Parallel tensors in the space-time V

By Hyôitirô Takeno and Shin-ichi Kitamura

§1. Introduction.

The space-time V was defined by the present authors and its properties have been studied in detail in a series of papers [1], [2], $\cdots,[10]^{11}$. The present paper is a continuation of these ones, and naturally, the same notations and terminologies will be used throughout the paper.

The object of the present paper is to deal with the problem of determining all parallel tensors in the space-time V. A parallel tensor of weight m is defined by the equation

$$
\begin{equation*}
\nabla_{j} w_{i_{1} \cdots i_{n}}=0, \tag{1.1}
\end{equation*}
$$

where ∇_{j} denotes covariant derivative. The problem for spherically symmetric space-times has been solved by one of the present authors. (Cf. Chap. IX of [11] and Chap. X of [12].) As was stated in § 102 and $\S 104$ of [12], we succeeded to solve the problem for general n and for almost all kinds of spherically symmetric space-times.

As will be seen in due course, the problem for the V is completely solved only for $n \leqq 3$, contrary to the case of spherically symmetric spacetimes. We hope that some systematic method of dealing with the problem of parallel tensors for general n and for general Riemannian space will appear, and expect that the results obtained in the present paper will be of use in the investigation of the problem as presenting some remarkable examples.

§2. Preliminaries, 1.

The following results are obtained in $\S 99$ of [12]:
(i) When the $v_{i_{1} \cdots i_{n}}$ is a scalar $v,(1.1)$ becomes

$$
\begin{equation*}
\nabla_{j} v=\partial_{i} v=0, \tag{2.1}
\end{equation*}
$$

and the general solution is given by $v=$ const., as is well-known.
(ii) When the $v_{i_{1} \cdots i_{n}}$ is a relative scalar of weight m, the general solution is given by

$$
\begin{equation*}
v=(\sqrt{-g})^{m} \times \text { const. }, \tag{2.2}
\end{equation*}
$$

1) Numbers in brackets refer to the references at the end of the paper.
where g is the determinant of the metric tensor $g_{i j}$. (Note that in [12], \sqrt{g} was used in place of the above $\sqrt{-g}$, but this is of no importance.)
(iii) The general form of the relative tensor of weight m is given by multiplying that of the parallel ordinary tensor by $(\sqrt{-g})^{m}$.

These results are given in [12] with respect to spherically symmetric space-times. But it is evident that they are valid for any Riemannian space. Thus, considering the fact that the equation (1.1) is independent of raising or lowering of the indices, we shall deal only with the ordinary covariant tensors exclusively in the following.

Now, in order to deal with the condition in another form, which is convenient for our present purpose, we take any orthonormal set of vectors $\stackrel{\alpha}{h}_{i}$ and $\underset{\alpha}{h^{i}}(i, j, \cdots=1, \cdots, 4 ; \alpha, \beta, \cdots=1, \cdots, 4)$ satisfying

$$
\begin{equation*}
\sum_{\alpha}^{\alpha} h_{i}^{\alpha} h_{j}^{\alpha}=g_{i j}, \sum_{\alpha} h_{\alpha}^{i} h^{j}=g^{i j} ; \sum_{\alpha}^{\alpha} h_{i}^{\alpha} h^{j}=\delta_{i}^{j}, \stackrel{\alpha}{i}_{i}^{\alpha} h^{i}=\delta_{\beta}^{\alpha} ; h_{\alpha}^{i}=g^{i j} h_{j}^{\alpha} \tag{2.3}
\end{equation*}
$$

and put

$$
\begin{equation*}
\gamma_{\alpha \beta \gamma}=\left(\nabla_{i} \stackrel{a}{h}_{j}^{\alpha}{\underset{\beta}{\beta} \gamma}_{h^{j} h^{i}=-\gamma_{\beta \alpha \gamma} .}\right. \tag{2.4}
\end{equation*}
$$

