Multipliers of Lorentz spaces

By Yann-Kunn CHEN and Hang-Chin LAI*

13

1. Introduction

Let G and Γ be locally compact abelian groups in Pontrjagin duality and respectively with Haar measures λ and η such that the Plancherel theorem holds. In this paper we investigate the multipliers on Lorentz spaces L(p,q)(G), $1 \le p \le \infty$, $1 \le q \le \infty$. For convenience, we review briefy in section 2 what we need on the fundamental theory of L(p,q) spaces. Many propositions concerning L(p,q) spaces one can refer to Hunt [2], Blozinsky [1], Yap [8] and [9].

In this paper, it is essentially to investigate the multipliers of L(p,q) in which the identity $\mathfrak{M}(L^1(G), F(G)) \cong F(G)$ will be true for the cases of F(G) = L(p,q)(G) or F(G) = A(p,q)(G) defined in Yap [8]. It follows that the identity $\mathfrak{M}(L^1(G), A^p(G)) \cong A^p(G)$ for $1 \leq p \leq 2$ in Lai [4; Proposition 5.2] will be a consequence in this paper. Further we would give an answer for the question risen in [4].

2. Preliminaries on L(p, q) spaces

DEFINITIONS. Let f be a measurable function defined on a measure space (X, μ) . We assume that the functions f are finite valued almost everywhere and for y>0,

$$\mu\left\{x\in X\;;\;|f(x)|>y\right\}<\infty\;.$$

The distribution function of f is defined by

$$\lambda_{\mathbf{f}}(y) = \mu \{x \in X; |f(x)| > y\}, y > 0.$$

The (nonnegative) rearrangement of f is defined by

$$j^*(t) = \inf \{y > 0 ; \lambda_f(y) \le t\} = \sup \{y > 0 ; \lambda_f(y) > t\}, t > 0.$$

The average function of f is defined by

$$f^{**}(t) = \frac{1}{t} \int_0^t f^*(s) \ ds, \ t > 0.$$

^{*)} The second author was partially supported by the Mathematics Research Center, Taiwan, Republic of China.

Note that $\lambda_f(\cdot)$, $f^*(\cdot)$, $f^{**}(\cdot)$ are nonincreasing and right continuous functions on $(0, \infty)$ (cf. Hunt [2]).

The Lorentz space denoted by $L(p,q)(X,\mu)$, for brevity by L(p,q), is defined to be the collection of all f such that $||f||_{(p,q)}^* < \infty$ where

$$||f||_{(p,q)}^* = \begin{cases} \left(\frac{q}{p} \int_0^{\infty} [t^{1/p} f^*(t)]^q \frac{dt}{t}\right)^{1/q}, & 0 0} t^{1/p} f^*(t), & 0$$

It follows from Hunt [2; p. 253] that $||f||_{(p,p)}^* = ||f||_p$ and if $0 < q_1 \le q_2 \le \infty$, $0 , then <math>||f||_{(p,q_2)}^* \le ||f||_{(p,q_1)}^*$ holds and so $L(p,q_1) \subset L(p,q_2)$. Evidently $L(p,p) = L^p$ algebraically, in particular, if $1 \le p \le \infty$, then L(p,p) is isometrically isomorphic to L^p where L(p,p) takes $||f||_{(p,p)}^*$ as its norm.

Now we consider X to be a locally compact Hausdorff space and μ is a positive Borel measure, then it can be shown that: every function in $L(p,q)(X,\mu)$ is locally integrable if and only if any one of the cases p=1=q; $p=\infty=q$ or $1< p<\infty$, $1\leq q\leq \infty$ holds.

Throughout we will assume that X is locally compact Hausdorff space with positive Borel measure μ , and that function f in L(p,q) is locally integrable.

It is known that the functional $\| \|_{(p,q)}^*$ endows a topology in L(p,q) such that L(p,q) is a topological vector space, and the limit $f_n \to f$ in this topology means that $\|f_n - f\|_{(p,q)}^* \to 0$ (see Hunt [2; p. 257]). We also introduce (see Hunt [2]) the following function

$$f^{\star\star}(t) = \begin{cases} \sup_{\mu(E) \geq t} \frac{1}{\mu(E)} \int_{E} |f(x)| d\mu, & t \leq \mu(X) \text{ and } E \subset X \\ \frac{1}{t} \int_{X} |f(x)| d\mu, & t > \mu(X), \end{cases}$$

 $||f||_{(p,q)}^{\star} = ||f^{\star\star}||_{(p,q)}^{*} \text{ and } ||f||_{(p,q)} = ||f^{\star\star}||_{(p,p)}^{*}.$

In [2; p. 258], Hunt proved that L(p,q) is a Banach space under the norm $\| \|_{(p,q)}^{\star}$ for $1 , <math>1 \le q \le \infty$. Moreover

$$||f||_{(p,q)}^* \le ||f||_{(p,q)}^* \le ||f^*||_{(p,q)}^* \le \frac{p}{p-1} ||f||_{(p,q)}^*$$

It follows immediately that

PROPOSITION 2.1. If $1 , <math>1 \le q \le \infty$ then $\| \|_{(p,q)}^*$ and $\| \|_{(p,q)}^*$ are equivalent norms on L(p,q) and hence L(p,q) is a Banach space under the norms $\| \|_{(p,q)}^*$ or $\| \|_{(p,q)}$ which induces the same topology as $\| \|_{(p,q)}^*$ does.

