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\S 1. Introduction and results

The aim of this note is to establish a generalization of the results in
the previous paper [2], Definitions and terminologies in [2] will be used
here also.

Let (t, x)=(t, x’, x_{n}) be variables in the (n+1)-dimensional Euclidean
space B^{n+1} and (\tau, \sigma, \lambda)(\tau=\xi-i\gamma) the dual variables of (t, x’, x_{n}) respectively.
Furthermore let \chi be a permutation of m letters 1, \cdots , m. In the open
half space R_{+}^{n+1}=\{x_{n}>0\} with boundary R^{n}=\{x_{n}=0\} , we then consider an
iterated mixed problem (P^{ \chi},B_{f}) for d’Alembertians:

P(t, x;D_{t}, D_{x})u=f in R_{+}^{n+1} ,
\chi B_{f}(t, x’ ; D_{t}, D_{x})u=g_{f} (j=1, \cdots, m) on R^{n} .

Here we shall recall the definitions of P and \chi B_{f}([2], \S 1) :

P^{0}(t, x; \tau, \sigma, \lambda)=\prod_{f=1}^{m}P_{f}^{0}(t, x;\tau, \sigma, \lambda) ,

P_{f}^{0}(t, x;\tau, \sigma, \lambda)=-\tau^{2}+a_{f}(t, x)^{2}(\lambda^{2}+|\sigma|^{2}) ,
0<a_{m}(t, x)<\cdots<a_{1}(t, x) ,

\chi=(\begin{array}{lll}1,2, \ldots\cdots, mk_{1},k_{2}, \ldots, k_{m}\end{array}) ,

xB_{1}^{0}(t, x’ ; \tau, \sigma, \lambda)=H_{k_{1}}(t, x’ ; \tau, \sigma, \lambda) ,
xB_{f}^{0}(t, x’ ; \tau, \sigma, \lambda)

=(B_{k}^{0_{J}})(t, x’ ; ^{\tau}h=1f-1 \tau, \sigma, \lambda) (j\geqq 2) ,

B_{f(t, x’ _{;} _{\tau}}^{0} ,

where b_{fk} and c_{f} are real valued and Q^{0} denotes the principal part of
a differential operator Q. We are concerned with L^{2}-well posed problems
([2], \S 2) and hence the solution of our problem has zero initial data on
t=0 provided that f=0 and g_{f}=0 in t<0 .

In order to state the main results we recall a classification of L^{2} will
posed problems of second order with constant coefficients ([2], \S 1). We
say a problem to be type U if it satisfies uniform Lopatinski condition and
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say other L^{2}-well posed problems to be type \overline{NU}. Among problems of
type \overline{NU}, Neumann problem is said to be of type N and other problems
are said to be of type NU. Furthermore every L^{2}-well posed problem is
said for the convenience to be of type \overline{[1} .

THEOREM 1. Let \chi be the unit in the permutation group. Thm an
iterated mixed problem (P^{ \chi},B_{f}) with constant coefficimts is L^{2}-will posed if
and only if the type of an ordered set ((P_{1}^{0}, B_{1}^{0}), \cdots , (P_{m}^{0}, B_{m}^{0})) of second order
problms (P_{f}^{0}, B_{f}^{0}) becomes one of the following m-types:

(U, \cdots\cdots\cdots\cdots, U,\overline{L}/) ,
(U, \cdots\cdots, U,\overline{NU}, N) ,

(1. 1) ...
(\overline{NU}, N, \cdots\cdots\cdots, N) .

Theorem 1 has been proved in [2], Theorem 2 except the sufficiency
in the case where a number n of space variables is greater than 2. Re-
garding (b_{f\lambda}, c_{f})(j=1, \cdots, m ; k=1, \cdots, n-1) as real variables in R^{mn}, we
see from Theorem 1 that all L^{2}-well posed iterated mixed problems (P^{ \chi},B_{f})

for the unit permutation \chi form a semi-algebraic variety with its stratifica-
tion given by (1. 1). In connection with Theorem 1 we remark the follow-
ing. Kreiss-Rauch ([8], \S 6) gave a counter example for the question: Is
a limit of L^{2}-well posed mixed problems with uniform Lopatinski condition
also L^{2}-well posed? Theorem 1 gives in particular such a counter example.
For instance, (P^{ \chi},B_{f}) with the unit \chi is not L^{2}-well posed if both types of
(P_{1}, B_{1}) and (P_{2}, B_{2}) tend to NU from U(m=2).

THEOREM 2. Let \chi be the unit in the permutation group. Assume
every frozen problm (P^{ \chi},B_{f})_{(t_{0},x_{0}’)} at boundary point (t_{0}, x_{\acute{0}}) is L^{2}-well posed.
Furthermore assume that, for such a point (t_{0}, x_{0}’), the fro m problems
(P_{f}^{0}, B_{f}^{0})_{(t,x’)}(j>l) are of type N near (t_{0}, x_{\acute{0}}) if (P_{k}^{0}, B_{k}^{0})_{(t_{0},x_{0}’)}(k<l) are of type
U and (P_{l}^{0}, B_{l}^{0})_{(t_{0},x_{0}’)} is of type \overline{NU} for some l. Then the iterated mixed

problm\iota(P^{ \chi},B_{j}) is L^{2}-well posed.
In the papers [7], [10] T‘ Shirota and T. Ohkubo have done recently

an attempt to establish a general theory of L^{2}-well posed mixed problems
for systems of first order and obtained many interesting results. For the
L^{2}-well posed mixed problems in Theorem 2, the condition \coprod), \beta) on Hes-
sian and zeros of Lopatinski determinant in [7], \S 1 is not always satisfied
near a point (t_{0}, x_{0}’) in Theorem 2 with l<m . However, the method in [7],

\S 7 and 8 deriving a priori estimate is applicable to our case (see the re-
mark after the condition II), \gamma’ ) in [7], \S 1. The proof of Theorem 2 is
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given in \S 2.
From Theorem 2 we obtain the following corollary which is completed

the proof of Theorem 1.
COROLLARY 1. Let \chi be the unit in the permutation group. Further-

more let the types of or&red set ((P_{1}^{0}, B_{1}^{0}), \cdots , (P_{m}^{0}, B_{m}^{0}))_{(t,x)}, offro m problms
be uniformly in {t,x’) one of m types stated in Theorem 1. Then the
iterated mixed problem (P^{ \chi},B_{f}) is L^{2}-well posed.

