Splitting mixed groups of torsion-free finite rank II

Takashi OKUYAMA

(Received May 25, 2010; Revised July 2, 2013)

Abstract. First we introduce the concept of QD-hulls in arbitrary abelian groups. Then we use the concept to give a new characterization of purifiable torsion-free finite rank subgroups of an arbitrary abelian group. Finally we use it to formulate a splitting criterion for mixed groups of torsion-free finite rank.

Key words: Splitting mixed group, QD-hull, purifiable subgroup, vertical subgroup, N-high subgroup, n-th p-overhang.

1. Introduction

It is well-known that there are three main classes of abelian groups: torsion, torsion-free and mixed. Here we study mixed abelian groups of torsion-free finite rank. The basic problem for mixed groups is the splitting problem, i.e., if the maximal torsion subgroup is a direct summand or not. This problem together with lots of variations is an unsettled issue.

In 1917, Levi constructed non-splitting abelian groups, and later Baer partially solved the splitting problem. Numerous authors studied many variations of the splitting problem. Stratton solved the splitting problem for mixed groups of torsion-free rank 1, cf. [6]. Moreover, he studied the splitting problem for torsion-free finite rank modules over discrete valuation rings, cf. [7]. Using the concept of purifiable subgroups, Okuyama presented a splitting criterion for groups of torsion-free rank 1, cf. [3], and later for groups of torsion-free finite rank, cf. [5]. However, those techniques did not apply to countable rank.

Here we first introduce the concept of QD-hulls in abelian groups and use it to develop a new characterization of purifiable torsion-free finite rank subgroups of an abelian group and obtain a splitting criterion for mixed abelian groups of torsion-free finite rank. This improved technique might apply to countable rank to lead to a splitting criterion.

The terminology and notation here, unless explicitly stated, follow Fuchs [1]. Throughout this article, **P** denotes the set of primes, **Z** the ring of

²⁰⁰⁰ Mathematics Subject Classification: 20K21, 20K27.

integers and p a prime.

2. Preliminaries

We recall definitions and properties mentioned in [2] and [4]. We frequently use them in this article. First we recall N-high subgroups.

Definition 2.1 Let N be a subgroup of a group G. Then a subgroup A of G is said to be N-high in G if A is maximal with respect to $A \cap N = 0$.

The existence of N-high subgroups is guaranteed by Zorn's lemma.

Definition 2.2 A subgroup A of a group G is said to be **p-neat** in G if $A \cap pG = pA$. If A is **p-neat** in G for every $p \in \mathbf{P}$, then A is called **neat** in G.

Proposition 2.3 Let N be a subgroup of a group G. Then a subgroup A of G is N-high in G if and only if

- (1) $A \cap N = 0$,
- (2) A is neat in G,
- (3) $G[p] = A[p] \oplus N[p]$ for every $p \in \mathbf{P}$, and
- (4) $G/(A \oplus N)$ is torsion.

For a proof, see [4, Proposition 2.2].

Corollary 2.4 A torsion-free subgroup A of a group G is T(G)-high in G if and only if

- (1) A is neat in G and
- (2) G/A is torsion.

Proposition 2.5 Let G be a group. If a T(G)-high subgroup H of G is pure in G, then G is splitting.

Proof. Let H be T(G)-high and pure. Then $H \oplus T(G) \subseteq G$. Let $x \in G$. Since $G/(H \oplus T(G))$ is a torsion group by Proposition 2.3(4), there exists $(0 \le)$ $n \in \mathbb{Z}$ such that $nx \in H \oplus T(G)$. Without loss of generality $nx \in H$ because T is torsion. By purity, there is $y \in H$ such that nx = ny. This means that $x - y \in T(G)$ and hence $x \in H + T(G)$. We have $G = H \oplus T(G)$.

Next we recall almost-dense subgroups.

