Remarks on boundary value problems for hyperbolic equations

By Kôji Kubota

§ 1. Introduction and results

Let \boldsymbol{R}_{+}^{n+1} be the open half space $\left\{x=\left(x^{\prime}, x_{n}\right) ; x^{\prime}=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \in \boldsymbol{R}^{n}\right.$, $\left.x_{n}>0\right\}$. We shall consider the boundary value problem (P, B_{j}) in \boldsymbol{R}_{+}^{n+1} :

$$
\begin{cases}P(x, D) u=f & \text { in } \boldsymbol{R}_{+}^{n+1}, \\ B_{j}\left(x^{\prime}, D\right) u=f_{j} & \text { on } \boldsymbol{R}^{n}, j=1, \cdots, l,\end{cases}
$$

where $D=\left(D_{0}, D_{1}, \cdots, D_{n-1}, D_{n}\right), D_{k}=\frac{1}{i} \frac{\partial}{\partial x_{k}}, P(x, D)$ is a strictly x_{0}-hyperbolic operator of order m and $B_{j}\left(x^{\prime}, D\right)$ is a boundary operator of order m_{j}. Throughout this paper coefficients of differential operators are assumed to be C^{∞}-functions and constant outside a compact set of \boldsymbol{R}^{n+1}. Furthermore suppose that leading coefficients of P and B_{j} with respect to D_{n} are equal to 1 and $m_{1}<\cdots<m_{l}<m$.

Definition 1. The boundary value problem (P, B_{j}) with homogeneous boundary conditions is said to be L^{2}-well posed if and only if there exist positive constants γ_{0}, C_{0} such that for any $\gamma \geqq \gamma_{0}$ and for any $f \in H_{0,0 ; r, r}$, the problem has a unique solution $u \in H_{n,-1 ; r}$ which satisfies

$$
\begin{equation*}
\|u\|_{m,-1 ; r} \leqq \frac{C_{0}}{r}\|f\|_{0,0 ; r} . \tag{1.1}
\end{equation*}
$$

For notations see $\S 2$.
This definition was posed in a different form by R. Agemi and T. Shirota in researches [2] for hyperbolic mixed problems with vanishing initial data in the quadrant $\left\{x=\left(x_{0}, x_{1}, \cdots, x_{n-1}, x_{n}\right) ; x_{0}>0, x_{n}>0\right\}$. But they are equivalent to each other when P and B_{j} are homogeneous and of constant coefficients.

In this paper we study on L^{2}-well posedness of the dual problems and on the differentiability of solutions of L^{2}-well posed problems. (See Sakamoto [6], Rauch and Massey III [5]).

Let $P^{*}(x, D)$ be the formal adjoint of $P(x, D)$. By the assumptions of $P(x, D)$ and $B_{j}\left(x^{\prime}, D\right), j=1, \cdots, l$, we see that there exist differential operators $B_{l+1}\left(x^{\prime}, D\right), \cdots, B_{m}\left(x^{\prime}, D\right) ; B_{1}^{\prime}\left(x^{\prime}, D\right), \cdots, B_{m}^{\prime}\left(x^{\prime}, D\right)$ such that

$$
\begin{equation*}
(P u, v)-\left(u, P^{*} v\right)=\sum_{j=1}^{m} i\left\langle B_{j} u, B_{j}^{\prime} v\right\rangle, \quad u, v \in C_{0}^{\infty}\left(\overline{\boldsymbol{R}_{+}^{n+1}}\right), \tag{1.2}
\end{equation*}
$$

$m_{j}+r_{j}=m-1, j=1, \cdots, m$, and $\left\{B_{1}, \cdots, B_{m}\right\},\left\{B_{1}^{\prime}, \cdots, B_{m}^{\prime}\right\}$ are Dirichlet sets, where $(\cdot, \cdot),\langle\cdot, \cdot\rangle$ are the inner products of $L^{2}\left(\boldsymbol{R}_{+}^{n+1}\right), L^{2}\left(\boldsymbol{R}^{n}\right)$ respectively, and m_{j}, r_{j} are the orders of B_{j}, B_{j}^{\prime} respectively (see Schechter [7]). From now on we mean by $B_{j}, j=l+1, \cdots, m ; B_{j}^{\prime}, j=1, \cdots, m$, operators with the above properties.

Our main results are the following
Theorem 1. Let the problem $\left(P, B_{j}\right)$ with homogeneous boundary conditions be L^{2}-well posed. Then for every integer $k, s(k \geqq 0)$ there exist positive constants $\gamma_{k, s}, C_{k, s}$ such that for any $\gamma \geqq \gamma_{k, s}$ and for any $f \in H_{k, s ; r}, f_{j} \in$ $H_{m-m_{j}-\frac{1}{2}+k+s ; r}, j=1, \cdots, l$, the problem $\left(P, B_{j}\right)$ has a unique solution $u \in H_{m+k, s-1 ; r}$ which satisfies

$$
\begin{equation*}
\|u\|_{m+k, s-1 ; r} \leqq \frac{C_{k, s}}{r}\left(\|f\|_{k, s ; r}+\sum_{j=1}^{l}\left\langle f_{j}\right\rangle_{m-m_{j}-\frac{1}{2}+k+s ; r}\right) . \tag{1.3}
\end{equation*}
$$

