Multipliers of Lorentz spaces
" By Yann-Kunn CHEN and'Hang-Chin Lar*

1. Introduction

Let G and I' be locally compact abelian groups in Pontrjagin duality
and respectively with Haar measures 1 and % such that the Plancherel the-
orem holds. In this paper we investigate the multipliers on Lorentz spaces
L(p, q)(G), 1<p< oo, 1<g<co. For convenience, we review briefy in sec-
tion 2 what we need on the fundamental theory of L(p, q) spaces. Many
propositions: eoncerning L(p, g) spaces one can refer to Hunt [2], Blozinsky

[1], Yap [8] and [9].

In- this- paper; ‘it is essentially to investigate the multipliers of L(p, q)
in which the identity M(LY(G), F(G)=F(G) will be true for the cases of
F(G)=L(p;q)(G) or F(G)=A(p, q)(G) defined in Yap [8]. It-follows that
the identity IM(LY(G), A?(G)=A*(G) for 1<p<2 in Lai [4; Proposition
5.2] will be a consequence in this paper. Further we would give an an-
swer for the question risen in [4]. ’

2. Preliminaries on L(p, q) spaces

DEFINITIONS. Let f be a measurable function defined on a measure
space (X, #). We assume that the functlons f are finite valued almost every-
where and for y>0,

plzeX; | flz)>y)<oo.
The distribution function of f is defined by
()= plze X; |f@) >y}, v>0.

The (nonnegative) rearrangement of f is defined by
7*¥(@) =inf {'y>0 ; lf(y)ét} = sup {y>0 ; 2}(y)>t} , t>0.

The average function of f is defined by

0= P16 a5, 0.

*) The second author was pa‘rﬁally supported by the Mathematics Research Center,
Taiwan, Republic of China.
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Note that A,(-), f*(-), f**(-) are nonincreasing and right continuous
functions on (0, o) (cf. Hunt [2]).

The Lorentz space denoted by L(p, q)(X, p), for brevity by L(p,q), is
defined to be the collection of all f such that ||f]|f,,q<oo where

(lgm[tl/pf*( )]qfli> ‘ 0<p<oo, 0<g< o

A& =
sup £7 f*(#), 0<p< oo, g=oo.

It follows from Hunt [2; p. 253] that || fll&.n=Ifl, and if 0<q:1<q,
<o, 0<p<oo, then |[f HZ"p.qz)SHf %.¢) holds and so L(p, )T L(p, ).
Evidently. L(p, p)=L? algebraically, in particular, if 1<p< oo, then L(p,p)
is isometrically isomorphic to L? where L(p, p) takes || ||, as its norm.

Now we consider X to be a locally compact Hausdorff space and ¢ is
a positive Borel measure, then it can be shown that: every function in
L(p, q)(X, p) is locally integrable if and only if any one of the cases p=
l=g;p=00=q or 1<p<oo0, 1<g< o0 holds.

Throughout we will assume that X is locally compact Hausdorff space
with positive Borel measure g, and that function f in L(p,q) is locally
integrable.

It is known that the functional | ||{,, endows a topology in L(p, q)
such that L(p, q) is a topological vector space, and the limit f,—f in this
topology means that ||f,—f||{%.0—0(see Hunt [2; p.257]). We also intro-
duce (see Hunt [2]) the following function

],,?52, S E )S |fl@)dy, t<p(X) and ECX

£ =
4{ 1Aias, o> ),

A0 =1 **G0 and [ flle.o=1** G0 -
In [2; p. 258], Hunt proved that L(p, q) is a Banach space under the

norm || ||, for 1<p< oo, 1<g<00. Moreover

A1 1A 0 1A 0 <527 1A 10)-

It follows immediately that

ProPOSITION 2.1, If 1<p<oo, 1<g<oo then | ||&o and | |G
are equivalent norms on L(p, q) and hence L(p, q) is a Banach space under
the norms || |%.¢ or | |l which induces the same topology as I l&e
does.
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Proor. It is immediately that || |, is a norm in L(p, q). By pre-
vious inequalities, it is sufficient to show that :

. ”f”(*p,q)s]!fl](p,q)gﬁ_llfllzkp,q) .
Indeed, if g# o0 and since f*<f**=(f*)**)=f*¥)* it follows that

. " e 1/g
VoS Ufllin = (- T P22 )

2(%8: [S:f*(x) dx]q fa/p-1-q dt) /e

_p_ <_Q_ S‘” FH(x) 2t dx)l/q (Hardy inequality)
p—1\p b/ y ineq

IA

il

27 Il
If g=o00, we have
W = 50D %% £ ()<sup 27 L0 = | fller

=sup VP11 fX(s) ds<sup £991 [* 52| £|1, ., ds
t>0 R ) t>0
=21 1l

this shows £, < I/ lipr <527 I/l - QED.

