
On the index theorem of Ambrose

By Takashi SAKAI

1. Introduction
, The index theorem for geodesies under the general boundary condition

(two variable end points) has been given by W. Ambrose ([1], see also T.
Takahashi [5] ). But his proof is very complicated. M. Klingmann ([4])
proved the somewhat more general index theorem using the theory of
quadratic forms on Hilbert space. Recently W. Klingenberg ([2], [3]) has
obtained d.\sim \mathfrak{k}he-index\dot{t}heo\tau em=\backslash for^{\sim} closed geodesies from the geodesic flow
view point. The purpose of the present note is to give another simple
proof of the Ambrgse index theorem via Klingenberg’s view point. In
fact, we need only the fundamental properties of Jacobi fields. Since the
concept of conjugate point defined in [1] is not so familiar, we shall give
the explicit statementarrow of the Ambrose index theorem for completeness.

Let (M, \langle, \rangle) be a riemannian manifold and K, L be submanifolds of
M. Let c:[a, b]arrow M be a normal geodesic such that c(a)\in K, c(b)\in L,\dot{c}(a)\perp

T_{c(a\rangle}K,\dot{c}(b)\perp T_{c(b)}L, where T_{c(a)}^{-}K etc. denotes the tangent space to K
at c(a). W_{(}e will be concerned with the “number of essentially different
curves connecting K and L which are shorter than c” First we shall
give some preliminaries.

1.1. Boundary conditions. A boundary condition at t(a\leqq t\leqq b) is,
by definition, a pa\dot{r}r \mathscr{S}=(S, A_{S}.) where S is a subspace of 1 \dot{c}(t) (the
orthogonal complement of \dot{c}(t) in T_{c(t)}M) and A_{S} : Sarrow S is a self-adjoint
linear mapping of S.

EXAMPLE 1. Let P be a submanifold of M which is perpendicular
to c at c(t). Then we have the boundary condition (S, A_{S}) at t by S:=
T_{c(t)}P, \langle A_{S}X, Y\rangle :=H_{\delta\langle t)}(X, Y), where H_{\delta(t)} denotes the second fundamental
form of P relative to the normal c\{t) .

Let f be a vector space of Jacobi fields along c which is perpen-
dicular to c. We shall denote the covariant differentiation with respect to
\dot{c}(t) by \nabla . If the boundary condition \mathscr{S} at t is given, we define

f_{A}^{*}\nabla: =\{Y\in ff’|Y(t)\in S,\cdot \nabla Y(t)-A_{S}Y(t)1S\} dim \mathscr{I}_{S}^{*}=\dim M–l3

f_{A\nabla}:=rightarrow. \{Y\in f[Y(t)\in Sr,-\nabla Y_{K}(\wedge t)_{\backslash }=A_{q_{-}},Y(At)\}\backslash dim f_{S}=\dim S\tau
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EXAMPLE 2. Let .\mathscr{S}=(S, A_{9})A (resp. \mathscr{T}=(T, A_{T})) be a boundary con-
dition at a (resp. b). Then we define the boundary condition .\mathscr{S}^{*}(t)=(S^{*}(t),
A_{S^{*}(t)}) (resp. \mathscr{T}(t)=(T(t), A_{T(t)}) ) at t as follows.

(i) S^{*}(t):=\{Y(t)|Y\in f_{S}^{*}\} (resp. T(t):=\{X(t)|X\dagger\in\nearrow\tau\})(

(ii) A_{A}w_{(t)}Y(t):=pr_{S^{\prime*}(t)}\nabla Y(4t) (resp. A_{T(t)}X(t):=pr_{T(t)}\nabla X(t) ),

where pr_{S^{*}(t)} :\perp\dot{c}(t)-S^{*}(t) etc. denotes the orthogonal projection. Note
that (ii) is well-defined. Then it is easy to see that f_{\nabla}^{*},=f_{S^{*}(t)} does hold,
but f_{T(t)} is different from f_{T} in general.