Definition 2.6 A subgroup A of a group G is said to be p-almost-dense in G if, for every p-pure subgroup K of G containing A, the torsion part of G/K is p-divisible. Moreover, A is said to be almost dense in G if A is p-almost-dense in G for every $p \in \mathbf{P}$.

Proposition 2.7 ([2, Proposition 1.3, Proposition 1.4]) The following are equivalent:

- (1) A is p-almost-dense [almost dense] in a group G;
- (2) for all $(0 \le)$ $n \in \mathbf{Z}$ [and all $p \in \mathbf{P}$],

$$p^nG[p] \subseteq A + p^{n+1}G.$$

Next we recall n-th p-overhang.

Definition 2.8 Let G be a group and A a subgroup of G. For all $(0 \le)$ $n \in \mathbb{Z}$, we define the n-th p-overhang of A in G to be the vector space

$$V_{p,n}(G,A) = \frac{(A + p^{n+1}G) \cap p^n G[p]}{(A \cap p^n G)[p] + p^{n+1}G[p]}.$$

The subgroup A is said to be **p-vertical** in G if $V_{p,n}(G,A) = 0$ for all $(0 \le)$ $n \in \mathbb{Z}$. The subgroup A is said to be **vertical** in G if A is p-vertical in G for all $p \in \mathbb{P}$.

It is convenient to use the following notations for the numerator and the denominator of $V_{p,n}(G,A)$:

$$A_G^n(p) = (A + p^{n+1}G) \cap p^n G[p] = ((A \cap p^n G) + p^{n+1}G)[p]$$

$$A_n^G(p) = (A \cap p^n G)[p] + p^{n+1}G[p].$$

We immediately obtain the following properties.

Proposition 2.9 Let G and A be as in Definition 2.8. Then the following hold:

(1) for any $x \in A_G^n(p) \setminus A_n^G(p)$, we have

$$h_p(x) = n;$$

(2) if
$$x \in A_G^n(p)$$
, then $h_p^{G/A}(x+A) > n$;

- (3) if A is p-almost-dense in G, then $A + p^{n+1}G \supseteq p^nG[p]$, so $A_G^n(p) = p^nG[p]$;
- (4) if A is torsion-free, then $A_n^G(p) = p^{n+1}G[p]$;
- (5) if A is torsion-free and p-almost-dense in G, then

$$V_{p,n}(G,A) = \frac{p^n G[p]}{p^{n+1} G[p]};$$

hence dim $V_{p,n}(G,A)$ is the nth Ulm-Kaplansky invariant of G_p ;

- (6) if $G_p = 0$, then A is p-vertical in G.
- (7) [2, Lemma 4.1(1)] $V_{p,m+n}(G,A) = V_{p,n}(p^mG,A \cap p^mG)$ for all $n, m \ge 0$.

Proposition 2.10 ([2, Proposition 2.2]) Let G be a group and A a subgroup of G. For p-pure subgroup K of G containing A,

$$V_{p,n}(G,A) \cong V_{p,n}(K,A)$$

for all $(0 \le)$ $n \in \mathbf{Z}$.

We present a useful property for verticality.

Proposition 2.11 ([2, Proposition 2.7]) Let G be a group and A a subgroup of G. Then the following properties are equivalent:

- (1) A is p-vertical in G;
- (2) $(A + p^n G)[p] = A[p] + p^n G[p]$ for all $(0 \le)$ $n \in \mathbb{Z}$.

Next we recall purifiable subgroups.

Definition 2.12 Let G be a group. A subgroup A of G is said to be p-purifiable[purifiable] in G if, among the p-pure[pure] subgroups of G containing A, there exists a minimal one. Such a minimal p-pure[pure] subgroup is called a p-pure[pure] hull of A.

We give a relationship between p-purifiability and purifiability.

Proposition 2.13 ([2, Theorem 1.12]) Let G be a group and A a subgroup of G. Then A is purifiable in G if and only if, for all $p \in \mathbf{P}$, A is p-purifiable in G.

Proposition 2.10 leads to the following intrinsic necessary condition for p-purifiability.

