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\S 1. Introduction and results

Let R_{+}^{n+1} be the open half space \{x=(x’, x_{n});x’=(x_{0}, x_{1}, \cdots, x_{n-1})\in R^{n},
x_{n}>0\} . We shall consider the boundary value problem (P, B_{f}) in R_{+}^{n+1} :

|P(x, D)u=f in R_{+}^{n+1}
,\cdot

’\downarrow B_{f}(x’, D)u=f_{f} on R^{n}, j=1, \cdots , l ,

where D=(D_{0}, D_{1}, \cdots, D_{n-1}, D_{n}) , D_{k}= \frac{1}{i}\frac{\partial}{\partial x_{k}} , P(x, D) is a strictly x_{0}-hyper-

bolic operator of order m and B_{f}(x’, D) is a boundary operator of order m_{f} .
Throughout this paper coefficients of differential operators are assumed to
be C^{\infty}-functions and constant outside a compact set of R^{n+1} . Furthermore
suppose that leading coefficients of P and B_{f} with respect to D_{n} are equal
to 1 and m_{1}<\cdots<m_{l}<m .

DEFINITION 1. The boundary value problem (P, B_{f}) with homogeneous
boundary conditions is said to be L^{2}-well posed if and only if there exist
positive constants \gamma_{0} , C_{0} such that for any \gamma\geqq\gamma_{0} and for any f\in H_{0,0;,\gamma} , the
problem has a unique solution u\in H_{m,-1;\gamma} which satisfifies

(1. 1) ||u||_{m,-1;\gamma} \leqq\frac{C_{0}}{\gamma}||f||_{0,0;\gamma} .

For notations see \S 2.
This definition was posed in a different form by R. Agemi and T. Shirota

in researches [2] for hyperbolic mixed problems with vanishing initial data
in the quadrant \{x=(x_{0}, x_{1}, \cdots, x_{n-1}, x_{n});x_{0}>0, x_{n}>0\} . But they are equiva-
lent to each other when P and B_{f} are homogeneous and of constant coeffi-
cients.

In this paper we study on L^{2}-well posedness of the dual problems and
on the differentiability of solutions of L^{2}-well posed problems. (See Sakamoto
[6], Rauch and Massey III [5] ).

Let P^{*}(x, D) be the formal adjoint of P(x, D). By the assumptions of
P(x, D) and B_{f}(x’, D), j=1, \cdots , l, we see that there exist differential operators
B_{l+1}(x’, D), \cdots , B_{m}(x’, D);B_{1}’(x’, D), \cdots , B_{m}’(x’, D) such that
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(1. 2) (Pu, v) -(u, P^{*}v)= \sum_{j=1}^{m}i\langle B_{f}u, B_{j}’v\rangle,\cdot u, v\in C_{0}^{\infty}(\overline{R_{+}^{n+1}}) ,

m_{f}+r_{f}=m-1 , j=1, \cdots , m, and \{B_{1}, \cdots, B_{m}\} , \{B_{1}’, \cdots, B_{m}’\} are Dirichlet sets,
where (\cdot, \cdot) , \langle \cdot, \cdot\rangle are the inner products of L^{2}(R_{+}^{n+1}), L^{2}(R^{n}) respectively,
and m_{f} , r_{f} are the orders of B_{j} , B_{f}’ respectively (see Schechter [7]). From
now on we mean by B_{f} , j=l+1, \cdots , m;B_{f}’ , j=1, \cdots , m, operators with the
above properties.

Our main results are the following
THEOREM 1. Let the problem (P, B_{j}) with homogeneous boundary con-

ditions be L^{2}-\tau t’ell posed. Then for every integer k, s(k\geqq 0) there exist posi-
tive constants \gamma_{k,s} , C_{k,s} such that for any \gamma\geqq\gamma_{k.s} and for any f\in H_{k,s;\gamma} , f_{f}\in

H_{m-mJ-^{1}Z+k+s;\gamma} , j=1, \cdots , l, the problem (P, B_{f}) has a unique solution u\in H_{m+k,s-1;\gamma}

which satisfifies

(1. 3) ||u||_{m+k,s-1;\gamma} \leqq\frac{C_{k,s}}{\gamma}(||f||_{k,s;\gamma}+\sum_{f=1}^{l}\langle f_{f}\rangle_{m-m_{f}-\frac{1}{2}+k+s;\gamma)} .