PROOF. It is immediately that $\| \|_{(p,q)}$ is a norm in L(p,q). By previous inequalities, it is sufficient to show that

$$||f||_{(p,q)}^* \le ||f||_{(p,q)} \le \frac{1}{p-1} ||f||_{(p,q)}^*.$$

Indeed, if $q \neq \infty$ and since $f^* \leq f^{**} = (f^*)^{**} = f^{**}$, it follows that

$$||f||_{(p,q)}^{*} \leq ||f||_{(p,q)} = \left(\frac{q}{p} \int_{0}^{\infty} [t^{1/p} f^{**}(t)]^{q} \frac{dt}{t}\right)^{1/q}$$

$$= \left(\frac{q}{p} \int_{0}^{\infty} \left[\int_{0}^{t} f^{*}(x) dx\right]^{q} t^{(q/p)-1-q} dt\right)^{1/q}$$

$$\leq \frac{p}{p-1} \left(\frac{q}{p} \int_{0}^{\infty} f^{*}(x)^{q} x^{(/pq)-1} dx\right)^{1/q}$$
 (Hardy inequality)
$$= \frac{p}{p-1} ||f||_{(p,q)}^{*}.$$

If $q = \infty$, we have

$$\begin{split} \|f\|_{(p,\infty)}^* &= \sup_{t>0} \ t^{1/p} \ f^*(t) \leq \sup_{t>0} \ t^{1/p} \ f^{**}(t) = \|f\|_{(p,\infty)} \\ &= \sup_{t>0} \ t^{(1/p)-1} \int_0^t f^*(s) \ ds \leq \sup_{t>0} \ t^{(1/p)-1} \int_0^t s^{-1/p} \|f\|_{(p,\infty)}^* \ ds \\ &= \frac{p}{p-1} \ \|f\|_{(p,\infty)}^* \,, \end{split}$$

this shows $||f||_{(p,\infty)}^* \le ||f||_{(p,\infty)} \le \frac{p}{p-1} ||f||_{(p,\infty)}^*$. Q.E.D.

From now on we shall consider that the space L(p,q) endows the norm $\| \|_{(p,q)}$ for $1 , <math>1 \le q \le \infty$. In the cases p=1=q and $p=\infty=q$, $\| \|_{(1,1)}^*$ and $\| \|_{(\infty,\infty)}^*$ are already the complete norms of L(1,1) and $L(\infty,\infty)$, thus for the discussion of L(1,1) and $L(\infty,\infty)$, we mean that they have complete norms $\| \|_{(1,1)}^*$ and $\| \|_{(\infty,\infty)}^*$ respectively. By Hunt [2; pp. 259–262], we have

PROPOSITION 2.2. (i) For any one of the cases p=1=q; $p=\infty=q$ or $1 and <math>1 \le q \le \infty$, the space L(p,q) is a Banach space with respect to the norm $\| \|_{(p,q)}$. (ii) The conjugate space L(p,1) is $L(p',\infty)$ where 1/p+1/p'=1. The conjugate space L(p,q), $1 , <math>1 < q < \infty$, is L(p',q') where 1/q+1/q'=1 and hence they are reflexive. The dual pair is of the form

$$\langle f,g\rangle = \int fg \ d\mu, \quad f\in L(p,q), \ g\in L(p',q').$$

3. Multiplierson $oldsymbol{L}(oldsymbol{p},oldsymbol{q})\left(oldsymbol{G} ight)$ spaces

Let A be a commutative normed algebra and B a (two sided) A-module normed linear space. We denote by $\mathfrak{M}(A,B)$ the set of all bounded linear mapping

$$T: A \rightarrow B$$
 such that $T(a b) = a(Tb)$ for any $a, b \in A$.

Each element $T \in \mathfrak{M}(A, B)$ is called the multiplier of A to B.

Under the usual convolution, the space $L^p(G)$ for $1 \le p \le \infty$ and $A^p(G)$ for $1 \le p \le \infty$ are L^1 -module and it was known that

$$\mathfrak{M}(L^1(G), L^1(G)) \cong M(G)$$
 $\mathfrak{M}(L^1(G), L^p(G)) \cong L^p(G) \qquad 1
 $\mathfrak{M}(L^1(G), A^p(G)) \cong A^p(G) \qquad 1 \le p \le 2$$

where G is a locally compact abelian group, M(G) denotes the bounded regular measures and $A^p(G)$ is, with the norm $||f||^p = \max(||f||_1, ||\hat{f}||_p)$, a Banach algebra of all functions f in $L^1(G)$ whose Fourier transforms \hat{f} being to $L^p(\Gamma)$.

Blozinsky]1] proved that the usual convolution * on simple function space $S_0(G)$ can be uniquely extended to $L^1 * L(p,q)$ where every function in L(p,q) is locally integrable and hence L(p,q)(G) is an L^1 -module Banach space with respect to $\| \cdot \|_{(p,q)}$.

Let A(p,q)(G) be the subspace of $L^1(G)$ with Fourier transforms in $L(p,q)(\Gamma)$ provided each function in $L(p,q)(\Gamma)$ is locally integrable. For every $f \in A(p,q)(G)$, we supply a norm in A(p,q) by

$$||f||_{A(p,q)} = \max(||f||_1, ||\hat{f}||_{(p,q)}).$$

This norm is equivalent to the sum norm $||f||_1 + ||\hat{f}||_{(p,q)}$. In particular, if p=q, then $A(p,q)=A^p$.

In [8], Yap showed that A(p,q) (1 is a Segal algebra with respect to the sum norm, and so it is also a Segal algebra with respect to our given norm. In this section we investigate that whether the following identities hold

$$\mathfrak{M}(L^{1}(G),L(p,q)(G)) \cong L(p,q)(G)$$

$$\mathfrak{M}(L^{1}(G),A(p,q)(G)) \cong A(p,q)(G).$$

For convenient, we state some lemmas which are probably not all new.