Theorem 2. Let the hypothesis of Theorem 1 be fulfilled. Then for every integer $k, s(k \geqq 0)$ there exist positive constants $\gamma_{k, s}^{\prime}, C_{k, s}^{\prime}$ such that for any $\gamma \geqq \gamma_{k, s}^{\prime}$ and for any $g \in H_{k, s ;-r}, g_{j} \in H_{m-r_{j}-\frac{1}{2}+k+s ;-r}, j=l+1, \cdots, m$, the problem (P^{*}, B_{j}^{\prime}):

$$
\begin{cases}P^{*} v=g & \text { in } \boldsymbol{R}_{+}^{n+1}, \\ B_{j}^{\prime} v=g_{j} & \text { on } \boldsymbol{R}^{n}, \quad j=l+1, \cdots, m\end{cases}
$$

has a unique solution $v \in H_{m+k, s-1 ;-\gamma}$ which satisfies

$$
\begin{equation*}
\|v\|_{m+k, s-1 ;-\gamma} \leqq \frac{C_{k, s}^{\prime}}{\gamma}\left(\|g\|_{k, s ;-\gamma}+\sum_{j=l+1}^{m}\left\langle g_{j}\right\rangle_{m-r_{j}-\frac{1}{2}+k+s ;-\gamma}\right) \tag{1.4}
\end{equation*}
$$

In the above estimates it is important to notice that we can't replace $-\frac{1}{2}$ by -1 . (See Rauch [4]).

The methods used in the present note are usual, but the necessary and sufficient condition for L^{2}-well posedness stated in Remark 1) of $\S 5$ is useful in further investigations, for example, see Agemi's forthcoming paper [1].

We can also obtain the similar results for first order systems.
The author would like to thank Professor T. Shirota who suggested the problem and gave constant encouragement to him.

§ 2. Preliminaries

We shall use some spaces. For real numbers p, q and a positive number
γ, we denote by $H_{p, q ; \pm r}\left(\boldsymbol{R}^{n+1}\right)$ the spaces of $u \in \mathscr{V}^{\prime}\left(\boldsymbol{R}^{n+1}\right)$ such that $e^{\mp \tau x_{0}} u \in$ $H_{p, q}\left(\boldsymbol{R}^{n+1}\right)$, the norms in $H_{, q ; \pm r}\left(\boldsymbol{R}^{n+1}\right)$ are defined by

$$
\|u\|_{\hat{i, q ; \pm r}}^{2}=\int_{n^{n+1}}\left(\gamma^{2}+|\xi|^{2}\right)^{n}\left(\gamma^{2}+\left|\xi^{\prime}\right|^{2}\right)^{q}\left|e^{\mp \not x_{0}} u(\xi)\right|^{2} d \xi
$$

where ξ, ξ^{\prime} are the dual variables of x, x^{\prime} respectively, $|\xi|^{2}=\sum_{j=0}^{n} \xi_{j}^{2},\left|\xi^{\prime}\right|^{2}=$ $\sum_{j=0}^{n-1} \xi_{j}^{2}$, and where $\widehat{e^{\mp \gamma x_{0}}} u(\xi)$ are the Fourier transformations of $e^{\mp \gamma x_{0}} u$. Similarly we define $H_{q ; \pm r}\left(\boldsymbol{R}^{n}\right)$ with the norms

$$
\langle u\rangle_{q ; \pm r}^{2}=\int_{\boldsymbol{R}^{n}}\left(\gamma^{2}+\left|\xi^{\prime}\right|^{2}\right)^{q}\left|\widehat{e^{\mp \gamma x_{0}}} u\left(\xi^{\prime}\right)\right|^{2} d \xi^{\prime}
$$

By $H_{p, q ; \pm r}\left(\boldsymbol{R}_{+}^{n+1}\right)$ we mean the sets of all $u \in \mathscr{V}^{\prime}\left(\boldsymbol{R}_{+}^{n+1}\right)$ respectively such that there exist distributions $U \in H_{p, q ; \pm r}\left(\boldsymbol{R}^{n+1}\right)$ with $U=u$ in \boldsymbol{R}_{+}^{n+1}. The norms of u are defined respectively by

$$
\|u\|_{p, q ; \pm r}=\inf _{\sigma}\|U\|_{p, q ; \pm r}
$$

Finally, we set

$$
\stackrel{\circ}{H}_{p, q ; \pm r}\left(\overline{\boldsymbol{R}_{+}^{n+1}}\right)=\left\{u ; u \in H_{p, q ; \pm r}\left(\boldsymbol{R}^{n+1}\right), \text { supp } u \subset \overline{\boldsymbol{R}_{+}^{n+1}}\right\} .
$$

From now on, for simplicity we denote by $H_{q ; \pm r}, H_{p, q ; \pm r}, \dot{H}_{p, q ; \pm r}$ the spaces $H_{q ; \pm r}\left(\boldsymbol{R}^{n}\right), H_{p, q ; \pm r}\left(\boldsymbol{R}_{+}^{n+1}\right), H_{p, q ; \pm r}\left(\overline{\boldsymbol{R}_{+}^{n+1}}\right)$ respectively.

The following lemma can be proved in the same way as in Theorem 2.5.1 of Hörmander [3].

Lemma 2.1. $C_{0}^{\infty}\left(\overline{\boldsymbol{R}_{+}^{n+1}}\right)$ is dense in $H_{p, q ; \pm r}$ and $C_{0}^{\infty}\left(\boldsymbol{R}_{+}^{n+1}\right)$ is dense in $\dot{H}_{p, q ; \pm r}$. The spaces $H_{p, q ; \pm r}$ and $\dot{H}_{-p,-q ; \mp r}$ are dual Hilbert spaces with respect to extensions of the sesquilinear form

$$
\int_{\boldsymbol{R}_{+}^{n+1}} u \bar{v} d x ; u \in C_{0}^{\infty}\left(\overline{\boldsymbol{R}_{+}^{n+1}}\right), v \in C_{0}^{\infty}\left(\boldsymbol{R}_{+}^{n+1}\right) .
$$

The following lemma is a variant of Theorem 2.5.4 in [3], which can be proved in the same way as in the proof of the theorem by using Lemma 2.1.

