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1. Introduction. Let G be a finite group whose Sylow p-subgroup
is a T. I. set of order p^{a} and suppose that G has a faithful complex
character of degree less than p^{\alpha/2} . Then it is conjectured that a Sylow
p-subgroup is normal in G[2, 5] . Under some additional assumptions
this conjecture was solved by Brauer-Leonard [1] and Leonard [5, 6, 7]. In
this paper we prove the following theorem.

THEOREM. Let G be a finite p-solvable group whose Sylow p-subgroup
is a T. I. set of order p^{a} and suppose that G has a faithful complex
character of degree less than p^{a}./\epsilon-1 , where \epsilon=1 if p is odd and \epsilon=2 if
p is 2, then a Sylow p-subgroup is normal in G.

The method of the proof of Theorem is similar to one of Ito [4].
The notation is standard.

2. Proof of Theorem. We use induction on |G|, so let G be
a minimal counterexample of Theorem and we seek a contradiction. Let
P be a Sylow p-subgroup of G and \chi be a faithful complex character of
degree less than p^{a}/\epsilon-1 .

STEP 1. G=PQ. Q is a q-group for some prime q distinct from p
and normal in G.

PROOF. Since G is p-solvable and P is a T. I. set, it follows that
G/O_{p} , (G)\triangleright PO_{p} , (G)/O_{p} , (G), that is G\triangleright PO_{p’}(G) . If G\neq W_{p} , (G), by the
minimality of GPO_{p} , (G) char P and G\triangleright P. So G=PO_{p^{l}}(G) . Next
suppose that \pi(O_{p’}(G))=\{q_{1}, q_{2}, \cdots, q_{t}\} , t\geqq 2 . For each prime q_{\dot{\iota}} let Q_{i} be
a P-invariant Sylow q_{i}-subgroup then G\neq PQ_{i} and the minimality of G
implies Q_{i\overline{\equiv}}N_{G}(P) for every i. Thus G=N_{G}(P), which is a contradiction.
So t=1 .

STEP 2. We may assume \chi is irreducible.
PROOF. Lt \zeta be a irreducible constituent of \chi and assume Ker \zeta=

H\neq 1 . \zeta is a faithful character of G/H. If G\neq PH, then PH\triangleright P and
G\triangleright H char P\cap H. Since P is a T. I. set P\cap H=1 and the order of
Sylow p-subgroup of G/H is p^{a} . Since |G/H|<|G|G/H\triangleright PH/H, that is
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G\triangleright PH and G\triangleright PH char P. So we must have G=PH, in particular H=
Ker \zeta\underline{\supseteq_{-}}Q . Since above argument is valid for every constituent of \chi ,
if there is no faithful irreducible constituent of \chi , Ker \chi\underline{\supset-}Q . This is
a contradiction.

STEP 3. Q is nonabelian.
PROOF. Assume that Q is abelian. By [3, Theorem 5. 2. 3] Q=[P, Q]

\cross C_{Q}(P) . If C_{Q}(P)\neq 1 , then Q\neq[P, Q] and G\neq P[P, Q] . The minimality
of G shows P[P, Q]\triangleright P and [[P, Q], P]-\equiv P\cap Q=1 . Then [P, Q]\subseteq C_{Q}(P),
Q=C_{Q}(P) and G=\mathfrak{X}_{Q}(P)\triangleright P, a contradiction. So C_{Q}(P)=1 . If we set
N_{G}(P)=lQ_{0}(Q_{0}\subseteq Q), then G\triangleright Q imples that Q_{0}\subseteq C_{G}(P) . Therefore N_{G}(P)

=\mathfrak{X}_{G}(P)=P and G is a Frobenius group with complement P. The
characters of Frobenius group are known and the degrees of the faithful
irreducible characters of G are p^{a} . This contradicts the assumption in
Theorem.

STEP 4. Q is an extra-special q-group of order q^{2n+1},\cdot m\geqq 1 and
|N_{G}(P)|=p^{a}q.

PROOF. Let Q_{0} be a P-invariant proper normal subgroup of Q. Then
PQ_{0}\neq G and PQ_{0}\triangleright P. So [P, Q]\equiv-P\cap Q_{0}=1 and Q_{0\overline{\equiv}}C_{G}(P) . Therefore P
centralizes every P-invariant proper normal subgroup of Q. By [3, The-
orem 5. 3. 7] and Step 3 C_{Q}(P)=Z(Q)=Q’=\Phi(Q) is elementary abelian and
N_{G}(P)=\mathfrak{X}_{G}(P)=fZ(Q) . Since by Step 2 G has a faithful irreducible
character, Z(G)=Z(Q) is cyclic. So Q is extraspecial, |N_{G}(P)|=p^{a}q and we
can write }Q|=q^{2m+1} by [3, Theorem 5. 5. 2].

STEP 5. (final contradiction).

As Q is extra-special the degrees of the faithful irreducible characters
of Q are q^{m} . Restricting \chi to Q we obtain \chi(1)\geqq q^{m} . On the other hand
by Step 4 |G:N_{G}(P)|=q^{2m}\equiv 1 (mod p^{a}) and p^{a}|(q^{2m}-1)=(q^{m}+1)(q^{m}-1) . If p
is odd, then p^{a}\leqq q^{m}+1\leqq\chi(1)+1<p^{a} . If p is 2, then p^{a}\leqq 2(q^{m}+1)\leqq 2(\chi(1)

+1)<p^{n} . This is a final contradiction.
REMARK. If p is 2, by Suzuki [8] a group with an independent Sylow

2-subgroup is determined and has a well known structure. So our Theorem
and direct calculations show that the conjecture discribed in Introduction
is true for p=2.
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