LEMMA 3.1. Let λ be Haar measure of G. Then (i) $\lambda_{f_s} = \lambda_f$, (ii) $f_s^* =$

 f^* , $f_s^{**} = f^{**}$, $||f_s||_{(p,q)}^* = ||f||_{(p,q)}^*$ and $||f_s||_{(p,q)} = ||f||_{(p,q)}$ where $f_s(x) = f(x-s)$. PROOF. (i) Since $\{x \in G : |f_s(x)| > t\} = \{x \in G : |f(x-s)| > t\} = \{y \in G : |f(y)| > t\} + s$, we have $\lambda_{f_s}(t) = \lambda_f(t)$.

(ii) This is a consequence of (i). Q.E.D.

LEMMA 3.2. For every $f \in L(p, q)(G)$, $1 , <math>1 \le q < \infty$, the mapping $s \rightarrow f_s$ of G into L(p, q)(G) is continuous.

PROOF. Since simple functions are dense in L(p,q)(G), it is sufficient to show that for any simple function f, $s \rightarrow f_s$ is continuous. Let $f = \sum_{i=1}^n k_i$ χ_{E_i} , then $f_s = \sum_{i=1}^n k_i \chi_{E_i+s}$. Now

$$(f_s - f)^{**} \le \sum_{i=1}^{n} |k_i| (\chi_{E_i + s} - \chi_{E_i})^{**}$$

and

$$|\chi_{E_i+s}-\chi_{E_i}|(x)= egin{cases} 1 & x\in (E_i+s)\ \Delta E_i \ 0 & ext{otherwise} \end{cases},$$

where Δ denotes the symmetric difference of sets and χ_E is the characteristic function on E. We have

$$\begin{split} \lambda(\chi_{E_i+s}-\chi_{E_i})(t) &= \begin{cases} \lambda[E_i+s)\, \varDelta E_i], & t < 1 \\ 0 & t \geq 1 \end{cases} \\ (\chi_{E_i+s}-\chi_{E_i})^*(t) &= \begin{cases} 1 & t < \lambda((E_i+s)\, \varDelta E_i) \\ 0 & t \geq \lambda((E_i+s)\, \varDelta E_i) \end{cases}. \end{split}$$

This shows that

$$\|\chi_{E_t+s} - \chi_{E_t}\|_{(p,q)}^* = [\lambda((E_t+s)\Delta E_t)]^{1/p} \rightarrow 0(s \rightarrow 0).$$

Hence

$$||f_s - f||_{(p,q)}^* \to 0 (s \to 0)$$
 and $||f_s - f||_{(p,q)} \to 0 (s \to 0)$ Q.E.D.

LEMMA 3.3. There is an approximate identity $\{a_{\alpha}\}$ of $L^{1}(G)$ such that $\|a_{\alpha}\|_{1}=1$ and $f*a_{\alpha}\to f$ for every $f\in L(p,q),\ 1< p<\infty,\ 1\leq q<\infty$. It holds also for $f\in L(p,q),\ 1< p<\infty,\ 1< q<\infty$.

PROOF. For a proof of simple function follows immediately from Lemma 3.2. Indeed, let $\{U_{\alpha}\}$ be a decreasing neighborhood system at the origin in G, for each α , we assume that a_{α} is non-negative continuous function with support in U_{α} such that $\int_{G} a_{\alpha}(x) d\lambda(x) = 1$. If g is a simple function, then

$$||g * a_{\alpha} - g||_{(p,q)} \leq \int_{G} ||g_{y} - g||_{(p,q)} \ a_{\alpha}(y) \ d\lambda(y)$$

$$\leq \sup_{y \in \mathcal{F}_{\alpha}} ||g_{y} - g||_{(p,q)} \to 0 \text{ (Lemma 3. 2)}$$

the limit being taken over the net of α . As the simple fractuons are dense in L(p,q), thus for any $\varepsilon>0$ and $f\in L(p,q)$, there exists a simple function g such that $||f-g||_{(p,q)}<\varepsilon$ and

$$\begin{split} \|f*a_{\alpha}-f\|_{(p,q)} \leq & \|f*a_{\alpha}-g*a_{\alpha}\|_{(p,q)} + \|g*a_{\alpha}-g\|_{(p,q)} \\ & + \|g-f\|_{(p,q)} \\ < & 2\varepsilon + \|g*a_{\alpha}-g\|_{(p,q)} \\ & \lim_{\alpha} \sup \|f*a_{\alpha}-f\|_{(p,q)} \leq 2\varepsilon \;. \end{split}$$

Since ε is arbitrary, we have $f * a_{\alpha} \rightarrow f$ for every $f \in L(p, q)$. Q.E.D.

One of the main results is the following

Theorem 3.4. The multiplier space $\mathfrak{M}(L^1(G), L(p,q)(G))$ is isometric isomorphic to L(p,q)(G) for $1 , <math>1 < q < \infty$. Moreover for any $T \in \mathfrak{M}(L^1(G), L(p,q)(G))$, there is a unique f in L(p,q)(G) such that Ta = a * f for every $a \in L^1(G)$.

PROOF. By Proposition 2.2, we see that the dual pair is of the form

$$\langle f,g\rangle = \int_{\mathcal{G}} f(x) \ g(x) \ d\lambda(x), \quad f \in L(p',q'), \ g \in L(p,q) \,.$$

Moreover for every $\mathfrak{G} \in L'(p, q')$ there is a unique $g \in L(p, q)$ such that

$$\mathfrak{G}(f) = \int_{G} fg \ d\lambda$$
 for every $f \in L(p', q')$.