Lemma 2.2. Let $u \in H_{p-1, q+1 ; \pm r}$ and $D_{n}^{m} u \in H_{p-m, q ; \pm r}$. Then $u \in H_{p, q \pm \pm r}$ and we have

$$
\|u\|_{p, q \pm \pm r} \leqq m\left(\|u\|_{p-1, q+1 ; \pm r}+\left\|D_{n}^{m} u\right\|_{p-m, q ; \pm r}\right)
$$

From Lemma 2.2 it follows

Corollary 2.3. Let $Q(x, D)$ be a differential operator of order m such that the coefficient of D_{n}^{m} is equal to 1 . If $u \in H_{-1, q+1 ; \pm r}$ and $Q u \in$ $H_{p-m, q ; \pm r}$, then $u \in H_{p, q ; \pm r}$ and we have for $r \geqq \gamma_{0}$

$$
\|u\|_{p, q ; \pm r} \leqq C\left(\|u\|_{p-1, q+1 ; \pm r}+\|Q u\|_{p-m, q ; \pm r}\right),
$$

where C depends on p and q but not on γ or u.

§ 3. Proof of Theorem 1

The following lemma can be proved in the same way as in Theorem 2.5.7 of [3].

Lemma 3.1. Let $E_{j}\left(x^{\prime}, D\right), j=0,1, \cdots, m-1$, be boundary operators of orders j such that the leading coefficients with respect to D_{n} are equal to 1 . Let q be an integer. Then for any $\gamma>0$ and $g_{j} \in H_{m-j-\frac{1}{2}+q ; i}, j=0,1, \cdots, m-1$, there exists a function $w \in H_{m, q ; i}$ such that

$$
\left.E_{j} w\right|_{x_{n}=0}=g_{j}, \quad j=0,1, \cdots, m-1,
$$

and

$$
\|w\|_{m, q ; r} \leqq C_{q} \sum_{j=0}^{m-1}\left\langle g_{j}\right\rangle_{m-j-\frac{1}{2}+q ; r}, \quad \gamma \geqq r_{0},
$$

where C_{q} is independent of r and g_{j}.
Lemma 3.2. Let the hypothesis of Theorem 1 be fulfilled. Then there exists a constant $C_{1}>0$ such that for any $r \geqq \gamma_{0}$ and any $f \in H_{0,0 ;}, f_{j} \in$ $H_{m-m_{j}-\frac{1}{2} ; r}, j=1, \cdots, l,\left(P, B_{j}\right)$ has a unique solution $u \in H_{m,-1 ; r}$ which satisfies

$$
\begin{equation*}
\|u\|_{m,-1 ; r} \leqq \frac{C_{1}}{r}\left(\|f\|_{0,0 ; r}+\sum_{j=1}^{l}\left\langle f_{j}\right\rangle_{m-m_{j}-\frac{1}{2} ; r}\right) . \tag{3.1}
\end{equation*}
$$

Proof. We can assume that the leading coefficients of $B_{j}, j=1, \cdots, m$, with respect to D_{n} are equal to 1 . If in Lemma 3.1 with $q=0$ we set

$$
E_{m_{j}}=B_{j}, \quad j=1, \cdots, m
$$

and

$$
\begin{aligned}
g_{m_{j}} & =f_{j}, & & j=1, \cdots, l, \\
& =0, & & j=l+1, \cdots, m,
\end{aligned}
$$

then we see that there exists a function $w \in H_{m, 0 ;}$ such that for $\gamma \geqq \gamma_{0}$

$$
\left.B_{j} w\right|_{x_{n}=0}=f_{j}, \quad j=1, \cdots, l,
$$

and

$$
\begin{equation*}
\|w\|_{m, 0 ; r} \leqq C \sum_{j=1}^{l}\left\langle f_{j}\right\rangle_{m-m_{j}-\frac{1}{2} ; r} . \tag{3.2}
\end{equation*}
$$

Since $P w \in H_{0,0, r}$, by the existence of solutions to $\left(P, B_{j}\right)$ with homogeneous boundary conditions and (1.1) we find that for $\gamma \geqq \gamma_{0}$ there exists a solution $v \in H_{m,-1 ; r}$ of the problem

$$
\begin{cases}P v=f-P w & \text { in } \boldsymbol{R}_{+}^{n+1}, \\ B_{j} v=0 & \text { on } \boldsymbol{R}^{n}, \quad j=1, \cdots, l\end{cases}
$$

which satisfies

$$
\begin{equation*}
\|v\|_{m,-1 ; r} \leqq \frac{C_{0}}{\gamma}\|f-P w\|_{0,0, r} . \tag{3.3}
\end{equation*}
$$

Set $u=v+w$. Then u is a solution of $\left(P, B_{j}\right)$. Furthermore from (3.2) and (3.3) we obtain (3.1) with another constant C_{1}, since

$$
\|w\|_{m,-1 ; r} \leqq \frac{1}{r}\|w\|_{m, 0 ; r} .
$$

The uniqueness follows immediately from the one of solutions to $\left(P, B_{j}\right)$. The proof is complete.

