On the index theorem of Ambrose

By Takashi SAKAts

1. Introduction

The index theqrem for geodesics under the general boundary condition (two variable end points) has been given by W. Ambrose ([1], see also T. Takahashi [5]]. But his proof is very complicated. M. Klingmann ([4]) proved the somewhat more general index theorem using the theory of quadratic forms on Hilbert space. Recently W. Klingenberg ([2], [3]) has obtained the index theorem for closed geodesics from the geodesic flow view point. The purpose of the present note is to give another simple proof of the Ambrose index theorem via Klingenberg's view point. In fact, we need only the fundamental properties of Jacobi fields. Since the concept of conjugate point defined in [1] is not so familiar, we shall give the explicit statement of the Ambrose index theorem for completeness.

Let $(M,\{\rangle$,$) be a riemannian manifold and K, L$ be submanifolds of M. Let $c:[a, b] \rightarrow M$ be a normal geodesic such that $c(a) \in K, c(b) \in L, \dot{c}(a) \perp$ $T_{c(a)} K, \dot{c}(b) \perp T_{o(0)} L$, where $T_{\dot{c}(a)} K$ etc. denotes the tangent space to K at $c(a)$. We will be concerned with the "number of essentially different curves connecting K and L which are shorter than c ". First we shall give some preliminaries.
1.1. Boundary conditions. A boundary condition at $t(a \leqq t \leqq b)$ is, by definition, a pair $\mathscr{Y}=\left(S, A_{S}\right)$ where S is a subspace of $\perp \dot{c}(t)$ (the orthogonal complement of $\dot{c}(t)$ in $T_{o(t)} M$) and $A_{s}: S \rightarrow S$ is a self-adjoint linear mapping of S.

Example 1. Let P be a submanifold of M which is perpendicular to c at $c(t)$. Then we have the boundary condition $\left(S, A_{s}\right)$ at t by $S:=$ $T_{c(t)} P,\left\langle A_{S} X, Y\right\rangle:=H_{o(t)}(X, Y)$, where $H_{\partial(t)}$ denotes the second fundamental form of P relative to the normal $\dot{c}(t)$.

Let \mathcal{F} be a vector space of Jacobi fields along c which is perpendicular to ${ }^{\circ}$. We shall denote the covariant differentiation with respect to $\dot{c}(t)$ by ∇. If the boundary condition \mathscr{J}^{\prime} at t is given, we define

$$
\begin{aligned}
& \mathscr{J}_{S}^{*}:=\left\{Y \in \mathcal{F} \mid Y(t) \in S, \quad \nabla Y(t)-A_{S} Y(t) \perp S\right\} . \quad \operatorname{dim} \mathscr{F}_{S}^{*}=\operatorname{dim} M-1 . \\
& \mathscr{F}_{S}: \equiv\left\{Y \in \mathscr{F} \mid Y(t) \in S, \quad \nabla Y(t) \equiv A_{S} Y(t)\right\} . \operatorname{dim} \mathscr{F}_{S}=\operatorname{dim} S .
\end{aligned}
$$

Example 2. Let $\mathscr{I}=\left(S, A_{S}\right)$ (resp. $\mathscr{T}=\left(T, A_{T}\right)$) be a boundary condition at a (resp. b). Then we define the boundary condition $\mathscr{S}^{*}(t)=\left(S^{*}(t)\right.$, $\left.A_{S^{*}(t)}\right)\left(\right.$ resp. $\mathscr{T}(t)=\left(T(t), A_{\left.T_{(t)}\right)}\right)$ at t as follows.
(i) $S^{*}(t):=\left\{Y(t) \mid Y \in \mathscr{F}_{S}^{*}\right\} \quad$ (resp. $\left.T(t):=\left\{X(t)|X| \in \mathscr{F}_{T}\right\}\right)$.
(ii) $\quad A_{S^{*}(t)} Y(t):=p r_{S^{*}(t)} \nabla Y(t) \quad$ (resp. $\left.A_{T(t)} X(t):=p r_{T_{(t)}} \nabla X(t)\right)$,
where $p r_{S^{*}(t)}: \perp \dot{c}(t) \rightarrow S^{*}(t)$ etc. denotes the orthogonal projection. Note that (ii) is well-defined. Then it is easy to see that $\mathscr{F}_{s}^{*}=\mathscr{F}_{s^{*}(t)}$ does hold, but $\mathscr{F}_{T(t)}$ is different from \mathscr{J}_{T} in general.
1.2. Conjugate points. Let $\mathscr{\mathscr { S }}, \mathscr{T}$ be an ordered pair of boundary conditions at a and b respectively. Let
$C\left(t_{0}\right):=$ vector space of vector fields $Z(t)$ along c for which there exist $Y \in \mathscr{F}_{S}^{*}$ and $X \in \mathscr{J}_{r}$ such that