Now if $a \in L^1(G)$, $f \in L(p', q')$, we define $a \otimes f = \tilde{a} * f$, where a is the reflexive function of a. Then it follows from Blozinsky [1; Theorem 2.9] that L(p', q') is an L^1 -module under \otimes , naturally if for every $a \in L^1(G)$, $\mathfrak{G} \in L'(p', q')$, we define

$$a \otimes \mathfrak{G}(f) = \mathfrak{G}(a \otimes f)$$
 for $f \in L(p', q')$.

Then L'(p', q') is also $L^1(G)$ -module under \otimes . Since there is an approximate identity $\{a_{\alpha}\}$ in $L^1(G)$ such that $\|a_{\alpha}\|_1=1$ and

$$||a_{\boldsymbol{\alpha}} \otimes f - f||_{(p',q')} = ||a_{\boldsymbol{\alpha}} * \tilde{f} - \tilde{f}||_{(p',q')} \rightarrow 0$$

it follows from Liu and Rooij [6; Lemma 2.8] that

$$\mathfrak{M}(L^{\scriptscriptstyle 1}(G),L'(p'\,q')(G)\cong L'(p',q')(G)$$
 ,

and hence

$$\mathfrak{M}(L^{1}(G), L(p,q)(G)) \cong L(p,q)(G), \qquad 1 < p, q < \infty.$$

We have to claim that the group algebra $L^1(G)$ acting on L'(p', q') corresponds to acting on L(p,q). That is for any $a \in L^1(G)$, $a \otimes \mathfrak{G}$ in

L'(p',q') corresponds to a*g in L(p,q) whenever $\mathfrak{G}\in L'(p',q')$ corresponds to $g\in L(p,q)$. Indeed, for every $f\in L(p',q')$, $a\otimes \mathfrak{G}(f)=\mathfrak{G}(a\otimes f)=\int_G (\tilde{a}*f)\,g$ $d\lambda=\int_G f(a*g)\,d\lambda$. Hence for each $T'\in\mathfrak{M}(L^1(G),\ L'(p',q')(G))$, there is a unique $\mathfrak{G}\in L'(p',q')$ such that

$$T'a = a \otimes \mathfrak{G}$$
 for every $a \in L^1(G)$.

This implies that for every $T \in \mathfrak{M}(L^1(G), L(p, q)(G))$ there is a unique $g \in L$ (p, q) such that

$$Ta = a * g$$
 for every $a \in L^1(G)$.

Thus the theorem is proved. Q.E.D.

In order to characterize the multipliers $\mathfrak{M}(L^1(G), A(p, q)(G))$, we define a space M(p, q)(G) as follows

$$M(p,q)(G) = \left\{ \mu \in M(G) \; ; \; \hat{\mu} \in L(p,q)(\Gamma), \; 1 \leq p \leq \infty, \; 1 \leq q \leq \infty \right\}$$

where $\hat{\mu}$ is the Fourier Stieltjes transform of a bounded regular measure μ in M(G). For every $\mu \in M(p, q)(G)$ we supply a norm by

$$\|\mu\|_{\mathit{M}(p,q)}\!=\!\max\big\{\|\mu\|,\,\|\hat{\mu}\|_{(p,q)}\big\},\,\,1\!\leq\!p,\,q\!\leq\!\infty\,\,.$$

Denote by M(p,q)(G) the space of M(p,q)(G) with the norm $\| \|_{M(p,q)}$. In particular if p=q, we denote by $M^p(G)=M(p,p)(G)$ with the norm $\|\mu\|_{M^p}=\max\{\|\mu\|,\|\hat{\mu}\|_p\},\ \mu\in M^p(G)$. Note that $M(\infty,\infty)(G)=M(G)$.

Theorem 3.5. The space M(p,q)(G) $(1 \le p \le \infty, 1 \le q \le \infty)$ is a commutative Banach algebra.

PROOF. Evidently M(p,q)(G) is a normed linear space. Suppose that $\{\mu_n\}$ is a Cauchy sequence in $M(p,q)(G) \subset M(G)$. Then $\{\hat{\mu}_n\}$ is also a Cauchy sequence in $L(p,q)(\Gamma)$. By the completeness of M(G) and $L(p,q)(\Gamma)$, there are $\mu \in M(G)$ and $h \in L(p,q)(\Gamma)$ such that

$$\|\mu_n - \mu\|_{M(G)} \to 0$$
 and $\|\hat{\mu}_n - h\|_{(p,q)} \to 0$.

It follows from Yap [8; Lemma 2.2] that there is a subsequence $\{\hat{\mu}_{n_i}\}$ of $\{\mu_n\}$ which converges pointwise almost everywhere to h. Thus

$$\|\hat{\rho}_n - \hat{\mu}\|_{\infty} \le \|\mu_n - \mu\|_{M(G)} \to 0 \text{ implies } \hat{\mu} = h,$$

this shows that M(p,q)(G) is complete with respect to the norm $\| \|_{M(p,q)}$. Further, for any μ_1 , μ_2 in M(p,q)(G), we have

$$\begin{split} \|\mu_{1} * \mu_{2}\|_{M(p,q)} &= \max \left\{ \|\mu_{1} * \mu_{2}\|_{M(G)}, \|\hat{\mu}_{1} \cdot \hat{\mu}_{2}\|_{(p,q)} \right\} \\ &\leq \max \left\{ \|\mu_{1}\| \|\mu_{2}\|, \|\hat{\mu}_{1}\| \|\hat{\mu}_{2}\|_{(p,q)} \right\} \\ &\leq \|\mu_{1}\|_{M(p,q)} \|\mu_{2}\|_{M(p,q)} \,. \end{split}$$

Hence M(p, q)(G) is a commutative Banach algebra. Q.E.D.