Lemma 3. 3. Let the hypothesis of Theorem 1 be fulfilled. Then for every integer s there exist positive constants $\gamma_{0, s}$ and $C_{0, s}$ such that for any $r \geqq r_{0, s}$ and any $f \in H_{0, s ; r}, f_{j} \in H_{m-m_{j}-\frac{1}{2}+s, r}\left(P, B_{j}\right)$ has a unique solution $u \in$ $H_{m, s-1 ; r}$ which satisfies

$$
\begin{equation*}
\|u\|_{m, s-1 ; r} \leqq \frac{C_{0, s}}{\gamma}\left(\|f\|_{0, s ; r}+\sum_{j=1}^{I}\left\langle f_{j}\right\rangle_{m-m_{j}-\frac{1}{2}+s ; r}\right) . \tag{3.4}
\end{equation*}
$$

Proof. For $\gamma>0$ and $u \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ we define $\Lambda_{r} u$ as follows:

$$
\left(\Lambda_{i} u\right)\left(x^{\prime}\right)=e^{i x_{0}} \mathscr{Z}^{-1}\left[\left(\gamma^{2}+\left|\xi^{\prime}\right|\right)^{\frac{1}{2}} \mathscr{F}\left(e^{-r x_{0}} u\right)\right],
$$

where \mathscr{F} and \mathscr{F}^{-1} are the Fourier transform and the Fourier inverse transform respectively. Then for real number q

$$
\left\langle\Lambda_{r} u\right\rangle_{q-1 ; r}=\langle u\rangle_{q ; r}, \quad u \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right) .
$$

Therefore Λ_{r} is so extended on $H_{q ; r}$ that $H_{q ; r}$ and $H_{a-1 ; r}$ are isomorphic to each other. Λ_{r} is also regarded as a isomorphism from $H_{p, q ; r}$ to $H_{p, q-1 ; r}$ for real numbers p and q such that

$$
\left\|\Lambda_{i} u\right\|_{p, q-1 ; r}=\|u\|_{r, q ; r} \quad u \in H_{p, q ; r} .
$$

Now we set for an integer s

$$
u=\Lambda_{i}^{-s} v .
$$

Then $\left(P, B_{j}\right)$ is equivalent to the problem

$$
\begin{cases}P v+\Lambda_{r}^{s}\left(P \Lambda_{r}^{-s}-\Lambda_{r}^{-s} P\right) v=\Lambda_{r}^{s} f & \text { in } \boldsymbol{R}_{+}^{n+1}, \tag{3.5}\\ B_{j} v+\Lambda_{r}^{s}\left(B_{j} \Lambda_{r}^{-s}-\Lambda_{r}^{s} B_{j}\right) v=\Lambda_{r}^{s} f_{j} & \text { on } \boldsymbol{R}^{n}, \quad j=1, \cdots, l .\end{cases}
$$

If $f \in H_{0, s ; r}$ and $f_{j} \in H_{\left.m-m_{j}-\frac{1}{2}+s ;\right\rangle}$ then $\Lambda_{i}^{s} f \in H_{0,0 ; r}$ and $\Lambda_{i}^{s} f_{j} \in H_{m-m_{j}-\frac{1}{2} ; \tau .}$. Therefore using Lemma 3.2 we find by a standard perturbation methord that there exist positive constants $\gamma_{0, s}$ and $C_{0, s}$ such that for any $\gamma \geqq \gamma_{0, s}$ and any $f \in H_{0, s ; r}$, $f_{j} \in H_{m-m_{j}-\frac{1}{2}+s ; r}$ (3.5) has a unique solution $v \in H_{m,-1 ; r}$ satisfying

$$
\begin{equation*}
\|v\|_{m,-1 ; r} \leqq \frac{C_{0, s}}{r}\left(\left\|\Lambda_{i}^{s} f\right\|_{0,0, j ;}+\sum_{j=1}^{i}\left\langle\Lambda_{t}^{s} f_{j}\right\rangle_{m-m_{j} ; \frac{1}{2} ; r}\right), \tag{3.6}
\end{equation*}
$$

because that there exist a positive constant C_{s}^{\prime} such that for $\gamma \geqq \gamma_{0}$ and $v \in H_{m,-1 ; r}$

$$
\begin{aligned}
& \left\|S_{r}^{s}\left(P \Lambda_{r}^{-s}-\Lambda_{r}^{-s} P\right) v\right\|_{0,0 ; ;} \leqq C_{s}^{\prime}\|v\|_{m,-1 ; r}, \\
& \left\langle\Lambda_{r}^{s}\left(B_{j} \Lambda_{r}^{-s}-\Lambda_{r}^{-s} B_{j}\right) v\right\rangle_{m-m_{j}-\frac{1}{2} ; r} \leqq C_{s}^{\prime}\|v\|_{m,-1 ; r} .
\end{aligned}
$$

Since (3.6) is equivalent to (3.4), the proof is complete.
Proof of Theorem 1. Let the hypothesis of the theorem be fulfilled. Since $H_{k, s ; r} \subset H_{0, k+s ; r}$ and the leading coefficient of P with respect to D_{n} is equal to 1 , the assertion of the theorem follows immediately from Lemma 3.3 and Corollary 2.3.

§4. Proof of Theorem 2

Lemma 4.1 (existence of solutions). Suppose that for every $r \geqq \gamma_{0}$ we have

$$
\begin{equation*}
\|u\|_{m,-1 ; r} \leqq \frac{C_{1}}{r}\left(\|P u\|_{0,0 ; r}+\sum_{j=1}^{i}\left\langle B_{j} u\right\rangle_{m-m_{j}-\frac{1}{2} ; r}\right), \quad u \in H_{m, 0 ; r} . \tag{4.1}
\end{equation*}
$$

Then for every integer s there exists a positive constant γ_{s}^{\prime} such that for any $\gamma \geqq \gamma_{s}^{\prime}$ and any $g \in H_{0, s ;-r}, g_{j} \in H_{m-r_{j}-\frac{1}{2}+s ;-r}, j=l+1, \cdots, m \quad\left(P^{*}, B_{j}^{\prime}\right)$ has a solution $v \in H_{m, s-1 ;-r}$.