$\gamma_{a \beta r}$ is nothing but the coefficient of rotation. Then (1.1) is equivalent to the following equations for the scalar components $V_{\alpha_{1} \cdots \alpha_{n}}=\underset{\alpha_{1}}{h_{1}} \cdots \underset{\alpha_{n}}{h_{n} V_{i_{1} \cdots i_{n}}}$:

$$
\begin{equation*}
\underset{\beta}{h^{s} \partial_{s}} V_{\alpha_{1} \cdots \alpha_{n}}+\sum_{\rho}\left\{\gamma_{\rho \alpha_{1} \beta} V_{\rho \alpha_{2} \cdots \alpha_{n}}+\cdots+\gamma_{\rho \alpha_{n} \beta} V_{\alpha_{1} \cdots \alpha_{n-1} \rho}\right\}=0 . \tag{2.5}
\end{equation*}
$$

Thus our present problem is to solve (2.5) for the given V. Here it should be noted that the components of $\stackrel{\alpha}{h}_{i}$, and hence those of h_{α}^{i} and $\gamma_{\alpha \beta r}$, are not necessarily real, by virtue of the relation (2.3). We use (2.3), however, in order to deal with x^{2}, x^{3} and x^{4} (i.e. y, z and t) symmetrically. Further, as is easily seen, the results to be obtained are independent of the special choice of the coordinate system and that of the ennuple $\stackrel{a}{h_{i}}$.

§3. Preliminaries, 2.

Now we give some fundamental properties of V which will play important roles in the present paper. V is a space-time whose metric can be brought into the form

$$
\begin{equation*}
d s^{2}=-d x^{2}-B d y^{2}-C d z^{2}+D d t^{2}, \quad\left(\left(x^{i}\right) \equiv(x, y, z, t)\right) \tag{3.1}
\end{equation*}
$$

where B, C and D are positive-valued functions of x. A characteristic system (abbreviated to c.s.) is defined as a set of 4 unit vectors and some scalars satisfying some tensor equations. All intrinsic properties of V can
be expressed in terms of c.s. Among these scalars, the most fundamental ones are λ_{2}, λ_{3} and λ_{4}. They are given by

$$
\begin{equation*}
\lambda_{2}=-\beta / 2, \lambda_{3}=-\gamma / 2, \lambda_{4}=-\delta / 2,\left(\beta \equiv B^{\prime}\left|B, \gamma \equiv C^{\prime} / C, \delta \equiv D^{\prime}\right| D\right) \tag{3.2}
\end{equation*}
$$

in the coordinate system of (3.1), which is called standard for the c.s. Here a prime denotes the derivative with respect to x. (Cf. $\S 3$ of [1].)

Now the following theorem is proved in [2] by using the coordinate system of (3.1) (Prop. 5. 6) :

Proposition 3.1. (I) When $\beta \gamma \delta \neq 0$, the V admits no parallel vector field (hereafter 'field' will be omitted). (II) When one of $\left(\mathrm{II}_{2}\right)(\beta=0, \gamma \delta \neq 0)$, $\left(\mathrm{II}_{3}\right)(\gamma=0, \delta \beta \neq 0)$ and $\left(\mathrm{II}_{4}\right)(\delta=0, \beta \gamma \neq 0)$ holds, we have one and only one parallel vector v_{i} to within a constant multiplier. It is $c \delta_{i}^{2}, c \delta_{i}^{3}$ (space-like), and $c \delta_{i}^{4}$ (time-like) respectively. Here c is a non-vanishing arbitrary constant. (III) When one of $\left(\mathrm{III}_{2}\right)(\gamma=\delta=0, \beta \neq 0),\left(\mathrm{III}_{3}\right)(\delta=\beta=0, \gamma \neq 0)$ and $\left(\mathrm{III}_{4}\right)$ $(\beta=\gamma=0, \delta \neq 0)$ holds and the V is non-flat, we have two linearly independent (with constant coefficients) parallel vectors. They are $c \delta_{i}^{3}+c^{\prime} \delta_{i}^{4}, c \delta_{i}^{4}+c^{\prime} \delta_{i}^{2}$ (space-like, null, time-like) and $c \delta_{i}^{2}+c^{\prime} \delta_{i}^{3}$ (space-like) respectively. Here c and c^{\prime} are arbitrary constants which do not satisfy $c=c^{\prime}=0$. When the V is flat, we have evidently 4 linearly independent parallel vectors. (IV) When $\beta=\gamma=\delta=0$ holds, the V is flat.

