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1. Introduction ||\mathfrak{i}

Let G and \Gamma be locally compact abelian groups in Pontrjagin duality
and respectively with Haar measures \lambda and \eta such that the Plancherel the-
orem holds. In this paper we investigate the multipliers on Lorentz spaces
L(p, q)(G), 1\leq p\leq\infty , 1\leq q\leq\infty . For convenience, we review briefy in sec-
tion 2 what we need on the fundamental theory of L(p, q) spaces. Many
propositions concerning {}^{t}L(p, q) spaces one can refer to Hunt [2], Blozinsky
[1], Yap [8] and [9].

In this paper, it is essentially to investigate the multipliers of L(p, q)
in which the identity \mathfrak{M}(L^{1}(G), F(G))\cong F(G) will be true for the cases of
F(G)_{-}^{-}L\}p, q)(G) or F(G)=A(p, q)(G) defined in Yap [8]. It follows that
the identity \mathfrak{M}(L^{1}(G), A^{p}(G))\cong A^{p}(G) for 1\leq p\leq 2 in Lai [4 ; Proposition
5.2] will be a consequence in this paper. Further we would give an an\Delta

swer for the question risen in [4].

2. Preliminaries on L(p, q) spaces

DEFINITIONS. Let f be a measurable function defined on a measure
space (X, \mu) . We assume that the functions f are finite valued almost every-
where and for y>0,

\mu\{x\in X;|f(x)|>y\}<\infty

The distribution function of f is defined by

\lambda_{f}(y)=\mu\{x\in X;|f(x)|>y\} , y>01

The (nonnegative) rearrangment of f is defined by

]^{*}(t)= \inf\{y>0 ; \lambda_{f}(y)\leq t\}=\sup\{y>0 ; \lambda_{f}(y)>t\} , t>01

The average function of f is defined by

f^{**}(t)= \frac{1}{t}\int_{0}^{t}f^{*}(s)ds, t>0 .

*) The second author was partially supported by the Mathematics Research Center,
Taiwan, Republic of China.
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Note that \lambda_{f}(\cdot), f^{*}(\cdot), f^{**}(\cdot) are nonincreasing and right continuous
functions on (0, \infty) (cf. Hunt [2]).

The Lorentz space denoted by L(p, q)(X, \mu), for brevity by L(p, q), is
defined to be the collection of a1!f such that ||f||_{(p,q)}^{*}<\infty where

||f||_{(p,q)}^{*}=

’( \frac{q}{p}\int_{0}^{\infty}[t^{1/p}f^{*}(t)]^{q}\frac{dt}{t})^{1/q} , 0<p<\infty , 0<q<\infty

\backslash \sup_{t>0}t^{1/p}f^{*}(t) , 0<p\leq\infty , q=\infty

It follows from Hunt [2 ; p. 253] that ||f||_{(p,p)}^{*}=||f||_{p} and if 0<q_{1}\leq q_{2}

\leq\infty , 0<p<\infty , then ||f||_{(p,q_{2})}^{*}\leq||f||_{p,q_{1})}^{*}\backslash’ holds and so L(p, q_{1})\subset L(p, q_{2}) .
Evidently L(p,p)=L^{p} algebraically, in particular, if 1\leq p\leq\infty , then L(p,p)
is isometrically isomorphic to L^{p} where L(p,p) takes || ||_{(p,p)}^{*} as its norm.

Now we consider \lambda^{-} to be a locally compact Hausdorff space and \mu is
a positive Borel measure, then it can be shown that: every function in
L(p, q)(X, \mu) is locally integrable if and only if any one of the cases p=
1=q ; p=\infty=q or 1<p<\infty , 1\leq q\leq\infty holds.

Throughout we will assume that X is locally compact Hausdorff space
with positive Borel measure \mu, and that function f in L(p, q) is locally
integrable.

It is known that the functional || ||_{(p,q)}^{*} endows a topology in L(p, q)
such that L(p, q) is a topological vector space, and the limit f_{n}arrow f in this
topology means that ||f_{n}-f||_{(p,q)}^{*}arrow 0 (see Hunt [2; p. 257]). We also intr0-
duce (see Hunt [2]) the following function

f^{\star\star}(t)=

. \sup_{\mu(E)\geq t}\frac{1}{\mu(E)}\int_{E}|f(x)|d\mu, t\leq\mu(X) and E\subset X

\frac{1}{t}\int_{X}|f(x)|d\mu , t>\mu(X) ,

||f||_{(p,q)}^{\star}=||f^{\star\star}||_{(p,q)}^{*} and ||f||_{(p,q)}=||f^{**}||_{(p,p)}^{*_{1}}

In [2; p. 258], Hunt proved that L(p, q) is a Banach space under the
norm || ||_{(p,q)}^{\star} for 1<p<\infty , 1\leq q\leq\infty . Moreover

||f||_{(p,q)}^{*} \leq||f||_{(p,q)}^{\star}\leq||f^{*}||_{(p,q\rangle}^{\star}\leq\frac{p}{p-1}||f||_{(p,q)}^{*}) .

