On a problem of D. G. Higman

By Tosiro Tsuzuku

Dedicated to Professor Kiiti Morita on his 60th birthday

In his paper [3], D. G. Higman gave a characterization of (projective) symplectic groups $P S_{p}(4, q)$ of dimension 4 over the field F_{q} ([3], Theorem 2) and proposed the similar characterization for higher dimensional case. In this note, we will give a characterization of higher dimensional symplectic groups by adopting Kantor's idea in [5].

For notation we follow that of Higman [3] mostly. Given a group G of permutations of a finite set Ω we denote by a^{g} the image of $a \in \Omega$ under $g \in G$, and by G_{a} the stabilizer of $a, G_{a}=\left\{g \in G \mid a^{g}=a\right\}$. For a subgroup H of G and a subset X of Ω we let $a^{H}=\left\{a^{g} \mid g \in H\right\}, X^{g}=\left\{a^{g} \mid a \in X\right\}$ and $G_{X}=\bigcap_{a \in X} G_{a}$. We call the number of orbits of $G_{a}, a \in \Omega$, the rank of G and we call the lengths of these orbits the subdegrees of G. Our theorem is the following.

Theorem. Let G be a transitive rank 3 permutation group on a finite set Ω whose subdegrees are $1,\left(q^{n-1}-q\right) /(q-1), q^{n-1}$ where q is a power of a prime number p and $n \geqq 4$. Assume that there are at least q elements of $G_{a}, a \in \Omega$, fixing $a G_{a}$-orbit of length ($\left.q^{n-1}-q\right) /(q-1)$ pointwise. Then n is even and G contains a normal subgroup isomorphic to the projective symplectic group $P S_{p}(n, q)$ which is generated by all the symplectic elations.

Proof. For $a \in \Omega$, we denote G_{a}-orbits by $\{a\}, \Delta(a), \Gamma(a)$ with $\Delta(a)^{a}=$ $\Delta\left(a^{g}\right), \Gamma(a)^{\sigma}=\Gamma\left(a^{g}\right)(g \in G)$ and $|\Delta(a)|=\left(q^{n-1}-q\right) /(q-1),|\Gamma(a)|=q^{n-1}$. The intersection numbers λ, μ of G are defined by

$$
|\Delta(a) \cap \Delta(b)|= \begin{cases}\lambda & \text { if } b \in \Delta(a) \\ \mu & \text { if } b \in \Gamma(a) .\end{cases}
$$

Aecording to Lemma 5 in [3], we have

$$
\mu q^{n-1}=\frac{q^{n-1}-q}{q-1}\left(\frac{q^{n-1}-q}{q-1}-\lambda-1\right) .
$$

Hence $\mu=1+q+\cdots+q^{n-3}$ and $\lambda=-1+q+\cdots+q^{n-3}$. Thus, by Lemma 8 in [3], a block design \mathscr{Z} whose points are the elements of Ω and whose blocks are the symbols b^{\downarrow}, one for each $b \in \Omega$, and whose incidence $a \in b^{\perp}$
is defined by $a \in b^{\cup} \Delta(b)$, is symmetric with parameters

$$
\left(\frac{q^{n}-1}{q-1}, \quad \frac{q^{n-1}-1}{q-1}, \quad \frac{q^{n-2}-1}{q-1}\right)
$$

and G is a automorphism group of \mathscr{D} and primitive on Ω.
Now we prove that \mathscr{D} is the projective space $\mathscr{Q}(n-1, q)$, namely, \mathscr{D} is isomorphic to the design of points and hyperplanes of the desarguesian projective space $\mathscr{Q}(n-1, q)$ of dimension $n-1$ over F_{q}. For two distinct points $a, b \in \Omega$, we define a line by

$$
a+b=\bigcap_{a, b \in x^{\perp}} x^{\perp} .
$$

$a+b$ is called a line of singular type or a line of hyperbolic type according as $a \in b^{\perp}$ or $a \notin b^{\perp}$. Then we have that
(1) If $x \in a+b, x \neq a$, then $a+x=a+b$, and $a \in b^{\perp}$ if and only if $x \in b^{\perp}$, and so $a+b$ and the type of $a+b$ are uniquely determined by any two distinct points in $a+b$ ([3], §7, ii)).
(2) $G_{a} \cup_{\Delta(a)}$ fixes all lines through $a([3], \S 7, v)$).
(3) $\left|G_{a \cup \Delta(a)}\right|$ divides $h-1$, where h is the number of points on a line of hyperbolic type ([3], § 7, viii)).