1.2. Conjugate points. Let .\mathscr{S}, \mathscr{T} be an ordered pair of boundary
conditions at a and b respectively. Let

C(t_{0}):= vector space of vector fields Z(t) along c for which there exist
Y\in f_{S}^{*} and X\in\nearrow T such that

Z(u)=Y(u) for u\leqq t_{0} , Z(u)=X(u) for u\geqq t_{0} and
\nabla Y(t_{0})-\nabla X(t_{0})\perp T(t_{0}) .

Clearly f_{S}^{*}\cap f_{T}\subset C(t_{0}) . If \overline{lr}(t_{0}) := dim (C(t_{0})/f_{\nabla}^{*}‘\cap f_{T}) is positive, then we
say that t_{J} is a conjugate point of the ordered pair \mathscr{S} , \mathscr{T} and \overline{n}(t_{0}) will
be^{\backslash } called the order of the conjugate point t_{0} .

1.3. Index theorem. Let c, K, L be as above and .\mathscr{S} (resp. \mathscr{T} ) be
the boundary condition defined from K (resp. L) as in Example 1. Let

--.:= vector space of H’ vector fields \xi(t) along c such that \xi(a)\in S,
\xi(b)\in T,\cdot\xi(t)1\dot{c}(t) .

We put RX(t)=R(\dot{c}(t), X(t))\dot{c}(t), where R(X, Y)Z denotes the curvature
tensor of \nabla, and define the index form I_{ST} on –. by

I_{ST}(X, Y):= \int_{a}^{b}\{\langle\nabla X(t), \nabla Y(t)\rangle+\langle RX(t), Y(t)\rangle\}dt+\langle A_{S}X(a), Y(a)\rangle

-\langle A_{T}X(b), Y(b)\rangle

[= \int_{a}^{b}\langle RX(t)-\nabla\nabla X(t), Y(t)\rangle dt+\sum\langle\nabla X(t_{\dot{l}}-0)-\nabla X(t‘+0), Y(t‘)\rangle

+\langle\nabla X(b)-A_{T}X(b), Y(b)\rangle-\langle\nabla X(a)-A_{S}X(a), Y(a)\rangle]1

This is a symmetric bilinear form on –. and the “number of essentially
different curves connecting K and L which are shorter than c” can be
defined as the index of I_{ST} on –., i.e. , the dimension of the maximal sub-
space of –. on which I_{ST} is negative definite. Now the Ambrose index
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theorem asserts that this number may be expressed as the sum of the
orders of conjugate points plus “convexity”

Ambrose Index Theorem. Index of I_{s\tau}= \sum_{a<t<b}\overline{\prime\prime}(t)+Convexity.
Convexity is defined as follows. We put \mathfrak{R}=\langle X\in f_{T}|X(a)\in S\} .
On \mathfrak{R}, we have I_{ST}(X, X’)=\langle A_{q},X(a)-\nabla X(a), X’(a)\rangle . Clearly f_{S}^{*}\cap f_{T}\subset

Null space of I_{ST|\mathfrak{R}} . we define
Convexity: = dim ((Null space of I_{ST|\Re})/(f_{S}^{*}\cap f_{T}) ) + index I_{ST|}Jt .
REMARK. The definition of convexity given in [1] has a different

expression. But they are equivalent. See \S 2.

2. Proof of the theorem.

2.1 (See [2], [3]). We shall assume dim M=n+1. Let \tau:T^{2n}T_{1}Marrow

T_{1}M be the subbundle of the tangent bundle of T_{1}M (unit tangent bundle
of M) consisting of the vectors orthogonal to the geodesic spray. Then
for X_{0}\in T_{1}M, we have the splitting T_{X_{0}}^{2n}T_{1}M=T_{X_{0}h}^{n}\oplus T_{X_{0}v}^{n} of T_{X_{0}}^{2n}T_{1}M=\tau^{-1}(X_{0})

into the horizontal and vertical subspaces. If a normal geodesic c(t), a\leqq t

\leqq b is given, from the immersion \dot{c} : [a, b]arrow T_{1}M, we have an induced
bundle \tau^{2n} : V^{ln}arrow[a, b] of \tau . Let \tau_{h}^{n}\oplus\tau_{v}^{n} be the corresponding decomposi-
tion of \tau^{2n} into its horizontal and vertic\‘al subbundles over [a, b] . Now
there is a natural symplectic structure \alpha on \grave{\tau}^{2n} defined by