THEOREM 2. Let the hypothesis of Theorem 1 be fulfifilled. Then for
every integer k, s(k\geqq 0) there exist positive constants \gamma_{k,s}^{l} , C_{k.s}’ such that for
any \gamma\geqq\gamma_{k,s}’ and for any g\in H_{k,s;-\gamma} , g_{J}\in H_{m}-r_{f^{-}\Sigma^{+k+s;-\gamma}}1 , j=l+1, \cdots , m, the
problem (P^{*}, B_{j}’) :

\int P^{*}v=g in R_{+}^{n+1} ,
|B_{f}’v=g_{f} on R^{n} , j=l+1, \cdots , m

has a unique solution v\in H_{m+k,s-1;-\gamma} which satisfifies
(1. 4) ||v||_{m+k,s-1;-\gamma} \leqq\frac{C_{k.s}’}{\gamma}(||g||_{k,s;-\gamma}+\sum_{f=l+1}^{m}\langle g_{j}\rangle_{m-r_{J^{-\frac{1}{2}+k+s;-\gamma)}}} .

In the above estimates it is important to notice that we can’t replace
- \frac{1}{2} by -1. (See Rauch [4]).

The methods used in the present note are usual, but the necessary and
sufficient condition for L^{2}-well posedness stated in Remark 1) of \S 5 is useful
in further investigations, for example, see Agemi’s forthcoming paper [1].

We can also obtain the similar results for first order systems.
The author would like to thank Professor T. Shirota who suggested

the problem and gave constant encouragement to him.

\S 2. Preliminaries

We shall use some spaces. For real numbers p, q and a positive number
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\gamma, we denote by H_{p,q;\pm\gamma}(R^{n+1}) the spaces of u\in \mathscr{D}’(R^{n+1}) such that e^{T\gamma x_{0}}u\in

H_{p,q}(R^{n+1}), the norms in H,\pm f(q;R^{n+1}) are defined by

||u||^{2}.,q; \pm\gamma=\int_{R^{n+1}}(\gamma^{2}+|\xi|^{2})^{p}(\gamma^{2}+|\xi’|^{2})^{q}|e^{\hat{\mp\gamma x_{0}}}u(\xi)|^{2}ae ,

where \xi, \xi’ are the dual variables of x, x’ respectively, | \xi|^{2}=\sum_{f=0}^{n}\xi_{f}^{2} , |\xi’|^{2}=

\sum_{f=0}^{n-1}\xi_{f}^{2} , and where e^{\hat{\mp\gamma x_{0}}}u(\xi) are the Fourier transformations of e^{\mp\gamma x_{0}}u . Simi-

larly we define H_{q;\pm\gamma}(R^{n}) with the norms

\langle u\rangle_{q;\pm\gamma}^{2}=\int_{R^{n}}(\gamma^{2}+|\xi’|^{2})^{q}|e^{\hat{\mp\gamma x_{0}}}u(\xi’)|^{2}d\xi’

By H_{p,q;\pm\gamma}(R_{+}^{n+1}) we mean the sets of all u\in \mathscr{D}’(R_{+}^{n+1}) respectively such that
there exist distributions U\in H_{p,q;\pm\gamma}(R^{n+1}) with U=u in R_{+}^{n+1} . The norms
of u are defined respectively by

||u||_{p,q;\pm} \nu=\inf_{U}||U||_{p.q;\pm\gamma}1

Finally, we set

[mathring]_{p,q;\pm\gamma}_{H}(\overline{R_{+}^{n+1}})= {u;u\in H_{p,q;\pm\gamma}(R^{n+1}), supp u\subset\overline{R_{+}^{n+1}}}

From now on, for simplicity we denote by H_{q;\pm\gamma} , H_{p,q;\pm\gamma},[mathring]_{H_{p,q;\pm\gamma}.} the spaces
H_{q;\pm\gamma}(R^{n}), H_{p,q;\pm\gamma}(R_{+}^{n+1}), H_{p,q;\pm r}(\overline{R_{+}^{n+1}}) respectively.

The following lemma can be proved in the same way as in Theorem
2. 5. 1 of H\"ormander [3].

LEMMA 2. 1. C_{0}^{\infty}(\overline{R_{+}^{n+1}}) is dense in H_{v,q;\pm\gamma} and C_{0}^{\infty}(R_{+}^{n+1}) is dense in
[mathring]_{p,q;\pm\gamma}_{H} . The spaces H_{p,q;\pm\gamma} and [mathring]_{-p,-q;\mp\gamma}_{H} are dual Hilbert spaces with re-
spect to extensions of the sesquilinear form

\int_{R_{+}^{n+1}}u\overline{l^{\rangle}}dx;u\in C_{0}^{\infty}(\overline{R_{+}^{n+1}})

, v\in C_{0}^{\infty}(R_{+}^{n+1}) .

The following lemma is a variant of Theorem 2. 5. 4 in [3], which can
be proved in the same way as in the proof of the theorem by using
Lemma 2. 1.