Further it is evident from the results in [2] that the condition that the V in the case of $\left(\mathrm{III}_{a}\right),(a=2,3,4)$, be flat is given by $k_{2} \equiv-B^{\prime} / 2 \sqrt{B}=$ const. $\neq 0$ or $k_{3} \equiv-C^{\prime} / 2 \sqrt{C}=$ const. $\neq 0$ or $k_{4} \equiv i D^{\prime} / 2 \sqrt{D}=$ const. $\neq 0$ respectively. (Again, we use the purely imaginary quantity k_{4} for convenience' sake.) The condition $k_{a}=0$ is equivalent to $\beta=0$ or $\gamma=0$ or $\delta=0$ respectively.

The V in the case of (I) is characterized by the condition that it admit a c.s. satisfying $\lambda_{2} \lambda_{3} \lambda_{4} \neq 0$. Similarly, the V in the case of $\left(\mathrm{II}_{a}\right)$ is characterized by the existence of a c.s. satisfying $\lambda_{2}=0, \lambda_{3} \lambda_{4} \neq 0$) or ($\lambda_{3}=0$, $\lambda_{4} \lambda_{2} \neq 0$) or ($\lambda_{4}=0, \lambda_{2} \lambda_{3} \neq 0$) respectively, and the V in the case of $\left(\mathrm{III}_{a}\right)$ admitting 2 independent parallel vectors is characterized by the conditions that it is non-flat and admits a c.s. satisfying $\left(\lambda_{2} \neq 0, \lambda_{3}=\lambda_{4}=0\right)$ or ($\lambda_{3} \neq 0, \lambda_{4}=\lambda_{2}$ $=0)$ or $\left(\lambda_{4} \neq 0, \lambda_{2}=\lambda_{3}=0\right)$ respectively. We denote these V 's by $V(\mathrm{I}), V\left(\mathrm{I}_{2}\right)$, $\cdots, V\left(\mathrm{III}_{2}\right), \cdots$ respectively.

On the other hand, it is shown in [12] that in $S(B)$, i. e. the flat spacetime, the problem of parallel tensors is completely solved for arbitrary n as follows:

Proposition 3.2. In the space-time $S(B)$, a parallel tensor of n-th order is given by $\left({ }_{\lambda}^{1}, \stackrel{2}{\lambda}, \stackrel{3}{\lambda}, \frac{4}{\lambda}\right)_{n}$, where $\stackrel{\alpha}{\lambda}={ }_{\lambda}^{\alpha},(\alpha=1, \cdots, 4)$, are 4 parallel unit
vectors mutually orthogonal and the notation $\left(\lambda_{,}, \cdots\right)_{n}$ denotes any linear combination (with constant coefficients) of tensors of n-th order made from ${ }_{\lambda}^{\alpha}$'s by outer products.

Evidently $g_{i j}$ is parallel. Further if we put $\eta_{i j l m}=\sqrt{-g} \varepsilon_{i j l m}$, where $\varepsilon_{i j l m}$ is anti-symmetric with respect to each pair of indices and $\varepsilon_{1234}=1$, it is also parallel. (If the group of coordinate transformations contains the transformations whose Jacobians are negative, $\eta_{i j l m}$ is defined by $\rho \sqrt{-g}$ $\varepsilon_{i j l m}$, where ρ is a pseudo-scalar satisfying $|\rho|=1$.) These $g_{i j}$ and $\eta_{i j l m}$ are contained in the expression $\left({ }^{1}, \cdots\right)_{n}$ implicitly.