In \S 3 we present an example which satisfies the assumptions of TheO-
rem 2, but does not enjoy the one of Corollary 1, the iterated mixed
problems for permutations \chi different from the unit and the precision of
Kreiss- Rauch example.

\S 2. Proof of Theorem 2

The proof is mainly based on the method developed in [7]. We reduce
near zeros of Lopatinski determinant our problem (P^{ \chi},B_{f}) to problem for
2m\cross 2m system of pseud-differential operators of first order and show here
a process to the stage applicable thier method to our problem. In this
section we assume that \chi is the unit.

In order to carry out the above reduction we use the following finite
partition of unity in the cotangent space

(2. 1) \sum_{f,k\geq 1}\psi_{f}(\xi, \sigma, \gamma)\phi_{k}(t, x’)\phi_{0}(x_{n})+(1-\phi_{0}(x_{n}))=1

constructed in the following manner. Let

S=\{(\tau, \sigma)=(\xi-i\gamma, \sigma);|\tau|^{2}+|\sigma|^{2}=1 , \gamma\geqq 0\}

and let \{\psi_{f}’\} be a finite partition of unity in the compact set S. Then the
\psi_{f} are defined by \psi_{f}(\xi, \sigma, \gamma)=\psi_{f}’(\xi\Lambda^{-1}, \sigma\Lambda^{-1}, \mathcal{T}\Lambda^{-1}) where \Lambda=(|\tau|^{2}+|\sigma|)^{1/2} . Fur-
thermore let \{\phi_{k}\} be a finite partition of unity in R^{n} such that \phi_{1}=1 in
|t|+|x’|\geqq R>0 and \phi_{0}(x_{n})=1 near the boundary x_{n}=0 . Hereafter we
denote a representative of terms in (2. 1) by \beta(t, x;\xi, \sigma, \gamma) and put \beta^{0}(t, x’ ;
\xi, \sigma, \gamma)=\beta(t, x’, 0; \xi, \sigma, \gamma) .

Let a point (t_{0}, x_{0}’) be arbitrary but fixed. Furthermore assume that
the frozen problems (P_{l+1}^{0}, B_{l+1}^{0})_{(t,x’)} , \cdots , (P_{m}^{0}, B_{m}^{0})_{(t,x’)} are of (type N near (t_{0} ,
x_{0}’) if (P_{1}^{0}, B_{1}^{0})_{(t_{0},x_{0}’)} , \cdots , (P_{l-1}^{0}, B_{l-1}^{0})_{(tx’)}0’ 0 are of type U and (P^{0}, B^{0})_{(tx’\rangle}0’ 0 is of
type NU for some l. Then we see from [2], Lemma 4. 1 and the fact
0<a_{m}<\cdots<a_{1} that Lopatinski determinant \chi R(t_{0}, x_{0}’ ; \tau, \sigma) for (P^{ X},B_{f}) has
zeros only on each sheet \xi^{2}=a_{f}(t, x’, 0)|\sigma|^{2}(j=l, \cdots, m) . In fact, we have
from [2], (3. 2) that
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\chi R(t_{0}, x_{0}’ ^{;} ^{\tau}

= \prod_{f=l}^{m}R_{f}(t_{0}, x_{0}’ ; \tau, \sigma)\cross (non zero factor).

Here R_{f} is Lopatinski determinant for (P_{f}, B_{f}) of second order:

R_{f}(t, x’ ; \tau, \sigma)=B_{f}^{0}(t, x’ ; \tau , \sigma , \lambda_{f}^{+}(t, x’, 0;\tau, \sigma))

(2. 2) = \lambda_{f}^{+}(t, x’, 0;\tau, \sigma)-\sum_{k=1}^{n-1}b_{fk}(t, x’)\sigma_{k}-c_{f}(t, x’)\tau

=\lambda_{f}^{+}(t, x’, 0;\tau, \sigma)-\alpha_{f}(t, x’ ; \tau, \sigma)

and \lambda_{f}^{+} (resp. \lambda_{f}^{-} ) isaroot of P_{f}^{0}(t, x;\tau, \sigma, \lambda)=0 in \lambda which has positive
(resp. negative) imaginary part for {\rm Im}\tau=-\gamma<0 . More precisely it follows
from [2], Corollary 4. 2 that R_{l}(t_{0}, x_{0}’ ; \xi_{0}, \sigma_{0})=0 is equivalent to

(2. 3) \alpha_{l}(t_{0}, x_{\acute{0}} ; \xi_{0}, \sigma_{0})=0 and \xi_{0}^{2}=a_{l}(t_{0}, x_{0}’, 0)|\sigma_{0}|^{2} .

Furthermore since (P_{f}^{0}, B_{j}^{0})_{(t_{0^{x’}0})}(j>l) is of type N we see that R_{f}(t_{0}, x_{0}’ ; \xi_{0} ,
\sigma_{0})=0 is equivalent to

(2. 4) \xi_{0}^{2}=a_{f}(t_{0}, x_{0}’, 0)|\sigma_{0}|^{2} .
for each j>l .