From now on we shall consider that the space L(p, q) endows the
norm || ||, for 1<p< o0, 1<g< 0. In the cases p=1=gq and p=oc0=g,

| &y and || |l&.« are already the complete norms of L(1,1) and L(co
oo), thus for the discussion of L(1,1) and L(co, ), we mean that they

have complete norms || ||§,,, and || ||%.« respectively. By Hunt [2; pp.
259-262], we have ‘

ProrosiTION 2.2. (i) For any one of the cases p=1=gq; p=oco=q or
1<p<oo and 1<q< oo, the space L(p, q) is a Banach space with respect
to the norm || | (.. (i) The conjugate space L(p,1) is L(p', 00) where
1p+1/p'=1.  The conjugate space L(p,q), 1<p<oo, 1<g<oo, is L(p,
¢') where 1/g+1/¢’=1 and hence they are reflexive. The dual pair is of
the form :

foo=[fody, feLip,q), geL(pq).
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3. Multiplierson L( P, q) (@) spaces

Let A be a commutative normed algebra and B a (two sided) A-mod-
ule normed linear space. We denote by MM(A, B) the set of all bounded
linear mapping :

T: A->B such that T(ab)=a(Tb) for any a,b€A.

Each element TeMM(A, B) is called the multiplier‘df A to B.
Under the usual convolution, the space L?(G) for 1<p<co and A?(G)
for 1<p< oo are L'-module and it was known that

M(L(G), L'(G) = M(G)

M(LNG), L (G) = L*(G)  1<p<oo
TM(L}(G), A*(G) = A%(G)  1<p<2

where G is a locally compact abelian group, M(G) denotes the bounded
regular measures and A?(G) is, with the norm || f1|*=max (|| f|, || fl,), a Ban-
ach algebra of all functions f in L{(G) whose Fourier transforms f being
to L*(I"). T . .

Blozinsky ]1] proved that the usual convolution * on simple function
space So(G) can be uniquely extended to L'= L(p, q) where every function
in L(p, q) is locally integrable and hence L(p, g) (G) is an L!-module Banach
space with respect to || /(.0

Let A(p, q)(G) be the subspace of L'G) with Fourier transforms in
L(p, q)(I") provided each function in L(p, g)(I') is locally integrable. For
every feA(p, q)(G), we supply a norm in A(p, q) by

NS aro = max (1A 1 F o) -

This norm is equivalent to the sum norm || f],+ || Fllpo- In particular, if
p=gq, then A(p, q)=A".

- In [8], Yap showed that A(p, q) (1<p<oo, 1<g< o) is a Segal algebra
with respect to the sum norm, and so it is also a Segal algebra with re-
spect to our given norm. In this section we investigate that whether the
following identities hold

M(L(G), L(p, 9)(G) = L(p, 9) (G)
M(LNG), Alp, ) (G)= A, 9)(G) .

For convenient, we state some lemmas which ‘are probably not all new.

LEMMA 3.1. Let 2 be Haar measure of G. Then (i) ,,=2, (ii) fi'=
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I £ = 1 fllGo=11flEo and || fill o= lwo where fi(x)=flx—s).
PrROOF. (i) Since {x€G; |fi(x)| >t} ={xeG; | flx—s)| >t} ={yeG; | fly)|

>t}+s, we have 1, ()=4(z).

(i) This is a consequence of (i). Q.E.D.

LEMMA 3.2. For every feL(p, q)(G), 1<p< o0, 1<q< o0, the mapping
s—f, of G into L(p, q)(G) is continuous.
PRroOF. Since simple functions are dense in L(p, ¢)(G), it is sufflcient

n
to show that for any simple function f, s—f, is continuous. Let f=2}, &,

=1

X%, then f;=‘2——‘1 k,; sz.H. NOW

(= fP*< 35 Vol (= )

and
Jl xE(Ef;'I"S) AE,;

Xers—X = ]
| zre— ) lo otherwise ,

where 4 denotes the symmetric difference of sets and Xz is the character-
istic function on E. We have

j,l [E;+s) AE], ,t< 1
l o t>1
1 t<A(E;+s) 4E;)
—Xg)* ()= J

e = a0 0 ¢>A(E.+5)4E,).
This shows that

s o = (B +5) AE)}7—0(s0).