It follows immediately that

PROPOSITION 2. 1. If 1<p<\infty , 1\leq q\leq\infty then || ||_{(p.q)}^{\star} and || ||_{(p,q)}^{*}

are equivalmt norms on L(p, q) and hence L(p, q) is a Banach space under
the noms || ||_{(p.q)}^{\star} or || ||_{(p,q)} which induces the same topology as || ||_{(p,q)}^{*}

does.
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PROOF. It is immediately that || ||_{(p,q)} is a norm in L(p, q). By pre-
vious inequalities, it is sufficient to show that

||f||_{(p,q)}^{*} \leq||f||_{(p,q)}\leq\frac{1}{p-1}||f||_{(p,q)}^{*}

Indeed, if q\neq\infty and since f^{*}\leq f^{**}=(f^{*})^{**})=f^{**})^{*}, it follows that

||f||_{(p,q)}^{*} \leq||f||_{(p,q)}=(\frac{q}{p}\int_{0}^{\infty}[t^{1/p}f^{**}(t)]^{q}\frac{dt}{t})^{1/q}

=( \frac{q}{p}\int_{0}^{\infty}[\int_{0}^{t}f^{*}(x)dx]^{q}t^{(q/p)-1-q}dt)^{1/q}

\leq\frac{p}{p-1}(\frac{q}{p}\int_{0}^{\infty}f^{*}(x)^{q}x^{t/pq)-1}dx)^{1/q} (Hardy inequality)

= \frac{p}{p-1}||f||_{(p,q)}^{*}

If q=\infty , we have

||f||_{(p,\infty)}^{*}= \sup_{t>0}t^{1/p}f^{*}(.t)\leq\sup_{t>0}t^{1/p}f^{**}(t)=||f||_{(p,\infty)}

= \sup_{t>0}t^{(1_{J}’p)-1\int_{0}^{t}f^{*}(s)ds\leq\sup_{t>0}}t^{(1\prime_{p)-1\int_{0}^{t}s^{-1/p}||f||_{(p.\infty)}^{*}ds}}

= \frac{p}{p-1}||f||_{(p,\infty)}^{*} ,

this shows ||f||_{(p.\infty)}^{*}. \leq||f||_{(p.\infty)}\leq\frac{p}{p-1}||f||_{(p,\infty)}^{*} Q.E.D.

From now on we shall consider that the space L(p, q) endows the
norm || ||_{(p,q)} for 1<p<\infty , 1\leq q\leq\infty . In the cases p=1=q and p=\infty=q,
|| ||_{(1,1)}^{*} and || ||_{(\infty,\infty)}^{*} are already the complete norms of L(1,1) and L(\infty ,
\infty), thus for the discussion of L(1,1) and L(\infty, \infty), we mean that they
have complete norms || ||_{(1,1)}^{*} and || ||_{(\infty,\infty)}^{*} respectively. By Hunt [2 ; pp.
259-262], we have

PROPOSITION 2. 2. (i) For any one of the cases p=1=q;p=\infty=q or
1<p<\infty and 1\leq q\leq\infty , the space L(p, q) is a Banach space with respect
to the norm || ||_{(p,q)} . (ii) The conjugate space L(p, 1) is L(p’, \infty) where
1/p+1/p’=1 . The conjugate space L(p, q), 1<p<\infty , 1<q<\infty , is L(p’,
q’) where 1/q+1/q’=1 and hence they are reflexive. The dual pair is of
the form

\langle f, g\rangle=\int fgd\mu, f\in L(p, q), g\in L(p’, q’) .
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3. Multiplierson L(p, q)(G) spaces

Let A be a commutative normed algebra and Ba (two sided) A-mod-
ule normed linear space. We denote by \mathfrak{M}(A, B) the set of all bounded
linear mappin.g.

T:Aarrow B such that T(ab)=a(Tb) for any a, b\in A1

Each element T\in \mathfrak{M}(A, B) is called the multiplier \otimes f A to B.
Under the usual convolution, the space L^{p}(G) for 1\leq p\leq\infty and A^{p}(G)

for 1\leq p\leq\infty are L^{1}-module and it was known that
\mathfrak{M}(L^{1}(G), L^{1}(G))\cong M(G)

\mathfrak{M}(L^{1}(G), L^{p}(G))\cong L^{p}(G) 1<p<\infty

\mathfrak{M}(L^{1}(G), A^{p}(G))\cong A^{p}(G) 1\leq p\leq 2

where G is a locally compact abelian group, M(G) denotes the bounded
regular measures and A^{p}(G) is, with the norm ||f||^{p}= \max(||f||_{1}, ||\hat{f}||_{p}), a Ban-
ach algebra of all functions f in L^{1}(G) whose Fourier transforms \hat{f} being
to L^{p}(\Gamma) .

Blozinsky ] 1] proved that the usual convolution * on simple function
space S_{0}(G) can be uniquely extended to L^{1}*L(p, q) where every function
in L(p, q) is locally integrable and hence L(p, q)(G) is an L^{1}-module Banach
space with respect to || ||_{(p,q)} .