It is immediately that A(p,q) is an ideal of M(p,q). The question arises that whether the space A(p,q) is a proper ideal of M(p,q) or not. Precisely we have the following

Theorem 3.6. (i) If $1 \le q \le p \le 2$, then M(p,q) = A(p,q) (ii) If p > 2, $1 \le q \le \infty$, then $M(p,q) \supseteq A(p,q)$.

PROOF. (i) For $1 \le q \le p \le 2$, $\mu \in M(p, q)$, we have $\mu \in L(p, q) \subset L(p, p)$. This implies $\mu \in M(p, p)$. It follows from Liu and Rooij [6; Lemma 2.3] that μ is absolutely continuous, so that $\mu \in A(p, q)$.

For (ii), we consider G=T and $\Gamma=Z$. Wiener and Wintner [7] proved that there is a nonnegative singular measure μ on T such that $\mu(n)=0(n^{-1/2+\epsilon})$ for any $\varepsilon>0$. Thus for p>2, $1\leq q\leq \infty$, we choose a singular measure having the property of [7] showed. Then there are constants $C_1>C_2>0$ and n_0 such that

$$|\hat{\mu}(n)| \le f(n) = \begin{cases} C_1, & |n| < n_0 \\ C_2 |n|^{-1/2+\varepsilon}, & |n| \ge n_0 \end{cases}$$

and so

$$f^*(t) = \begin{cases} C_1 &, \ t < 2n_0 \\ C_2 m^{-1/2+\varepsilon}, \ 2m \le t < 2m+2, \ m \ge n_0 \end{cases}$$

$$||f||^*_{(p,q)} = \left\{ \frac{q}{p} \int_0^{2n_0} C_1^q x^{q/p-1} dx + \sum_{n=n_0}^{\infty} (C_2 n^{-1/2+\varepsilon})^q \cdot ((2n+2)^{q/p} - (2n)^{q/p}) \right\}^{1/q}$$

$$= \left\{ K_1 + K_2 \sum_{n=n_0}^{\infty} n^{-q/2+\varepsilon q} (n+1)^{q/p} - n^{q/p} \right\}^{1/q}$$

where K_1 , K_2 are constants. If p>2, $1 \le q < \infty$, we have $-\frac{q}{2} + \varepsilon q + \frac{q}{p} - 1$ < -1 provided $\varepsilon \left(< \frac{p-2}{2pq} \right)$ is sufficient small, and since

$$n^{-q/2+\varepsilon q} \cdot ((n+1)^{q/p} - n^{q/p}) = 0 (n^{-q/2+\varepsilon q+q'p-1}),$$

the series $\sum_{n=p_0}$ converges. Hence $\|f\|_{(p,q)}^* < \infty$ and $\|\mu\|_{(p,q)} < \infty$ proves $\mu \in$

M(p, q) but $\mu \notin A(p, q)$.

If p>2, $q=\infty$, we have $||f||_{(p,q)}^*=\sup_{t>0} t^{1/p} f^*(t)<\infty$. Hence $\mu\in M(p,\infty)$, $\mu\notin A(p,\infty)$. Q.E.D.

Remark. We do not know what happen for the case 1 .

The following lemma is useful and the proof follows immediately from the properties of Segal algebras.

Lemma 3.7. There is an approximate identity $\{e_{\alpha}\}$ of A(p,q)(G), $1 , <math>1 \le q < \infty$, which is a bounded approximate identity of $L^1(G)$ such that $\|e_{\alpha}\|_1 \le 1$ and \hat{e}_{α} have compact support for all α .

We have seen in Lemma 3.3 that there is an approximate identity of L(p,q)(G) which is the bounded approximate identity of $L_1(G)$. One can choose the approximate identity like as Lemma 3.7 that the Fourier transforms have compact supports. For convenient, we state it as following

Lemma 3.8. There is a bounded approximate identity $\{e_{\alpha}\}$ of $L^1(\Gamma)$ such that \hat{e}_{α} has compact support in G and

$$||e_{\alpha}*f-f||_{(p,q)} \rightarrow 0$$
 for any $f \in L(p,q)(\Gamma)$, $1 , $1 \le q < \infty$.$

LEMMA 3.9. (i) The space $A^1(G)$ is contained in A(p,q)(G) for $1 \le p < \infty$, $1 \le q \le \infty$.

(ii) The Fourier transforms $\widehat{A^1(G)}$ and $\widehat{A(p,q)(G)}$ are dense in L(p,q) (Γ) for $1 \le p < \infty$, $1 \le q < \infty$.

PROOF. Suppose that $f = \hat{g}$, $g \in A^1G$, then $f \in L^1(\Gamma)$ and $\int_0^\infty f^* dt = \int_{\Gamma} |f| d\eta < \infty$. If $p \ge q$, we have

$$\int_{0}^{\infty} x^{q/p-1} f^{*}(x) dx \leq ||f|| \int_{0}^{1} x^{q/p-1} dx + \int_{1}^{\infty} x^{q/p-1} f^{*}(x)^{q} dx$$

$$\leq \frac{q}{p} ||f||_{\infty} + \int_{1}^{\infty} f^{*}(x)^{q} dx$$

$$< \infty,$$

and so $f \in L(p,q)(\Gamma)$. If p < q, then $f \in L(p,p) \subset L(p,q)$. This shows that $g \ni A(p,q)$ and $\widehat{A^1(G)} \subset \widehat{A(p,q)(G)} \subset L(p,q)(\Gamma)$. It is sufficient to show that $\widehat{A^1(G)}$ is dense in $L(p,q)(\Gamma)$. Let $\{e_a\}$ is $L^1(\Gamma)$ be an approximate identity of $L(p,q)(\Gamma)$ such that \hat{e}_a has compact support. Then for every $f \in L(p,q)(\Gamma)$ and any $\varepsilon > 0$, there is α_0 such that

$$||e_{\alpha_0}*f-f||^{(p,q)}<\varepsilon$$
.