2\alpha((X_{h}, X_{v}), (Y_{h}, Y_{v})):=\langle X_{h}, Y_{v}\rangle-\langle Y_{h}, X_{v}\rangle

Let \phi_{\ell} be the geodesic flow. Then for (A, B)\in V^{2n}(t_{0})=(\tau^{2n})^{-1}(t_{0}) we have
d\phi_{t}(A, B)=(Y(t), \nabla Y(t)), where Y(t) is a Jacobi field along c such that Y(t_{0})

=A and \nabla Y(t_{0})=B. In the following we shall put \overline{Y}(t):=(Y(t), \nabla Y(t)) . It
is well known that d\phi_{t} preserves the symplectic form \alpha . A subspace W
of V^{2n}(t) will be called isotropic if \alpha_{|W}\equiv 0 .

2.2. Now we shall construct an n-dimensional isotropic subspace V^{n}

..pr_{N}pr_{N}x en t s easy to see te oowng emma

=V^{n}(b) from the boundary conditions .\mathscr{S}, \mathscr{T} . This will play an essential
role in the following proof. Put N:=S^{*}(b)r1T and let S^{*}(b):=S_{1}\oplus N, T=
T_{1}\oplus N, \perp\dot{c}(b):=S_{1}\oplus T_{1}\oplus N\oplus A be the orthogonal decompositions of S^{*}(b),
T and 1\dot{c}(b) respectively. We shall consider the following subspaces of
V^{2n}(b) .

a) V_{1} :=\{\overline{Y}(b)=(Y(b), \nabla Y(b))|Y\in f_{S^{*}(b)}^{*}=f_{S}^{*}. , \nabla Y(b)-A_{T}pr_{T}Y(b)\perp T\}(

Let \Phi:S^{*}(b)-N be the linear mapping defined by \Phi(x):=pr_{N}A_{S^{*}(b)}x-

A_{T} Thiihfllil
LEMMA 1. \overline{Y}(b)\in V_{1} if and only if Y(b)\in Ker\Phi and
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pr_{S_{1}}\nabla Y(b)=pr_{S_{1}}A_{S^{*}(b)}Y(b)\backslash , pr_{T_{1}}\nabla Y(b)=pr_{T_{1}}A_{T}pr_{N}Y(b) , i

pr_{N}\nabla Y(b)=pr_{N}A_{T}pr_{N}Y(b) (=pr_{1}vA_{S^{*}(b)}Y(b)) .
b) Let \Psi:Narrow S^{*}(b) be the linear mapping which assingns to x\in N,

pr_{S^{*}(b)}(\nabla Y(b)-\nabla x(b)), where we have chosen X\in f_{T}.such\# that X(b)=x, and
Y\in\nearrow_{S^{*}(b)}^{*} such that Y(b)=x. Note that this definition does not depend on
the choice of Y\in f_{q*}^{*},(b) such that Y(b)=x. Let dim \Psi(N)=d and take
x_{1} , \cdots , x_{d}\in N such that the corresponding \Psi(x_{1}), \cdots , \Psi(x_{d}) form a basis of
\Psi(N) . Next take X_{i}\in \mathscr{K}\tau such that X_{i}(b)=x_{i}(i=1, \cdots, d) . Now we define

V_{2} := subspace of V^{2n}(b) which is spanned by \tilde{X}_{i}(b)=(X_{i}(b), \nabla X_{i}(b))

i=1, \cdots , d.
Clearly dim V_{2}=d. Finally we put

c) V_{3} :=\{\tilde{X}(b)=(X(b), \nabla X(b))|X\in f_{T}, X(b)\in T_{1}\} . dim V_{3}=\dim T_{1}