AXge—1Ag) ()=

Hence
| fe—=S1&.0—>0(s—0) and I fe—fllz.0—>0(s—0) Q.E.D.

LEMMA 3.3. There is an approximate identity {a,jof L'(G) such that
ladli=1 and f * a,—f for every feL(p,q), 1<p<oo, 1<g<oco. It holds
also for feL(p,q), 1<p<oo, 1<g< oo, .

Proor. For a proof of simple function follows immediately from
Lemma 3.2. Indeed, let {U,} be a decreasing neighborhood system at the

origin in G, for each a, we assume that a, is non-negative continuous

function with support in U, such thatj a.(x) di(x)=1. If g is a simple
function, then

lg * ae—0llmo <[, 10, =0l im0 ae(y) dA(y)
- <sup Jlg,—0llp.0—0 (Lemma 3.2).
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the limit being taken over the net of a. As the simple fnctuions are dense
in L(p, q), thus for any ¢>0 and feL(p, q), there exists a simple function
g such that || f—gl/,.,<e¢ and

Hf * g _'.fH(p,q)S Hf *Ag—g * aa“'(p,q) + ”g * aa—g“(p»q)

+ 19— fllpa)
<L2+|g *aw—9|lp.0

I:m sup || f aa‘f”(p.q)éze .

Since ¢ is arbitrary, we have. f*a,—f for every feL(p,q). Q.E.D.

One of the main results is the following

THEOREM 3. 4. The multiplier space M(L'(G), L(p, q)(G)) is isometric
isomorphic to L(p, q)(G) for 1<p<oo, 1<g<oo. Moreover for any Te€

M(LNG), L(p, q)(G)), there is a unique f in L(p, q)(G) such that Ta=a * f
for every acL'(G).

Proor. By IProposition 2.2, we see that the dual pair is of the form
oy = fla) 9(2) di(z), feL(p,q) 9€L(p,q).
Moreover for every @eL'(p, ¢') there is' a unique geL(p, q) such that

&(f) = j.gfg di for every feL(p',q').

Now if acL}G), feL(p',q'), we define a®f=a +f, where a is the
reflexive function of a. Then it follows from Blozinsky [1; Theorem 2. 9]
that L(p’,q’) is an L'-module under &, naturaly if for every aeL'(G),
SeL'(p', q¢'), we define

a®@8(f)=8a®f) for feL(p', q).

Then L'(p), ¢') is also L'(G)-module under ®. Since there is an approx-
imate identity {a,} in L}(G) such that |la.||;=1 and

lae ® f=f w0 = llaef = Fllwr.er—=0
it follows from Llu _émd Rooij [6; Lemma 2. 8] that
M(LYG), L'(p' ¢)(G)= L' (¢, ¢)(G),

and hence

MLG), L (1, 9(G)=L(p, q)(G),  1<p,g<o.

We have to ;c_lairn that the grou_p algebra L"\(G) acting on L'(p/, ¢')
corresponds to acting on L{p,q). That is for any a€cL'G), a®® in
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L'(p', q') corresponds to a*g in L(p, q) whenever &eL’(p’, ¢') corresponds
to g€ L(p,q). Indeed, for every feL(p),q), a ® B(f)=6(aBf)={ (a+/)g
d2=ja fla*xg) di. Hence for each T'eM(L'G), L'(p', ¢')(G)), there is a
unique GeL’/(p’, ¢') such that

Ta=a®R G for every acL}(G).
This implies that for every TeM(L'G), L(p, q)(G)) there is a unique g€L
(p, @) such that

Ta=ax*g for every aeL'(G).

Thus the theorem is proved. Q.E.D.

In order to characterize the multipliers IM(L(G), A(p, q)(G)), we define
a space M(p, q)(G) as follows '

M(p, ¢)(G)={#eM (G); 4eL(p, q)(I), 1<p< 0, 1<g< |

where fi is the Fourier Stieltjes transform of a bounded regular measure
¢ in M(G). For every pe M(p, q)(G) we supply a norm by

etllaco.r =max {[l 2]}, |t 0o 1< g<00 .

Denote by M(p, q)(G) the space of M(p, q) (G) with the norm | |[sp.0-
In particular if p=g¢, we denote by M*(G)=M(p, p)(G) with the norm | g|,,,
=max {||gl, [4ll;}, peM?(G). Note that M(oco, 00)(G)=M(G).