$$
\begin{aligned}
& Z(u)=Y(u) \text { for } u \leqq t_{0}, \quad Z(u)=X(u) \text { for } u \geqq t_{0} \quad \text { and } \\
& \nabla Y\left(t_{0}\right)-\nabla X\left(t_{0}\right) \perp T\left(t_{0}\right) .
\end{aligned}
$$

Clearly $\mathscr{J}_{S}^{*} \cap \mathscr{J}_{T} \subset C\left(t_{0}\right)$. If $\bar{n}\left(t_{0}\right):=\operatorname{dim}\left(C\left(t_{0}\right) / \mathscr{F}_{S}^{*} \cap \mathscr{F}_{T}\right)$ is positive, then we say that t is a conjugate point of the ordered pair \mathscr{I}, \mathscr{T} and $\bar{n}\left(t_{0}\right)$ will be called the order of the conjugate point t_{0}.
1.3. Index theorem. Let c, K, L be as above and \mathscr{I} (resp. \mathscr{T}) be the boundary condition defined from K (resp. L) as in Example 1. Let
$\xi:=$ vector space of H^{\prime}-vector fields $\xi(t)$ along c such that $\xi(a) \in S$, $\boldsymbol{\xi}(b) \in T, \boldsymbol{\xi}(t) \perp \dot{c}(t)$.

We put $R X(t)=R(\dot{c}(t), X(t)) \dot{c}(t)$, where $R(X, Y) Z$ denotes the curvature tensor of V, and define the index form $I_{S T}$ on Ξ by

$$
\begin{aligned}
I_{S T}(X, Y):= & \int_{a}^{b} \\
& \quad\langle\langle\nabla X(t), \nabla Y(t)\rangle+\langle R X(t), Y(t)\rangle\} d t+\left\langle A_{F} X(b), Y(b)\right\rangle \\
{[=} & \int_{a}^{b}\langle R X(t)-\nabla \nabla X(t), Y(t)\rangle d t+\Sigma\left\langle\nabla X\left(t_{i}-0\right)-\nabla X\left(t_{i}+0\right), Y\left(t_{i}\right)\right\rangle \\
& \left.+\left\langle\nabla X(b)-A_{F} X(b), Y(b)\right\rangle-\left\langle\nabla X(a)-A_{s} X(a), Y(a)\right\rangle\right] .
\end{aligned}
$$

This is a symmetric bilinear form on Ξ and the "number of essentially different curves connecting K and L which are shorter than c " can be defined as the index of $I_{S T}$ on \boldsymbol{E}, i. e., the dimension of the maximal subspace of Ξ on which $I_{S T}$ is negative definite. Now the Ambrose index
theorem asserts that this number may be expressed as the sum of the orders of conjugate points plus "convexity".

Ambrose Index Theorem. Index of $I_{S T}=\sum_{a<t<\delta} \bar{n}(t)+$ Convexity.
Convexity is defined as follows. We put $\mathfrak{R}=\left\{X \in \mathscr{f}_{T} \mid X(a) \in S\right\}$.
On \mathfrak{R}, we have $I_{S T}\left(X, X^{\prime}\right)=\left\langle A_{S} X(a)-\nabla X(a), X^{\prime}(a)\right\rangle$. Clearly $\mathscr{F}_{S}^{*} \cap \mathscr{J}_{r} \subset$ Null space of $I_{S T \mid\{\text {. }}$. we define

Convexity : $=\operatorname{dim}\left(\left(\right.\right.$ Null space of $\left.\left.I_{S T \mid \mathfrak{R}}\right) /\left(\mathscr{\mathscr { F }}_{S}^{*} \cap \mathscr{J}_{F}\right)\right)+$ index $I_{S T \mid \mathfrak{R}}$.
Remark. The definition of convexity given in [1] has a different expression. But they are equivalent. See $\S 2$.