Then we have
LEMMA 2. V^{n} :=V_{1}\oplus V_{2}\oplus V_{3} is an n-dimensional isotropic subspace

of V^{2n}(b) .
Proof. First we shall show that dim V_{1} is equal to dim S^{*}(b)+\dim A–d.
In fact, since \Psi:Narrow S^{*}(b) may be expressed in the form \Psi=A_{S^{*}(b)}-pr_{N}A_{T},
\Psi is the adjoint linear mapping of \Phi . So we have dim Ker \Phi=\dim S^{*}(b)

-d, and by lemma 1 dim V_{1}=\dim S^{*}(b)+\dim A–d. Next it is easy to

see V_{1}\cap V_{2}=\{0\} and V_{3}\cap(V_{1}\oplus V_{2})=\{0\} . So we get dim V^{n}=n . Finally
we shall show that V^{n} is isotropic. Since elements of V_{1} , V_{2}\oplus V_{3} satisfy
the boundary conditions .\mathscr{S}^{*}(b), \mathscr{T} respectively, we have \alpha_{jV}‘\equiv 0 and \alpha_{|7_{2}\oplus V_{3}}

\equiv 0 . So we must show \alpha(V_{1}, V_{2}\oplus V_{3})=0 . If \overline{Y}(b)\in V_{1} and \tilde{X}(b)\in V_{2}\oplus V_{3} ,

then we have
\alpha(\tilde{X},\overline{Y})=\langle\nabla Y(b), X(b)\rangle-\langle Y(b), \nabla X(b)\rangle

=(ArprTY(b), X(b)\rangle-\langle pr_{T}Y(b), A_{T}X(b)\rangle=0 q.e.d.

2.3. We put V_{v}^{n}(t):=\{\overline{Y}(t)=(Y(t), \nabla Y(t))|Y\in f_{ },, Y(t)=0\} , V^{n}(t):=d\phi_{t-b}

V^{n}(b)=\{\overline{U}(t)=(U(t), \nabla U(t))|U\in f.\tilde{[T}(b)\in V^{n}(b)\} and W(t):=V^{n}(t)\cap V_{v}^{n}(t) .
Now we shall describe the conjugate points of the ordered pair .\mathscr{S}

,\cdot
\mathscr{T} in

terms oF W(t). We define a linear mapping \chi_{t_{0}} : C(t_{0})arrow W(t_{0}) as follows.
If Z\in C(t_{0}), then by definition, there exist X\in f_{T} and Y\in\nearrow_{S}^{*}(=f_{S^{*}(b)}^{*}) such
that

Z(u)=Y(u)u\leqq t_{0} , Z(u)=X(u)u\geqq t_{0} , and \nabla Y(t_{0})-\nabla X(t_{0})\perp T(t_{0}) . Then
\overline{\backslash \Gamma}(b)=(Y(b), \nabla Y(b)) belongs to V_{1} . In fact for any X_{0}\in fl\tau, we have

\langle\nabla Y(b)-A_{T}pr_{T}Y(b), R(b)\rangle=\langle\nabla Y(b), X_{0}(b)\rangle-\langle Y(b), \nabla X_{0}(b)\rangle

=\alpha(\tilde{X}(b),\tilde{X}_{0}(b))-\alpha(\overline{Y}(b),\tilde{X}_{0}(b))=\alpha(\tilde{X}(t_{0}),\tilde{X}_{0}(t_{0}))-\alpha(\overline{Y}(t_{0}),\tilde{X}_{0}(t_{0}))

=\langle\nabla Y(t)\vee-\nabla X(t_{0}), X_{0}(t_{0})\rangle=0 .
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Next note that X(t) can be decomposed into Jacobi fields X(t)=X_{1}(t)+X_{2}(t)-

+X_{3}(t), . \backslash Where\tilde{X}_{2}(b)\in V_{2}, \tilde{X}_{3}(b)\in V_{3}, and X_{1}(b)\in Ker\Psi. Then we have
(pr_{S^{*}(b)}A_{T}-pr_{S^{*}(b)}A_{S^{*}(b)})X_{1}(b)=0, and consequently \tilde{X}_{1}(b)\in V_{1} . Now we p.ut

\chi_{t_{0}}(Z):=\overline{Y}(t_{0})-\tilde{X}(t_{0})\in W.(t_{0}) .
Then it is easy to sho\star\chi_{t_{0}} is surjective and \prime Ker\chi_{t_{0}}=f_{T}\cap f_{S}^{*} . Thus we
have the following lemma.

