2 + · · · )(x3 + ζ2x
2 + · · · )

= x6 + (ζ1 + ζ2)x5 + · · · .

Identifying coefficients, we get γ = −(ζ1 + ζ2) = 1 ∈ R, contradiction. Here,
we used that fact that ζ1 and ζ2 are the two complex roots of unity of order
3.

Case 2. ζ4
1 = ζ2 and ζ4

2 = ζ1.
In this case, ζ16

1 = (ζ4
1 )4 = ζ4

2 = ζ1, so ζ15
1 = 1 and a similar argument

shows that ζ15
2 = 1. So,

B(x4)
B(x)

=
(x4 − ζ16

1 )(x4 − ζ16
2 )

(x− ζ4
1 )(x− ζ4

2 )
= (x3 + ζ4

1x2 + · · · )(x3 + ζ4
2x2 + · · · )

= x6 + (ζ1 + ζ2)x5 + · · ·

Identifying coefficients, we get γ = −(ζ1 + ζ2). Writing ζ1 = e2πiu1/15,
ζ2 = e2πiu2/15, we get that the real part of γ is

−(cos(2πu1/15)+cos(2πu2/15)) = −2 cos(π(u1−u2)/15) cos(π(u1+u2)/15).

This is never zero for any choices of u1 and u2 in {1, . . . , 15}, contradicting
Lemma 7.
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Case 3. ζ4
1 = ζ1 and ζ4

2 = ζ1.
In this case, ζ3

1 = 1 and ζ2 ∈ {−ζ1, iζ1, − iζ1}. Rewriting our formula
(19) as

(x4 − ζ1)(x4 − ζ2) = (x− ζ1)(x− ζ2)(x2 − γx− 1)(x4 − γx2 − 1),

and identifying the coefficient of x7 we get

γ = −(ζ1 + ζ2) ∈ {0,−(1 + i)ζ1, − (1− i)ζ1}.

The case γ = 0 is not convenient and the remaining cases yield values for γ

whose real part is nonzero, contradicting Lemma 7. ¤
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