Remark that if (P_{l}^{0}, B_{l}^{0})_{(t_{0},x_{0}’)} is of type NU then the points (\xi_{0}, \sigma_{0})

satisfying (2. 3) form 1-dimensional manifold for fixed (t_{0}, x_{0}’) (see [2], p. 114).
Lopatinski determinant is different from zero except points satisfying

(2. 3) or (2. 4). Hence it follows from the method developed in [3], [4], [9]
and a sharp form of G[mathring]_{a}rding inequality that if \beta(t, x’ ; \xi, \sigma, \gamma) has the
support outside such points then there exist positive constants C and \gamma_{0}

such that
\gamma^{2}||\beta u||_{2m-1,\gamma}^{2}+\mathcal{T}\sum_{f=0}^{2m-1}\langle\langle\beta^{0}D_{n}^{f}u\rangle\rangle_{2m-1-f,\gamma}^{2}

\leqq C(||Pu||_{0,\gamma}^{2}+\gamma\sum_{f=1}^{m}\langle\langle^{\chi}B_{f}u\rangle\rangle_{2m-2f,\gamma}^{2}

+ \gamma||u||_{2m-1,\gamma}^{2}+\mathcal{T}\sum_{f=1}^{2m-1}\langle\langle D_{n}^{f}u\rangle\rangle_{2m-1-j-1/2,r}^{2})

for any u\in H_{2m,\gamma}(R_{+}^{n+1}) and \gamma\geqq\gamma_{0} . Here we use the same notations as in
[2], \S 2 for Hilbert spaces of functions and their norms. Furthermore
recall the definition of pseud0-differential operator a=a(t, x;D_{t}’, D_{oe’} ; \gamma)

with its symbol a(t, x;\xi, \sigma, \gamma) depending parameters \gamma>0 and x_{n}\geqq 0 :

au{t, x) =a(t, x;D_{t}’, D_{x’}, \gamma)u(t, x)

=(2 \pi)^{-n}\int_{R^{n}}e^{i(\tau t+cx^{l})}a(t, x’ 0, \xi, \sigma, \gamma) \theta(\tau, \sigma, x_{l},)aed\sigma ,



Iterated mixed problems for d’Alembertians II 285

where
\theta(\tau, \sigma, x_{n})=\int_{R^{n}}e^{-i(\tau t+\sigma x’)}u(t, x’, x_{n}) dtdx’,

D_{t}’=D_{t}+i\gamma
‘

Therefore, in order to prove a priori estemate

(2. 5) \gamma^{z}||u||_{2m-1,\gamma}^{2}\leqq C(||Pu||_{0,r}^{2}+\sum_{f=1}^{m}\langle\langle^{\chi}B_{f}u\rangle\rangle_{2nl^{-- 2f+1/2,\gamma}}^{2})

it suffice to show the estemate
\gamma^{2}||\beta u||_{2n-1,\gamma}^{2}

\leq C(||Pu||_{0,\gamma}^{2}+\sum_{f=1}^{n}\langle\langle^{\chi}B_{f}u\rangle\rangle_{2m-2f+1/2.\gamma}^{2}

(2. 6)
+\gamma||u||_{2m-1,\gamma}^{2}

+ \gamma\sum_{f=0}^{2m-1}\langle\langle D_{n}^{f}u\rangle\rangle_{2m-1-f-1/2.\gamma}^{2}) ,

for any u\in H_{2n,\gamma}(R_{+}^{n+1}) and \gamma\geqq\gamma_{0}>0 where the support of \beta is contained
in a neighbourhood of a point (t_{0}, x_{0}’, 0;\xi_{0}, \sigma_{0}) satisfying (2. 3) or (2. 4)
Here for (1-\phi_{0}(x_{n}))u we use the hyperbolic a priori estemate without
boundary conditions. The existence of solutions is proved by (2. 5) and
a priori estemate for the dual problem (for instance see [5] or [2], Proposi-
tion 7. 2)

Now we reduce in a neighbourhood of a point satisfying (2. 3) or (2. 4)
our problem to one for 2m\cross 2m system of first order. First we consider
the equation Pu=f. Since a_{f}(t, x)\neq 0(j=1, \cdots, m), the principal symbol of
P_{f} may be replaced by the following:

P_{f}^{0}(t, x;\tau, \sigma, \lambda)=\lambda^{2}+|\sigma|^{2}-a_{f}(t, x)^{-2}\tau^{2}

(2. 7) =\lambda^{2}-p_{f}(t, x;\tau, \sigma)\Lambda^{2}

=(\lambda-\lambda_{f}^{+}(t, x;\tau, \sigma)\Lambda)(\lambda-\lambda_{f}^{-}(t, x;\tau, \sigma)\Lambda)

where
p_{f}(t, x;\tau, \sigma)=a_{f}(t, x)^{-2}\tau^{2}\Lambda^{-2}-|\sigma|^{2}\Lambda^{-2} ,

\Lambda=\Lambda(\tau, \sigma)=(|\tau|^{2}+|\sigma|^{2})^{1/2},, \tau=\xi-i\gamma ,

and we consider here \lambda_{f}^{+} as symbols of order zero.
Put

V={}^{t}(\Lambda^{2m-1}u, \Lambda^{2m-2}D_{n}u, \cdots, D_{n}^{2n-1}u) ,

where {}^{t}M stands for the transposed matrix of a matrix M. Furthermore
let A k the \cdot pseudo-differential operator of order 0 whose symbol is
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A(t, x;\tau, \sigma)=r^{g}\{\begin{array}{lllll}0, 1 0, 1 0 .......‘........... 0 1 0 1-q_{n}, 0, \cdots -q_{1},0 \end{array}\} .