Proof. Let q be an integer. By (4.1) we have for $u \in H_{m, q ; r}$

$$
\begin{equation*}
\left\|\Lambda_{\tau}^{q} u\right\|_{m,-1 ; r} \leqq \frac{C_{1}}{\gamma}\left(\left\|P \Lambda_{\bar{\gamma}}^{q} u\right\|_{0,0 ; r}+\sum_{j=1}^{l}\left\langle B_{j} \Lambda_{i}^{q} u\right\rangle_{m-m_{j}-\frac{1}{2} ; r}\right) . \tag{4.2}
\end{equation*}
$$

Since $\left\|\left(P \Lambda_{r}^{q}-\Lambda_{r}^{q} P\right) u\right\|_{0,0 ; r}$ and $\left\langle\left(B_{j} \Lambda_{r}^{q}-\Lambda_{i}^{q} B_{j}\right) u\right\rangle_{m-m_{j}-\frac{1}{2} ; r}$ are estimated by \widetilde{C}_{q} $\|u\|_{m, q-; ; \gamma}\left(\gamma \geqq r_{0}\right)$, where \widetilde{C}_{q} is independent of γ and u, it follows from (4.2) there exist positive constants γ_{q} and C_{q} such that for $\gamma \geqq r_{q}$ we have

$$
\begin{equation*}
\|u\|_{m, q-1 ; r} \leqq \frac{C_{q}}{r}\left(\|P u\|_{0, a ; r}+\sum_{j=1}^{l}\left\langle B_{j} u\right\rangle_{m-m_{j}-\frac{1}{2}+q ; r}\right), \quad u \in H_{m, q ; r} . \tag{4.3}
\end{equation*}
$$

Set

$$
D_{q}=\left\{u ; u \in H_{m, q ;}, B_{j} u=0 \quad \text { on } \quad \boldsymbol{R}^{n}, j=1, \cdots, l\right\} .
$$

Then according to (4.3) D_{q} is a pre-Hilbert space with the norm $\|P u\|_{0, q ; r}$ for $r \geqq \gamma_{q}$. We denote by $\mathscr{H}_{q ; r}$ the completion of D_{q} with respect to $\|P u\|_{0, q ; r}$ and denote by $[u, w]_{q ; r}$ the inner product of $\mathscr{H}_{q ; r}$. Notice that $\mathscr{H}_{q ; r} \subset H_{m, q-1 ; r}$ and

$$
\begin{equation*}
\|u\|_{m, q-1 ; r} \leqq \frac{C_{q}}{\gamma} \sqrt{[u, u]_{q ; r}}, \quad u \in \mathscr{H}_{q ; r} . \tag{4.3}
\end{equation*}
$$

Let $g \in H_{0, s ;-r}$ and $g_{j} \in H_{m-r_{j}-\frac{1}{2}+s ;-r}$ (s : integer). Furthermore set for $u \in$ $\mathscr{H}_{-(m+s-1) ;}$

$$
F(u)=(u, g)+\sum_{j=l+1}^{m} i\left\langle B_{j} u, g_{j}\right\rangle .
$$

Then by (4.3) with $q=-(m+s-1), F(u)$ is continuous in $\mathscr{H}_{-(n+s-1) ; r}$. Hence we see by Riesz's theorem that there exists $w \in \mathscr{H}_{-(m+s-1) ; r}$ such that for all $u \in \mathscr{H}_{-(m+s-1) ; r}$

$$
F(u)=[u, w]_{-(m+s-1) ;} .
$$

Notice that

$$
[u, w]_{q ; r}=\int_{n_{+}^{n+1}}\left(\gamma^{2}+\left|\xi^{\prime}\right|^{2}\right)^{\frac{q}{2}} \mathscr{F}\left[e^{-r x_{0}} P u\right] \cdot\left(\gamma^{2}+\left|\xi^{\prime}\right|^{\prime}\right)^{\frac{q}{2}} \mathscr{F}\left[e^{-r x_{0} P r w}\right] d \xi^{\prime} d x_{n} .
$$

Set

$$
v=e^{-x x_{0}} \mathscr{Z}^{-1}\left[\left(\gamma^{2}+\left|\xi^{\prime}\right|^{2}\right)^{-(m+s-1)} \mathscr{F}\left(e^{-\tau x_{0}} P w\right)\right] .
$$

Then $v \in H_{0, m+s-1 ;-\gamma}$ and we have for $u \in D_{-(m+s-1)}$

$$
\begin{equation*}
(P u, v)=(u, g)+\sum_{j=l+1}^{m} i\left\langle B_{j} u, g_{j}\right\rangle, \tag{4.4}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
P^{*} v=g \quad \text { in } \mathscr{Z}^{\prime}\left(\boldsymbol{R}_{+}^{n+1}\right) . \tag{4.5}
\end{equation*}
$$

Since $v \in H_{0, m+s-1 ;-r}$ and $g \in H_{0, s ;-r}$, by (4.5) and Corollary 2.3 we find that $v \in H_{m, s-1 ;-r}$. Hence using (4.4), (4.5) and (1.2) extended by continuity, we have for $u \in D_{-(m+s-1)}$

$$
\begin{equation*}
\sum_{j=l+1}^{m}\left\langle B_{j} u, B_{j}^{\prime} v-g_{j}\right\rangle=0 . \tag{4.6}
\end{equation*}
$$

Since by Lemma 3.1 $B_{j} u$ are arbitrary, we have

$$
B_{j}^{\prime} v=g_{j} \quad \text { in } \mathscr{E}^{\prime}\left(\boldsymbol{R}^{n}\right), \quad j=l+1, \cdots, m .
$$

Thus the proof is complete, if we set $\gamma_{s}^{\prime}=\gamma_{-(m+s-1)}$.
The following lemma is derived immediately from (1.2) extended by continuity.