Proposition 2.14 ([2, Proposition 2.3]) If a subgroup of a group G is p-purifiable in G, then there exists $(0 \le)$ $m \in \mathbb{Z}$ such that $V_{p,n}(G,A) = 0$ for all $n \ge m$.

Proposition 2.14 and Proposition 2.13 led to the following property.

Proposition 2.15 ([2, Proposition 2.3]) If a subgroup of a group G is purifiable in G, then, for every $p \in \mathbf{P}$, there exists $(0 \le)$ $m_p \in \mathbf{Z}$ such that $V_{p,n}(G,A) = 0$ for all $n \ge m_p$.

Proposition 2.16 ([2, Theorem 4.1]) Let G be a group and A a subgroup of G. Then the following hold.

- (1) If A is p-purifiable in G, then $A \cap p^nG$ is p-purifiable in p^nG for all $(0 \le) n \in \mathbf{Z}$.
- (2) If $A \cap p^m G$ is p-purifiable in $p^m G$ for some $(0 \le)$ $m \in \mathbf{Z}$, then A is p-purifiable in G.

We recall structures of p-pure hulls and pure-hulls.

Proposition 2.17 ([2, Theorem 1.8, Theorem 1.11]) Let G be a group and A a subgroup of G. Let H be a p-pure [pure] subgroup of G containing A. Then H is a p-pure [pure] hull of A in G if and only if the following three conditions are satisfied;

- (1) for all $(0 \le)$ $n \in \mathbf{Z}$ [and all $p \in \mathbf{P}$], $p^n H[p] \subseteq A + p^{n+1} H$;
- (2) H/A is p-primary [torsion];
- (3) [for every $p \in \mathbf{P}$], there exists $(0 \le) m_p \in \mathbf{Z}$ such that $p^{m_p}H[p] \subseteq A$.

For p-purifiable [purifiable] torsion-free subgroup, we have the following.

Proposition 2.18 ([5, Corollary 2.12]) Let G be a group and A a subgroup of G. Suppose that A is p-purifiable [purifiable] torsion-free in G. Let H be a p-pure [pure] hull of A in G. Then the following are equivalent:

- (1) A is p-vertical[vertical] in G;
- (2) H is torsion-free.

Proposition 2.19 ([5, Proposition 3.2]) Let G be a group and A a subgroup of G. For every $p \in \mathbf{P}$, let $G^{(p)}/A = (G/A)_p$. Then the following hold.

(1) $G^{(p)}$ is p-pure in G.

(2) Suppose that A is p-purifiable torsion-free in G. Let H be a p-pure hull of A in G. Then $G^{(p)} = H \oplus K$ where K is a subgroup of $G^{(p)}$.

Proposition 2.20 ([5, Lemma 3.5]) Let F be a torsion-free group and B a sugroup of F. Suppose that F/B is a p-group. Then $\dim(F/B)[p] \leq rk(F)$.

3. QD hulls

Let G be a group, A a torsion-free subgroup of G and E/A the maximal divisible subgroup of T(G/A). Let D/A be a $(T(E) \oplus A)/A$ -high subgroup of E/A. Then D/A is torsion divisible and D is torsion-free. Such a subgroup D is called a \mathbf{QD} hull of \mathbf{A} in \mathbf{G} . For $p \in \mathbf{P}$, let $E^{(p)}/A = (E/A)_p$. Let $C^{(p)}/A$ be a $(T(E^{(p)}) \oplus A)/A$ -high subgroup of $E^{(p)}/A$. Then $C^{(p)}/A$ is a divisible p-group and $C^{(p)}$ is torsion-free. Such a subgroup $C^{(p)}$ is called a p- \mathbf{QD} hull of \mathbf{A} in \mathbf{G} .

From definitions and Proposition 2.3, the following hold.

Proposition 3.1 Let G be a group and A a torsion-free subgroup of G. Then the following hold.