Since the simple functions are dense in $L(p,q)(\Gamma)$, thus for the given $\epsilon > 0$, there exists a simple function g such that $||f-g||_{(p,q)} < \epsilon$, and

$$\begin{aligned} \|e_{\alpha_0} * g - f\|_{(p,q)} \leq \|e_{\alpha_0}\|_1 \|g - f\|_{(p,q)} + \|e_{\alpha_0} * f - f\|_{(p,q)} \\ < (C+1) \varepsilon \end{aligned}$$

where $\|e_{\alpha_0}\|_1 \leq C$. But $\widehat{e_{\alpha_0} * g} = \widehat{e}_{\alpha_0} \widehat{g} \in C_c(G) \subset L^1(G)$, we see that $e_{\alpha_0} * g \in A^1(G)$. This shows that $\widehat{A^1(G)}$ is dense in $L(p,q)(\Gamma)$. Q.E.D.

We use the symboles appear in Liu and Rooij [6]. Thus by Lemma 3.9, Theorem 2.4, and [6; Lemma 2.8], we obtain

Lemma 3.10. Let H be the closures of $\{(\tilde{f},-\hat{f})\,;\,f\in A^1(G)\}$ in $C_0(G)\times L(p',q')(\Gamma)$ and

 $J = \left\{ (\mu,\,h) \; ; \; \; \mu \in M(G), \; \; h \in L(p,\,q) \, (\varGamma), \; \; \int_{\mathcal{G}} \widetilde{f} \; \; d\mu = \int_{\varGamma} \widehat{f} \; \; h \; \; d\eta, \quad f \in A^1(G) \right\}.$ Then

$$\big\{ C_{\mathbf{0}}(G) \; V_{\mathbf{H}} L(p',q')(\varGamma) \big\}' \! \cong \! M(G) \; \varLambda_{\mathbf{J}} L(p,q)(\varGamma), \; 1 \! < \! p \! < \! \infty, \; 1 \! < \! q \! < \! \infty \; .$$

If p=1, then q=1, and the same result holds for $C_0(\Gamma)$ in place of $L(\infty, \infty)(\Gamma)=L^{\infty}(\Gamma)$.

LEMMA 3.11. For
$$1 , $1 < q < \infty$ or $p = 1 = q$, then
$$M(G) \Lambda_J L(p, q)(\Gamma) \equiv M(p, q)(G)$$$$

where any element μ in M(p,q)(G) is regarded as the pair $(\mu, \hat{\mu})$ in $M(G) \times L(p,q)(\Gamma)$ so that M(p,q) is embedded in $M(G) \times L(p,q)(\Gamma)$.

PROOF. If $(\mu, h) \in J$, then it follows from $\widehat{A^1}(G)$ dense in $L(p', q')(\Gamma)$ and $\int_{\Gamma} \widehat{f} \ \widehat{\mu} \ d\eta = \int_{\Gamma} \widehat{f} \ h \ d\eta$ for $f \in A^1(G)$ that $h = \widehat{\mu}$. (In detail see Liu and Rooij [6].) Q.E.D.

It is clear that M(p,q)(G) is an $L^1(G)$ -module under convolution thus we have following theorem.

Theorem 3.12. For $1 , <math>1 < q < \infty$ or p = 1 = q, the multiplier algebra $\mathfrak{M}(L^1(G), M(p,q)(G))$ is isometrically isomorphic to M(p,q)(G). Moreover for every multiplier T of $L^1(G)$ into M(p,q)(G) can be expressed as the form

$$T(a) = a * \mu$$
 for some $\mu \in M(p, q)(G)$ and any $a \in L^1(G)$.

PROOF. From Lemma 3.10 and Lemma 3.11, we see that

$$\left\{C_{\mathbf{0}}(G) \ V_{\mathbf{H}} L(p',q')(\varGamma)\right\}' \cong M(p,q)(G) \, .$$

Using this identity and [6; Lemma 2.8], the theorem follows immediately. To this end, we have only to show that $C_0(G) V_H L(p', q')(\Gamma)$ is $L^1(G)$ -module under certain operation and there is an approximate identity of

 $L^{1}(G)$ with the property as in [6; Lemma 2.8].

For any $\mu \in M(p,q)(G)$, there corresponds an element $U_{\mu} \in [C_0(G) V_H L(p,q)(\Gamma)]'$ defined by

$$U_{{\scriptscriptstyle \mu}}(f,\,g) = \int_{{\scriptscriptstyle \pmb{g}}} f \ d\mu + \int_{{\scriptscriptstyle \Gamma}} g \hat{\mu} \ d\eta \ , \quad (f,\,g) \in C_{\scriptscriptstyle \pmb{0}}(G) \ V^{\scriptscriptstyle H} \, L(p',\,q')(\varGamma) \ .$$