2. Proof of the theorem.

2.1 (See [2], [3]). We shall assume $\operatorname{dim} M=n+1$. Let $\tau: T^{2 n} T_{1} M \rightarrow$ $T_{1} M$ be the subbundle of the tangent bundle of $T_{1} M$ (unit tangent bundle of M) consisting of the vectors orthogonal to the geodesic spray. Then for $X_{0} \in T_{1} M$, we have the splitting $T_{x_{0}}^{2 n} T_{1} M=T_{x_{0}{ }^{n}}^{n} \oplus T_{x_{0}{ }^{0}}^{n}$ of $T_{x_{0}}^{2 n} T_{1} M=\tau^{-1}\left(X_{0}\right)$ into the horizontal and vertical subspaces. If a normal geodesic $c(t), a \leqq t$ $\leqq b$ is given, from the immersion $\dot{c}:[a, b] \rightarrow T_{1} M$, we have an induced bundle $\tau^{2 n}: V^{2 n} \rightarrow[a, b]$ of τ. Let $\tau_{n}^{n} \oplus \tau_{v}^{n}$ be the corresponding decomposition of $\tau^{2 n}$ into its horizontal and vertical subbundles over $[a, b]$. Now there is a natural symplectic structure α on $\tau^{2 n}$ defined by

$$
2 \alpha\left(\left(X_{n}, X_{v}\right),\left(Y_{n}, Y_{v}\right)\right):=\left\langle X_{h}, Y_{v}\right\rangle-\left\langle Y_{n}, X_{v}\right\rangle .
$$

Let ϕ_{l} be the geodesic flow. Then for $(A, B) \in V^{2 n}\left(t_{0}\right)=\left(\tau^{2 n}\right)^{-1}\left(t_{0}\right)$ we have $d \phi_{t}(A, B)=(Y(t), \nabla Y(t))$, where $Y(t)$ is a Jacobi field along c such that $Y\left(t_{0}\right)$ $=A$ and $\nabla Y\left(t_{0}\right)=B$. In the following we shall put $\bar{Y}(t):=(Y(t), \nabla Y(t))$. It is well known that $d \phi_{t}$ preserves the symplectic form α. A subspace W of $V^{2 n}(t)$ will be called isotropic if $\alpha_{\mid W} \equiv 0$.
2.2. Now we shall construct an n-dimensional isotropic subspace V^{n} $=V^{n}(b)$ from the boundary conditions $\mathscr{\mathscr { L }} \mathscr{\mathscr { T }}$. This will play an essential role in the following proof. Put $N:=S^{*}(b) \cap T$ and let $S^{*}(b):=S_{1} \oplus N, T=$ $T_{1} \oplus N, \perp \dot{c}(b):=S_{1} \oplus T_{1} \oplus N \oplus A$ be the orthogonal decompositions of $S^{*}(b)$, T and $\perp \dot{c}(b)$ respectively. We shall consider the following subspaces of $V^{2 n}(b)$.
a) $\quad V_{1}:=\left\{\widetilde{Y}(b)=(Y(b), \nabla Y(b)) \mid Y \in \mathscr{J}_{S^{*}(b)}^{*}=\mathscr{J}_{s}^{*}, \nabla Y(b)-A_{T} p r_{T} Y(b) \perp T\right\}$.

Let $\Phi: S^{*}(b) \rightarrow N$ be the linear mapping defined by $\Phi(x):=p r_{N} A_{S^{*}(o)} x-$ $\operatorname{pr}_{N} A_{T} p r_{N} x$. Then it is easy to see the following lemma.

Lemma 1. $\widetilde{Y}(b) \in V_{1}$ if and only if $Y(b) \in \operatorname{Ker} \Phi$ and

$$
\begin{aligned}
& p r_{S_{1}} \nabla Y(b)=p r_{S_{1}} A_{S^{*}(b)} Y(b): \quad \quad p r_{T_{1}} \nabla Y(b)=p r_{T_{1}} A_{T} p r_{N} Y(b), \\
& p r_{N} \nabla Y(b)=p r_{N} A_{T} p r_{N} Y(b) \quad\left(=p r_{N} A_{S^{*}(b)} Y(b)\right)
\end{aligned}
$$