THEOREM 3.5. The space M(p, q)(G) (1<p< oo, 1<g<L o) is a com-
mutative Banach algebra.

Proor. Evidently M(p, q¢)(G) is a normed linear space. Suppose that
{#.) is a Cauchy sequence in M(p, q)(G)\CM(G). Then {g,} is also a
Cauchy sequence in L(p, ¢)(I"). By the completeness of M(G) and L(p, q)
(I'), there are pec M(G) and he L(p, q)(I") such that

||#n"'ﬂ”me)”0 and ”ﬁn_k”(p,q)—)o'

It follows from Yap [8; Lemma 2. 2] that there is a subsequence {f,} of
{¢.} which converges pointwise almost everywhere to A. Thus

16n— 8l < || tt— ttlls@y—0 implies fi=h,

this shows that M(p, q)(G) is complete with respect to the norm | |lsp.q)-
Further, for any g, p in M(p, q)(G), we have
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ll 1% t12l| .0y = max {“#l* tall sy 1181°Ball o, q)}

< max {[lmll lsll, Nl ol o}
< lisllacpnoy [ 2ll s, -
Hence M(p, q)(G) is -a commutative Banach algebra. Q.E.D.

» It is immediately that A(p,q) is an ideal of M(p,q). The question
arises that whether the space A(p,q) is a proper ideal of M(p, g) or not.
Precisely we have the following

THEOREM 3. 6. () If 1<q<p<2 then M(p, q)=A(p,q) (i) If p>2,
1<g< oo, then M(p,q) =2 A(p, q).

Proor. (i) For 1<¢<p<2, peM(p,q), we have peL(p,q)C L(p,p).
This implies peM(p, p). It follows from Liu and Rooij [6; Lemma 2. 3]
that g is absolutely continuous, so that peA(p, q).

For (ii), we consider G=T and'I'=Z. Wiener and Wmtner m proved
that there is a nonnegative singular measure gz on 7 such that p(n)=
0(n7'%*) for any ¢>0. Thus for p>2, 1<g< o, we choose a singular

measure having the property of [7] . showed Then there are constants
C,>C,>0 and 7, such'that

G , |n|<n,
3 < _
Ip(n)l—f(n) {.Cglnl.%l/z-*e, lnlzno
and so
s J , t<2n,
\Cymre, 2am<t<2m+2, m>n,
1710 = {-;H Cratt dz+ 35 (G2

/¢
(27 -+ 207 —(2np)|

o v
= {K1+ Kz. Z n—q/2+£q(n +_1)G/P+nq/p)} /q

n=n,

where K|, sz are constants. If p>2, 1<g< o, we have _—g—+eq+%_1

< —1 provided ¢ <<

PZ;q ) is sufficient small, and since
| - v2tea, ((n + 1)(1/10 —_ na/n) =0 <ni~q/2+sq+q,’p—1> ,

the series ), converges. Hence ||f||{,o<oo and | g 9<oo proves pe

n=p,
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M(p, q) but & A(p, g .
If p>2, g=o00, we have | f|{, 0 =Sup t‘/p f*(t)<oo. Hence pe M(p, ),

pg A(p, o).  QED.

ReEMARK. We do not know what happen for the case 1<p<g<2.
The following lemma is useful and the proof follows immediately from
the properties of Segal algebras.

LEMMA 3.7. There is an approximate identity {e.} of A(p, q)(G), 1<
p<L oo, 1<g< o, which is a bounded approximate identity of LY(G) such
that ||e.|:<1 and é, have compact support for all a.

We have seen in that there is an approximate identity of
L(p, q)(G) which is the bounded approximate identity of L(G). One can
choose the approximate identity like as that the Fourier tra-
nsforms have compact supports. For convenient, we state it as following

LEMMA 3.8. There is a bounded approximate identity {e.} of L'(I')
such that é, has compact support in G and
e * f=Fllcp—>0 Sfor any feL(p, q)(I'), 1<p< 0, 15g<co.

