On the index theorem of Ambrose

By Takashi SAKAL

₫,

1

1. Introduction

å.,

The index theorem for geodesics under the general boundary condition (two variable end points) has been given by W. Ambrose ([1], see also T. Takahashi [5]). But his proof is very complicated. M. Klingmann ([4]) proved the somewhat more general index theorem using the theory of quadratic forms on Hilbert space. Recently W. Klingenberg ([2], [3]) has obtained the index theorem for closed geodesics from the geodesic flow view point. The purpose of the present note is to give another simple proof of the Ambrose index theorem via Klingenberg's view point. In fact, we need only the fundamental properties of Jacobi fields. Since the concept of conjugate point defined in [1] is not so familiar, we shall give the explicit statement³ of the Ambrose index theorem for completeness. Let (M, \langle , \rangle) be a riemannian manifold and K, L be submanifolds of M. Let $c:[a,b] \rightarrow M$ be a normal geodesic such that $c(a) \in K, c(b) \in L, c(a) \perp$ $T_{c(a)}K$, $\dot{c}(b) \perp T_{c(b)}L$, where $T_{c(a)}K$ etc. denotes the tangent space to K at c(a). We will be concerned with the "number of essentially different curves connecting K and L which are shorter than c". First we shall give some preliminaries.

1.1. Boundary conditions. A boundary condition at $t(a \leq t \leq b)$ is, by definition, a pair $\mathscr{S} = (S, A_s)$ where S is a subspace of $\perp \dot{c}(t)$ (the orthogonal complement of $\dot{c}(t)$ in $T_{c(t)}M$) and $A_s: S \rightarrow S$ is a self-adjoint linear mapping of S.

EXAMPLE 1. Let P be a submanifold of M which is perpendicular to c at c(t). Then we have the boundary condition (S, A_s) at t by $S := T_{c(t)} P$, $\langle A_s X, Y \rangle := H_{\delta(t)}(X, Y)$, where $H_{\delta(t)}$ denotes the second fundamental form of P relative to the normal $\dot{c}(t)$.

Let \mathscr{J} be a vector space of Jacobi fields along c which is perpendicular to c. We shall denote the covariant differentiation with respect to $\dot{c}(t)$ by \mathcal{V} . If the boundary condition \mathscr{S} at t is given, we define

 $\mathcal{J}_{S}^{*} := \left\{ Y \in \mathcal{J} \mid Y(t) \in S, \quad \nabla Y(t) - A_{S}Y(t) \perp S \right\}. \quad \dim \quad \mathcal{J}_{S}^{*} = \dim \ M - 1.$ $\mathcal{J}_{S} := \left\{ Y \in \mathcal{J} \mid Y(t) \in S, \quad \nabla Y(t) = A_{S}Y(t) \right\}. \quad \dim \ \mathcal{J}_{S} = \dim \ S.$

T. Sakai

EXAMPLE 2. Let $\mathscr{S} = (S, A_s)$ (resp. $\mathscr{T} = (T, A_T)$) be a boundary condition at a (resp. b). Then we define the boundary condition $\mathscr{F}^*(t) = (S^*(t), A_{S^*(t)})$ (resp. $\mathscr{T}(t) = (T(t), A_{T(t)})$) at t as follows.

(i)
$$S^*(t) := \{Y(t) | Y \in \mathcal{J}_S^*\} \quad (\text{resp. } T(t) := \{X(t) | X \in \mathcal{J}_T\}).$$

(ii) $A_{\mathcal{S}^{*}(t)} Y(t) := pr_{\mathcal{S}^{*}(t)} \nabla Y(t)$ (resp. $A_{\mathcal{T}(t)} X(t) := pr_{\mathcal{T}(t)} \nabla X(t)$),

where $pr_{S^*(t)}: \perp \dot{c}(t) \rightarrow S^*(t)$ etc. denotes the orthogonal projection. Note that (ii) is well-defined. Then it is easy to see that $\mathcal{F}_S^* = \mathcal{F}_{S^*(t)}$ does hold, but $\mathcal{F}_{T(t)}$ is different from \mathcal{F}_T in general.