Let $a+b, a$ and $b \in \Omega$, be a singular line and put $|a+b|=1+m_{1}$. Then there are $\left(\left|a^{\perp}\right|-1\right) / m_{1}$ lines in a^{\perp} through a and $\left(\left|a^{\perp} \cap b^{\perp}\right|-1\right) / m_{1}$ lines in $a^{\perp} \cap b^{\perp}$ through a. Hence $m_{1} \mid q=\left(\left|a^{\perp}\right|-1,\left|a^{\perp} \cap b^{\perp}\right|-1\right)$. For $d \in \Delta(a) \cap \Gamma(b)$,

$$
\begin{aligned}
\left|G_{a, b}: G_{a, b, a}\right| & =\frac{\left|G_{b}: G_{b, a}\right|}{\left|G_{b}: G_{a, b}\right|} \cdot\left|G_{b, d}: G_{a, b, a}\right| \\
& =\frac{q^{n-2}}{1+q+\cdots+q^{n-3}} \cdot\left|G_{b, a}: G_{a, b, a}\right|
\end{aligned}
$$

Hence $q^{n-2}| | d^{a_{a, b}} \mid$. Then, since $\Delta(a) \cap \Gamma(b)$ is invariant by $G_{a, b}$ and $|\Delta(a) \cap \Gamma(b)|=q^{n-2}, G_{a, b}$ is transitive on $\Delta(a) \cap \Gamma(b)$. Therefore a Sylow p-subgroup P of $G_{a, b}$ is transitive on $\Delta(a) \cap \Gamma(b)$. Let us assume that $m_{1}<q$. Since $\left|a^{\perp}-(a+b)\right|=\left(q^{n-1}-q\right) /(q-1)-m_{1}, p m_{1} \nmid\left|a^{\perp}-(a+b)\right|$. Since P acts on $a^{\perp}-(a+b)$, there is a point $c \in a^{\perp}-(a+b)$ such that $\left|c^{P}\right| \leqq m_{1}$. Then for each point d of $\Delta(a) \cap \Gamma(b)$,

$$
\left|d^{P_{o}}\right|=\left|P_{c}: P_{c, d}\right|=\frac{\left|P: P_{c, a}\right|}{\left|P: P_{c}\right|} \geqq \frac{\left|P: P_{c}\right|}{\left|P: P_{c}\right|} \geqq \frac{q^{n-2}}{m_{1}} .
$$

Since $a+c \nexists b$, we can choose d^{\perp} such that $a, c \in d^{\perp}$ and $b \notin d^{\perp}$, namely, $d \in a^{\perp} \cap c^{\perp}$ and $d \notin b^{\perp}$. Then $\left|d^{P_{c}}\right| \leqq\left|d^{q_{a, c}}\right| \leqq \lambda=\left(q^{n-2}-1\right) /(q-1)-2$. Thus

$$
\frac{q^{n-2}-1}{q-1}-2 \geqq \frac{q^{n-2}}{m_{1}} \geqq \frac{p q^{n-2}}{q}=p q^{n-3}
$$

which is impossible. Hence every singular line contains exactly $1+q$ points. Next let $a+b, a$ and $b \in \Omega$, be a hyperbolic line and put $|a+b|$ $=1+m_{2}$. Then we have

$$
1+m_{2} \leqq \frac{\left(q^{n}-1\right) /(q-1)-\left(q^{n-2}-1\right) /(q-1)}{\left(q^{n-1}-1\right) /(q-1)-\left(q^{n-2}-1\right) /(q-1)}=1+q
$$

([1], p. 65). On the other hand, from the assumption $q \leqq\left|G_{a \cup_{\Delta(a)}}\right|$ and (3), we have $q \leqq m_{2}$. Hence $|a+b|=1+q$. Thus \mathscr{D} is a symmetric block design with parameters $\left(\left(q^{n}-1\right) /(q-1),\left(q^{n-1}-1\right) /(q-1),\left(q^{n-2}-1\right) /(q-1)\right)$ and each line contains $1+q$ points.

According to a result of Dembowski-Wagner ([2]. Theorem), \mathscr{D} is the block design of $\mathscr{Q}(n-1, q)$. Since the coorespondence $a \leftrightarrow a^{\perp}$ defines a polarity δ of \mathscr{D} and $a \in a^{\perp}, \delta$ is a symplectic polarity of \mathscr{D} and the action of $g \in G$ commutes with δ. Since $G_{a \cup_{\Delta(a)}} \neq 1, G$ contains a $\left(a, a^{\perp}\right)$-elation for each $a \in \Omega$. Then the conclusion of our theorem follows by a result of HigmaneMclaughlin ([4], Theorem 1).

Department of Mathematics
Hokkaido University Sapporo Japan.

References

[1] Dembowski P.: Finite geometries, Springer 1968.
[2] Dembowski P.-Wagner A.: Some characterizations of finite projective spaces. Arch. der Math. 11, 465-469 (1960).
[3] Higman D. G.: Finite permutation groups of rahk 3. Math. Zeitschr. 86, 145156 (1964).
[4] Higman D. G.-Mclaughlin J. E.: Rank 3 subgroups of finite symplectic and unitary groups. J. reine u. Angew. Math. 218, 174-189 (1965).
[5] Kantor W. M.: Note on symmetric desings and projective spaces. Math. Zeitschr. 122, 61-62 (1971).
(Received November 2, 1974)