Let A(p, q)(G) be the subspace of L^{1}(G) with Fourier transforms in
L(p, q)(\Gamma) provided each function in L(p, q)(\Gamma) is locally integrable. For
every feA(p, q)(G), we supply a norm in A(p, q) by

||f||_{A(p,q)}= \max(||f||_{1}, ||\hat{f}||_{(p,q)})

This norm is equivalent to the sum norm ||f||_{1}+||\hat{f}||_{(p,q)} . In particular, if
p=q, then A(p, q)=A^{p} .

In [8], Yap showed that A(p, q)(1<p<\infty, 1\leq q\leq\infty) is a Segal algebra
with respect to the sum norm, and so it is also a Segal algebra with re-
spect to our given norm. In this section we investigate that whether the
following identities hold

\mathfrak{M}(L^{1}(G), L(p, q)(G))\cong L(p, q)(G)

\mathfrak{M}(L^{1}(G), A(p, q)(G))\cong A(p, q)(G) [

For convenient, we state some lemmas which are probably not all new.

LEMMA 3. 1. Let \lambda be Haar measure of G. Thm (i)\lambda_{f_{\delta}}=\lambda,, (ii) f_{s}^{*}=
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f^{*} , f_{s}^{**}=f^{**} , ||f_{s}||_{(p.q)}^{*}=||f||_{(p,q)}^{*} and ||f_{s}||_{(p,q)}=||f||_{(p,q)} where f_{s}(x)=f(x-s) .
PROOF. (i) Since \{x\in G;|f_{s}(x)|>t\}=\langle x\in G ; |f(x-s)|>t\}=\{y\in G;|f(y)|

>t\}+s, we have \lambda_{f_{g}}(t)=\lambda_{f}(t) .
(ii) This is a consequence of (i). Q.E.D.

LEMMA 3. 2. For every f\in L(p, q)(G), 1<p<\infty , 1\leq q<\infty , the mapping
sarrow f_{s} of G into L(p, q)(G) is continuous.

PROOF. Since simple functions are dense in L(p, q)(G), it is sufficient
to show that for any simple function f, sarrow f_{s} is continuous. Let f= \sum_{l\approx 1}^{n}k_{i}

\chi_{B_{i}}, then f_{s}= \sum_{i\underline{-}1}^{n}k_{i}\chi_{E_{i}+s} . Now

(f_{s}-f)^{**} \leq\sum_{i=1}^{n}|k‘|(\chi_{E_{i}+s}-\chi_{E_{t}})^{**}

and

|\chi_{E_{i}+s}-\chi_{E_{i}}|(x)=\{

1 x\in(E_{i}+s)\Delta E_{i}

0 otherwise,

where \Delta denotes the symmetric difference of sets and \chi_{E} is the character-
istic function on E. We have

\lambda(\chi_{E_{i}+\epsilon}-\chi_{E_{t}}.)(t)=\{

\lambda[E_{i}+s)\Delta E_{i}] , t<1
0 t\geq 1

(\chi_{E_{i}+s}-\chi_{E_{i}})^{*}(t)=/1|0

t<\lambda((E_{i}+s)\Delta E_{i})

t\geq\lambda((E_{i}+s)\Delta E_{i}) .
This shows that

||\chi_{E_{i}+s}-\chi_{fi}||_{(p,q)}^{*}=[\lambda((E_{i}+s)\Delta E_{i})]^{1/p}arrow 0(sarrow 0) .
Hence

||f_{s}-f||_{(p,q)}^{*}arrow 0(sarrow 0) and ||f_{s}-f||_{(p,q)}arrow 0(sarrow 0) Q.E.D.

LEMMA 3. 3. There is an approximate i&ntity \{a_{\alpha}\}ofL^{1}(G) such that
||a_{\alpha}||_{1}=1 and f*a_{\alpha}arrow f for every f\in L(p, q), 1<p<\infty , 1\leq q<\infty . It holds
dso for f\in L(p, q), 1<p<\infty , 1<q<\infty .

PROOF. For a proof of simple function follows immediately from
Lemma 3. 2. Indeed, let \{U_{\alpha}\} be a decreasing neighborhood system at the
origin in G, for each \alpha, we assume that a_{\alpha} is non-negative continuous
function with support in U_{\alpha} such that \int_{G}a_{\alpha}(x)d\lambda(x)=1 . If g is a simple
function, then

||g*a_{\alpha}-g||_{(p,q)} \leq\int_{G}||g_{y}-g||_{(p,q)}a_{\alpha}(y)d\lambda(y)

\leq\sup||g_{y}-g||_{(p,q)}arrow.0 Lemma 3. 2)
y\epsilon\sigma_{\alpha}
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the limit being taken over the net of \alpha . As the simple fnctuions are dense
in L(p, q), thus for any \epsilon>0 and feL(p, q), there exists a simple function
g such that ||f-g||_{(p,q)}<\epsilon and

||f*a_{\alpha}-f||_{(p,q)}\leq||f*a_{\alpha}-g*a_{\alpha}||_{(p,q)}’+||g*a_{\alpha}-g||_{(p,q)}

+||g-f||_{(p,q)}

<2\epsilon+||g*a_{\alpha}-g||_{(p,q)}

\lim_{\alpha} sup ||f*a_{\alpha}-f||_{(p,q)}\leq 2_{61}

Since \epsilon is arbitraty, we have f*a_{a}arrow f for every f\in L(p, q) . Q.E.D.