- (1) Let D be a QD hull of A in G. Then D is a maximal torsion-free subgroup of G containing A such that D/A is torsion divisible. Further, for every $p \in \mathbf{P}$, let $D^{(p)}/A = (D/A)_p$. Then $D^{(p)}$ is a p-QD hull of A in G for all $p \in \mathbf{P}$.
- (2) For every $p \in \mathbf{P}$, let $C^{(p)}$ be a p-QD hull of A in G. Then $C^{(p)}$ is a maximal torsion-free subgroup of G containing A such that $C^{(p)}/A$ is a divisible p-group. Further, $\sum_{p \in \mathbf{P}} C^{(p)}$ is a QD hull of A in G.

Now we mention about p-QD hulls of p-vertical subgroups.

Lemma 3.2 Let G be a group, A a torsion-free subgroup of G and E/A the maximal divisible subgroup of T(G/A). Then the following hold.

- (1) If A is p-vertical in G, then E is p-vertical in G. Hence all p-QD hulls of A and all QD-hulls of A in G are p-vertical in G. Moreover, $E[p] \subseteq p^{\omega}G[p]$.
- (2) If A is vertical in G, then E is vertical in G. Hence all p-QD hulls of A and all QD-hulls of A in G are vertical in G.

Proof. (1) Suppose that A is p-vertical in G. By Proposition 2.11, we have

 $(A + p^n G)[p] = p^n G[p]$ for every $(0 \le)$ $n \in \mathbb{Z}$. Let $x \in (E + p^n G)[p]$. Then we can write $x = d + p^n g$ for some $d \in E$ and $g \in G$. Since E/A is divisible, there exist $d' \in E$ and $a \in A$ such that $d = p^n d' + a$ and so

$$x = a + p^n(d' + g) \in (A + p^n G)[p] = p^n G[p].$$

Hence E is p-vertical in G. Let E' be a subgroup of E. Then

$$(E' + p^n G)[p] \subseteq (E + p^n G)[p] = p^n G[p].$$

Hence E' is p-vertical in G. Let $y \in E[p]$. For every $(0 \le)$ $n \in \mathbb{Z}$, there exist $a_n \in A$ and $d_n \in E$ such that $y = a_n + p^n d_n$. Since A is p-vertical in G, we have

$$y = a_n + p^n d_n \in (A + p^n G)[p] = p^n G[p].$$

Hence $y \in p^{\omega}G[p]$. (2) By Definition 2.8 and (1), it is obvious.

Next we mention about purifiability of p-QD hulls.

Lemma 3.3 Let G be a group, A a p-vertical torsion-free subgroup of G and D a p-QD hull of A in G. If D is p-purifible in G, then A is p-purifiable in G.

Proof. Let K be a p-pure hull of D in G. By Lemma 3.2, D is p-vertical in G. Hence, by Proposition 2.18, K is torsion-free. Hence A is p-purifiable in G, because all subgroups are purifiable in torsion-free groups. \square

Lemma 3.4 Let G be a group and A a p-vertical torsion-free subgroup of G. If A is p-purifiable in G, then all p-QD hulls of A in G are p-purifiable in G.

Proof. Let $G^{(p)}/A = (G/A)_p$, E/A the maximal divisible subgroup of $G^{(p)}/A$ and D a p-QD hull of A in G. Then there exists a divisible subgroup D'/A of E/A such that

$$E/A = D/A \oplus D'/A,$$
 $(D'/A)[p] = ((T(E) \oplus A)/A)[p] = (E[p] \oplus A)/A.$ (3.5)