LEMMA 3. We have dim W(t)=\overline{n}(t) for a<t<b . Thus t_{0}\in(a, b) is
a conjugate point of the ordered pair \mathscr{S}_{-}’.

,
\cdot \mathscr{T} if and only if dim W(t_{0}) is

positive.

Now the following is standard. For the proof see [3], Proposition 3. 1.

LEMMA 4. Let n_{0}=\prime\prime-(t_{0})=\dim W(t_{0}) be positive. Choose a basis \{\overline{U}_{i}(t_{0})\}

1\leqq i\leqq n : of d\phi_{t_{0}-b}V^{n}(b) such that \tilde{U}_{l}(t_{0})1\leqq i\leqq n_{0} form a basis of W(t_{0}) .
Then

(i) \nabla U_{i}(t_{0}), 1\leqq i\leqq n_{0}, U_{f}(t_{0}), n_{0}+1\leqq j\leqq n form a basis of 1\dot{c}(t_{0}) .
(ii) For all t\neq t_{c} , sufficiently near t_{0}, U_{i}(t), 1\leqq i\leqq n form a basis of

1\dot{c}(t.) . Thus \overline{n}(t)=0 except for a finite number of value. !t

2.4. By lemma 3, Ambrose index theorem takes the form
Index I_{A\nabla T}= \sum_{a<t<b} dim W(t)+Convexity

Now for each conjugate point t_{0}\in(a, b) of the ordered pair \mathscr{S} , \mathscr{T} , we shall
assign a subspace \zeta W(t_{0}) which is complementary to f_{S}^{*}\cap\nearrow T in C(t_{0}) .
Then since \zeta W(t_{0}) consists of once broken Jacobi fields of C(t_{0}), I_{ST}(\zeta W(t_{0}),
\zeta W(t_{\acute{0}}))=0 holds and if t_{0}\neq t_{\acute{0}} they are lineary independent. Next let \zeta_{\theta} be
the maximal subspace of \mathfrak{R}=\{X\in f_{T}|X(a)\in S\} over which I_{ST_{1}^{1\Re}} is negative
definite, and \zeta_{1} be a subspace of the null space of I_{ST|\mathfrak{N}} which is comple-
mentary to f_{S}^{*}\cap\nearrow T. Then clearly \zeta_{0}, \zeta_{1} , \zeta W=\bigoplus_{a<t<b}\zeta W(t) are linearly
independent and I_{e_{T}^{v}}(\wedge\zeta_{0}, \zeta_{1}\oplus\zeta W)=0 . We put \zeta=\zeta_{0}\oplus\zeta_{1}\oplus\zeta W. Since I_{ST|_{*}1\oplus\zeta W},
\equiv 0 holds and the element of \zeta_{1}\oplus\zeta W don’t belong to the null space f_{S}^{*}

\cap \mathscr{S}_{T}^{*} of I_{ST}, we have

index I_{9T}\geqq A\dim\zeta=
\sum\dim W(t)+Convexitya<t<b .

In the above note that “negative part” of \zeta_{1}\oplus\zeta W is linearly independent
to \zeta_{r}.\cdot

\backslash

To pr_{\backslash }ove that actually the equality does hold it suffices to show that
any \xi\in--. such that

I_{ST}(\xi, \eta)=0 for all \eta\in\zeta , and I_{9T},(\xi, \xi)\leqq 0
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belongs already to \zeta or null space of I_{ST}.
From the first condition, for any \overline{U}(t_{0})\in W(t_{0})(a<t_{0}<b), we have