One of the main results is the following

THEOREM 3. 4. The multiplier space \mathfrak{M}(L^{1}(G), L(p, q)(G)) is isomtric
isomorphic to L(p, q)(G) for 1<p<\infty , 1<q<\infty . Moreover for any T\in

\mathfrak{M}(L^{1}(G), L(p, q)(G)), there is a unique f in L(p, q)(G) such that Ta=a*f
for every a\in L^{1}(G) .

PROOF. By Proposition 2. 2, we see that the dual pair is of the form
\langle f, g\rangle=\int_{G}f(x)g(x)d\lambda(x), f\in L(p’, q’), geL(p, q) .

Moreo\backslash ^{\vee}er for every \mathfrak{G}\in L’(p, q’) there is a unique g\in L(p, q) such that
\mathfrak{G}(f)=\int_{G}fgd\lambda for every f\in L(p’, q’) .

Now if a\in L^{1}(G), f\in L(p’, q’), we define a\mathfrak{G}f=\tilde{a}*f, where a is the
reflexive function of a. Then it follows from Blozinsky [1; Theorem 2. 9]
that L(p’, q’) is an L^{1}-module under \Phi , naturaly if for every a\in L^{1}(G),
\mathfrak{G}\in L’(p’, q’), we define

a\otimes \mathfrak{G}(f)=\mathfrak{G}(a\mathfrak{G}f) for f\in L(p’, q’) [

Then L’(p’, q’) is a!soL^{1}(G)-module under \otimes . Since there is an approx-
imate identity \{a_{\alpha}\} in L^{1}(G) such that ||a_{\alpha}||_{1}=1 and

||a_{\alpha}\mathfrak{G}f-f||_{(\mathcal{D}’,Q’)}=||a_{\alpha}*\tilde{f}-\tilde{f}||_{(p’,q’)}arrow 0

it follows from Liu and Rooij [6; Lemma 2. 8] that
\mathfrak{M}(L^{1}(G), L’(p’q’)(G)\cong L’(p’, q’)(G) ,

and hence
\mathfrak{M}(L^{1}(G), L(p, q)(G))\cong L(p, q)(G) . 1<p, q<\infty t

We have to claim that the group algebra L^{\grave{i}}(G) acting on L’(p’, q’)
corresponds to acting on L(p, q). That is for any a\in L^{1}(G), a\otimes \mathfrak{G} in
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L’(p’, q’) corresponds to a*g in L(p, q) whenever \mathfrak{G}\in L’(p’, q’) corresponds
to g\in L(p, q) . Indeed, for every f\in L(p’, q’), a \otimes \mathfrak{G}(f)=\mathfrak{G}(a\oplus f)=\int_{G}(\tilde{a}*f)g

d \lambda=\int_{G}f(a*g)d\lambda . Hence for each T’\in \mathfrak{M}(L^{1}(G), L’(p’, q’)(G)), there is a
unique \mathfrak{G}\in L’(p’, q’) such that

T’a=a\otimes \mathfrak{G} for every a\in L^{1}(G) .
This implies that for every T\in \mathfrak{M}(L^{1}(G), L(p, q)(G)) there is a unique g\in L

(p, q) such that

Ta=a*g for every a\in L^{1}(G) .
Thus the theorem is proved. Q.E.D.

In order to characterize the multipliers \mathfrak{M}(L^{1}(G), A(p, q)(G)), we define
a space M(p, q)(G) as follows

M(p, q)(G)=\{\mu\in M(G);\hat{\mu}\in L(p, q)(\Gamma), 1\leq p\leq\infty , 1\leq q\leq\infty\}

where \hat{\mu} is the Fourier Stieltjes transform of a bounded regular measure
\mu in M(G). For every \mu\in M(p, q)(G) we supply a norm by

|| \mu||_{M(p,q)}=\max\{||\mu|| , ||\hat{\mu}||_{(p,q)}\} , 1\leq p, q\leq\infty

Denote by M(p, q)(G) the space of M(p, q)(G) with the norm || ||_{M(p,q)} .
In particular if p=q, we denote by M^{p}(G)=M(p,p)(G) with the norm ||\mu||_{u^{p}}

= \max\{||\mu||, ||\hat{\mu}||_{p}\} , \mu\in M^{p}(G) . Note that M(\infty, \infty)(G)=M(G) .

THEOREM 3. 5. The space M(p, q)(G)(1\leq p\leq\infty, 1\leq q\leq\infty) is a com-
mutative Banach algebra.