Here the symbols q_{J} of order zero are determined by the relation:

\prod_{f=1}^{m}P_{f}^{0}=\lambda^{2m}+q_{1}\Lambda^{2}\lambda^{2m-2}+\cdots+q_{m_{1}}\Lambda^{2m}.
’

Then we see that the quation Pu=f becomes
(2. 8) D_{n}V-A\Lambda V+(l.\cdot 0...0.)V=F

where F={}^{t}(0, \cdots , 0, f) and (l. 0.0.) means “lower order operator’.
Let S^{f}(t, x;\tau, \sigma) be the 2 m\cross 2m homogeneous matrix of order zero

arising from replacing (2i-1)-th and 2j-th columns in the matrix below by
V_{2farrow 1}={}^{t}(1,0,p_{f}, \circ, \cdots, p_{f}^{m-1},0) and V_{2f}={}^{t}(0,1,0, p_{f}, \cdots,, o,p_{f}^{m-1}) :

(2. 9) \{

1 1 ...... 11

\lambda_{1}^{+}..\cdot

\lambda_{1}^{-}.\cdot

.
\cdot .....

\lambda_{m}^{+}..\cdot

\lambda_{m}^{-}...’)

\backslash (\lambda_{1}^{+})^{2m-1}(\lambda_{1}^{+})^{2m-1}\cdots(\lambda_{m}^{+})^{2m-1}(\lambda_{m}^{-})^{2m-1}

From the definitions of p_{f} , q_{J} , \lambda_{f}^{\pm} and the fact that AV_{2f}=V_{2f- 1} , AV_{2f-1}=

t(1, 0, p_{\phi} , 0, \cdots , 0, p_{f}^{m-1}, Q.,, -q_{m}-p_{f}q_{m-1}-\cdots-p_{f}^{m-1}q_{1} ), we have

(2. 10) &MJ (t, x; \tau, \sigma)=AS^{j}(t,x; \tau, \sigma) (j=1,\cdots , m).

Here M^{f} is defined by

(2. 11) M^{f}= .\lambda_{1}^{+}\lambda_{1}^{- }0^{\cdot}..p_{f}0

01..

.

\lambda_{m}^{+}0\lambda_{m}^{-]}

Put U_{f}=S^{f}V. Then it follows from (2. 8) and (2. 10) that
(2. 12) D_{n}\beta U_{j}-M^{f}\Lambda\beta U_{f}+(l. 0.0.)U_{f}=(\phi S^{f})^{-1}\beta F (i=1, \cdots, m) .
Here the support of symbol of \beta is contained in aneighbourhood of
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a point (t_{0}, x_{0}’, 0;\xi_{0}, \sigma_{0}) satisfying (2. 3) or (2. 4). Moreover, the symbol of
\phi is equal to 1 on the support of \beta .

Second we shall get the boundary condition for (2. 12) from the original
one \chi B_{f}u=g_{f}(j=1, \cdots, m) . Clearly we have
(2. 13) \Lambda^{2m-2f\gamma}.B_{f}u=\Lambda^{2m-2j}g_{J} .
Let q_{fk}(t, d; \tau, \sigma) (j=2, \cdots, m;k=1, \cdots,j-1) be defined by the relations:

Q_{f}^{0}(t, x^{\prime } \tau, \sigma, \lambda)

(2. 14)
=\lambda^{2f-2}+q_{f1}\Lambda^{2}\lambda^{2f-4}+\cdots+q_{f\overline{f-1}}\Lambda^{2f-2} ,

where the first equality is the definition. Furthermore we consider here
\alpha_{f} defined in (2. 2) as symbol of order zero, i.e. ,

(2. 15) B_{f}^{0}(t, x’ ; \tau, \sigma, \lambda)=\lambda-\alpha_{f}(t, x’ ; \tau, \sigma)\Lambda .
Then it follows from (2. 13), (2. 14), (2. 15) and the definition of V that the
boundary condition for (2. 8) becomes
(2. 16) DV+(l. 0. t.)\vee=G

where
G-{}^{t}(\Lambda^{2m-2}g_{1}, \cdots, \Lambda^{2}g_{m-1}, g_{m})

and D(t, x’ ; \tau, \sigma) is the following m\cross 2m matrix:

[_{-\alpha_{m}q_{m1}}^{-\alpha_{2}q_{21}}-..\cdot.\cdot.\alpha_{1}q_{m1}q_{21}1.\cdot..\cdot.-\alpha_{2}.\cdot.\cdot.\cdot\ldots.100..\cdot.\cdot...00-\cdot.\alpha_{m}..\cdot.\cdot.q_{m\overline{m-1}}-\cdot.\cdot.\alpha_{m-1}00^{\cdot}\cdot.q_{m\overline{n-1}}001^{\cdot}.\cdot-\alpha_{m}00^{\cdot}.\cdot 001^{\cdot}.\cdot]

Since U_{f}=S^{f}V, the boundary condition (2. 16) becomes

(2. 17) DS^{j}\beta U_{f}+(l. 0.0.)U_{f}=\beta G (j=1, \cdots, m) .