Suppose that A is p-purifiable in G and let H be a p-pure hull of A in

G. Since A is p-vertical in G, H is torsion-free by Proposition 2.18. By Proposition 2.19(2), we have

$$G^{(p)} = H \oplus G_p.$$

Let D_1/A be the maximal divisible subgroup of H/A. Then we have

$$H/A = D_1/A \oplus H_1/A$$
, $H_1/A < H/A$

and

$$G^{(p)}/A = D_1/A \oplus H_1/A \oplus (G_p \oplus A)/A. \tag{3.6}$$

We will prove that

$$G^{(p)}/A = D/A \oplus H_1/A \oplus (G_n \oplus A)/A.$$

Since H_1/A is a reduced p-group, we have

$$D/A \cap (H_1/A \oplus (G_p \oplus A)/A) = 0. \tag{3.7}$$

Let $\overline{x} \in (G^{(p)}/A)[p]$. By (3.6), we can write

$$\overline{x} = \overline{d_1} + \overline{h_1} + \overline{g_0},$$

$$\overline{d_1} \in (D_1/A)[p], \quad \overline{h_1} \in (H_1/A)[p], \quad \overline{g_0} \in (G[p] \oplus A)/A.$$

By (3), we have $\overline{d_1} = \overline{d} + \overline{d'}$ for some $\overline{d} \in (D/A)[p], \overline{d'} \in (E[p] \oplus A)/A$. It follows that

$$\overline{x} = \overline{d} + \overline{h_1} + \overline{d'} + \overline{g_0},$$

$$\overline{d} \in (D/A)[p], \quad \overline{h_1} \in (H_1/A)[p], \quad \overline{d'} + \overline{g_0} \in (G[p] \oplus A)/A.$$

Hence we have

$$(G^{(p)}/A)[p] = (D/A)[p] \oplus (H_1/A)[p] \oplus (G[p] \oplus A)/A.$$
 (3.8)

By (3.6),

$$H_1/A \oplus (G_p \oplus A)/A$$
 is pure in $G^{(p)}/A$. (3.9)

By (3.7), (3.8), (3.9), and Proposition 2.3, $(H_1/A) \oplus (G_p \oplus A)/A$ is D/A-high in $G^{(p)}/A$. Since D/A is divisible, we have

$$G^{(p)}/A = D/A \oplus H_1/A \oplus (G_p \oplus A)/A.$$

Hence we also have

$$G^{(p)} = (D + H_1) \oplus G_p.$$

Note that $G^{(p)}$ is p-pure in G by Proposition 2.19(1). Then, by Proposition 2.17, the subgroup $D + H_1$ is a p-pure hull of D in G.

Proposition 3.10 Let G be a group and A a vertical torsion-free subgroup of G. Then the following hold.

- (1) If there exists a QD hull of A in G that is purifiable in G, then A is purifiable in G.
- (2) If A is purifiable in G, then all QD hulls of A in G are purifiable in G.

Proof. (1) Let D be a QD hull of A in G and suppose that D is purifiable in G. Let L be a pure hull of D in G. Then, by Lemma 3.2(2) and Proposition 2.18, L is torsion-free. Hence A is purifiable in G, because all subgroups are purifiable in torsion-free groups.

(2) Suppose that A is purifiable in G and let D be a QD hull of A in G. By Lemma 3.2, D is vertical in G. For every $p \in \mathbf{P}$, let $D^{(p)}/A = (D/A)_p$. By Proposition 3.1, $D^{(p)}$ is a p-QD hull of A in G and by Proposition 2.13, A is p-purifiable in G. By Lemma 3.4, $D^{(p)}$ is p-purifiable in G. Let $H^{(p)}$ be a p-pure hull of $D^{(p)}$ in G. Then, by Proposition 2.18, $H^{(p)}$ is torsion-free. Let $p^n g \in H^{(p)} + D$. Then we have $p^n g = h + d$ for some $h \in H^{(p)}$ and $d \in \sum_{p \neq q \in \mathbf{P}} D^{(q)}$. Since $(\sum_{p \neq q \in \mathbf{P}} D^{(q)})/A$ is p-divisible, we have $d = p^n d' + a$ for some $d' \in \sum_{p \neq q \in \mathbf{P}} D^{(q)}$ and $a \in A$. Thus

$$p^n g - p^n d' = h + a \in H^{(p)} \cap p^n G = p^n H^{(p)}.$$

Hence $p^n g \in p^n(H^{(p)} + D)$ and so $H^{(p)} + D$ is *p*-pure in G. It is obvious that $H^{(p)} + D$ is torsion-free. Since $(H^{(p)} + D)/D$ is a *p*-group, $H^{(p)} + D$ is a *p*-pure hull of D in G by Proposition 2.17. Hence D is *p*-purifiable in G

for all $p \in \mathbf{P}$ and by Proposition 2.13, D is purifiable in G.