LEMMA 3.9. (i) The space AYG) is contained in A(p, q)(G) for 1<
p<oo, 1<g< 00,
N
(ii) The Fourier transforms AG) and A(p, )(G) are dense in L(p, q)
(I") for 1<p< oo, 1<g< 0.
PrROOF. Suppose that f=§, g€ A'G, then feL'(I') and g: f* de=

[.\fldg<co. If p>g, we have
(280t f*(2) de<||£)| [, 2ot dt [} 207 fH(2) d

< It 7 ¥ dz

< oo,
and so feL(p, )( o If p<q, then feL(p, p)CL(p,q). This shows that
g3A(p, q) and A‘( )CA(p, q)(G)C L(p, q)(I'. It is sufficient to show that

f@) is dense in L(p, q)(I"). Let {e} is L'(I") be an approximate identity
of L(p, q)(I") such that ¢, has compact support. Then for every f€L(p, q)
(I') and any ¢>0, there is a, such that

llee, * [0 <e.

Since the simple functions are dense in L(p, q)(I"), thus for the given e>
0, there exists a simple function g such that || f—gl»:<e and
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”eao * g"f”(p,q)S “eaulll ”g_f”(p,q) + ”eao *f'—f“(p-q),
<(C+1)e

where |le, [,<C. But é:(:*\g=é,0 geC.(G)C LYG), we see that e, *ge A (G).
.

This shows that A'G) is dense in L(p, q)(I"). Q.E.D.

We use the symboles appear in Liu and Rooij [6]. Thus by
3.9, Theorem 2.4, and [6; Lemma 2. 8], we obtain

LemMA 3.10. Let H be the closures of {(f, — F); feAYG)} in Cy(G) x
L(p',¢)(I') and

J={(s h); pEM(G), heL(p, @I, [, F du={,f h dy, feA'G)).
Then

{C(G) Vu L(#!, @) (D)) =MI(G) 4, L(p, g)(I), 1<p< o0, 1<g<00.
If p=1, then q=1, and the same result holds for CyI') in place of L(co,
oo) (IM)=L>(I").

LEMMA 3.11. For 1<p<co, 1<g< oo or p=1=gq, then

M(G) 4, L(p, ¢)(I)=M(p, 9)(G)

where any element p in M(p, q)(G) is regarded as the pair (p, fi) in M(G) x
L(p, q)(I') so that M(p, q) is embedded in M(G)x L(p, q)(I).

Proor. If(g, h)eJ, then it follows from 1/41\(G) dense in L(p/, ¢')(IN)
and [, f i dp=(. 7 h dy for feA'(G) that h=p. (In detail see Liu and

Rooij [6].) Q.E.D.
It is clear that M(p, q)(G) is an L}(G)-module under convolution thus
we have following theorem.

THEOREM 3.12. For 1<p<oo, 1<g< o or p=1=gq, the multiplier
algebra M(L'(G), M(p, q)(G)) is isometrically isomorphic to M(p, q)(G).
Moreover for every multiplier T of LNG) into M (p, q)(G) can be expressed
as the form

T(a)=ax*p for some peM(p, q)(G) and any acL'(G).
Proor. From [Lemma 3.10/ and Lemma 3. 11, we see that
{CG) Va L(#', ¢) (I} = M(p, )(G).

Using this identity and [6; Lemma 2. 8], the theorem follows immediately.
To this end, we have only to show that Cy(G) Vi L(p', ¢)(I") is LYG)-
module under certain operation and there is an approximate identity of
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LY(G) with the property as in [6; Lemma 2. 8].

For any peM(p, q)(G), there corresponds an element U,e[Cy(G) Vg
L(p, ¢)(I]' defined by

U=, f du+{. 08 dy, (f,0€C(G) VFL(p, ¢)(T).

We will define an operation ® for which Co(G) Vx L(p', ¢')(I") is an LYG)-
module. This operation ® induces an operation over its dual space which

is defined by

a® U,(f,9)=U.(a®(f, 9) and a Q (f, 9) =(@~/, dg)

for any (f, 9)eCy(G) Vi L(p', ¢')(I') and a€L{(G). At first we have to show
[Co(G) Vx L(p', ¢')(I)) and M(p, q)(G) are the same space acted by L'(G)
under the operations ® and * respectively. That is a ® U,=U,., holds

for any a€LYG) and peM(p, q)(G). In fact for (f; 9)€Cy(G) Ve L(p, q')
(I"), we have : '

U s 0)= [, fla) dlax ) (2)+ |, aiig
= [, fla)ax p(a) da(z)+ [, apg dp(for axpel'(G)):

and

a ® Uf,9)=Ulla ® (f, g) = U,(@=, ag)
= [ @ fla) di(x)+ [, adg dy
= [ ) axply) daw)+ [, abg dy

= U f, 9).