b) Let $\Psi: N \rightarrow S^{*}(b)$ be the linear mapping which assingns to $x \in N$, $\operatorname{pr}_{S^{*}(b)}(\nabla Y(b)-\nabla x(b))$, where we have chosen $X \in \mathscr{J}_{T}$ such that $X(b)=x$, and $Y \in \mathscr{F}_{S^{*}(b)}^{*}$ such that $Y(b)=x$. Note that this definition does not depend on the choice of $Y \in \mathscr{J}_{S^{*}(b)}^{*}$ such that $Y(b)=x$. Let $\operatorname{dim} \Psi(N)=d$ and take $x_{1}, \cdots, x_{d} \in N$ such that the corresponding $\Psi\left(x_{1}\right), \cdots, \Psi\left(x_{n}\right)$ form a basis of $\Psi(N)$. Next take $X_{i} \in \mathscr{F}_{T}$ such that $X_{i}(b)=x_{i}(i=1, \cdots, d)$. Now we define
$V_{2}:=$ subspace of $V^{2 n}(b)$ which is spanned by $\widetilde{X}_{i}(b)=\left(X_{i}(b), \nabla X_{i}(b)\right)$ $i=1, \cdots, d$.
Clearly $\operatorname{dim} V_{2}=d$. Finally we put
c) $\quad V_{3}:=\left\{\widetilde{X}(b)=(X(b), \nabla X(b)) \mid X \in \mathscr{J}_{T}, X(b) \in T_{1}\right\} . \quad \operatorname{dim} V_{3}=\operatorname{dim} T_{1}$.

Then we have
Lemma 2. $\quad V^{n}:=V_{1} \oplus V_{2} \oplus V_{3}$ is an n-dimensional isotropic subspace of $V^{2 n}(b)$.
Proof. First we shall show that $\operatorname{dim} V_{1}$ is equal to $\operatorname{dim} S^{*}(b)+\operatorname{dim} A-d$. In fact, since $\Psi: N \rightarrow S^{*}(b)$ may be expressed in the form $\Psi=A_{S^{*}(b)}-p r_{N} A_{T}$, Ψ is the adjoint linear mapping of Φ. So we have $\operatorname{dim} \operatorname{Ker} \Phi=\operatorname{dim} S^{*}(b)$ $-d$, and by lemma $1 \operatorname{dim} V_{1}=\operatorname{dim} S^{*}(b)+\operatorname{dim} A-d$. Next it is easy to see $V_{1} \cap V_{2}=\{0\}$ and $V_{3} \cap\left(V_{1} \oplus V_{2}\right)=\{0\}$. So we get $\operatorname{dim} V^{n}=n$. Finally we shall show that V^{n} is isotropic. Since elements of $V_{1}, V_{2} \oplus V_{3}$ satisfy the boundary conditions $\mathscr{L}^{*}(b), \mathscr{T}$ respectively, we have $\alpha_{\mid V_{1}} \equiv 0$ and $\alpha_{\mid V_{2} \oplus V_{3}}$ $\equiv 0$. So we must show $\alpha\left(V_{1}, V_{2} \oplus V_{3}\right)=0$. If $\widetilde{Y}(b) \in V_{1}$ and $\widetilde{X}(b) \in V_{2} \oplus V_{3}$, then we have

$$
\begin{aligned}
\alpha(\widetilde{X}, \widetilde{Y}) & =\langle\nabla Y(b), X(b)\rangle-\langle Y(b), \nabla X(b)\rangle \\
& =\left\langle A_{T} p r_{T} Y(b), X(b)\right\rangle-\left\langle p r_{T} Y(b), A_{T} X(b)\right\rangle=0 . \quad \text { q.e.d. }
\end{aligned}
$$

2.3. We put $V_{v}^{n}(t):=\{\widetilde{Y}(t)=(Y(t), \nabla Y(t)) \mid Y \in \mathscr{F}, Y(t)=0\}, V^{n}(t):=d \phi_{t-s}$ $V^{n}(b)=\left\{\widetilde{U}(t)=(\dot{U}(t), \nabla U(t)) \mid U \in \mathscr{F}, \widetilde{U}(b) \in V^{n}(b)\right\}$ and $W(t):=V^{n}(t) \cap V_{v}^{n}(t)$.
 terms of $W(t)$. We define a linear mapping $\chi_{t_{0}}: C\left(t_{0}\right) \rightarrow W\left(t_{0}\right)$ as follows. If $Z \in C\left(t_{0}\right)$, then by definition, there exist $X \in \mathscr{F}_{T}$ and $Y \in \mathscr{F}_{S}^{*}\left(=\mathscr{F}_{S^{*}(b)}^{*}\right)$ such that