1.2. Conjugate points. Let \mathcal{S} , \mathcal{T} be an ordered pair of boundary conditions at a and b respectively. Let

$$C(t_0) := \text{vector space of vector fields } Z(t) \text{ along } c \text{ for which there exist}$$
$$Y \in \mathscr{J}_S^* \text{ and } X \in \mathscr{J}_T \text{ such that}$$
$$Z(u) = Y(u) \text{ for } u \leq t_0, \quad Z(u) = X(u) \text{ for } u \geq t_0 \quad \text{ and}$$
$$\nabla Y(t_0) - \nabla X(t_0) \perp T(t_0).$$

Clearly $\mathscr{F}_{s}^{*} \cap \mathscr{F}_{r} \subset C(t_{0})$. If $\bar{n}(t_{0}) := \dim(C(t_{0})/\mathscr{F}_{s}^{*} \cap \mathscr{F}_{r})$ is positive, then we say that t_{j} is a conjugate point of the ordered pair \mathscr{S} , \mathscr{T} and $\bar{n}(t_{0})$ will be called the order of the conjugate point t_{0} .

1.3. Index theorem. Let c, K, L be as above and \mathscr{S} (resp. \mathscr{T}) be the boundary condition defined from K (resp. L) as in Example 1. Let

$$\begin{aligned} \Xi &:= \text{vector space of } H' \text{-vector fields } \xi(t) \text{ along } c \text{ such that } \xi(a) \in S, \\ \xi(b) \in T, \ \xi(t) \perp \dot{c}(t). \end{aligned}$$

We put $RX(t) = R(\dot{c}(t), X(t)) \dot{c}(t)$, where R(X, Y) Z denotes the curvature tensor of V, and define the index form I_{ST} on E by

$$\begin{split} I_{ST}(X, Y) &:= \int_{a}^{b} \left\{ \langle \mathbb{P}X(t), \mathbb{P}Y(t) \rangle + \langle RX(t), Y(t) \rangle \right\} dt + \langle A_{S}X(a), Y(a) \rangle \\ &- \langle A_{T}X(b), Y(b) \rangle \\ &\left[= \int_{a}^{b} \langle RX(t) - \mathbb{P}\mathbb{P}X(t), Y(t) \rangle dt + \sum \langle \mathbb{P}X(t_{i}-0) - \mathbb{P}X(t_{i}+0), Y(t_{i}) \rangle \\ &+ \langle \mathbb{P}X(b) - A_{T}X(b), Y(b) \rangle - \langle \mathbb{P}X(a) - A_{S}X(a), Y(a) \rangle \right]. \end{split}$$

This is a symmetric bilinear form on Ξ and the "number of essentially different curves connecting K and L which are shorter than c" can be defined as the index of I_{ST} on Ξ , i.e., the dimension of the maximal subspace of Ξ on which I_{ST} is negative definite. Now the Ambrose index

theorem asserts that this number may be expressed as the sum of the orders of conjugate points plus "convexity".

Ambrose Index Theorem. Index of $I_{ST} = \sum_{a < t < b} \bar{n}(t) + Convexity.$

Convexity is defined as follows. We put $\mathfrak{N} = \{X \in \mathscr{J}_T | X(a) \in S\}$. On \mathfrak{N} , we have $I_{ST}(X, X') = \langle A_S X(a) - \mathcal{V} X(a), X'(a) \rangle$. Clearly $\mathscr{J}_S^* \cap \mathscr{J}_T \subset$ Null space of $I_{ST|\mathfrak{N}}$. we define

 $Convexity := \dim((Null space of I_{ST|\mathfrak{P}})/(\mathcal{F}_{S}^{*} \cap \mathcal{F}_{T})) + index I_{ST|\mathfrak{P}}.$

REMARK. The definition of convexity given in [1] has a different expression. But they are equivalent. See § 2.

2. Proof of the theorem.

2.1 (See [2], [3]). We shall assume dim M=n+1. Let $\tau: T^{2n}T_1M \rightarrow T_1M$ be the subbundle of the tangent bundle of T_1M (unit tangent bundle of M) consisting of the vectors orthogonal to the geodesic spray. Then for $X_0 \in T_1M$, we have the splitting $T_{X_0}^{2n}T_1M = T_{X_0h}^n \oplus T_{X_0v}^n$ of $T_{X_0}^{2n}T_1M = \tau^{-1}(X_0)$ into the horizontal and vertical subspaces. If a normal geodesic $c(t), a \leq t \leq b$ is given, from the immersion $c:[a,b] \rightarrow T_1M$, we have an induced bundle $\tau^{2n}: V^{2n} \rightarrow [a,b]$ of τ . Let $\tau_h^n \oplus \tau_v^n$ be the corresponding decomposition of τ^{2n} into its horizontal and vertical subbundles over [a,b]. Now there is a natural symplectic structure α on τ^{2n} defined by

$$2\alpha((X_{\hbar}, X_{\nu}), (Y_{\hbar}, Y_{\nu})) := \langle X_{\hbar}, Y_{\nu} \rangle - \langle Y_{\hbar}, X_{\nu} \rangle.$$