Lemma 4.2 (uniqueness of solutions). Suppose that for any $f \in$ $C_{0}^{\infty}\left(\boldsymbol{R}_{+}^{n+1}\right)\left(P, B_{j}\right)$ with homogeneous boundary conditions has a solution $u \in H_{m,-(m+s-1) ; r}$. Then the solution of $\left(P^{*}, B_{j}^{\prime}\right)$ is unique in $H_{m, s-1 ;-r}$.

The following lemma is used to obtain (1.4).
Lemma 4.3 (a priori estimate). Suppose that for any $\gamma \geqq r_{0}$ and any $f \in C_{0}^{\infty}\left(\boldsymbol{R}_{+}^{n+1}\right)\left(P, B_{j}\right)$ with homogeneous boundary conditions has a solution $u \in H_{m,-1 ; r}$ satisfying (1.1). Then for every integer s there exist positive constants $\gamma_{s}^{\prime \prime}$ and $C_{s}^{\prime \prime}$ such that for any $\gamma \geqq \gamma_{s}^{\prime \prime}$ we have

$$
\begin{equation*}
\|v\|_{m, s-1 ;-r} \leqq \frac{C_{s}^{\prime \prime}}{r}\left(\left\|P^{*} v\right\|_{0, s ;-r}+\sum_{j=l+1}^{m}\left\langle B_{j}^{\prime} v\right\rangle_{m-r_{j}-\frac{1}{2}+s ;-r}\right), \quad v \in H_{m, s ;-r} . \tag{4.7}
\end{equation*}
$$

Proof. It follows from the hypothesis that for any $\gamma \geqq \gamma_{0}$ and $f \in$ $C_{0}^{\infty}\left(\boldsymbol{R}_{+}^{n+1}\right)$ there exists a function $u \in H_{m,-1 ; r}$ which satisfies (1.1) and

$$
\begin{cases}P u=f & \text { in } \boldsymbol{R}_{+}^{n+1}, \tag{4.8}\\ B_{j} u=0 & \text { on } \boldsymbol{R}^{n}, \quad j=1, \cdots, l .\end{cases}
$$

Let $w \in H_{m, 1-m ;-r}$. Then (4.8) and (1.2) imply

$$
\begin{equation*}
(f, w)-\left(u, P^{*} w\right)=\sum_{j=l+1}^{m} i\left\langle B_{j} u, B_{j}^{\prime} w\right\rangle . \tag{4.9}
\end{equation*}
$$

From (4.9) we have by (1.1) and the trace inequality

$$
\begin{align*}
|(f, w)| & \leqq\|u\|_{0, m-1 ; r}\left\|P^{*} w\right\|_{0,1-m ;-r}+C\|u\|_{m,-1 ; r} \sum_{j=l+1}^{m}\left\langle B_{j}^{\prime} w\right\rangle_{-r_{j}+\frac{1}{2} ;-r} \tag{4.10}\\
& \leqq \frac{C_{0}(1+C)}{r}\|f\|_{0,0 ; r}\left(\left\|P^{*} w\right\|_{0,1-m ;-r}+\sum_{j=l+1}^{m}\left\langle B_{j}^{\prime} w\right\rangle_{-r_{j}+\frac{1}{2} ;-r}\right),
\end{align*}
$$

where C is independent of γ, f and w. Using the duality in Lemma 2.1 we obtain from (4.10)

$$
\begin{equation*}
\|w\|_{0,0 ;-r} \leqq \frac{C_{0}(1+C)}{\gamma}\left(\left\|P^{*} w\right\|_{0,1-m ;-r}+\sum_{j=l+1}^{m}\left\langle B_{j}^{\prime} w\right\rangle_{-r_{j}+\frac{1}{2} ;-r}\right) . \tag{4.11}
\end{equation*}
$$

Furthermore from (4.11) and Corollory 2.3 we have

$$
\begin{gather*}
\|w\|_{m,-m ;-r} \leqq \frac{C^{\prime}}{\gamma}\left(\left\|P^{*} w\right\|_{0,1-m ;-\gamma}+\sum_{j=l+1}^{m}\left\langle B_{j}^{\prime} w\right\rangle_{-r_{j}+\frac{1}{2} ;-\gamma}\right), \tag{4.12}\\
w \in H_{m, 1-m ;-r}
\end{gather*}
$$

where C^{\prime} is independent of γ and w.
Let $v \in H_{m, s ;-r}$ and set $w=\Lambda_{-r}^{m+s-1} v$. Then in the same way as (4.3) was derived from (4.1), from (4.12) we obtain (4.7) with constants $\gamma_{s}^{\prime \prime}$ and $C_{s}^{\prime \prime}$ independent of γ and v.

Proof of Theorem 2. By virtue of Corollary 2.3 it is sufficient to prove the theorem for $k=0$. Let the hypothesis of Theorem 1 be fulfilled. Furthermore let s be an integer. The existence of solutions follows from Lemmas 3.2 and 4.1. The uniqueness of solutions follows from Lemmas 3.3 and 4.2.