$$
Z(u)=Y(u) u \leqq t_{0}, Z(u)=X(u) u \geqq t_{0}, \text { and } \nabla Y\left(t_{0}\right)-\nabla X\left(t_{0}\right) \perp T\left(t_{0}\right) . \quad \text { Then }
$$ $\tilde{Y}(b)=(Y(b), \nabla Y(b))$ belongs to V_{1}. In fact for any $X_{0} \in \mathscr{F}_{T}$, we have

$$
\begin{aligned}
& \left\langle\nabla Y(b)-A_{T} p r_{T} Y(b), X_{0}(b)\right\rangle=\left\langle\nabla Y(b), X_{0}(b)\right\rangle-\left\langle Y(b), \nabla X_{0}(b)\right\rangle \\
& =\alpha\left(\widetilde{X}(b), \widetilde{X}_{0}(b)\right)-\alpha\left(\widetilde{Y}(b), \widetilde{X}_{0}(b)\right)=\alpha\left(\widetilde{X}\left(t_{0}\right), \widetilde{X}_{0}\left(t_{0}\right)\right)-\alpha\left(\widetilde{Y}\left(t_{0}\right), \widetilde{X}_{0}\left(t_{0}\right)\right) \\
& =\left\langle\nabla Y(t)-\nabla X\left(t_{0}\right), X_{0}\left(t_{0}\right)\right\rangle=0
\end{aligned}
$$

Next note that $X(t)$ can be decomposed into Jacobi fields $X(t)=X_{1}(t) \nleftarrow X_{2}(t)$ $+X_{3}(t)$, where $\widetilde{X}_{2}(b) \in V_{2}, \widetilde{X}_{3}(b) \in V_{3}$, and $X_{1}(b) \in \operatorname{Ker} \Psi$. Then we have $\left(p r_{S^{*}(0)} A_{\mathbb{T}}-p r_{S^{*}(\delta)} A_{S^{*}(b)}\right) X_{1}(b)=0$, and consequently $\widetilde{X}_{1}(b) \in V_{1}$. Now we put

$$
\chi_{t_{0}}(Z):=\widetilde{Y}\left(t_{0}\right)-\widetilde{X}\left(t_{0}\right) \in W\left(t_{0}\right) .
$$

Then it is easy to show $\chi_{t_{0}}$ is surjective and $\operatorname{Ker} \chi_{t_{0}}=\mathscr{F}_{T} \cap \mathscr{L}_{S}^{*}$. Thus we have the following lemma.

Lemma 3. We have $\operatorname{dim} W(t)=\bar{n}(t)$ for $a<t<b$. Thus $t_{0} \in(a, b)$ is a conjugate point of the ordered pair $\mathscr{\mathscr { L }} \mathscr{\mathscr { G }}$ if and only if $\operatorname{dim} W\left(t_{0}\right)$ is positive.

Now the following is standard. For the proof see [3], Proposition 3.1.
Lemma 4. Let $n_{0}=\bar{n}\left(t_{0}\right)=\operatorname{dim} W\left(t_{0}\right)$ be positive. Choose a"basis $\left\{\widetilde{U}_{i}\left(t_{0}\right)\right\}$ $1 \leqq i \leqq n$: of d $d \phi_{t_{0}-b} V^{n}(b)$ such that $\widetilde{U}_{i}\left(t_{0}\right) 1 \leqq i \leqq n_{0}$ form a_{i} basis of $W\left(t_{0}\right)$. Then
(i) $\nabla U_{i}\left(t_{0}\right), 1 \leqq i \leqq n_{0}, U_{j}\left(t_{0}\right), \dot{n}_{0}+1 \leqq j \leqq n$ form a basis of $\perp \dot{c}\left(t_{0}\right)$.
(ii) For all $t \neq t_{\mathrm{c}}$, sufficiently near $t_{0}, U_{i}(t), 1 \leqq i \leqq n$ form a basis of $\perp \dot{c}(t)$. Thus $\bar{n}(t)=0$ except for a finite number of value.
2.4. By lemma 3, Ambrose index theorem takes the form

$$
\text { Index } \quad I_{S T}=\sum_{a<t<b} \operatorname{dim} W(t)+\text { Convexity . }
$$