Let ϕ_t be the geodesic flow. Then for $(A, B) \in V^{2n}(t_0) = (\tau^{2n})^{-1}(t_0)$ we have $d\phi_t(A, B) = (Y(t), \nabla Y(t))$, where Y(t) is a Jacobi field along c such that $Y(t_0) = A$ and $\nabla Y(t_0) = B$. In the following we shall put $\tilde{Y}(t) := (Y(t), \nabla Y(t))$. It is well known that $d\phi_t$ preserves the symplectic form α . A subspace W of $V^{2n}(t)$ will be called isotropic if $\alpha_{|W} \equiv 0$.

2.2. Now we shall construct an *n*-dimensional isotropic subspace $V^n = V^n(b)$ from the boundary conditions \mathscr{S}, \mathscr{T} . This will play an essential role in the following proof. Put $N := S^*(b) \cap T$ and let $S^*(b) := S_1 \oplus N$, $T = T_1 \oplus N$, $\perp \dot{c}(b) := S_1 \oplus T_1 \oplus N \oplus A$ be the orthogonal decompositions of $S^*(b)$, T and $\perp \dot{c}(b)$ respectively. We shall consider the following subspaces of $V^{2n}(b)$.

a) $V_1 := \left\{ \widetilde{Y}(b) = (Y(b), \nabla Y(b)) | Y \in \mathcal{J}_{S^*(b)}^* = \mathcal{J}_S^*, \nabla Y(b) - A_T pr_T Y(b) \perp T \right\}.$

Let $\Phi: S^*(b) \rightarrow N$ be the linear mapping defined by $\Phi(x):=pr_N A_{S^*(b)}x - pr_N A_T pr_N x$. Then it is easy to see the following lemma.

LEMMA 1. $\widetilde{Y}(b) \in V_1$ if and only if $Y(b) \in Ker \Phi$ and

ŝ

$$pr_{s_{1}} \nabla Y(b) = pr_{s_{1}} A_{s^{*}(b)} Y(b), \qquad pr_{r_{1}} \nabla Y(b) = pr_{r_{1}} A_{r} pr_{N} Y(b), \qquad pr_{N} \nabla Y(b) = pr_{N} A_{r} pr_{N} Y(b) \qquad (= pr_{N} A_{s^{*}(b)} Y(b)).$$

b) Let $\Psi: N \to S^*(b)$ be the linear mapping which assingns to $x \in N$, $pr_{S^*(b)}(\nabla Y(b) - \nabla x(b))$, where we have chosen $X \in \mathscr{J}_T$ such that X(b) = x, and $Y \in \mathscr{J}^*_{S^*(b)}$ such that Y(b) = x. Note that this definition does not depend on the choice of $Y \in \mathscr{J}^*_{S^*(b)}$ such that Y(b) = x. Let dim $\Psi(N) = d$ and take $x_1, \dots, x_d \in N$ such that the corresponding $\Psi(x_1), \dots, \Psi(x_d)$ form a basis of $\Psi(N)$. Next take $X_i \in \mathscr{J}_T$ such that $X_i(b) = x_i$ $(i=1, \dots, d)$. Now we define $V \in \mathbb{Z}^*_{S^*(b)}$ which is expanded by $\widetilde{Y}(b) = (Y(b) \nabla Y(b))$

 V_2 : = subspace of $V^{2n}(b)$ which is spanned by $\widetilde{X}_i(b) = (X_i(b), \nabla X_i(b))$ $i=1, \dots, d$.

Clearly dim $V_2 = d$. Finally we put

c) $V_3 := \{\widetilde{X}(b) = (X(b), VX(b)) | X \in \mathcal{J}_T, X(b) \in T_1\}$. dim $V_3 = \dim T_1$. Then we have

LEMMA 2. $V^n := V_1 \oplus V_2 \oplus V_3$ is an n-dimensional isotropic subspace of $V^{2n}(b)$.