LEMMA 2. 2. Let u\in H_{p-1,q+1;\pm\gamma} and D_{n}^{m}u\in H_{p-m,q;\pm\gamma} . Then u\in H_{p,q;\pm\gamma}

and we have
||u||_{p,q,\pm\gamma},\leqq m(||u||_{p-1,q+1;\pm\gamma}+||D_{n}^{m}u||_{p-m,q;\pm\gamma}) .

From Lemma 2. 2 it follows
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COROLLARY 2. 3. Let Q(x, D) be a differential operator of order m
such that the coefficient of D_{n}^{m} is equal to 1. If u\in H-1,q+1;\pm\gamma and Qu\in

H_{p-m,q:\pm\gamma} , thm u\in H_{p,q;\pm\gamma} and we have for \gamma\geqq\gamma_{0}

||u||_{p,q;\pm\gamma}\leqq C(||u||_{p-1.q+1;\pm\gamma}+||Qu||_{p-m,q;\pm\gamma})’.

where C depends on p and q but not on \gamma or u.

\S 3. Proof of Theorem 1

The following lemma can be proved in the same way as in Theorem
2. 5. 7 of [3].

LEMMA 3. 1. Let E_{f}(x’, D), j=0,1 , \cdots , m–1, be boundary operators of
orders j such that the leading coefficients with respect to D_{n} are equal to 1.
Let q be an integer. Then for any \gamma>0 and g_{f}\in H

m-f-_{Z}^{1}+q;\gamma , j=0,1, \cdots , m-1,
there exists a function w\in H_{m,q;r} such that

E_{f}w|_{x_{n}=0}=g_{f} , j=0.1, \cdots , m-1 ,

and

||w||_{m,q;\gamma} \leqq C_{q}\sum_{j=0}^{m-1}\langle g_{f}\rangle_{m-f-\frac{1}{2}+q;\gamma} , \gamma\geqq\gamma_{0} ,

where C_{q} is independent of \gamma and g_{f} .
LEMMA 3. 2. Let the hypothesis of Theorem 1 be fulfifilled. Then there

exists a constant C_{1}>0 such that for any \gamma\geqq\gamma_{0} and any f\in H_{0,0;\gamma} , f_{f}\in

H_{m-m_{f}-_{Z}^{1};r} , j=1, \cdots , l, (P, B_{f}) has a unique solution u\in H_{m,-1;\gamma} which satisfifies

(3. 1) ||u||_{m.-1;\gamma} \leqq\frac{C_{1}}{\gamma}(||f||_{0,0;r}+\sum_{f=1}^{l}\langle f_{f}\rangle_{m-m_{f}-_{Z}^{1};}v) .

PROOF. We can assume that the leading coefficients of B_{f} , j=1, \cdots , m,
with respect to D_{n} are equal to 1. If in Lemma 3. 1 with q=0 we set

E_{m_{f}}=B_{f} , j=1, \cdots , m ,

and

g_{m_{f}}=f_{f} , j=1, \cdots , l ,

=0 , j=l+1, \cdots , m .
then we see that there exists a function w\in H_{m,0;\gamma} such that for \gamma\geqq\gamma_{0}

B_{f}w|_{x_{n}=0}=f_{f} . j=1, \cdots , l ,

and
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(3. 2) ||w||_{m,0;\gamma} \leqq C\sum_{f=1}^{l}\langle f_{j}\rangle_{m-m_{j}-\frac{1}{2};\gamma} .

Since Pw\in H_{0,0,;\gamma} , by the existence of solutions to (P, B_{f}) with homogeneous
boundary conditions and (1. 1) we find that for \gamma\geqq\gamma_{0} there exists a solution
v\in H_{m,-1;\gamma} of the problem

\int Pv=f-Pw in R_{+}^{n+1} ,

|B_{f}v=0 on R^{n}.
, j=1, \cdots , l

which satisfies

(3. 3) ||v||_{m,-1;arrow} \leqq\frac{C_{0}}{\gamma}||f-Pw||_{0,0,;\gamma} .

Set u=v+w. Then u is a solution of (P, B_{f}) . Furthermore from (3. 2) and
(3. 3) we obtain (3. 1) with another constant C_{1} , since

||w||_{m,-1;r} \leqq\frac{1}{\gamma}||w||_{m,0;r} .

The uniqueness follows immediately from the one of solutions to (P, B_{f}) .
The proof is complete.