Now we §how that C,(G) Vg L(p', ¢")(I") is L‘(Q)—module und;r ®. In fact,
if (f, —f)eH, then it is clearly a @ (f, —f)=a*f, —af)eH. Further
for(f, )€ Co(G)x L(p', ¢')(I'), we have

la ® (f; 0)ll=Il(@xf, ag)l
= inf {|f'lat 0 llerer s (F, 0)Z(@ S, dg) mod H}
= inf {|@ f+&]w+ lag—hllwr0n s BEAYG)]
<inf (@« f+ @Bl + lag—a* Elipar s kEA'G)
since a* ke L'+ AY(G)C AYG),
<inf {llall, | f+Ele+l|alle lo—Elloar s k€A (G))
< llally inf {| £l +1lg" I 5 (F» 9)Z(Sf; 9) mod H}
= llall, [/ o)l -
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Hence

la ® (f; o)l < llall [I(f; 9l -

To complete the proof, it remains to show that there is a bounded approx-
imate identity {e,} of LY(G) with |le][;<1 such that

lee @ (£, 9)—=(f; 9l =0 for every (f, 9)eCy(G) Vi L(p/, ¢')(T").

Let {e.} be a bounded approximate identity of L'(G) with |le|/,<1 and the
Fourier transform é, has compact support such that

e« * f=f Nl acor,a—0 for every feA(p',q')(G) (Lemma 3.7).

Since A(m('G) is dense in L(p’, ¢')(I'), thus for any geL(p’, ¢)(I') and
>0 there is. hEA("ﬁ(G) such that ||g—A| . <e, it follows that
e 0—9llor.an =18 9— & 2llor.an + 16 A=Al pran + 1B =gl (5.0,
<2+ |[es h—h| (pr.en -
Since for A€ A(p', ¢)(G) with h=h,

”éa h—h”(pl,ql)z H/ef.z\"‘-j;'_'h”(p/,q')S ”ea * ’:_i’*HA(p/,qf)_’O ’
and ¢ is arbitrary, we have
e 9—=9l¢z1,en—0
Therefore for (f, 9)eCy(G) Vz L(p', ¢')(I"), we have
le= ® (f; 9)—(f, Ol = (a1, éa 9 —0]|
< le*f—f o+ l1éx g =gl pr.an

—0,
the limit being taken over all a. This proof is completed. Q.E.D.
THEOREM 3.13. For 1<p, g<o or p=1=q, the identity
M(LHG), Alp, q)(G)=M(p, q)(G)
holds.  Furthermore, if TeIMM(L'G), A(p,q)(G)), there is a unique pe
M(p, q)(G) such that
Ta =ax*p for any acL(G).

ProoF. Evidently, for any TeM(LYG), A(p, q)(G)), it follows: that
TeM(LNG), M(p, ) (G)). Conversely for TeWM(LY(G), M(p, q)(G)), it fol-
lows from Theorem 3.12 that there is a unique peM(p, q)(G) such that

Ta=axp,
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holds for every aeL}(G). Thus

l@* .0 = 18llg.0 < 12lle 1.0
. < Hanl ”#HM(p1q)<°° ’
and since ax*pel'(G), we see that axpcA(p, q)(G). That is TeM(L'(G),
A(p, 9)(G). Hence by [Theorem 3,12 again, we obtain
M(LNG), A(p, 9)(G)) = M(LNG), M(p, q)(G)) = M(p, 9)(G).
Q.E.D.

Applying Theorem 3.6 and [Theorem 3.13, we have
CoroLLARY 3.14. (i) If 1<g<p<2 or p=1=gq, then
M(L(G), A(p, q)(G) = A(p, 9)(G).
(ii) If 2<p, 1<g<oo, then

MLIG), Alp, 9(G) = M(p, q) (G) 2 A(p, 9)(G).

REMARK 1. If p=¢, 1<p< oo, then Theorem 3.6 and Theorem 3.12
(or [Corollary 3.14) induce M(LY(G), A?(G))=A*(G) for 1<p<2 and M(L'
(G), A?(G))=M*(G) 2 A*(G) for 2<p< oo,

This answers the question risen in Lai [4]. The classical multiplier
problem in L'(G) is a special case in our context. That is

M(LNG), LNG)) = M(L(G), M(G) = M(G).
REMARK 2. From [Corollary 3. 14 (ii), one sees that, in general, if S(G)

is a proper Segal algebra, the multiplier algebra M(L'(G), S(G)) needs not
be isometrically isomorphic to S(G) itself.
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