Proof. First we shall show that dim V_1 is equal to dim $S^*(b) + \dim A - d$. In fact, since $\Psi: N \to S^*(b)$ may be expressed in the form $\Psi = A_{S^*(b)} - pr_N A_T$, Ψ is the adjoint linear mapping of Φ . So we have dim Ker $\Phi = \dim S^*(b)$ -d, and by lemma 1 dim $V_1 = \dim S^*(b) + \dim A - d$. Next it is easy to see $V_1 \cap V_2 = \{0\}$ and $V_3 \cap (V_1 \oplus V_2) = \{0\}$. So we get dim $V^n = n$. Finally we shall show that V^n is isotropic. Since elements of $V_1, V_2 \oplus V_3$ satisfy the boundary conditions $\mathcal{F}^*(b)$, \mathcal{T} respectively, we have $\alpha_{|V_1} \equiv 0$ and $\alpha_{|V_2 \oplus V_3} = 0$. So we must show $\alpha(V_1, V_2 \oplus V_3) = 0$. If $\tilde{Y}(b) \in V_1$ and $\tilde{X}(b) \in V_2 \oplus V_3$, then we have

$$\begin{aligned} \alpha(\widetilde{X}, \widetilde{Y}) &= \langle \nabla Y(b), X(b) \rangle - \langle Y(b), \nabla X(b) \rangle \\ &= \langle A_T p r_T Y(b), X(b) \rangle - \langle p r_T Y(b), A_T X(b) \rangle = 0. \end{aligned}$$
 q.e.d.

2.3. We put $V_v^n(t) := \{\widetilde{Y}(t) = (Y(t), \nabla Y(t)) | Y \in \mathcal{F}, Y(t) = 0\}, V^n(t) := d\phi_{t-b}$ $V^n(b) = \{\widetilde{U}(t) = (U(t), \nabla U(t)) | U \in \mathcal{F}, \widetilde{U}(b) \in V^n(b)\}$ and $W(t) := V^n(t) \cap V_v^n(t)$. Now we shall describe the conjugate points of the ordered pair \mathcal{S}, \mathcal{T} in terms of W(t). We define a linear mapping $\chi_{t_0} : C(t_0) \to W(t_0)$ as follows. If $Z \in C(t_0)$, then by definition, there exist $X \in \mathcal{F}_T$ and $Y \in \mathcal{F}_S^*(=\mathcal{F}_{S^*(b)})$ such that

 $Z(u) = Y(u) \ u \leq t_0, \ Z(u) = X(u) \ u \geq t_0, \text{ and } \ \nabla Y(t_0) - \nabla X(t_0) \perp T(t_0).$ Then $\widetilde{Y}(b) = (Y(b), \nabla Y(b))$ belongs to V_1 . In fact for any $X_0 \in \mathscr{J}_T$, we have

$$\langle \nabla Y(b) - A_{T} p r_{T} Y(b), X_{0}(b) \rangle = \langle \nabla Y(b), X_{0}(b) \rangle - \langle Y(b), \nabla X_{0}(b) \rangle$$

= $\alpha(\widetilde{X}(b), \widetilde{X}_{0}(b)) - \alpha(\widetilde{Y}(b), \widetilde{X}_{0}(b)) = \alpha(\widetilde{X}(t_{0}), \widetilde{X}_{0}(t_{0})) - \alpha(\widetilde{Y}(t_{0}), \widetilde{X}_{0}(t_{0}))$
= $\langle \nabla Y(t_{0}) - \nabla X(t_{0}), X_{0}(t_{0}) \rangle = 0 .$

Next note that X(t) can be decomposed into Jacobi fields $X(t) = X_1(t) + X_2(t) + X_3(t)$, where $\widetilde{X}_2(b) \in V_2$, $\widetilde{X}_3(b) \in V_3$, and $X_1(b) \in \text{Ker } \Psi$. Then we have $(pr_{S^*(b)}A_T - pr_{S^*(b)}A_{S^*(b)}) X_1(b) = 0$, and consequently $\widetilde{X}_1(b) \in V_1$. Now we put

$$\mathcal{X}_{t_0}(Z) := \widetilde{Y}(t_0) - \widetilde{X}(t_0) \in W(t_0).$$

Then it is easy to show χ_{ι_0} is surjective and Ker $\chi_{\iota_0} = \mathscr{F}_T \cap \mathscr{F}_S^*$. Thus we have the following lemma.