LEMMA 3. 3. Let the hypothesis of Theorem 1 be fulfifilled. Then for
every integer s there exist positive constants \gamma_{0,s} and C_{0,s} such that for any
\gamma\geqq\gamma_{0,s} and any f\in H_{0,s;\gamma} , f_{f}\in H_{m-m_{f}-_{Z}^{1}+s;\gamma}(P, B_{J}) has a unique solution u\in

H_{m,s-1;\gamma} which satisfifies

(3. 4) ||u||_{m.s-1;\gamma} \leqq\frac{C_{0,s}}{\gamma}(||f||_{0,s;\gamma}+\sum_{f=1}^{l}\langle f_{f}\rangle_{m-m_{j^{-}\Sigma^{+s;\gamma}}}1)

PROOF. For \gamma>0 and u\in C_{0^{n}}(R^{n}) we define \Lambda_{\gamma}u as follows:

(\Lambda_{\gamma}u)(x’)=e^{\gamma x_{0}}\mathscr{F}^{-1}[(\gamma^{\underline{\tau}}+|\xi’|^{2})^{\frac{1}{z}}.\mathscr{F}(e^{-\gamma x_{0}}u)] ,

where \mathscr{F} and \tau \mathscr{F}^{-1} are the Fourier transform and the Fourier inverse trans-
form respectively. Then for real number q

\langle\Lambda_{\gamma}u\rangle_{q-1;\gamma}=\langle u\rangle_{q;\gamma} , u\in C_{0}^{\infty}(R^{n}) .

Therefore \Lambda_{\gamma} is so extended on H_{q;\gamma} that H_{q;\gamma} and H_{q-1;\sim} are isomorphic to
each other. \Lambda_{\gamma} is also regarded as a isomorphism from H_{p,q;f} to H_{p,q-1;\gamma} for
real numbers p and q such that

||\Lambda_{\gamma}u||_{p,q-1;\gamma}=||u||_{p,q;\gamma} , u\in H_{p,q;\gamma} .
Now we set for an integer s
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u=\Lambda^{-s}vvt

Then (P, B_{j}) is equivalent to the problem

( Pv+\Lambda_{\gamma}^{s}(P\Lambda_{\gamma}^{-s}-\Lambda_{\gamma}^{-s}P)v=\Lambda_{\gamma}^{s}f in R_{+}^{n+1}.
,(3. 5) 1 B_{j}v+\Lambda_{\gamma}^{s}(B_{f}\Lambda_{\gamma}^{-s}-\Lambda_{\gamma}^{-s}B_{j})v=\Lambda_{\gamma}^{s}f_{f} on R^{n} , j=1, \cdots , l .

If f\in H_{0,s;\gamma} and f_{j}\in H_{m-m_{j}-\frac{1}{2}+s;\sim} , then \Lambda_{\gamma}^{s}f\in H_{0,0;\gamma} and \Lambda_{\gamma}^{s}f_{j}\in H_{m-m_{f}-_{Z}^{1};r} . There-
fore using Lemma 3. 2 we find by a standard perturbation methord that there
exist positive constants \gamma_{0,s} and C_{0,s} such that for any \gamma\geqq\gamma_{0,s} and any f\in H_{0,s;\gamma} ,
f_{f}\in H_{m-m_{j}-\frac{1}{2}+s;\gamma}(3.5) has a unique solution v\in H_{m,-1;\gamma} satisfying

(3. 6) ||v||_{m,-1;\gamma} \leqq\frac{C_{0,s}}{\gamma}(||\Lambda^{s}\vee f||_{0,0,;}\vee+\sum_{f=1}^{l}\langle\Lambda_{\gamma}^{s}f_{f}\rangle_{m-m_{f}}Z^{;f}1) ,

because that there exist a positive constant C_{\acute{s}} such that for \gamma\geqq\gamma_{0} and v\in H_{n\iota,-1;f}

||\Lambda_{\gamma}^{s}(P\Lambda_{\gamma}^{-s}-\Lambda_{\gamma}^{-s}P)v||_{0,0;\gamma}\leqq C_{s}’||v||_{m,-1;\gamma} ,

\langle\Lambda_{\gamma}^{s}(B_{f}\Lambda_{\gamma}^{-s}-\Lambda_{\gamma}^{-s}B_{j})v\rangle_{m-m_{f}-\frac{1}{2};\gamma}\leqq C_{\acute{s}}||v||_{m,-1;\gamma} .

Since (3. 6) is equivalent to (3. 4), the proof is complete.
PROOF OF THEOREM 1. Let the hypothesis of the theorem be fulfilled.

Since H_{k,s;\gamma}\subset H_{0,k+s;\gamma} and the leading coefficient of P with respect to D_{n} is
equal to 1, the assertion of the theorem follows immediately from Lemma
3. 3 and Corollary 2. 3.