4. Splitting groups of torsion-free finite rank

Definition 4.1 Let G be a group and A a subgroup of G. A is said to be **eventually p-pure** in G if there exists a nonnegative integer m such that $A \cap p^mG$ is p-pure in p^mG .

Lemma 4.2 Let G be a group and A a torsion-free finite rank subgroup of G. Suppose that A is p-vertical in G. Then A is p-purifiable in G if and only if all p-QD hulls of A in G are eventually p-pure in G.

Proof. Let D be any p-QD hull of A in G. By Lemma 3.2, D is p-vertical in G. By Lemma 3.3 and Lemma 3.4, it suffices to prove that D is p-purifiable in G if and only if D is eventually p-pure in G. Suppose that D is p-purifiable in G. Let H be a p-pure hull of D in G. Then, by Proposition 2.18, H is torsion-free. Let $G^{(p)}/A = (G/A)_p$, Then, by Proposition 2.19(2), we have

$$G^{(p)} = H \oplus G_p.$$

Since H/D is a reduced p-group and D is of finite rank, H/D is finite by Proposition 2.20. Let $p^m(H/D) = 0$. Then $D \cap p^mG = p^mH$ is p-pure in p^mG and so D is eventually p-pure in G. Conversely, suppose that D is eventually p-pure in G. By Definition 4.1 and Proposition 2.16(2), D is p-purifiable in G.

We use Lemma 4.2 to characterize torsion-free finite rank subgroups to be p-purifiable in a given group.

Theorem 4.3 Let G be a group and A a torsion-free finite rank subgroup of G. Then A is p-purifiable in G if and only if there exists $(0 \le)$ $m \in \mathbf{Z}$ satisfying the following two conditions.

- (1) $V_{p,n}(G,A) = 0$ for all $n \ge m$.
- (2) All p-QD hulls of $A \cap p^mG$ in p^mG are eventually p-pure in p^mG .

Proof. Suppose that A is p-purifiable in G. By Proposition 2.14, there exists $(0 \le)$ $m \in \mathbb{Z}$ such that $V_{p,n}(G,A) = 0$ for all $n \ge m$. Then $A \cap p^m G$ is p-vertical in $p^m G$ and by Proposition 2.16(1), $A \cap p^m G$ is p-purifiable in $p^m G$. Hence, by Lemma 4.2, all p-QD hulls of $A \cap p^m G$ in $p^m G$ are eventually p-pure in $p^m G$. Conversely, the two conditions are satisfied. By

(1), $A \cap p^m G$ is p-vertical in $p^m G$ and by (2) and Lemma 4.2, $A \cap p^m G$ is p-purifiable in $p^m G$. Hence, by Proposition 2.16(2), A is p-purifiable in G.

By Proposition 2.13 and Proposition 2.15, we obtain the following.

Corollary 4.4 Let G be a group and A a torsion-free finite rank subgroup of G. Then A is purifiable in G if and only if, for every $p \in \mathbf{P}$, there exists $(0 \le) m_p \in \mathbf{Z}$ satisfying the following two conditions.

- (1) $V_{p,n}(G,A) = 0 \text{ for all } n \ge m_p$.
- (2) All p-QD hulls of $A \cap p^{m_p}G$ in $p^{m_p}G$ are eventually p-pure in $p^{m_p}G$.

Next we consider splitting mixed groups of torsion-free finite rank. First we give a useful lemma.