LEMMA 3. We have dim $W(t) = \bar{n}(t)$ for a < t < b. Thus $t_0 \in (a, b)$ is a conjugate point of the ordered pair \mathcal{S} , \mathcal{T} if and only if dim $W(t_0)$ is positive.

Now the following is standard. For the proof see [3], Proposition 3.1.

LEMMA 4. Let $n_0 = \overline{n}(t_0) = \dim W(t_0)$ be positive. Choose a basis $\{\widetilde{U}_i(t_0)\}$ $1 \leq i \leq n$ of $d\phi_{t_0-b}V^n(b)$ such that $\widetilde{U}_i(t_0)$ $1 \leq i \leq n_0$ form a basis of $W(t_0)$. Then

(i) $\nabla U_i(t_0)$, $1 \leq i \leq n_0$, $U_j(t_0)$, $n_0 + 1 \leq j \leq n$ form a basis of $\perp c(t_0)$.

(ii) For all $t \neq t_0$, sufficiently near t_0 , $U_i(t)$, $1 \leq i \leq n$ form a basis of $\perp \dot{c}(t)$. Thus $\bar{n}(t)=0$ except for a finite number of value.

2.4. By lemma 3, Ambrose index theorem takes the form

Index $I_{ST} = \sum_{a < t < b} \dim W(t) + \text{Convexity}$.

Now for each conjugate point $t_0 \in (a, b)$ of the ordered pair \mathscr{S} , \mathscr{T} , we shall assign a subspace $\zeta W(t_0)$ which is complementary to $\mathscr{J}_S^* \cap \mathscr{J}_T$ in $C(t_0)$. Then since $\zeta W(t_0)$ consists of once broken Jacobi fields of $C(t_0)$, $I_{ST}(\zeta W(t_0))$, $\zeta W(t'_0) = 0$ holds and if $t_0 \neq t'_0$ they are lineary independent. Next let ζ_0 be the maximal subspace of $\mathfrak{N} = \{X \in \mathscr{J}_T | X(a) \in S\}$ over which $I_{ST|\mathfrak{N}}$ is negative definite, and ζ_1 be a subspace of the null space of $I_{ST|\mathfrak{N}}$ which is complementary to $\mathscr{J}_S^* \cap \mathscr{J}_T$. Then clearly $\zeta_0, \zeta_1, \zeta W = \bigoplus_{a < t < b} \zeta W(t)$ are linearly independent and $I_{ST}(\zeta_0, \zeta_1 \oplus \zeta W) = 0$. We put $\zeta = \zeta_0 \oplus \zeta_1 \oplus \zeta W$. Since $I_{ST|\mathfrak{L}_1 \oplus \zeta W}$ $\equiv 0$ holds and the element of $\zeta_1 \oplus \zeta W$ don't belong to the null space \mathscr{J}_S^* $\cap \mathscr{J}_T^*$ of I_{ST} , we have

index
$$I_{sr} \ge \dim \zeta = \sum_{t \le t \le t} W(t) + \text{Convexity}$$
.

In the above note that "negative part" of $\zeta_1 \oplus \zeta W$ is linearly independent to ζ_0 .

To prove that actually the equality does hold it suffices to show that any $\xi \in \Xi$ such that

$$I_{ST}(\xi, \eta) = 0$$
 for all $\eta \in \zeta$, and $I_{ST}(\xi, \xi) \leq 0$

belongs already to ζ or null space of I_{ST} .

From the first condition, for any $\widetilde{U}(t_0) \in W(t_0)$ $(a < t_0 < b)$, we have $\langle \xi(t_0), \nabla U(t_0) \rangle = I_{ST}(\xi, Z) = 0$, with $Z = (\chi_{t_0|\zeta W(t_0)})^{-1} \widetilde{U}(t_0)$. So by lemma 4, $\xi(t)$ may be written in the form $\xi(t) = \sum_{i=1}^{n} w^i(t) U_i(t)$, where we can choose a basis $\{\widetilde{U}_i(t)\}\ i=1, \dots, n$ of $d\phi_{t-b} V^n(b)$ so that $U_i(b), 1 \leq i \leq t = \dim T$ form a basis of T. In fact, take $\{\widetilde{U}_i(b)\}, 1 \leq i \leq t_1 = \dim T_1$ which is a basis of V_3 and $\{\widetilde{U}_j(b)\}, t_1+1 \leq j \leq t_1+d$, which is a basis of V_2 . Next let $x_k \in N$, $1 \leq k \leq \dim N-d$ form a basis of Ker Ψ . Choose $U_k \in \mathscr{F}_T, t_1+d+1 \leq k \leq t$, such that $U_k(b) = x_{k-t_1-d}$. Then $\widetilde{U}_k(b) \in V_1$ (see the proof of lemma 3). Then $\{U_i(b)\}, 1 \leq i \leq t$ is a basis of T. So we may assume $w^i(b) = 0$ for i > t.