PROOF. Evidently M(p, q)(G) is a normed linear space. Suppose that
\{\mu_{n}\} is a Cauchy sequence in M(p, q)(G)\subset M(G) . Then \{\mu_{n}^{\nwarrow}\} is also a
Cauchy sequence in L(p, q)(\Gamma) . By the completeness of M(G) and L(p, q)
(\Gamma), there are \mu\in M(G) and h\in L(p, q)(\Gamma) such that

||\mu_{n}-\mu||_{M(G)}arrow 0 and ||\hat{\mu}_{n}-h||_{(p,q)}arrow 0(

It follows from Yap [8; Lemma 2. 2] that there is a subsequence \{\dot{\grave{\mu}}_{n_{o}}\} of
\{\mu_{n}\} which converges pointwise almost everywhere to h. Thus

||\acute{\dot{\mu}}_{n}-\hat{\mu}||_{\infty}\leq||\mu_{n}-\mu||_{M(G)}arrow 0 implies \hat{\mu}=h.
,

this shows that M(p, q)(G) is complete with respect to the norm || ||_{M(p,q)} .
Further, for any \mu_{1} , \mu_{2} in M(p, q)(G), we have
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|| \mu_{1^{*}}\mu_{2}||_{M(p,q)}=\max\{||\mu_{1}*\mu_{2}||_{M(G)} , ||\hat{\mu}_{1}\cdot\hat{\mu}_{2}||_{(p,q)}\}

\leq\max\{||\mu_{1}||||\mu_{2}|| , ||\hat{\mu}_{1}||||\hat{\mu}_{2}||_{(p,q)}\}

\leq||\mu_{1}||_{M(p,q)}||\mu_{2}||_{M(p,q)}1

Hence M(p, q)(G) is a commutative Banach algebra. Q.E.D.

It is immediately that A(p, q) is an ideal of M(p, q). The question
arises that whether the space A(p, q) is a proper ideal of M(p, q)

,
or not.

Precisely we have the following

THEOREM 3. 6. (i) If 1\leq q\leq p\leq 2 , then M(p, q)=A(p, q) (ii) If p>2,
1\leq q\leq\infty , then M(p, q)\neq\supset A(p, q) .

PROOF. (i) For 1\leq q\leq p\leq 2 , \mu\in M(p, q), we have \mu\in L(p, q)\subset L(p, p) .
This implies \mu\in M(p,p) . It follows from Liu and Rooij [6; Lemma 2. 3]
that \mu is absolutely continuous, so that \mu\in A(p, q) .

For (ii), we consider G=T and’ \Gamma=Z. Wiener and Wintner [7] proved
that there is a nonnegative singular measure \mu on T such that \mu(n)=

0(n^{-1’2+}’.) for any \epsilon>0 . Thus for p>2,1\leq q\leq\infty , we choose a singular
measure having the property of [7] showed. Then there are constants
C_{1}>C_{2}>0 and n_{0} such that

|\hat{\mu}(n)|\leq f(n)=\{

C_{1} , |n|<n_{0}

C_{2}|n|^{-1/2+\epsilon} , |n|\geq n_{0}

and so

f^{*}(t)=\{
C_{1} , t<2n_{0}

C_{2}m^{-1/2+\epsilon}, 2m\leq t<2m+2 , m\geq n_{0}

||f||_{(p,q)}^{*}= \{\frac{q}{p}\int_{0}^{2n_{0}}C_{1}^{a_{X^{q/p-1}}}dx+\sum_{n=n_{0}}^{\infty}(C_{2}n^{-1./2+\epsilon})^{q} .
.((2n+2)^{q/p_{\sim}}-(2n)^{q/p})\}^{1/q}

= \{K_{1}+K_{2}\sum_{n=n_{0}}n^{-q^{1}2+\in q}(n+1)^{q/p}-n^{q/p})\}^{1/q}\infty
,

where K_{1} , K_{2} are constants. If p>2,1\leq q<\infty , we have - \frac{q}{2}+\epsilon q+\frac{q}{p}-1

<-1 provided \epsilon(<\frac{p-2}{2pq}) is sufficient small, and since

n^{-q/2+8q}\cdot((n+1)^{q//}p-n^{q_{l}p)=0(n^{-q/2+\epsilon q+q’p-1)}} ,

the series \sum_{n=p_{0}} converges. Hence ||f||_{(p,q)}^{*}<\infty and ||\mu||_{(p,q)}<\infty proves \mu\in
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M(p, q) but \mu\not\in A(p, q) .
If p>2 , q=\infty , we have ||f||_{(p,q)}^{*}= \sup_{t>0}t^{1/p}f^{*}(t)<\infty . Hence \mu\in M(p, \infty),

\mu\not\in A(p_{ },\infty) . Q.E.D.

REMARK. We do not know what happen for the case 1<p<q\leq 2 .
The following lemma is useful and the proof follows immediately from

the properties of Segal algebras.
Lemma 3. 7. There is an approximate idmtity \{e_{\alpha}\} of A(p, q)(G), 1<

p<\infty , 1\leq q<\infty , which is a bounded approximate identity of L^{1}(G) such
that ||e_{\alpha}||_{1}\leq 1 and \acute{e}_{\alpha} have compact support for all \alpha .