Lemma 4.5 Let G be a group and A a subgroup of G. Suppose that D is a subgroup of G containing A such that D/A is torsion. Let $D^{(p)}/A = (D/A)_p$. Then D is eventually p-pure in G if and only if $D^{(p)}$ is eventually p-pure in G.

Proof. Suppose that D is eventually p-pure in G. Then, by Definition 4.1, there exists $(0 \le) m \in \mathbf{Z}$ such that $D \cap p^m G$ is p-pure in $p^m G$. We will prove that $D^{(p)} \cap p^m G$ is p-pure in $p^m G$. Let $x \in D^{(p)} \cap p^{m+n} G$ for some $(0 \le) n \in \mathbf{Z}$. Since $D^{(p)} \cap p^{m+n} G \subseteq D \cap p^{m+n} G = p^n (D \cap p^m G)$, we can write $x = p^n d$ for some $d \in D \cap p^m G$. Then we have $d = d_1 + d_2$ for some $d_1 \in D^{(p)}$ and $d_2 \in \sum_{p \ne q \in \mathbf{P}} D^{(q)}$. Since $p^n d_2 = p^n d - p^n d_1 \in D^{(p)} \cap \sum_{p \ne q \in \mathbf{P}} D^{(q)} = A$ and $(\sum_{p \ne q \in \mathbf{P}} D^{(q)} / A)_p = 0$, we have $d_2 \in A$ and so $d \in D^{(p)} \cap p^m G$. Conversely, suppose that $D^{(p)}$ is eventually p-pure in G. There exists $(0 \le) t \in \mathbf{Z}$ such that $D^{(p)} \cap p^t G$ is p-pure in $p^t G$. Let $p^{t+n} g \in D$, $g \in G$ for some $(0 \le n) \in \mathbf{Z}$. Then we have $p^{t+n} g = g_1 + g_2$ for some $g_1 \in p^{(p)}$ and $g_2 \in \sum_{p \ne q \in \mathbf{P}} D^{(q)}$. Since $(\sum_{p \ne q \in \mathbf{P}} D^{(q)}) / A$ is p-divisible, we can write $g_2 = p^{t+n} g'_2 + a$ for some $g' \in \sum_{p \ne q \in \mathbf{P}} D^{(q)}$ and $a \in A$. Then we have $p^{t+n} (g - g'_2) = g_1 + a \in D^{(p)} \cap p^{t+n} G = p^n (D^{(p)} \cap p^t G)$ and so $p^{t+n} g = p^n (g'_1 + p^t g'_2)$ for some $g'_1 \in D^{(p)} \cap p^t G$. Since $g'_1 + p^t g'_2 \in D \cap p^t G$, it follows that $p^{t+n} g \in p^n (D \cap p^t G)$.

We characterize vertical torsion-free finite rank subgroups to be purifiable in a given group.

Corollary 4.6 Let G be a group and A a torsion-free finite rank subgroup of G. Suppose that A is vertical in G. Then A is purifiable in G if and only if all QD hulls of A in G are eventually p-pure in G for every $p \in \mathbf{P}$.

Proof. Suppose that A is purifiable in G. Let D be any QD hull of A in G and $D^{(p)}/A = (D/A)_p$ for every $p \in \mathbf{P}$. By Proposition 3.1, $D^{(p)}$ is a p-QD hull of A in G. Since A is p-purifiable in G for all $p \in \mathbf{P}$ by Proposition 2.13, $D^{(p)}$ is eventually p-pure in G by Lemma 4.2. Then, by Lemma 4.5, D is eventually p-pure in G for all $p \in \mathbf{P}$. Conversely, suppose that all QD hulls D' of A in G are eventually p-pure in G for all $p \in \mathbf{P}$. Then, by Proposition 2.16(2), D' is p-purifiable in G for all $p \in \mathbf{P}$ and by Proposition 2.13, D' is purifiable in G. Hence, by Proposition 3.10, A is purifiable in G.