Now for each conjugate point $t_{0} \in(a, b)$ of the ordered pair \mathscr{S}, \mathscr{F}, we shall assign a subspace $\zeta W\left(t_{0}\right)$ which is complementary to $\mathscr{F}_{\mathcal{S}}^{*} \cap \mathcal{F}_{T}$ in $C\left(t_{0}\right)$. Then since $\zeta W\left(t_{0}\right)$ consists of once broken Jacobi fields of $C\left(t_{0}\right), I_{S T}\left(\zeta W\left(t_{0}\right)\right.$, $\left.\zeta W\left(t_{0}^{\prime}\right)\right)=0$ holds and if $t_{0} \neq t_{0}^{\prime}$ they are lineary independent. Next let ζ_{0} be
 definite, and ζ_{1} be a subspace of the null space of $I_{S T \mid \Omega}$ which is complementary to $\mathcal{F}_{S}^{*} \cap \mathcal{F}_{T}$. Then clearly $\zeta_{0}, \zeta_{1}, \zeta W=\underset{a<t<b}{\oplus} \zeta W(t)$ are linearly independent and $I_{s T}\left(\zeta_{0}, \zeta_{1} \oplus \zeta W\right)=0$. We put $\zeta=\zeta_{0} \oplus \zeta_{1} \oplus \zeta W$. Since $I_{S T \mid \zeta_{1} \oplus \zeta W}$ $\equiv 0$ holds and the element of $\zeta_{1} \oplus \zeta W$ don't belong to the null space \mathscr{J}_{S}^{*} $\cap \mathscr{f}_{T}^{*}$ of $I_{S T}$, we have

$$
\text { index } I_{s T} \geqq \operatorname{dim} \zeta=\sum_{a \lll b} \operatorname{dim} W(t)+\text { Convexity }
$$

In the above note that "negative part" of $\zeta_{1} \oplus \zeta W$ is linearly independent to ζ_{c}.

To prove that actually the equality does hold it suffices to show that any $\xi \in \Xi$ such that

$$
I_{S T}(\xi, \eta)=0 \text { for all } \eta \in \zeta, \text { and } I_{S T}(\xi, \xi) \leqq 0
$$

belongs already to ζ or null space of $I_{s T}$.
From the first condition, for any $\widetilde{U}\left(t_{0}\right) \in W\left(t_{0}\right)\left(a<t_{0}<b\right)$, we have $\left\langle\xi\left(t_{0}\right), \nabla U\left(t_{0}\right)\right\rangle=I_{s r}(\xi, Z)=0$, with $Z=\left(\chi_{t_{0} \mid \xi W\left(t_{0}\right)}\right)^{-1} \widetilde{U}\left(t_{0}\right)$. So by lemma 4, $\boldsymbol{\xi}(t)$ may be written in the form $\boldsymbol{\xi}(t)=\sum_{i=1}^{n} w^{i}(t) U_{i}(t)$, where we can choose a basis $\left\{\widetilde{U}_{i}(t)\right\} i=1, \cdots, n$ of $d \phi_{t-b} V^{n}(b)$ so that $U_{i}(b), 1 \leqq i \leqq t=\operatorname{dim} T$ form a basis of T. In fact, take $\left\{\widetilde{U}_{i}(b)\right\}, 1 \leqq i \leqq t_{1}=\operatorname{dim} T_{1}$ which is a basis of V_{3} and $\left\{\widetilde{U}_{j}(b)\right\}, t_{1}+1 \leqq j \leqq t_{1}+d$, which is a basis of V_{2}. Next let $x_{k} \in N$, $1 \leqq k \leqq \operatorname{dim} N-d$ form a basis of $\operatorname{Ker} \Psi$. Choose $U_{k} \in \mathscr{J}_{T}, t_{1}+d+1 \leqq k \leqq t$, such that $U_{k}(b)=x_{k-t_{1}-u}$. Then $\widetilde{U}_{k}(b) \in V_{1}$ (see the proof of lemma 3). Then $\left\{U_{i}(b)\right\}, 1 \leqq i \leqq t$ is a basis of T. So we may assume $w^{t}(b)=0$ for $i>t$.