We have seen in Lemma 3. 3 that there is an approximate identity of
L(p, q)(G) which is the bounded approximate identity of L_{1}(G) . One can
choose the approximate identity like as Lemma 3. 7 that the Fourier tra-

nsforms have compact supports. For convenient, we state it as following

LEMMA 3. 8. There is a bounded approximate i&ntity \{e_{\alpha}\} of L^{1}(\Gamma)

such that \hat{e}_{\alpha} has cmpact support in G and
||e_{\alpha}*f-f||_{(p,q)}arrow 0 for any f\in L(p, q)(\Gamma), 1<p<\infty , 1\leq q<\infty

LEMMA 3. 9. (i) The space A^{1}(G) is contained in A(p, q)(G) for 1\leq

p<\infty , 1\leq q\leq\infty .
(ii) The Fourier transforms \hat{A^{1}(G}) and A\hat{(p,q)}(G) are dmse in L(p, q)

(\Gamma) for 1\leq p<\infty , 1\leq q<\infty .
PROOF. Suppose that f=\hat{g}, g\in A^{1}G, then f\in L^{1}(\Gamma) and \int_{0}^{\infty}f^{*}dt=

\int_{\Gamma}|f|d\eta<\infty . If p\geq q, we have

\int_{0}^{\infty}x^{q^{J}p-1}’ f^{*}(x)dx\leq||f||\int_{0}^{1}x^{q/p-1}dx+\int_{1}^{\infty}x^{q/p-1}f^{*}(x)^{q}dx

\leq\frac{q}{p}||f||_{\infty}+\int_{1}^{\infty}f^{*}(x)^{q}dx

<\infty :

and so feL\{p,q) (\Gamma) . If p<q, then feL\{p, p) \subset L(p, q) . This shows that
g\ni A(p, q) and \hat{A^{1}(G}) \subset A\acute{(p}\hat{q)(},G) \subset L(p, q)(\Gamma) . It is sufficient to show that
\hat{A^{1}(G}) is dense in L(p, q)(\Gamma) . Let \{e_{\alpha}\} is L^{1}(\Gamma) be an approximate identity
of L(p, q)(\Gamma) such that \hat{e}_{\alpha} has compact support. Then for every f\in L(p, q)

(\Gamma) and any \epsilon>0, there is \alpha_{0} such that
||e_{\alpha_{0}}*f-f||^{(p,q)}<\epsilon l

Since the simple functions are dense in L(p, q)(\Gamma), thus for the given e>
0, there exists a simple function g such that ||f-g||_{(p,q)}.<\epsilon , and
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||e_{\alpha_{0}}*g-f||_{(p,q)}\leq||e_{\alpha_{0}}||_{1}||g-f||_{(p,q)}+||e_{\alpha_{0}}*f-f||_{(p,q)}

<(C+1)\epsilon

where ||e_{\alpha_{0}}||_{1}\leq C. But \acute{\acute{e}}_{\alpha_{0}}*g=\hat{e}_{a_{0}}\hat{g}\in C_{c}(G)\subset L^{1}(G), we see that e_{\alpha_{0}}*g\in A^{1}(G) .
This shows that \hat{A^{1}(G}) is dense in L(p, q)(\Gamma) . Q.E.D.

We use the symboles appear in Liu and Rooij [6]. Thus by Lemma
3. 9, Theorem 2. 4, and [6 ; Lemma 2. 8], we obtain

LEMMA 3. 10. Let H be the closures of \{(\tilde{f}, -\hat{f});f\in A^{1}(G)\} in C_{0}(G)\cross

L(p’, q’)(\Gamma) and

J=\{(\mu, h) ; \mu\in M(G), h\in L(p, q)(\Gamma) , \int_{G}\tilde{f}d\mu=\int_{\Gamma}\hat{f}hd\eta, f\in A^{1}(G)\}

Then

\{C_{0}(G)V_{H}L(p’, q’)(\Gamma)\}’\cong M(G)\Lambda_{J}L(p, q)(\Gamma), 1<p<\infty , 1<q<\infty

If p=1, then q=1, and the same result holds for C_{0}(\Gamma) in place of L(\infty ,
\infty)(\Gamma)=L^{\infty}(\Gamma) .

LEMMA 3. 11. For 1<p<\infty , 1<q<\infty or p=1=q, then
M(G)\Lambda_{J}L(p, q)(\Gamma)\equiv M(p, q)(G)

where any element \mu in M(p, q)(G) is regarded as the pair (\mu,\acute{\grave{\mu}}) in M(G)\cross

L(p, q)(\Gamma) so that M(p, q) is embedded in M(G)\cross L(p, q)(\Gamma) .
PROOF. If (\mu, h)\in J, then it follows from \hat{A^{1}(}G) dense in L(F’, q’)(\Gamma)

and \int_{\Gamma}\hat{f}\hat{\mu}d\eta=\int_{\Gamma}\hat{f}hd\eta for f\in A^{1}(G) that h=\hat{\mu} . (In detail see Liu and
Rooij [6].) Q.E.D.

It is clear that M(p, q)(G) is an L^{1}(G)-module under convolution thus
we have following theorem.