Here DS^{f} is the m\cross 2m matrix of order zero arising from replacing (2j

-1)-th and 2j-th columns in the matrix below by {}^{t}(-\alpha_{1}, -\alpha_{2}Q_{2}^{0}(\lambda_{f}^{-}), \cdots ,
-\alpha_{f}Q_{f}^{0}(\lambda_{f}^{-}), 0, \cdots , 0) and {}^{t}(1, Q_{2}^{0}(\lambda_{f}^{+}),’\cdots, Q_{f}^{0}(\lambda_{f}^{+}), 0, \cdots , 0) respectively :

(2. 18)

.\chi B_{1}^{0}(\lambda_{1}^{+})xB_{1}^{0}(\lambda_{1}^{-})xB_{1}^{0}(\lambda_{2}^{+})\chi H_{1}(\lambda_{2}^{-})

0 0 xB_{2}^{0}(\lambda_{2}^{+})xB_{2}^{0}(\lambda_{2}^{-})

.
0^{\cdot}.\cdot 0^{\cdot}

.. 00^{\cdot}.\cdot

00^{\cdot}.\cdot 0^{\cdot}...\cdot..\cdot.0\gamma.H_{m}^{\cdot}.\cdot...(\lambda_{n}^{+})xB_{m}^{0}..\cdot..\cdot(\lambda_{m}^{-})x_{B_{2}^{0}(\lambda_{n}^{+})B_{2}^{0}(\lambda_{m}^{-)}}\gamma B_{1}^{0}(\lambda_{n}^{+})\prime B_{1}^{0}(\lambda_{m}^{-)}\chi]
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Q_{f}^{0}(\lambda_{k}^{\pm})=(\lambda_{k}^{\pm})^{2f-1}+q_{f1}(\lambda_{k}^{\pm})^{2f-4}+\cdots+q_{f\overline{f-1}} ,
B_{f}^{0}(\lambda_{k}^{\pm})=\lambda_{k}^{\pm}-\alpha_{f} , xB_{f}^{0}=(B_{f}^{0}Q_{f}^{0})(\lambda_{k}^{\pm}) .

In order to relate the boundary conditions (2. 17) to Lopatinski deter-
minant and reflection coefficients, put

(2. 19) B^{\pm}(t_{ X’}, _{;} _{\tau}\{ xB_{1}^{0}(\lambda_{1}^{\pm})\cdot..\cdot.\cdot xB_{1}^{0}.\cdot.(\lambda_{m}^{\pm})0\chi B_{m}^{0}(\lambda_{n}^{\pm}))t

Then we see from [2], p. Ill that det B^{+} is nothing but the numerator of
Lopatinski determinant \chi R for (P^{ \gamma},B_{j}) and (j, k)-components of the matrix
(B^{+})^{-1}B^{-} are also the reflectin coefficients \gamma C_{jk} for (P^{ \chi},B_{f}) . Let B^{J’} and
B^{f\prime\prime} be the matrices resulting from replacing j-th column in B^{+} and B^{-} by
{}^{t}(1, Q_{2}^{0}(\lambda_{f}^{+}), \cdots , Q_{f}^{0}(\lambda_{f}^{+}), 0, \cdots , 0) and {}^{t}(-\alpha_{1}, -\alpha_{2}, Q_{2}^{0}(\lambda_{f}^{-}), \cdots,\cdot-\alpha_{f}Q_{f}^{0}(\lambda_{f}^{-)} 0,\cdots, 0)

decrived above respectively. Then we have
(2. 20) det B^{+}=R_{f} det B^{f\prime}

where R_{f}=B_{f}^{0}(\lambda_{f}^{+}) is Lopatinski determinant for (P_{f}, B_{f}) of second order.
Using the above notations we can replace (2. 18) by

(2. 21) B^{f\prime}\beta^{0}U_{f}’+B^{f\prime\prime}\beta^{0}U_{f}’+(l. 0.0.)U_{f}=\beta^{0}G (j=1, \cdots, m)

where \beta is the same one as in (2. 12) and
U={}^{t}(u_{1}^{+}, u_{1}^{-}, \cdots, u_{m}^{+}, u_{m}^{-}) ,
U_{f}={}^{t}(u_{1}^{+}, u_{1^{ }}^{- },\cdots, u_{f-1}^{-}, u’, u’, u_{f+1}^{+}, \cdots, u_{m}^{+}, u_{n}^{-}) ,
U_{f}’={}^{t}(u_{1}^{+}, \cdots, u_{f-1}^{+}, u’, u_{f+1}^{+}, \cdots, u_{m}^{+}) ,
U_{f}’={}^{t}(u_{1}^{-}, \cdots, u_{f-1}^{-}, u’, u_{f+1}^{-}, \cdots, u_{m}^{-}) .

From (2. 3), (2. 4) and (2. 20) we may assume that the matrix B^{f\prime} is
non-singular on the support of \beta . Consequently our iterated mixed problem
is micr0-locally reduced to one for 2 m\cross 2m system of first order:

D_{ll}\beta U_{f}–M^{f}\Lambda\beta U_{f}+(l. 0.0.)U_{f}=(\overline{\phi}S^{f})^{-1}\beta F in R_{+}^{n+1}’ ,
(2. 22)

\beta^{0}U_{f}’+K^{f}\beta^{0}U_{f}^{\prime j}+(l. 0.0.)U_{f}=(\overline{\psi}^{0}B^{f\prime})^{-1}\beta^{0}G on R^{n}

for j=1, \cdots , m. Here
(2. 23) K^{f}=(B^{J’})^{-1}B^{f\prime\prime}

and \beta, \overline{\phi} are the same as in (2. 12). The components of the matrix K^{f} are
called the coupling coefficients of (P^{ \chi},B_{f}) in [7].