Now we shall prove (1.4) with $k=0$. Set

$$
\gamma_{0, s}^{\prime}=\max \left\{\gamma_{s}^{\prime}, \gamma_{s+1}^{\prime}, \gamma_{0,-(m+s-2)}, \gamma_{0,-(m+s-1)}, \gamma_{s}^{\prime \prime}\right\}
$$

where $\gamma_{q}^{\prime}, \gamma_{0, q}$ and $\gamma_{q}^{\prime \prime}$ are the constants in Lemmas 4.1, 3.3 and 4.3, and let $\gamma \geqq \gamma_{0, s}^{\prime}$. Furthermore let $g \in H_{0, s ;-r}, g_{j} \in H_{m-r_{j}-\frac{1}{2}+s ;-r}, j=l+1, \cdots, m$, and $v \in H_{m, s-1 ;-r}$ be the unique solution of $\left(P^{*}, B_{j}^{\prime}\right)$. Then there exist $g^{\nu} \in H_{0, s+1 ;-r}$ and $g_{j}^{\nu} \in H_{m-r_{j}-\frac{1}{2}+s+1 ;-r}$ such that when $\nu \rightarrow \infty$

$$
\begin{array}{ll}
g^{\nu} \longrightarrow g & \text { in } H_{0, s ;-r}, \\
g_{j}^{\nu} \longrightarrow g_{j} & \text { in } H_{m-r_{j}-\frac{1}{2}+s ;-r}
\end{array}
$$

Let $v^{v} \in H_{m, s ;-r}$ be the unique solution of the problem

$$
\begin{cases}P^{*} v^{\nu}=g^{\nu} & \text { in } \boldsymbol{R}_{+}^{n+1} \\ B_{j}^{\prime} v^{\nu}=g_{j}^{\nu} & \text { on } \boldsymbol{R}^{n}, \quad j=l+1, \cdots, m\end{cases}
$$

Then by Lemma 4.3 we find a function $w \in H_{m, s-1 ;-\tau}$ such that when $\nu \rightarrow \infty$

$$
v^{\nu} \longrightarrow w \quad \text { in } H_{m, s-1 ;-r}
$$

Therefore w is a solution of $\left(P^{*}, B_{j}^{\prime}\right)$ which satisfies (1.4) with $k=0$ and $C_{0, s}^{\prime}=C_{s}^{\prime \prime}$. The uniqueness of solutions to $\left(P^{*}, B_{j}^{\prime}\right)$ implies that $w=v$. The proof is complete.

Corollary 4.4. Let C_{j}^{\prime} be a linear operator such that

$$
C_{j}^{\prime}=\sum_{k=0}^{r_{j}{ }^{-1}} \Gamma_{j k} D_{n}^{k}
$$

where for every real number $\nu, \Gamma_{j k}$ is a bounded operator from $H_{r_{j}-1-k+2 ;-r}$ to $H_{\nu ;-r}$ whose operator norm has a bound independent of sufficiently large γ.

If we replace B_{j}^{\prime} by $B_{j}^{\prime}+C_{j}^{\prime}$ in Theorem 2, then also the assertion of the theorem is valid.

§ 5. Remarks

1). Suppose that there exist positive constants γ_{0} and C_{0} such that for every $\gamma \geqq \gamma_{0}$

$$
\|u\|_{m,-1 ; r} \leqq \frac{C_{0}}{r}\left(\|P u\|_{0,0 ; r}+\sum_{j=1}^{L}\left\langle B_{j} u\right\rangle_{m-m_{j}-\frac{1}{2} ; i}\right), \quad u \in H_{m, 0 ; r}
$$

and

$$
\|v\|_{m,-1 ;-r} \leqq \frac{C_{0}}{r}\left(\left\|P^{*} v\right\|_{0,0 ;-r}+\sum_{j=l+1}^{m}\left\langle B_{j}^{\prime} v\right\rangle_{m-r_{j}-\frac{1}{2} ;-r}\right), \quad v \in H_{m, 0 ;-r} .
$$

Then the problem $\left(P, B_{j}\right)$ with homogeneous boundary conditions is L^{2}-well posed.

In fact, by Lemma 4.1 the latter inequality implies the existence theorem for (P, B_{j}) and the former one derives (4.3) from which it follows the uniqueness theorem.
2). We can also prove Theorem 2 without Lemmas 3.1, 3.2 and 3.3.

Let the hypothesis of Theorem 1 be fulfilled. In the proof of Lemma 4.1, instead of D_{q} and (4.3) we use respectively

$$
D=\left\{u ; u \in C_{0}^{\infty}\left(\overline{\boldsymbol{R}_{+}^{n+1}}\right), \quad B_{j} u=0 \quad \text { on } \quad \boldsymbol{R}^{n}, \quad j=1, \cdots, l\right\}
$$

and

$$
\begin{equation*}
\|u\|_{m,-1 ; r} \leqq \frac{C_{0}}{\gamma}\|P u\|_{0,0 ; r}, \quad u \in D . \tag{1.1}
\end{equation*}
$$

Then (4.3)' is valid, if we set $q=0$ (consequently $s=1-m$). Furthermore under (4.6), instead of Lemma 3.1 we use the fact that $\left.B_{j} u\right|_{x,=0}, u \in D$, $j=l+1, \cdots, m$ can become arbitrary C_{0}^{∞}-functions, because that $\left\{B_{1}, \cdots, B_{m}\right\}$ is a Dirichlet set. (See [7]). Then we see that the assertion of Lemma 4.1 with $s=1-m$ is valid. The uniqueness of solutions in $H_{m,-m ;-r}$ follows from (4.7) with $s=-m$. Thus in the same way as in the proof of Theorem 2 we find by (4.7) with $s=-m$ and $s=-m-1$ that the assertion of Theorem 2 with $k=0$ and $s=-m$ is valid. Therefore we can prove Theorem 2 in the same way in the proofs of Lemma 3.3 and Theorem 1.
3). Adding to the hypothesis of Theorem 1, suppose that $s \geqq 0$ and $f=f_{j}=0$ for $x_{0}<0, j=1, \cdots, l$. Then $u=0$ for $x_{0}<0$.