\S 4. Proof of Theorem 2

LEMMA 4. 1 (existence of solutions). Suppose that for every \gamma\geqq\gamma_{0} we
have

(4. 1) ||u||_{m,-1;\gamma} \leqq\frac{C_{1}}{\gamma}(||Pu||_{0,0;\gamma}+\sum_{j=1}^{l}\langle B_{j}u\rangle_{m-m_{j}-\frac{1}{2};\gamma)}, u\in H_{m,0;\gamma} .

Then for every integer s there exists a positive constant \gamma_{s}’ such that for any
\gamma\geqq\gamma_{s}’ and any g\in H_{0,s;-\gamma} , g_{f}\in H_{m-r_{f}-\frac{1}{2}+s;-\gamma} , j=l+1, \cdots , m(P^{*}, B_{f}’) has a
solution v\in H_{m,s-1;-\gamma} .

Proof. Let q be an integer. By (4. 1) we have for u\in H_{m,q;\gamma}

(4. 2) || \Lambda_{\gamma}^{q}u||_{m,-1;\gamma}\leqq\frac{C_{1}}{\gamma}(||P\Lambda_{7}^{q}u||_{0,0;\gamma}+\sum_{j=1}^{l}\langle B_{j}\Lambda_{\gamma}^{q}u\rangle_{m-m_{j}-\frac{1}{2};\gamma)} .

Since ||(P\Lambda_{7}^{q}-\Lambda_{\gamma}^{q}P)u||_{0,0;\gamma} and \langle(B_{j}\Lambda_{\gamma}^{q}-\backslash \Lambda_{\gamma}^{q}B_{j})u\rangle_{m-m_{f}-_{Z}^{1};r} are estimated by \tilde{C}_{q}

||u||_{m,q-:;\gamma}(\gamma\geqq\gamma_{0}), where \tilde{C}_{q} is independent of \gamma and u, it follows from (4. 2)
there exist positive constants \gamma_{q} and C_{q} such that for \gamma\geqq\gamma_{q} we have
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(4. 3) ||u||_{m,q-1;\gamma} \leqq\frac{C_{q}}{\gamma}(||Pu||_{0,q;r}+\sum_{f=1}^{l}\langle B_{J}u\rangle_{m-m_{f}-z^{+q;\gamma)}’}1 u\in H_{m,q;\gamma}\iota

Set

D_{q}= {u;u\in Ff_{m,q;\gamma} , B_{f}u=0 on R^{n} , j=1, \cdots , l}

Then according to (4. 3) D_{q} is a pre-Hilbert space with the norm ||Pu||_{0,q;\gamma} for
\gamma\geqq\gamma_{q} . We denote by \mathscr{F}_{q;\gamma} the completion of D_{q} with respect to ||Pu||_{0,q;\gamma}

and denote by [u, w]_{q;\gamma} the inner product of \mathscr{F}_{q;\gamma} . Notice that \mathscr{A}_{q;\gamma}\subset H_{m,q-1;\gamma}

and

(4. 3)’ ||u||_{m,q-1;\gamma} \leqq\frac{C_{q}}{\gamma}\sqrt\overline{[u,u]_{qj\gamma}}, u\in\sim{?}_{q;\gamma}(

Let g\in H_{0,s;-\gamma} and g_{f}\in H_{m-r_{f}-\frac{1}{2}+s;-\gamma} (s : integer). Furthermore set for u\in

{?}_{-(m+s-1);\gamma}

F(u)=(u, g)+ \sum_{f=l+1}^{m}i\langle B_{f}u, g_{f}\rangle

Then by (4. 3)’ with q=-(m+s-1) , F(u) is continuous in .\mathscr{F}_{-(m+s-1);\gamma} .
Hence we see by Riesz’s theorem that there exists w\in{?}_{-(m+s-1);\gamma} such that
for all u\in.\mathscr{N}_{-(m+s-1);\gamma}

F(u)=[u, w]_{-(m+s-1);\gamma}1

Notice that

[u, w]_{q;\gamma}= \int_{n_{+}^{n+1}}(\gamma 2+|\xi’|^{2})^{\frac{q}{2}}\mathscr{F}[e^{-\gamma x_{0}}Pu]\cdot(\gamma^{2}+|\xi’|^{2})^{\frac{q}{2}}\overline{\mathscr{F}[e^{-\gamma x_{0}}Pw]}ae\prime dx_{n}
.