Now we ready for the proof of a priori estemate (2. 6). To apply the
method in [7] to our case, we first introduce a new variable \zeta in a neigh-



Iterated mixed problems for d’Alembertians II 289

bourhood of a point (t_{0}, x_{0}’, 0 ; \xi_{0}, \sigma_{0}) satisfying (2. 3) :

(2. 24) \zeta=(\tau-a_{l}(t, x’, 0)|\sigma|)\Lambda^{-1} if \xi_{0}>0

or

(2. 25) \zeta=(\tau+a_{l}(t, x’, 0)|\sigma|)\Lambda^{-1} if \xi_{0}<0

and rewrite \alpha_{l} as
\alpha_{l}(t, x’ ; \tau, \sigma)=\alpha_{l0}(t, x’ ; \sigma)+c_{l}(t, x’)\zeta .

Then we see from the proof of [2], Lemma 4. 1 that, in a neighbourhood
of (t_{0}, x_{0}’ ; \xi_{0}, \sigma_{0}) ,

(2. 26) \alpha_{l0}(t, x’ ; \sigma)\geqq 0 or \leqq 0

corresponding to (2. 24) or (2. 25) respectively. In fact, if \alpha_{l0}(t, x’ ; \sigma)<0 in
the case (2. 24) than R_{l}(t, x’ ; \xi, \sigma)=0 for some \xi with \xi>a_{l}(t, x’, 0)|\sigma| ,
which contradicts L^{2}-well posedness of frozen problems (also see [7], Lem-
ma 6. 4). The symbol \alpha_{l} play the same role as -Q in [7], \S 6. Since
(P_{f}^{0}, B_{f}^{0})_{(t,x’)}(j>l) ape of type N near (t_{0}, x_{0}’), the symbols \alpha_{j} are identically
equal to zero. Hence we have (2. 26) for j>l .

Secondly we rewrite, near a point satisfying (2. 3), the coupling coef-
ficients K^{l} as a simple form. It follows from (2. 23) and definitions of B^{l\prime},
B^{l\prime\prime} that, denoting k_{fk}^{l} by (j, k)-component of K^{l} ,

k_{ll}^{l}(t, x’ ; \tau, \sigma)=-\alpha_{l}(t, x’ ; \tau, \sigma) ,
(2. 27)

k_{fk}(t, x’ ; \tau, \sigma)=0 (j>k)

and for j>l
k_{lf}^{l}(t, x’ ; \tau, \sigma)

(2. 28) =|_{B_{f}^{0}Q_{f}^{0}(\lambda_{j}^{-)}}^{H_{l+1}Q_{l+1}^{0}(\lambda_{f})}B_{l}^{0}..\cdot Q_{l}^{0}(\lambda_{f}^{-})B_{l+i}^{0}Q_{l+1}^{0}.\cdot.(\lambda_{l+1}^{+})B_{l}^{0}Q_{l}^{0}(\lambda_{l+1}^{+})0_{0’}0’..\cdot..\cdot.."

.
H_{l+1}Q_{l+1}^{0}(\lambda_{f}^{+})B_{f}^{0}Q_{f}^{0}(\lambda_{f}^{+})B_{l}^{0}Q_{l}^{0}(\lambda_{f}^{+})|

/1^{f} \underline{1}Q_{k}^{0}(\lambda_{k}^{+})\prod_{kk\underline{-}l=l+1}^{j}.B_{k}^{0}(\lambda_{k}^{+}) .

Remark that \alpha_{f} is identically equal to zero near t_{0} , x_{0}’) for j>l . Therefore,
by adding the last column to the first column in the determinant (2. 28),
we obtain that
(2. 29) k_{lf}^{l}(t, x’ ; \tau, \sigma)=-2\alpha_{l}(t, x’ ; \tau, \sigma) (j>l) .
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To derive (2. 6) this plays an important role. Consequently, it follows from
(2. 27), (2. 28) and (2. 29) that

(2. 30) K^{l}=\{\begin{array}{lllll} K_{11} K’’ K_{12}0 \cdots 0 -\alpha_{l} K_{2} 0 0 \vdots K_{22} 0 \end{array}\} l .

where K_{2} is the 1\cross(m-l) matrix :

(2. 31) (-2\alpha_{l}, \cdots, -2\alpha_{l}) ,

K’ is an l\cross 1 matrix and K_{11} , K_{12} are triangular. The matrix K^{l} plays
the same role as K in [7], Lemma 6. 7 and we have

K^{l}=(\begin{array}{lll}K_{IIIIII} K_{IIIII} K_{IIIl}K_{IIIII} K_{IIII} K_{III}K_{IIII} K_{III} K_{II}.\end{array})

with the notations in [7]. Hence we see from (3. 31) that the conclusion
(6. 7. 1) of [7], Lemma 6. 7 is valid, i.e. , near a point satisfying (2. 4),

(2. 32) |K_{2}|^{2}=4|\alpha_{l}|^{2}\leqq 4\alpha_{l}(\zeta=0) .
On the other hand, since \alpha_{f}(j>l) vanish in a neighbourhood of a point
satisfying (2. 4), the corresponding K_{2} vanish there. Hence (2. 32) hold for
these cases.

Therefore a priori estemate (2. 6) is obtained from (2. 26) and (2. 32)
in the same way as in [7], \S 7 and 8.