We will define an operation \otimes for which $C_0(G)$ $V_H L(p', q')(\Gamma)$ is an $L^1(G)$ -module. This operation \otimes induces an operation over its dual space which is defined by

$$a \otimes U_{\mu}(f,g) = U_{\mu}(a \otimes (f,g))$$
 and $a \otimes (f,g) = (\tilde{a} *f, \hat{a}g)$

for any $(f,g) \in C_0(G)$ $V_H L(p',q')(\Gamma)$ and $a \in L^1(G)$. At first we have to show $[C_0(G) \ V_H L(p',q')(\Gamma)]'$ and M(p,q)(G) are the same space acted by $L^1(G)$ under the operations \otimes and * respectively. That is $a \otimes U_\mu = U_{a*\mu}$ holds for any $a \in L^1(G)$ and $\mu \in M(p,q)(G)$. In fact for $(f,g) \in C_0(G)$ $V_H L(p',q')(\Gamma)$, we have

$$\begin{split} U_{a\;\mu}(f,\,g) &= \int_G f(x)\,d(a*\mu)\,(x) + \int_\Gamma\,\hat{a}\hat{\mu}g\;\;d\eta \\ &= \int_G f(x)\,a*\mu(x)\,d\lambda(x) + \int_\Gamma\,\hat{a}\hat{\mu}g\;\;d\eta\,(\text{for }a*\mu\in L^1(G))\,, \end{split}$$

and

$$\begin{split} a \,\otimes\,\, U_{\boldsymbol{\mu}}(f,\,g) &= U_{\boldsymbol{\mu}}(a \,\otimes\, (f,\,g)) = U_{\boldsymbol{\mu}}(\tilde{a} * f,\, \hat{a} g) \\ &= \int_{G} \tilde{a} * f(x) \; d\boldsymbol{\lambda}(x) + \int_{\varGamma} \hat{a} \hat{\boldsymbol{\mu}} g \;\; d\eta \\ &= \int_{G} f(y) \; a * \boldsymbol{\mu}(y) \; d\boldsymbol{\lambda}(y) + \int_{\varGamma} \hat{a} \hat{\boldsymbol{\mu}} g \;\; d\eta \\ &= U_{a*\boldsymbol{\mu}}(f,\,g) \;. \end{split}$$

Now we show that $C_0(G)$ $V_H L(p', q')(\Gamma)$ is $L^1(G)$ -module under \otimes . In fact, if $(\tilde{f}, -\hat{f}) \in H'$, then it is clearly $a \otimes (\tilde{f}, -\hat{f}) = \tilde{a}^* \tilde{f}, -\hat{a} \hat{f}) \in H$. Further for $(f, g) \in C_0(G) \times L(p', q')(\Gamma)$, we have

$$\begin{split} \|a \, \otimes \, (f,g)\| &= \|(\tilde{a}*f,\hat{a}g)\| \\ &= \inf \left\{ \|f'\|_{\infty} + \|g'\|_{(p',q')} \, ; \, (f',g') {\,\cong\,} (\tilde{a}*f,\hat{a}g) \, \bmod \, H \right\} \\ &= \inf \left\{ \|\tilde{a}*f + \tilde{h}\|_{\infty} + \|\hat{a}g - \hat{h}\|_{(p',q')} \, ; \, \, h {\in} A^1(G) \right\} \\ &\leq \inf \left\{ \|\tilde{a}*f + \widetilde{a*k}\| + \|\hat{a}g - \widehat{a*k}\|_{(p',q')} \, ; \, \, k {\in} A^1(G) \right\} \end{split}$$

since $a * k \in L^1 * A^1(G) \subset A^1(G)$,

$$\leq \inf \left\{ \|a\|_{1} \|f + \tilde{k}\|_{\infty} + \|\hat{a}\|_{\infty} \|g - \hat{k}\|_{(p',q')}; \ k \in A^{1}(G) \right\}$$

$$\leq \|a\|_{1} \inf \left\{ \|f'\|_{\infty} + \|g'\|_{(p',q')}; \ (f',g') \cong (f,g) \mod H \right\}$$

$$= \|a\|_{1} \|(f,g)\|.$$

Hence

$$||a \otimes (f, g)|| \le ||a||_1 ||(f, g)||$$
.

To complete the proof, it remains to show that there is a bounded approximate identity $\{e_{\alpha}\}$ of $L^{1}(G)$ with $\|e_{\alpha}\|_{1} \leq 1$ such that

$$\|e_{\alpha}\otimes (f,g)-(f,g)\| \rightarrow 0 \text{ for every } (f,g)\in C_0(G)\ V_HL(p',q')(\Gamma).$$

Let $\{e_{\alpha}\}$ be a bounded approximate identity of $L^{1}(G)$ with $\|e_{\alpha}\|_{1} \leq 1$ and the Fourier transform \hat{e}_{α} has compact support such that

$$||e_{\alpha}*f-f||_{A(p',q')} \rightarrow 0$$
 for every $f \in A(p',q')(G)$ (Lemma 3.7.).

Since $\widehat{A(p',q')}(G)$ is dense in $L(p',q')(\Gamma)$, thus for any $g \in L(p',q')(\Gamma)$ and $\varepsilon > 0$ there is $h \in \widehat{A(p',q')}(G)$ such that $\|g-h\|_{(p',q')} < \varepsilon$, it follows that

$$\begin{split} \|\hat{e}_{\alpha} g - g\|_{(p',q')} &\leq \|\hat{e}_{\alpha} g - \hat{e}_{\alpha} h\|_{(p',q')} + \|\hat{e}_{\alpha} h - h\|_{(p',q')} + \|h - g\|_{(p',q')} \\ &< 2\varepsilon + \|\hat{e}_{\alpha} h - h\|_{(p',q')} \; . \end{split}$$

Since for $\check{h} \in A(p', q')(G)$ with $\hat{\check{h}} = h$,

$$\|\hat{e}_{\alpha}h - h\|_{(p',q')} = \|\widehat{e}_{\alpha} * \check{h} - h\|_{(p',q')} \le \|e_{\alpha} * \check{h} - \check{h}\|_{A(p',q')} \to 0$$

and e is arbitrary, we have

$$\|\hat{\boldsymbol{e}}_{\boldsymbol{\alpha}} g - g\|_{(\boldsymbol{p}',\boldsymbol{q}')} \rightarrow 0$$
.