Set
v=e^{-\gamma x_{0}}\mathscr{F}^{-1}[(\gamma^{2}+|\xi’|^{2})^{-(m+s-1)}\mathscr{F}(e^{-\gamma x_{0}}Pw)]

Then v\in H_{0,m+s-1;-\gamma} and we have for u\in D_{-(m+s-1)}

(4. 4) (Pu, v) =(u, g)+ \sum_{f=l+1}^{m}i\langle B_{f}u, g_{f}\rangle,,

which implies that

(4. 5) P^{*}v=g in \mathscr{D}’(R_{+}^{n+1}) .
Since v\in H_{0,m+s-1;-\gamma} and g\in H_{0,s;-\gamma} , by (4. 5) and Corollary 2. 3 we find that
v\in H_{m,s-1;-\gamma} . Hence using (4. 4), (4. 5) and (1. 2) extended by continuity, we
have for u\in D_{-(m+s-1)}
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(4. 6) \sum_{f=l+1}^{m}\langle B_{f}u, B_{f}’v-g_{f}\rangle=0r

Since by Lemma 3. 1 B_{f}u are arbitrary, we have
B_{f}’v=g_{j} in \mathscr{D}’(R^{n}) , j=l+1, \cdots , m .

Thus the proof is complete, if we set \gamma_{\acute{s}}=\gamma_{-(m+s-1)} .
The following lemma is derived immediately from (1. 2) extended by

continuity.
LEMMA 4. 2 (uniqueness of solutions). Suppose that for any f\in

C_{0}^{\infty}(R_{+}^{n+1})(P, B_{f}) with homogeneous boundary conditions has a solution
u\in H_{m,-(m+s-1);Y} . Thm the solution of (P^{*}, B_{f}’) is unique in H_{m,s-1;-\gamma} .

The following lemma is used to obtain (1. 4).

LEMMA 4. 3 (a priori estimate). Suppose that for any \gamma\geqq\gamma_{0} and any
f\in C_{0}^{\infty}(R_{+}^{n+1})(P, B_{f}) with homogeneous boundary conditions has a solution
u\in H_{m,-1;\gamma} satisfying (1. 1). Thm for every integer s there exist positive con-
stants \gamma_{\acute{s}}’ and C_{\acute{s}}’ such that for any \gamma\geqq\gamma_{\acute{s}}’ we have

(4. 7) ||v||_{m,s-1;-\gamma} \leqq\frac{C_{\acute{s}}’}{\gamma}(||P^{*}v||_{0,s;-\gamma}+\sum_{f=l\dagger 1}^{m}\langle B_{f}’v\rangle_{m-r_{JZ}}-^{1}+s;-\gamma) , v\in H_{m,s;-\gamma} .

PROOF. It follows from the hypothesis that for any \gamma\geqq\gamma_{0} and f\in

C_{0}^{\infty}(R_{+}^{n+1}) there exists a function u\in H_{m,-1;\gamma} which satisfies (1. 1) and

\int Pu=f in R_{+}^{n+1} ,
(4. 8)

|B_{f}u=0 on R^{n} j=1, \cdots , l
Let w\in H_{m,1-m;-\gamma} . Then (4. 8) and (1. 2) imply

(4. 9) (f, w)-(u, P^{*}w)= \sum_{f=l+1}^{m}i\langle B_{f}u, B_{f}’w\rangle

From (4. 9) we have by (1. 1) and the trace inequality

(4. 10) |(f, w)| \leqq||u||_{0,m-1;r}||P^{*}w||_{0,1-m;-\gamma}+C||u||_{m,-1;\gamma}\sum_{f=l+1}^{m}\langle B_{f}’w\rangle_{-r_{J^{+_{Z}^{1};-\gamma}}}

\leqq\frac{C_{0}(1+C)}{\gamma}||f||_{0,0;\gamma}(||P^{*}w||_{0,1-m;-\gamma}+\sum_{f=l+1}^{m}\langle B_{f}’w\rangle_{-r_{JZ}}+^{1};-\gamma) ,

where C is independent of \gamma, f and w. Using the duality in Lemma 2. 1
we obtain from (4. 10)

(4. 11) ||w||_{0,0;-\gamma} \leqq\frac{C_{0}(1+C)}{\gamma}(||P^{*}w||_{0,1-m;-\gamma}+\sum_{f=l+1}^{m}\langle B_{f}’w\rangle_{-r_{f}+\doteqdot;-\gamma)} .

Furthermore from (4.11) and Corollory 2. 3 we have



210 K. Kubota

(4. 12) ||w||_{m,-m;-\gamma} \leqq\frac{C’}{\gamma}(||P^{*}w||_{0,1-m;-\gamma}+\sum_{f=l+1}^{m}\langle B_{f}’w\rangle_{-r_{j}+_{z}^{1};-\gamma)} ,

w\in H_{m,1-m;-\gamma} ,

where C’ is independent of \gamma and w.
Let v\in H_{m,s;-\gamma} and set w=\Lambda_{-\gamma}^{m+s-J}v . Then in the same way as (4. 3) was

derived from (4. 1), from (4. 12) we obtain (4. 7) with constants \gamma_{\acute{s}}’ and C_{\acute{s}}’

independent of \gamma and v.
PROOF OF THEOREM 2. By virtue of Corollary 2.3 it is sufficient to

prove the theorem for k=0. Let the hypothesis of Theorem 1 be fulfilled.
Furthermore let s be an integer. The existence of solutions follows from
Lemmas 3. 2 and 4. 1. The uniqueness of solutions follows from Lemmas
3. 3 and 4. 2.