\S 3. Examples

3. 1. First we present an example which satisfies the assumption of
Theorem 2, but does not enjoy the assumption in Corollary 1. Consider
the following mixed problems of second order in the two space variables
(y, x)=(x_{1}, x_{2}) :

\{

P_{1}^{0}=-D_{t}^{2}+D_{y}^{2}+D_{x}^{2} , \mathfrak{l}^{P_{2}^{0}=}-D_{t}^{2}+4^{-1}(D_{y}^{2}+D_{ae}^{2}) ,
H_{1}=D_{ib}-b_{1}(y)D_{y}-c_{1}(y)D_{t} , |B_{2}^{0}=D_{it}-b_{2}(y)D_{y}-c_{2}(y)D_{t} ,

where
c_{1}(y)\geqq b_{1}(y)>0 , c_{1}(y)=b_{1}(y) in |y|\leqq 1 ,
c_{2}(y)\geqq 2b_{2}(y)>0 , c_{2}(y)=b_{2}(y)=0 in |y|\leqq 1+\epsilon (\epsilon>0) ,
b_{1}(y), b_{2}(y), c_{1}(y), c_{2}(y) are constant for large |y| .
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Then the iterated mixed problem (P^{ \chi},B_{f}) (\chi=the unit) is L^{2}-well posed and
in a neighbourhood of \underline{\dashv-}1 the type of frozen problems (P_{1}^{0}, B_{1}^{0})_{y} vary from
NU to U.

3. 2 Secondly we present a characterization of iterated mixed problems
(P^{ \chi},B_{f}) of 6 th order with constant coefficients. As announced in [2], \S 1,
there appears a more restricted type than one in Theorem 1.

PROPOSITION 3. 1. An iterated mixed problem (P^{ \gamma},\cdot B_{f}) of 6th order
with constant coefficients is L^{2}-well posed if and only if the type of an
ordered set ((P_{1}^{0}, B_{1}^{0}), (P_{2}^{0}, B_{2}^{0}), (P_{3}^{0}, B_{3}^{0})) of second order problems becomes
one of the following three types:

(i) \chi=(\begin{array}{l}1,2,31,2,3\end{array}) , (\begin{array}{l}1,2,33,2,1\end{array}) , (\begin{array}{l}1,2,31,3,2\end{array}) ,

(\begin{array}{l}1,2,32,3,1\end{array}) , three types are
(U, U,\overline{U}) , (U,\overline{NU}, N) , (\overline{NU}, N, N) ,

(ii) \chi=(\begin{array}{l}1,2,32,1,3\end{array}) , (\begin{array}{l}1,2,33,1,2\end{array}) , three types are

(U, U,\overline{U}) , (U_{2},\overline{NU}, N) , (\overline{NU}, N, N) (n=2) ,
(U, U,\overline{U}) , (U_{2}, NU, N) , (\overline{NU}, N, N) (n>2) .

Here we explain a type U_{2} depending on (P_{2}^{0}, B_{2}^{0}) . A mixed problem
(P_{1}^{0}, B_{1}^{0}) of second order is said to be type U_{2} if

c_{1}\neq 0 and c_{1}a_{2}=|b_{11}| (n=2) ,
b_{2}\neq 0, c_{1}a_{2}|b_{2}|=|(b_{1}, b_{2})| and c_{1}a_{1}>|b_{1}| (n>2)

where b_{f}=(b_{f1}, \cdots, b_{f\overline{r\iota-1}})(j=1,2), (b_{1}, b_{2})= \sum_{k=1}^{n-1}b_{1k}b_{2k} and |b_{f}|=(b_{f}, b_{f})^{1/2} .
Recall that the type U of (P_{1}^{0}, B_{1}^{0}) means c_{1}a_{1}>|b_{1}| . Then all problems of
type U_{2} form a subset of problems of type U. Here we use a_{2}<a_{1} .

The proof of Proposition 3. 1 is based on a characterization of an
L^{2}-well posed mixed problem with constant coefficients by the reflection
coefficients (see the proof of Theorem 1 in [2]). Furthermore we use the
fact that the zeros of Lopatinski determinant R_{f} for (P_{f}^{0}, B_{f}^{0}) has of dimen-
sion 1 if (P_{f}^{0}, B_{f}^{0}) is of type NU (see [2], p. 114).

3. 3. Finally we give the precision of Kreiss-Rauch example. Con-
sider the mixed problem (P, B) for 3\cross 3 system of first order with constant
coefficients in two space variables (x_{1}, x_{2})=(y, x) :
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P=D_{t}+(\begin{array}{lll}1 0 0^{\backslash }’0 -1 00 0 s\end{array}) D_{x}+(\begin{array}{llll}\prime 0 -1 0 -1 0 0 0 0 0\end{array}) D_{y} ,

B=(\begin{array}{lll}1, \alpha, 0a, b, -1\end{array}) .

Here 0<s<1 and a, b, \alpha are complex constants. Then we have the
following

PROPOSITION 3. 2. The mixed problem (P, B) mentioned above is L^{2}-

well posed if and only if either |\alpha|<1 or |\alpha|=1 and a\alpha-b=0 .
The mixed problem (P, B) satisfies the uniform Lopatinski condition if

and only if |\alpha|<1 . Let \alpha, a, b be satisfied,. |\alpha|=1 and a\alpha-b\neq 0 . Then
the corresponding problem (P, B) is not L^{2}-well posed, although it is a limit
of L^{2}-well posed problems with uniform Lopatinski condition. H. O. Kreiss-
J. Rauch proved implicitly the existence of such \alpha, a, b (see [8], \S 6).
PP32ThfhiiiROOF OF ROPOSITION . . e roots o caracterstc equaton

det P(\tau, \sigma, \lambda)=0 are
\lambda_{1}^{\pm}(\tau, \sigma)=\pm i\sqrt{\sigma^{2}-\tau^{2}} , \lambda_{2}^{+}=-s^{-1}\tau

and the corresponding right eigenvectors are
e_{1}^{\pm}(\tau, \sigma)={}^{t}(\lambda_{1}^{\pm}-\tau, -\sigma, 0) ,
e_{2}^{+}={}^{t}(0,0,1) ,

respectively. Here Im \lambda_{f}^{+}>0(j=1,2) and Im \lambda_{1}^{-}<0 if Im \tau=-\gamma<0 . Hence
Lopatinski determinant R(\tau, \sigma) for (P, B) is as follows :