Therefore for $(f, g) \in C_0(G)$ $V_H L(p', q')(\Gamma)$, we have

$$\begin{split} \|e_{\alpha} \otimes (f, g) - (f, g)\| &= \|(\tilde{e}_{\alpha} * f - f, \hat{e}_{\alpha} g - g)\| \\ &\leq \|\tilde{e}_{\alpha} * f - f\|_{\infty} + \|\hat{e}_{\alpha} g - g\|_{(p', q')} \\ &\to 0 \;, \end{split}$$

the limit being taken over all α . This proof is completed. Q.E.D.

Theorem 3.13. For 1 < p, $q < \infty$ or p = 1 = q, the identity $\mathfrak{M}(L^1(G), A(p,q)(G)) \cong M(p,q)(G)$

holds. Furthermore, if $T \in \mathfrak{M}(L^{1}(G), A(p,q)(G))$, there is a unique $\mu \in M(p,q)(G)$ such that

$$Ta = a * \mu \text{ for any } a \in L^1(G).$$

PROOF. Evidently, for any $T \in \mathfrak{M}(L^1(G), A(p,q)(G))$, it follows that $T \in \mathfrak{M}(L^1(G), M(p,q)(G))$. Conversely for $T \in \mathfrak{M}(L^1(G), M(p,q)(G))$, it follows from Theorem 3.12 that there is a unique $\mu \in M(p,q)(G)$ such that

$$Ta = a * \mu$$
.

holds for every $a \in L^1(G)$. Thus

$$\|\widehat{a*\mu}\|_{(p,q)} = \|\widehat{a}\widehat{\mu}\|_{(p,q)} \le \|\widehat{a}\|_{\infty} \|\widehat{\mu}\|_{(p,q)} \le \|a\|_1 \|\mu\|_{M(p,q)} < \infty,$$

and since $a * \mu \in L^1(G)$, we see that $a * \mu \in A(p, q)(G)$. That is $T \in \mathfrak{M}(L^1(G), A(p, q)(G))$. Hence by Theorem 3.12 again, we obtain

$$\mathfrak{M}(L^{1}(G), A(p, q)(G)) \cong \mathfrak{M}(L^{1}(G), M(p, q)(G)) \cong M(p, q)(G).$$
 O.E.D.

Applying Theorem 3.6 and Theorem 3.13, we have

COROLLARY 3.14. (i) If
$$1 < q \le p < 2$$
 or $p = 1 = q$, then $\mathfrak{M}(L^{1}(G), A(p, q)(G)) \cong A(p, q)(G)$.

(ii) If 2 < p, $1 < q < \infty$, then

$$\mathfrak{M}(L^{1}(G), A(p,q)(G)) \cong M(p,q)(G) \supseteq A(p,q)(G).$$

REMARK 1. If p=q, $1 \le p < \infty$, then Theorem 3.6 and Theorem 3.12 (or Corollary 3.14) induce $\mathfrak{M}(L^1(G), A^p(G)) \cong A^p(G)$ for $1 \le p \le 2$ and $\mathfrak{M}(L^1(G), A^p(G)) \cong M^p(G) \cong A^p(G)$ for 2 .

This answers the question risen in Lai [4]. The classical multiplier problem in $L^1(G)$ is a special case in our context. That is

$$\mathfrak{M}(L^{\scriptscriptstyle 1}(G),\,L^{\scriptscriptstyle 1}(G))\cong\mathfrak{M}(L^{\scriptscriptstyle 1}(G),\,M(G))\cong M(G)\;.$$

REMARK 2. From Corollary 3.14 (ii), one sees that, in general, if S(G) is a proper Segal algebra, the multiplier algebra $\mathfrak{M}(L^1(G), S(G))$ needs not be isometrically isomorphic to S(G) itself.

Institute of Mathematics National Tsing Hua University Taiwan, Republic of China

References

- [1] A. P. BLOZINSKY: On a convolution theorem for L(p,q) spaces, Trans. Amer. Math. Soc., 164 (1972), 2555-265.
 - A. P. BLOZINSKY: Convolution of L(p,q) functions, Proc. Amer. Math. Soc. 32 (1972), 237-240.
- [2] R. A. HUNT: On L(p,q) spaces, Enseignement Math., 12 (1966), 249-276.
- [3] H. C. LAI: On some properties of $A^p(G)$ -algebras, Proc. Japan Acad., 23 (1969), 572-576.
- [4] H. C. LAI: On the multipliers of $A^p(G)$ -algebras, Tôhoku Math. J., 23 (1971), 641-662.

- [5] R. LARSEN: "An introduction to the Theory of Multipliers", Springer-Verlag
 Berlin Heidelberg 1971.
- [6] T. S. LIU and A. C. M. Van ROOIJ: Sum and intersections of normed linear spaces, Math. Nachr., 42 (1969), 29-42.
- [7] N. WIENER and A. WINTNER: Fourier-Stieltjes transforms and singular infinite convolution, Amer. J. Math., 60 (1938), 513-522.
- [8] L. Y. H. YAP: On two classes of subalgebras in $L_1(G)$, Proc. Japan Acad., 48 (1972), 315-319.
- [9] L. Y. H. YAP: Some remarks on convolution operators and L(p,q) spaces, Duke Math. J., 36 (1969), 647-658.
- [10] L. Y. H. YAP: On the impossibility of representing certain functions by convolutions, Math. Scand., 26 (1970), 132-140.

(Received January 15, 1974)