\langle\xi(t_{0}), \nabla U(t_{0})\rangle=I_{ST}(\xi, Z)=0, with Z=(\chi_{t_{0}1CW(t_{0})})^{-1}\tilde{U}(t_{0}) . So by lemma 4, \xi(t)

may be written in the form \xi(t)=\sum_{i=1}^{n}w^{i}(t)U_{i}(t), where we can choose

a basis \{\overline{U}_{i}(t)\}i=1 , \cdots , n of d\phi_{t-b}V^{n}(b) so that U_{i}(_{-}b), 1\leqq i\leqq t=\dim T form
a basis of T. In fact, take \{\tilde{U}_{i}(b)\} , 1\leqq i\leqq t_{1}=\dim T_{1} which is a basis of
V_{3} and \{\overline{U}_{f}(b)\} , t_{1}+1\leqq j\leqq t_{1}+d, which is a basis of V_{2} . Next let x_{k}\in N,
1\leqq k\leqq\dim N-d form a basis of Ker \Psi . Choose U_{k}\in f_{T}, t_{1}+d+1\leqq k\leqq t,

such that U_{k}(b)=x_{k-t_{1}-l}‘ . Then \overline{U}_{k}(b)\in V_{1} (see the proof of lemma 3).

Then \{U_{i}(b)\} , 1\leqq i\leqq t is a basis of T_{\tau} So we may assume w^{i}(b)=0 for
i>t.

Then from the second condition we get

0 \geqq I_{ST}(\xi, \xi)=\int_{a}^{b}||\sum\dot{w}^{i}(t)U_{i}(t)||^{2}dt-\langle\sum w^{i}(b)(A_{T}U_{i}(b)-\nabla U_{i}(b)), \sum w^{f}(b)U_{f}(b)\rangle

+ \langle\sum w^{i}(a)(A_{S}U_{i}(a)-\nabla U_{i}(a), \sum w^{f}(a)U_{f}(a)\rangle

\geqq\langle\sum w^{i}(a)(A_{\backslash }\cdot U_{i}(a)-\nabla U_{i}(a)), \sum w^{f}(a)U_{f}(a)\rangle\geqq 0

In the above, \langle\sum w^{i}(b)(A_{T}U_{i}(b)-\nabla U_{i}(b)), \sum w^{f}(b)U_{f}(b)\rangle=0 since \xi(b)\in T.
The last inequality comes from the following. Since \xi(a)\in S, the Jacobi
field \sum w’(a)U_{i}(t) may be written in the form U_{S}(t)+U_{T}(t), where \tilde{U}_{S}(t)

\in d\phi_{t-b}V_{1} and U_{T}\in \mathfrak{R} . Then we have I_{ST}(U_{T}, U_{T})\geqq 0, because I_{S1}\prime\prime(U_{T}, \zeta_{0}\oplus\zeta_{1})

=I_{ST}(\xi, \zeta_{0}\oplus\zeta_{1})=0 does hold by the first condition. Now

\langle\sum w^{i}(a)(A_{S}U_{i}(a)-\nabla U_{i}(a)), \sum w^{f}(a)U_{f}(a)\rangle=\langle A_{s}U_{T}(a)-\nabla U_{T}(a), U_{T}(a)\rangle

=I_{ST}(U_{T}, U_{T})\geqq 0

So \xi(t) must be a broken Jacobi field with U_{T}\in Nu11 space of I_{ST|\Re} . Since
w^{i}(b)=0 for i>t, \xi(t) may be expressed in the form \xi(t)=X(t) modulo
the null space of I_{ST} for some X\in f_{T} at least for t_{0}\leqq t\leqq b, where t_{0} denotes
the last conjugate point of .\mathscr{S}, ,r. Then it is easy to see that \xi(t) belongs
to \zeta or the null space of I_{ST}.

REMARK. Ambrose defined the convexity as the index of I_{ST(t)} on
\Xi(S, T(t)) ( := vector space of H’-vector fields along c_{I\overline{L}^{a,t1}} such that \xi\perp\dot{c},
\xi(a)\in S, \xi(t)\in T(t)), where t is sufficiently near a. But this is equal to
dim \zeta_{0}+\dim\zeta_{1} as the above proof shows.
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