Now we shall prove (1. 4) with k=0. Set
\gamma_{\acute{0},s}=\max\{\gamma_{s}’, \gamma_{s+1}’, \gamma_{0,-(m+s-2)}, \gamma_{0,-(m+s-1)}, \gamma_{s}’\} ,

where \gamma_{q}’ , \gamma_{0,q} and \gamma_{q}’ are the constants in Lemmas 4. 1, 3. 3 and 4. 3, and
let \gamma\geqq\gamma_{\acute{0},s} . Furthermore let g\in H_{0,s;-i} , g_{j}\in H_{m-r_{f}-\frac{1}{2}+s;-\gamma} , j=l+1, \cdots , m, and

v\in H_{m,s-1;-7} be the unique solution of (P^{*}, B_{j}’) . Then there exist g^{J}.\in H_{0,s+1;-\gamma}

and g_{f}^{\nu}\in H_{m-r_{j^{-}Z^{+s+1;-\gamma}}}1 such that when \nuarrow\infty

g.,arrow g in H_{0,s;-\gamma} ,

g_{j}^{v}-g_{j} in H_{m-r_{f}-_{Z}^{1}+s\cdot-\gamma},\tau

Let v^{v}\in H_{m,s;-\gamma} be the unique solution of the problem

)P^{*}v^{\nu}=g^{\nu} in R_{+}^{n+1}

|B_{f}’v.’=g_{f}^{v} on R^{n} , j=l+1, \cdots , m

Then by Lemma 4. 3 we find a function w\in H_{m,s-1;-\gamma} such that when \nuarrow\infty

v^{\nu}arrow w in H_{m,s-1;-\gamma}

Therefore w is a solution of (P^{*}, B_{f}’) which satisfies (1.4) with k=0 and
C_{0,s}=C_{s}’ The uniqueness of solutions to (P^{*}, B_{f}’) implies that w=v. The
proof is complete.

COROLLARY 4. 4. Let C_{j}’ be a linear operator such that

C_{j}’=. \sum_{k=0}^{r_{j}-1}\Gamma_{fk}D_{n}^{k} ,

where for every real numbcr \nu , \Gamma_{fk} is a bounded operator from H_{7}.J^{-1-k+\nu;-\gamma}

to H_{\nu;-\gamma} whose operator norm has a bound independent of sufficiently large \gamma .
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If we replace B_{j}’ by B_{j}’+C_{j}’ in Theorem 2, then also the assertion of
the theorem is valid.

\S 5. Remarks

1). Suppose that there exist positive constants \gamma_{0} and C_{0} such that for
every \gamma\geqq\gamma_{0}

||u||_{m,-1;\gamma} \leqq\frac{C_{0}}{\gamma}\{ ||Pu||_{0,0;\gamma}+ j-,1 \sum_{-}^{l}\langle B_{j}u\rangle_{m-m_{j}-\frac{1}{2};}.v) , u\in H_{m,0;\gamma}

and

||v||_{m,-1;-\gamma} \leqq\frac{C_{0}}{\gamma}(||P^{*}v||_{0,0-\gamma};+\sum_{f=l+1}^{m}\langle B_{f}’v\rangle_{m-r_{f}-_{Z}^{1};-\gamma)}, v\in H_{m,0;-\gamma}

Then the problem (P, B_{f}) with homogeneous boundary conditions is L^{2}-well
posed.

In fact, by Lemma 4. 1 the latter inequality implies the existence theorem
for (P, B_{f}) and the former one derives (4. 3) from which it follows the unique-
ness theorem.

2). We can also prove Theorem 2 without Lemmas 3. 1, 3. 2 and 3. 3.
Let the hypothesis of Theorem 1 be fulfilled. In the proof of Lemma

4. 1, instead_{1} of D_{q} and (4. 3) we use respectively

D\vdash\{u;u\in C_{0}^{\infty}(\overline{R_{+}^{n+1}}) . B_{f}u=0 on R^{n} , j=1 , \cdots , l\}

and

(1. 1)’ || \iota\iota||_{m,-1;\gamma}\leqq\frac{C_{0}}{\gamma}||Pu||_{0,0;\gamma} , u\in D .