We need to recall definition of full free subgroups.

Definition 4.7 Let G be a group. A subgroup A of G is said to be *full free* in G if A is free and G/A is torsion.

Now we give an improved characterization of splitting mixed groups of torsion-free finite rank.

Corollary 4.8 Let G be a mixed group of torsion-free finite rank. Then G is splitting if and only if there exists a full free subgroup A of G satisfying the following two conditions.

- (1) A is vertical in G.
- (2) All QD hulls of A in G are eventually p-pure in G for all $p \in \mathbf{P}$.

Proof. Suppose that G is splitting. Then we have $G = T(G) \oplus F$ for some torsion-free subgroup F of G. Let A be a full free subgroup of F. Then, by Proposition 2.17, F is a pure hull of A in G and by Proposition 2.18, A is vertical in G. Further, since A is purifiable in G, (2) is satisfied by Corollary 4.6. Conversely, suppose that there exists a full free subgroup A of G satisfying the two conditions. By Corollary 4.6, A is purifiable in G. Let G be a pure hull of G in G. By (1) and Proposition 2.18, G is torsion-free and by Corollary 2.4, G is a G is a G is purifiable in G. Let G is a pure hull of G is a G is a pure hull of G. By (1) and Proposition 2.18, G is torsion-free and by Corollary 2.4, G is a G is a pure hull of G. Therefore, by Proposition 2.5, G is a G is a pure hull of G. Therefore, by Proposition 2.5, G is a pure hull of G is a pure hull of G. Therefore, by Proposition 2.5, G is a pure hull of G is a pure hull of G. Therefore, by Proposition 2.5, G is a pure hull of G in G is a pure hull of G is a pure hull of G in G is a pure hull of G in G is a pure hull of G in G is a pure hull of G is a pure hull of G is a pure hull of G in G is a pure hull of G is a pure hull of G is a pure hull of G i

Remark 4.9 Let G be a group with $p^{\omega}G[p] = 0$ and A a p-vertical torsion-free subgroup of G. Let $G^{(p)}/A = (G/A)_p$ and E/A the maximal divisible

subgroup of $T(G^{(p)}/A)$. By Lemma 3.2, E is torsion-free. Hence E is the unique p-QD-hull of A in G.

By Corollary 4.8 and Remark 4.9, we obtain the following result about splitting mixed groups whose maximal torsion subgroup are separable.

Corollary 4.10 Let G be a mixed group of torsion-free finite rank whose maximal torsion subgroup is separable. Then G is splitting if and only if there exists a full free subgroup A of G satisfying the following two conditions.

- (1) A is vertical in G.
- (2) Let D/A the maximal divisible subgroup of T(G/A). Then D is eventually p-pure in G for all $p \in \mathbf{P}$.

References

- [1] Fuchs L., Infinite Abelian Groups, Vol. I, II. Academic Press, 1970 and 1973.
- [2] Okuyama T., On Purifiable Subgroups in Arbitrary Abelian Groups. Comm. Algebra, **28(1)** (2000), 121–139.
- [3] Okuyama T., On purifiable torsion-free rank-one subgroups. Hokkaido Math. J., **30(2)** (2001), 373–404.
- Okuyama T., T-high subgroups of abelian groups of torsion-free rank 1.
 Com. Algebra, 30(12) (2002), 5941-5953.
- [5] Okuyama T., Splitting mixed groups of torsion-free finite rank. Com. Algebra, **32(4)** (2004), 1587–1601.
- [6] Stratton A. E., On the splitting of rank one abelian groups. J. Algebra, 19(2) (1970), 254–260.
- [7] Stratton A. E., A splitting theorem for mixed abelian groups. Istituto Mazionale di Mathematica Symposia Mathematica, 13 (1974), 109–125.

1-8-10-403, Futaba-cho Yamagata-shi, 990-0828, Japan E-mail: eln1sh@violet.plala.or.jp