§4. Equations to be solved.

We use the coordinate system of (3.1) and take the orthonormal ennuple defined by

$$
\begin{equation*}
\stackrel{1}{h_{i}}=i \stackrel{\delta}{i}_{1}^{1}, \quad \stackrel{2}{h_{i}}=i \sqrt{B} \delta_{i}^{2}, \quad \stackrel{3}{h}=i \sqrt{C} \delta_{i}^{3}, \quad \stackrel{4}{h}=\sqrt{D} \delta_{i}^{4} . \tag{4.1}
\end{equation*}
$$

Then the non-vanishing components of $\gamma_{\alpha \beta \gamma}$ are given by

$$
\begin{equation*}
\gamma_{122}=-\gamma_{212}=-i \beta / 2, \quad \gamma_{133}=-\gamma_{313}=-i \gamma / 2, \quad \gamma_{144}=-\gamma_{414}=-i \delta / 2 \tag{4.2}
\end{equation*}
$$

and the equation (2.5) becomes

$$
\begin{align*}
& \partial_{x} V_{\alpha_{1} \cdots \alpha_{n}}=0 \text {, i. e. } V_{\alpha_{1} \cdots \alpha_{n}}=\text { function of }(y, z, t), \tag{4.3a}\\
& \partial_{b} V_{\alpha_{1} \cdots \alpha_{n}}=k_{b}\left\{\left(\delta_{\alpha_{1}}^{b} V_{1 \alpha_{2} \cdots \alpha_{n}}+\delta_{\alpha_{2}}^{b} V_{\alpha_{1} 1 \alpha_{3} \cdots \alpha_{n}}+\cdots+\delta_{\alpha_{n}}^{b} V_{\alpha_{1} \cdots \alpha_{n-1} 1}\right)\right. \tag{4.3~b}\\
& \left.\quad-\left(\delta_{\alpha_{1}}^{1} V_{b \alpha_{2} \cdots \alpha_{n}}+\delta_{\alpha_{2}}^{1} V_{\alpha_{1} b \cdots \alpha_{n}}+\cdots+\delta_{\alpha_{n}}^{1} V_{\alpha_{1} \cdots \alpha_{n-1} b}\right)\right\},
\end{align*}
$$

where $(b=2,3,4)$ and $\partial_{a}=\partial / \partial x^{a}$. (4.3) gives the equations to be solved.
The integration of (4.3a) is evident. When n is large, however, it is very laborious to integrate (4.3b), which is composed of 3×4^{n} equations. To execute the calculations easily as far as possible, we further classify $V(\mathrm{I})$'s and $V(\mathrm{II})$'s as follows: $V(\mathrm{I})$ is $V(\mathrm{I})_{a}$ when all of k_{2}, k_{3} and k_{4} are non-constant, $V(\mathrm{I})_{b}$ when one of k_{a} 's is a non-zero constant and the remaining two are non-constant, $V(\mathrm{I})_{c}$ when two of k_{a} 's are non-zero constants and the remaining one is non-constant, and $V(\mathrm{I})_{d}$ when all of k_{a} 's are non-zero constants. Similarly, $V(\mathrm{II})$ is $V(\mathrm{II})_{a}$ when the two surviving k_{a} 's are non-constants, $V(\mathrm{II})_{b}$ when one is non-constant and the other is a non-zero constant, and $V(\mathrm{II})_{c}$ when both of the two are non-zero constants. In general, the solution of (4.3b) is very easy when $k_{b} \neq$ const. holds, compared with the case of $k_{b}=$ const. $(\neq 0)$.

When $n=1$, (4.3b) becomes

$$
\begin{equation*}
\partial_{y} V_{1}=-k_{2} V_{2}, \quad \partial_{y} V_{2}=k_{2} V_{1}, \quad \partial_{y} V_{3}=\partial_{y} V_{4}=0, \text { and cycl. }, \tag{4.4}
\end{equation*}
$$

where cycl. means the expressions obtained by the cyclic changes of $(2,3,4)$ and (y, z, t). Then it is easy to obtain Prop. 3.1.