(3. 1) R(\tau, \sigma)=|\begin{array}{l}(b_{1},e_{1}^{+}) (b_{1},e_{2}^{+})(b_{2},e_{1}^{+}) (b_{2},e_{2}^{+})\end{array}| =-(\lambda_{1}^{+}-\tau-\alpha\sigma) ,

where b_{1}=(1, \alpha, 0) and b_{2}=(a, b, -1) . Furthermore, the reflection coefficients
C_{11} and C_{21} for (P, B) are as follows :

(3. 2) C_{11}(\tau, \sigma)=|\begin{array}{ll}(b_{1},e_{1}^{-}) (b_{1},e_{2}^{+})(b_{2},e_{1}^{-}) (b_{2},e_{2}^{+})\end{array}| /R( \tau, \sigma)=\frac{\lambda_{1}^{-}-\tau-\alpha\sigma}{\lambda_{1}^{+}-\tau-\alpha\sigma} ,

(3. 3) C_{21}(\tau, \sigma)=|\begin{array}{ll}(b_{1},e_{1}^{+}) (b_{1},e_{1}^{-})(b_{2},e_{1}^{+}) (b_{2},e_{1}^{-})\end{array}| /R( \tau, \sigma)=\frac{2\lambda_{1}^{+}(b-a\alpha)\sigma}{\lambda_{1}^{+}-\tau-\alpha\sigma}

We see from the same method obtained [2], Lemma 3. 1 that (P, B) is
L^{2}-well posed if and only if

(3. 4) R(\tau, \sigma)\neq 0 for Im \tau=-\gamma<0
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and, in a neighbourhood in S=\{(\tau, \sigma) , |\tau|^{2}+|\sigma|^{2}=1\rangle of (\xi_{0}, \sigma_{0}) satisfying
R(\xi_{0}, \sigma_{0})=0 ,

|C_{11}(\tau, \sigma)|

(3. 5) \leqq C(\xi_{0}, \sigma_{0})|{\rm Im}\lambda_{1}^{+}(\tau, \sigma) Im \lambda_{1}^{-}(\tau, \sigma)|^{1’2}

’

\cross|(\frac{\partial}{\partial\lambda} det P) (\tau, \sigma, \lambda_{1}^{-}(\tau, \sigma))|\gamma^{-1} .

|C_{21}(\tau, \sigma)|

(3. 6) \leqq C(\xi_{0}, \sigma_{0})|{\rm Im}\lambda_{2}^{+}(\tau, \sigma) Im \lambda_{1}^{-}(\tau, \sigma)|^{1/2}

\cross| (\frac{\partial}{\partial\lambda} det P) (\tau, \sigma, \lambda_{1}^{-}(\tau, \sigma))|\gamma^{-1} .

Since R(\tau, \sigma) and C_{11}(\tau, \sigma) mentioned above are Lopatinski determinant and
the reflection coefficient for the following problem of second order:

(-D_{t}^{2}+D_{y}^{2}+D_{x}^{2})u=f (x>0) ,

(D_{x}-\alpha D_{y}-D_{t})u=0 (x=0) ,

it follows from [1], \S 5, Example 2 that the conditions (5. 11) and (3.5)
are equivalent to |\alpha|\leqq 1 . When |\alpha|<1 the problem {P,B) satisfyies uni-
form Lopatinski condition ; that is, R(\tau, \sigma)\neq 0 for Im \tau=-\gamma\leqq 0 . When
\alpha=\pm 1 , there exist a point (\xi_{0}, \sigma_{0}) such that
(3. 7) \xi_{0}^{2}=\sigma_{0}^{2} and R(\xi_{0}, \sigma_{0})=0 .

Furthermore, when |\alpha|=1 and \alpha\neq\pm 1 , there exists a point (\xi_{0}, \sigma_{0}) such that
(3. 8) \xi_{0}^{2}<\sigma_{0}^{2} and R(\xi_{0}, \sigma_{0})=0

First assume \alpha=\pm 1 and b-a\alpha\neq 0 . Then we see from (3. 3) and (3. 7) that

(3. 9) |C_{21}(\xi_{0}-i\gamma, \sigma_{0})|\geqq C(\xi_{0}, \sigma_{0}) ,

(3. 10) |D_{21}(\xi_{0}-i\gamma, \sigma_{O})|\leqq C(\xi_{0}, \sigma_{0})\gamma^{1/4}

for small \gamma>0 and some constant C(\xi_{0}, \sigma_{0})>0 . Here D_{21}(\tau, \sigma) stands for the
right hand side of inequality (3. 6). Second assume |\alpha|=1 , \alpha\neq\underline{arrow}1 and
b-a\alpha\neq 0 . Then we obtain from (3. 3) and (3. 8) that

(3. 11) |C_{21}(\xi_{0}-i\gamma, \sigma_{0})|\geqq C(\xi_{0}, \sigma_{0})\gamma^{-1} ,

(3. 12) |D_{21}(\xi_{0}-ir, \sigma_{0})|\leqq C(\xi_{0}, \sigma_{0})\gamma-1/2

for small \gamma>0 and some constant C(\xi_{0}, \sigma_{0})>0 . Therefore, if b-a\alpha\neq 0 for



294 R. Agemi

|\alpha|=1 , then (3. 9), (3. 10, (3. 11) and (3. 12) show contradiction for (3. 6) ;
that is, for L^{2}-well posedness of (P, B). On the other hand, it is proved
by the same method as in I, \S 6 that the fact |\alpha|=1 and b-a\alpha=0 implies
(3. 6).
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