Proof. Let $u_{r} \in H_{m,-1 ; r}$ be the unique solution of $\left(P, B_{j}\right)$. By virtue of
(1.3) it is sufficient to show that u_{r} is independent of γ. We say that u is a weak solution of $\left(P, B_{j}+C_{j}\right)$ in $H_{0,0 ; r}$ if and only if $u \in H_{0,0 ; r}, f \in H_{0,0 ; r}$, $f_{j} \in H_{0 ; r}$ and it holds

$$
(f, v)-\left(u, P^{*} v\right)=\sum_{j=1}^{i}\left\langle\left\langle f_{j},\left(B_{j}^{\prime}+C_{j}^{\prime}\right) v\right\rangle\right.
$$

for all $v \in C_{0}^{\infty}\left(\overline{\boldsymbol{R}_{+}^{n+1}}\right)$ with $\left.\left(B_{j}^{\prime}+C_{j}^{\prime}\right) v\right|_{x_{n}=0}=0, j=l+1, \cdots, m$, where $C_{j}=C_{j}\left(x^{\prime}, D\right)$ and $C_{j}^{\prime}=C_{j}^{\prime}\left(x^{\prime}, D\right)$ are operators of orders $m_{j}-1$ and $r_{j}-1$ respectively such that (1.2) holds when we replace $B_{j}, j=1, \cdots, l$, and $B_{j}^{\prime}, j=1, \cdots, m$ by $B_{j}+$ C_{j} and $B_{j}^{\prime}+C_{j}^{\prime}$ respectively. Using Corollary 4.4 we see that the weak solution of $\left(P, B_{j}+C_{j}\right)$ is unique in $H_{0,0 ; r}$ for $r \geqq \gamma_{0}^{\prime}$. Therefore we find by Proposition 1.3 in [6] that u_{r} is independent of $\gamma \geqq \gamma_{0}^{\prime \prime}$.
4). For first order systems the similar results are valid. We consider the boundary value problem (L, B) :

$$
\left\{\begin{array}{l}
L(x, D) \equiv \sum_{j=0}^{n} A_{j}(x) D_{j} u+C(x) u=f \text { in } \boldsymbol{R}_{+}^{n+1}, \\
B\left(x^{\prime}\right) u=g \text { on } \boldsymbol{R}^{n},
\end{array}\right.
$$

where $A_{j}(x)$ and $C(x)$ are $m \times m$ matrix-valued functions and $B\left(x^{\prime}\right)$ is a $l \times m$ matrix-valued function. Suppose that $A_{n}(x)$ is the unit matrix and rank $B\left(x^{\prime}\right)=l$ for every $x^{\prime} \in \boldsymbol{R}^{n}$. Let $b_{1}\left(x^{\prime}\right), \cdots, b_{l}\left(x^{\prime}\right)$ be the rows of $B\left(x^{\prime}\right)$. For every $x^{\prime} \in \boldsymbol{R}^{n}$ we denote $N\left(x^{\prime}\right)$ the orthogonal complement of the subspace generated by $b_{1}\left(x^{\prime}\right), \cdots, b_{l}\left(x^{\prime}\right)$. Furthermore suppose that there exists a smooth basis $b_{l+1}\left(x^{\prime}\right), \cdots, b_{m}\left(x^{\prime}\right)$ of $N\left(x^{\prime}\right)$. Set

$$
T(x)=T\left(x^{\prime}, x_{n}\right)=\left(\begin{array}{c}
b_{1}\left(x^{\prime}\right) \\
\vdots \\
b_{m}\left(x^{\prime}\right)
\end{array}\right)
$$

and

$$
\tilde{u}(x)=T(x) u(x) .
$$

Then the problem (L, B) is equivalent to the problem

$$
\left\{\begin{array}{l}
\tilde{L} \tilde{u} \equiv \sum_{k=0}^{n}\left(T A_{k} T^{-1}\right) D_{k} \tilde{u}+\left(T L T^{-1}\right) \tilde{u}=T f \quad \text { in } \boldsymbol{R}_{+}^{n+1}, \\
\tilde{u}_{j}=g_{j} \quad \text { on } \quad \boldsymbol{R}^{n}, \quad j=1, \cdots, l .
\end{array}\right.
$$

Let \widetilde{L}^{*} be the formal adjoint of \widetilde{I}. Then the Green's formula for \widetilde{L} and \tilde{L}^{*} is

$$
(\tilde{L} \tilde{u}, \tilde{v})-\left(\tilde{u}, \widetilde{L}^{*} v\right)=i\langle\tilde{u}, \tilde{v}\rangle, \quad \tilde{u}, \tilde{v} \in C_{0}^{\infty}\left(\overline{\boldsymbol{R}_{+}^{n+1}}\right),
$$

and the adjoint boundary conditions are

$$
\tilde{v}_{j}=h_{j} \quad \text { on } \quad \boldsymbol{R}^{n}, \quad j=l+1, \cdots, m
$$

Therefore we can prove the corresponding theorems by the same argument as in the preceding.

Department of Mathematics Hokkaido University

References

[1] R. Agemi: Remarks on L^{2}-well-posed mixed problems for hyperbolic equations of second order, to appear.
[2] R. Agemi and T. Shirota: On necessary and sufficient conditions for L^{2}-wellposedness of mixed problems for hyperbolic equations, J. Fac. Sci. Hokkaido Univ., 21 (1970), 133-151.
[3] L. HÖrmander: Linear partial differential operators, Chapter II, SpringerVerlag, (1963).
[4] J. B. RAUCH: Energy inequalities for hyperbolic initial boundary value problems, Thesis, New York University, (1971).
[5] J. B. RaUCh and F. J. Massey III: Differentiability of solutions to hyperbolic initial-boundary value problems, to apper.
[6] R. Sakamoto: Mixed problems for hyperbolic equations II, J. Math. Kyoto Univ., 10 (1970), 403-417.
[7] M. Schechter: General boundary value problems for elliptic partial differential equations, Comm. Pure Appl. Math., 12 (1959), 457-486.
(Received August 30, 1972)