§5. When $n=2$.

When $n=2$, (4.3b) becomes

$$
\left\{\begin{array}{l}
\partial_{y} V_{11}+k_{2}\left(V_{12}+V_{21}\right)=\partial_{y} V_{22}-k_{2}\left(V_{12}+V_{21}\right) \tag{5.1}\\
\quad=\partial_{y} V_{12}-k_{2}\left(V_{11}-V_{22}=\partial_{y} V_{21}-k_{2}\left(V_{11}-V_{22}\right)=0,\right. \\
\partial_{y} V_{13}+k_{2} V_{23}=\partial_{y} V_{31}+k_{2} V_{32}=\cdots=\partial_{y} V_{24}-k_{2} V_{14}=\partial_{y} V_{42}-k_{2} V_{41}=0, \\
\partial_{y} V_{33}=\partial_{y} V_{34}=\partial_{y} V_{43}=\partial_{y} V_{44}=0, \quad \text { and cycl. }
\end{array}\right.
$$

By solving (5.1), we can easily obtain: (I) When the V is $V(\mathrm{I})$, we have $V_{\alpha \beta}=e \delta_{\alpha \beta}$, from which we have

$$
\begin{equation*}
v_{i j}=c g_{i j} . \tag{5.2}
\end{equation*}
$$

Here e and c are arbitrary constants. (II) Next we consider the case in which the V is $V(\mathrm{II})$. If we take $V\left(\mathrm{II}_{2}\right)$, for example, we have $V_{a \beta}=e_{1} \delta_{\alpha \beta}$ $+e_{2} \delta_{\alpha}^{2} \delta_{\beta}^{2}$, i. e.

$$
\begin{equation*}
v_{i j}=c_{1} g_{i j}+c_{2} \stackrel{2}{v}_{i}{ }^{2} v_{j}^{2} . \tag{5.3}
\end{equation*}
$$

Here e 's and c 's are arbitrary constants and ${ }^{2} v_{i}$ is the parallel unit vector whose components are given by $\stackrel{2}{v}_{i}^{2}=\delta_{i}^{2}$ in the coordinate system in which $B=1$ holds (cf. Prop. 3.1). (Note that the scalar components of ${ }_{v}^{2}$ are given by δ_{a}^{2}.) (III) Lastly we consider $V(\mathrm{III})$. If we take $V\left(\mathrm{III}_{2}\right)$, for example, we can obtain $V_{\alpha \beta}=e_{1} \delta_{\alpha \beta}+e_{2} \delta_{\alpha}^{3} \delta_{\beta}^{3}+e_{2}^{\prime} \delta_{\alpha}^{4} \delta_{\beta}^{4}+e_{3} \delta_{\alpha}^{3} \delta_{\beta}^{4}+e_{3}{ }^{\prime} \delta_{\alpha}^{4} \delta_{\beta}^{3}+e_{4} \varepsilon_{\alpha \beta \gamma} \delta_{3} \delta_{d}^{\partial}$, i.e.

$$
\begin{equation*}
v_{i j}=c_{1} g_{i j}+c_{2} \stackrel{3}{v}_{i}{ }^{3} v_{j}+c_{2}{ }^{\prime}{ }^{4}{ }_{i}{ }^{4} v_{j}+c_{3} \stackrel{3}{v}_{i}{ }^{4} v_{j}+c_{3}{ }^{\prime} \stackrel{4}{v}_{i}{ }^{3} v_{j}+c_{4} \eta_{l i j m} \stackrel{3}{v^{4} v^{4}}, \tag{5.4}
\end{equation*}
$$

where e 's and c^{\prime} s are arbitrary constants, and $\stackrel{3}{v}_{i}$ and $\stackrel{4}{v}_{i}$ are the independent parallel vectors given in Prop. 3.1 in the case of $\left(\mathrm{III}_{2}\right)$.