THEOREM 3. 12. For 1<p<\infty , 1<q<\infty or p=1=q, the multiplier
algebra \mathfrak{M}(L^{1}(G), M(p, q)(G)) is isometricdly isomorphic to M(p, q)(G).
Moreover for every multiplier T of L^{1}(G) into M(p, q)(G) can be expressed
as the form

T(a)=a*\mu for some \mu\in M(p, q)(G) and any a\in L^{1}(G) .
PROOF. From Lemma 3. 10 and Lemma 3. 11, we see that

\{C_{0}(G)V_{H}L(p’, q’)(\Gamma)\}’\cong M(p, q)(G) .
Using this identity and [6; Lemma 2. 8], the theorem follows immediately.
To this end, we have only to show that C_{0}(G)V_{H}L(p’, q’)(\Gamma) is L^{1}\langle G)-

module under certain operation and there is an approximate identity of
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L^{1}(G) with the property as in [6; Lemma 2. 8].
For any \mu\in M(p, q)(G), there corresponds an element U_{\mu}\in[C_{0}(G)V_{H}

L(p, q)(\Gamma)]’ defined by

U_{\mu}(f, g)= \int_{G}fd\mu+\int_{\Gamma}g\acute{\grave{\mu}}d\eta , (f, g)\in C_{0}(G)V^{H}L(p’, q’)(\Gamma) .

We will define an operation \otimes for which C_{0}(G)V_{H}L(p’, q’)(\Gamma) is an L^{1}(G)-

module. This operation \otimes induces an operation over its dual space which
is defined by

a\otimes U_{\mu}(f, g)=U_{\mu}(a\otimes(f, g)) and a\otimes(f, g)=(\tilde{a}*f, dg)

for any (f, g)\in C_{0}(G)V_{H}L(p’, q’)(\Gamma) and a\in L^{1}(G) . At first we have to show
[C_{0}(G)V_{H}L(p’, q’)(\Gamma)]’ and M(p, q)(G) are the same space acted by L^{1}(G)

under the operations \otimes and*respectively . That is a\otimes U_{\mu}=U_{a*\mu} holds
for any a\in L^{1}(G) and \mu\in M(p, q)(G) . In fact for (f, g)\in C_{0}(G)V_{H}L(F’, q’)

(\Gamma), we have
U_{a\mu}(f, g)= \int_{G}f(x)d(a*\mu)(x)+\int_{\Gamma}d\hat{\mu}gd\eta

= \int_{G}f(x)a*\mu(x)d\lambda(x)+\int_{\Gamma}\hat{a}\hat{\mu}gd\eta (for a*\mu\in L^{1}(G)),

and
a\otimes U_{\mu}(f, g)=U_{\mu}(a\otimes(f, g))=U_{\mu} (a-*f, \^ag)

= \int_{G}\tilde{a}*f(x)d\lambda(x)+\int_{\Gamma}\hat{a}\hat{\mu}gd\eta

= \int_{G}f(y)a*\mu(y)d\lambda(y)+\int_{\Gamma}\hat{a}\hat{\mu}gd\eta

=U_{a*\mu}(f, g) .
Now we show that C_{0}(G)V_{H}L(p’, q’)(\Gamma) is L^{1}(G)-module under \otimes . In fact,
if (\tilde{f}, -\hat{f})\in H’ , then it is clearly a\otimes(\tilde{f}.,-\hat{f})=\tilde{a}^{*}\tilde{f}, -\^a\hat{f}) \in H. Further
for (/, g)\in C_{0}(G)\cross L(p’, q’)(\Gamma), we have

||a\otimes(f, g)||=|| (a\wedge*f, \^ag)ll

= \inf\{||f’||_{\infty}+||g’||_{(p’,q’)} ; (f’, g’)\cong ( a\sim*f, \^ag) mod H\}

= \inf\{||\tilde{a}*f+\tilde{h}||_{\infty}+||\hat{a}g-\hat{h}||_{(pq’)},, ; h\in A^{1}(G)\}

.–
\leq\inf\{||\tilde{a}*f+\overline{a*k}||+||\hat{a}g-a*k||_{(pq’)},, ; k\in A^{1}(G)\}

since a*k\in L^{1}*A^{1}(G)\subset A^{1}(G) ,

\leq\inf\{||a||_{1}||f+\hslash||_{\infty}+||d||_{\infty}||g-\hat{k}||_{(p’,q’)} ; k\in A^{1}(G)\}

\leq||a||_{1} inf \{||f’||_{\infty}+||g’||_{(p’,q’)} ; (f’, g’)\cong(f, g) mod H\}

=||a||_{1}||(f, g)||
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Hence
||a\otimes(f, g)||\leq||a||_{1}||(f, g)||