Then from the second condition we get

$$
\begin{aligned}
0 \geqq I_{S T}(\xi, \xi)= & \int_{a}^{b}\left\|\sum \dot{w}^{i}(t) U_{i}(t)\right\|^{2} d t-\left\langle\sum w^{i}(b)\left(A_{T} U_{i}(b)-\nabla U_{i}(b)\right), \sum w^{j}(b) U_{j}(b)\right\rangle \\
& +\left\langle\sum w^{i}(a)\left(A_{s} U_{i}(a)-\nabla U_{i}(a), \sum w^{j}(a) U_{j}(a)\right\rangle\right. \\
& \geqq\left\langle\sum w^{i}(a)\left(A_{s} U_{i}(a)-\nabla U_{i}(a)\right), \sum w^{j}(a) U_{j}(a)\right\rangle \geqq 0 .
\end{aligned}
$$

In the above, $\left\langle\Sigma w^{i}(b)\left(A_{T} U_{i}(b)-\nabla U_{i}(b)\right), \sum w^{j}(b) U_{j}(b)\right\rangle=0$ since $\xi(b) \in T$. The last inequality comes from the following. Since $\xi(a) \in S$, the Jacobi field $\sum w^{i}(a) U_{i}(t)$ may be written in the form $U_{S}(t)+U_{T}(t)$, where $\widetilde{U}_{S}(t)$ $\in d \phi_{t-b} V_{1}$ and $U_{T} \in \mathfrak{R}$. Then we have $I_{S T}\left(U_{T}, U_{T}\right) \geqq 0$, because $I_{S T}\left(U_{T}, \zeta_{0} \oplus \zeta_{1}\right)$ $=I_{S T}\left(\xi_{,} \zeta_{0} \oplus \zeta_{1}\right)=0$ does hold by the first condition. Now

$$
\begin{aligned}
& \left\langle\Sigma w^{i}(a)\left(A_{S} U_{i}(a)-\nabla U_{i}(a)\right), \sum w^{j}(a) U_{j}(a)\right\rangle=\left\langle A_{S} U_{T}(a)-\nabla U_{T}(a), U_{T}(a)\right\rangle \\
& =I_{S T}\left(U_{T}, U_{F}\right) \geqq 0 .
\end{aligned}
$$

So $\xi(t)$ must be a broken Jacobi field with $U_{T} \in$ Null space of $I_{S T \mid \text { g. }}$. Since $w^{\imath}(b)=0$ for $i>t, \boldsymbol{\xi}(t)$ may be expressed in the form $\xi(t)=X(t)$ modulo the null space of $I_{S T}$ for some $X \in \mathcal{F}_{T}$ at least for $t_{0} \leqq t \leqq b$, where t_{0} denotes the last conjugate point of $\mathscr{\mathscr { L }}, \mathscr{T}$. Then it is easy to see that $\xi(t)$ belongs to ζ or the null space of $I_{s t}$.

Remark. Ambrose defined the convexity as the index of $I_{S T(t)}$ on $\Xi(S, T(t))$ (: = vector space of H^{\prime}-vector fields along $c_{[[a, t]}$ such that $\xi \perp \dot{c}$, $\xi(a) \in S, \xi(t) \in T(t)$, where t is sufficiently near a. But this is equal to $\operatorname{dim} \zeta_{0}+\operatorname{dim} \zeta_{1}$ as the above proof shows.

Department of Mathematics, College of General Education, and Tôhoku University, Kawauchi, Sendai, Japan.

Department of Applied Science, Faculty of Engineering, Kyushu University, Fukuoka, Japan. (present address)

References

[1] Ambrose, W: The index theorem in Riemannian geometry, Ann. of Math., 73 (1961) 49-86.
[2] Klingenberg, W : Manifold with geodesic flow of Anosov type, Ann. of Math., 99 (1974) 1-13.
[3] Klingenberg, W: The index theorem for closed geodesics, Tohoku Math. J. 26 (1974) 573-580.
[4] Klingmann, M: Das Morse'sche Indextheorem bei allgemeinen Randbedingungen, J. Diff. Geo. 1 (1967) 371-380.
[5] Takahashi, T: Correction to [1], Ann. of Math. 80 (1964) 538-541.
(Received February 12, 1974)
(Revised May 20, 1974)