Then from the second condition we get

$$\begin{split} 0 &\geq I_{ST}(\xi,\xi) = \int_a^b \|\sum \dot{w}^i(t) U_i(t)\|^2 dt - \langle \sum w^i(b) (A_T U_i(b) - \nabla U_i(b)), \sum w^j(b) U_j(b) \rangle \\ &+ \langle \sum w^i(a) (A_S U_i(a) - \nabla U_i(a), \sum w^j(a) U_j(a) \rangle \\ &\geq \langle \sum w^i(a) (A_S U_i(a) - \nabla U_i(a)), \sum w^j(a) U_j(a) \rangle \geq 0 \,. \end{split}$$

In the above, $\langle \sum w^i(b) (A_T U_i(b) - \overline{V} U_i(b)), \sum w^j(b) U_j(b) \rangle = 0$ since $\xi(b) \in T$. The last inequality comes from the following. Since $\xi(a) \in S$, the Jacobi field $\sum w^i(a) U_i(t)$ may be written in the form $U_s(t) + U_T(t)$, where $\widetilde{U}_s(t) \in d\phi_{t-b}V_1$ and $U_T \in \mathfrak{N}$. Then we have $I_{ST}(U_T, U_T) \geq 0$, because $I_{ST}(U_T, \zeta_0 \oplus \zeta_1) = I_{ST}(\xi, \zeta_0 \oplus \zeta_1) = 0$ does hold by the first condition. Now

$$\langle \sum w^i(a) (A_s U_i(a) - \nabla U_i(a)), \sum w^j(a) U_j(a) \rangle = \langle A_s U_r(a) - \nabla U_r(a), U_r(a) \rangle$$

= $I_{sr}(U_r, U_r) \ge 0$.

So $\xi(t)$ must be a broken Jacobi field with $U_r \in \text{Null space of } I_{ST|\Re}$. Since $w^i(b)=0$ for $i>t, \xi(t)$ may be expressed in the form $\xi(t)=X(t)$ modulo the null space of I_{ST} for some $X \in \mathcal{F}_T$ at least for $t_0 \leq t \leq b$, where t_0 denotes the last conjugate point of \mathcal{S} , \mathcal{T} . Then it is easy to see that $\xi(t)$ belongs to ζ or the null space of I_{ST} .

REMARK. Ambrose defined the convexity as the index of $I_{ST(t)}$ on $\Xi(S, T(t))$ (:= vector space of H'-vector fields along $c_{|[a,t]}$ such that $\xi \perp \dot{c}$, $\xi(a) \in S$, $\xi(t) \in T(t)$), where t is sufficiently near a. But this is equal to dim ζ_0 + dim ζ_1 as the above proof shows.

Department of Mathematics,		Department of Applied Science,
College of General Education,	and	Faculty of Engineering,
Tôhoku University,		Kyushu University,
Kawauchi, Sendai, Japan.		Fukuoka, Japan.
		(present address)

References

- [1] AMBROSE, W: The index theorem in Riemannian geometry, Ann. of Math., 73 (1961) 49-86.
- [2] KLINGENBERG, W: Manifold with geodesic flow of Anosov type, Ann. of Math., 99 (1974) 1-13.
- [3] KLINGENBERG, W: The index theorem for closed geodesics, Tôhoku Math. J. 26 (1974) 573-580.
- [4] KLINGMANN, M: Das Morse'sche Indextheorem bei allgemeinen Randbedingungen, J. Diff. Geo. 1 (1967) 371-380.
- [5] TAKAHASHI, T: Correction to [1], Ann. of Math. 80 (1964) 538-541.

(Received February 12, 1974) (Revised May 20, 1974)