To complete the proof, it remains to show that there is a bounded approx-
imate identity \{e_{\alpha}\} of L^{1}(G) with ||e_{\alpha}||_{1}\leq 1 such that

||e_{\alpha}\otimes(f, g)-(f, g)||arrow 0 for every (/, g)\in C_{0}(G)V_{H}L(F’, q’)(\Gamma) .
Let \{e_{\alpha}\} be a bounded approximate identity of L^{1}(G) with ||e_{\alpha}||_{1}\leq 1 and the
Fourier transform \hat{e}_{\alpha} has compact support such that

||e_{\alpha}*f-f||_{A(pq’)}"arrow 0 for every f\in A(p’, q’)(G) (Lemma 3. 7.) 1

Since A(\hat{p’,q’)}(G) is dense in L(p’, q’)(\Gamma), thus for any g\in L(p’, q’)(\Gamma) and
\epsilon>0 there is h\in A(\hat{p’,q’)}(G) such that ||g-h||_{(pq’)}"<\epsilon , it follows that

||\acute{e}_{\alpha}g-g||_{(pq\prime)}"\leqq||\hat{e}_{\alpha}g-\hat{e}_{\alpha}h||,p

”q’ ) +||p_{\alpha}h-h||_{(pq’)}"+||h-g||_{(pq’)}”

<2\epsilon+||\hat{e}_{\alpha}h-h||_{(pq’)l}”

Since for \check{h}\in A(p’, q’)(G) with \check{h}=h\wedge

,

||\hat{e}_{\alpha}h-h||_{(pq’)}"=|\hat{|e_{\alpha}*}\check{h}-h||_{(p\prime,q\prime)}\leq||e_{\alpha}*\hslash-\check{h}||_{A(p\prime,q\prime)}arrow 0 ,

and \epsilon is arbitrary, we have
||\acute{e}_{\alpha}g-g||_{(p\prime,q\prime)}arrow 01

Therefore for (f, g)\in C_{0}(G)V_{H}L(p’, q’)(\Gamma), we have
||e_{\alpha}\otimes(f, g)-(f, g)||=||(\tilde{e}_{\alpha}*f-f,\acute{e}_{\alpha}g-g||

\leq||\tilde{e}_{\alpha}*f-f||_{\infty}+||\acute{e}_{\alpha}g-g||_{(p\prime,q\prime)}

arrow 0 ,

the limit being taken over all \alpha . This proof is completed. Q.E.D.

THEOREM 3. 13. For 1<p, q<\infty or p=1=q, the identity
\mathfrak{M}(L^{1}(G), A(p, q)(G))\cong M(p, q)(G)

holds. Furthermore, if T\in \mathfrak{M}(L^{1}(G), A(p, q)(G)) , there is a unique \mu\in

M(p, q)(G) such that

Ta=a*\mu for any a\in L^{1}(G) .
PROOF. Evidently, for any T\in \mathfrak{M}(L^{1}(G), A(p, q)(G)), it follows that

T\in \mathfrak{M}(L^{1}(G), M(p, q)(G)) . Conversely for T\in \mathfrak{M}(L^{1}(G), M(p, q)(G)), it fol-
lows from Theorem 3. 12 that there is a unique \mu\in M(p, q)(G) such that

Ta=a*\mu ,\cdot
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holds for every a\in L^{1}(G). Thus

||a*\mu||_{(p,q)}=||\hat{a}\hat{\mu}||_{(p,q)}\leq||d||_{\infty}||\hat{\mu}||_{(p,q)}

\leq||a||_{1}||\mu||_{M(p,q)}<\infty ,

and since a*\mu\in L^{1}(G) , we see that a*\mu\in A(p, q)(G) . That is T\in \mathfrak{M}(L^{1}(G),
A(p, q)(G)). Hence by Theorem 3. 12 again, we obtain

\mathfrak{M}(L^{1}(G), A(p, q)(G))\cong \mathfrak{M}(L^{1}(G), M(p, q)(G))\underline{\simeq}M(p, q)(G) .
Q.E.D.

Applying Theorem 3. 6 and Theorem 3. 13, we have

COROLLARY 3. 14. (i) If 1<q\leq p<2 or p=1=q, then

\mathfrak{M}(L^{1}(G), A(p, q)(G))\cong A(p, q)(G) .
(ii) If 2<p, 1<q<\infty , then

\mathfrak{M}(L^{1}(G), A(p, q)(G))\cong M(p, q)(G)\neq A\overline{\sim}(p, q)(G) .
REMARK 1. If p=q, 1\leq p<\infty , then Theorem 3. 6 and Theorem 3. 12

(or Corollary 3. 14) induce \mathfrak{M}(L^{1}(G), A^{p}(G))\cong A^{p}(G) for 1\leq p\leq 2 and \mathfrak{M}(L^{1}

(G), A^{p}(G))\cong M^{p}(G)\neq\supset A^{p}(G) for 2<p<\infty .
This answers the question risen in Lai [4]. The classical multiplier

problem in L^{1}(G) is a special case in our context. That is
\mathfrak{M}(L^{1}(G), L^{1}(G))\cong \mathfrak{M}(L^{1}(G), M(G))\cong M(G) .

REMARK 2. From Corollary 3. 14 (ii), one sees that, in general, if S(G)
is a proper Segal algebra, the multiplier algebra \mathfrak{M}(L^{1}(G), S(G)) needs not
be isometrically isomorphic to S(G) itself.
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