Then (4. 3)’ is valid, if we set q=0 (consequently s=1-m). Furthermore
under (4. 6), instead of Lemma 3. 1 we use the fact that B_{f}u|_{x} - 0 , u\in D,
j=l+1, \cdots , m can become arbitrary C_{0}^{\infty}-functions, because that \{B_{1}, \cdots, B_{m}\}

is a Dirichlet set. (See [7]). Then we see that the assertion of Lemma 4. 1
with s=1-m is valid. The uniqueness of solutions in H_{m,-m;-\gamma} follows from
(4. 7) with s=-m. Thus in the same way as in the proof of Theorem 2
we find by (4. 7) with s=-m and s=-m-1 that the assertion of Theorem
2 with k=0 and s=-m is valid. Therefore we can prove Theorem 2 in
the same way in the proofs of Lemma 3. 3 and Theorem 1.

3). Adding to the hypothesis of Theorem 1, suppose that s\geqq 0 and
f_{--}^{-}f_{j}=0 for x_{0}<0,j=1 , \cdots , l. Then u=0 for x_{0}<0 .

PROOF. Let u_{\gamma}\in H_{m,-1;\gamma} be the unique solution of (P, B_{j}) . By virtue of
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(1. 3) it is sufficient to show that u_{r} is independent of \gamma. We say that u is
a weak solution of (P, B_{f}+C_{f}) in H_{0,0;\gamma} if and only if u\in H_{0,0;\gamma} , f\in H_{0,0;\gamma} ,

f_{f}\in H_{0;\gamma} and it holds

(f, v)-(u, P^{*}v)= \sum_{f=1}^{l}i\langle f_{f}, (B_{f}’+C_{f}’)v\rangle

for all v\in C_{0}^{\infty}(\overline{R_{+}^{n+1}}) with (B_{f}’+C_{f}’)v|_{x_{n}=0}=0 , j=l+1, \cdots , m, where C_{f}=C_{f}(x’, D)

and C_{j}’=C_{f}’(x’, D) are operators of orders m_{f}-1 and r_{f}-1 respectively such
that (1.2) holds when we replace B_{f},j=1 , \cdots , l, and B_{f}’ , j=1, \cdots , m by B_{f}+

C_{f} and B_{f}’+C_{f}’ respectively. Using Corollary 4. 4 we see that the weak solu-
tion of (P, B_{f}+C_{f}) is unique in H_{0,0;\gamma} for \gamma\geqq\gamma_{\acute{0}} . Therefore we find by PrO-
position 1. 3 in [6] that u_{\gamma} is independent of \gamma\geqq\gamma_{\acute{0}^{T}}’

4). For first order systems the similar results are valid. We consider
the boundary value problem (L, B) :

|L(x, D) \equiv\sum_{f=0}^{n}A_{f}(x)D_{f}u+C(x)u=f in R_{+}^{n+1} ,

\downarrow B(x’)u=g on R^{n} ,

where A_{f}(x) and C(x) are m\cross m matrix-valued functions and B(x’) is a
l\cross m matrix-valued function. Suppose that A_{n}(x) is the unit matrix and
rank B(x’)=l for every x’\in R^{n} . Let b_{1}(x’) , \cdots , b_{l}(x’) be the rows of B(x’).
For every x’\in R^{n} we denote N(x’) the orthogonal complement of the sub-
space generated by b_{1}(x’),\cdots , b_{l}(x’) . Furthermore suppose that there exists
a smooth basis b_{l+1}(x’), \cdots , b_{m}(x’) of N(x’). Set

T(x)=T(x’, x_{n})=(\begin{array}{l}b_{1}(x’)\vdots b_{m}(x,)\end{array})

and
\tilde{u}(x)=T(x)u(x)c

Then the problem (L, B) is equivalent to the problem

\{

\tilde{L}\tilde{u}\equiv\sum_{k=0}^{n}(TA_{k}T^{-1})D_{k}\tilde{l1}+(TLT^{-1})\tilde{u}=Tf in R_{+}^{n+1} ,

\overline{u}_{f}=g_{f} on R^{n}\neg
, j=1, \cdots , l .

Let \tilde{L}^{*} be the formal adjoint of \tilde{L} . Then the Green’s formula for \tilde{L} and
\tilde{L}^{*} is

(\tilde{L}\tilde{u},\tilde{v})-(\tilde{u},\overline{L}^{*}v)=i\langle\tilde{u},\tilde{v}\rangle , \tilde{u},\tilde{v}\in C_{0}^{\infty}(\overline{R_{+}^{n+1}}) ,

and the adjoint boundary conditions are
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\tilde{7J}_{f}=h_{f} on R^{n} , j=l+1, \cdots , m .
Therefore we can prove the corresponding theorems by the same argument
as in the preceding.
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