§6. When $n=3$.

In this case (4.3b) is composed of 3×4^{3} equations:

$$
\left\{\begin{array}{l}
\partial_{y} V_{111}+k_{2}\left(V_{211}+V_{121}+V_{12}\right)=\partial_{y} V_{112}+k_{2}\left(V_{212}+V_{122}-V_{111}\right)=0, \tag{6.1}\\
\cdots \ldots \\
\partial_{y} V_{411}+k_{2} V_{442}=\partial_{y} V_{422}-k_{2} V_{441}=\partial_{y} V_{443}=\partial_{y} V_{444}=0, \quad \text { and cycl. }
\end{array}\right.
$$

We denote by $\left(\mathrm{E}_{2}\right)$ the equation (4.3b) with $b=2$. Then we can show
that, when $k_{2} \neq$ const., $\left(\mathrm{E}_{2}\right)$ is equivalent to

$$
\left\{\begin{array}{l}
V_{a \beta p}=V_{a \beta p}(z, t) ; V_{a b c}=0, \quad V_{12 \rho}+V_{21 \rho} \stackrel{P}{=} 0, \tag{6.2}\\
V_{11 \rho}=V_{22 \rho}, \quad V_{1 \rho \rho} \stackrel{P}{=} V_{2 \rho \rho}=0, \quad(a, b, c=1,2 ; \rho, \sigma=3,4),
\end{array}\right.
$$

where $\stackrel{P}{=}$ means that the $n!$ (in this case, $3!$) equations obtained by the permutation of n indices hold.

On the other hand, when $k_{2}=$ const. $(\neq 0),\left(\mathrm{E}_{2}\right)$ is equivalent to

$$
\left\{\begin{array}{l}
V_{11 \rho} \stackrel{P}{=} p_{11 \rho} \sin 2 k_{2} y+q_{11 \rho} \cos 2 k_{2} y+r_{11 \rho} \tag{6.3}\\
V_{22 \rho}^{=}=-p_{11 \rho} \sin 2 k_{2} y-q_{11 \rho} \cos 2 k_{2} y+r_{11 \rho} \\
V_{12 \rho}^{=}=-p_{11 \rho} \cos 2 k_{2} y+q_{11 \rho} \sin 2 k_{2} y+r_{12 \rho} \\
V_{21 \rho}^{=}=-p_{11 \rho} \cos 2 k_{2} y+q_{11 \rho} \sin 2 k_{2} y-r_{12 \rho}
\end{array}\right.
$$

$$
\begin{cases}V_{\rho o 1} & P=a_{\rho o 1} \sin k_{2} y+b_{\rho o 1} \cos k_{2} y, \tag{6.4}\\ V_{\rho o 2} & \stackrel{P}{=}-a_{\rho o 1} \cos k_{2} y+b_{\rho o 1} \sin k_{2} y ; \\ V_{\rho o o t}(z, t)\end{cases}
$$

$$
\left\{\begin{array}{l}
\partial_{y} V_{11}+k_{2}\left(V_{211}+V_{121}+V_{112}\right)=\partial_{y} V_{222}-k_{2}\left(V_{122}+V_{212}+V_{221}\right)=0, \tag{6.5}\\
\partial_{y} V_{211}+k_{2}\left(-V_{111}+V_{221}+V_{212}\right) \stackrel{P}{=} \partial_{y} V_{122}+k_{2}\left(V_{222}-V_{121}-V_{112} \stackrel{P}{=} 0 .\right.
\end{array}\right.
$$

Here $\rho, \boldsymbol{\sigma}, \tau=3,4$, and p 's, q 's, r 's, a 's and b 's are functions of (z, t).
Using these equations and dealing with the cases $V(\mathrm{I})_{a}, V(\mathrm{I})_{b}, \cdots$, $V(\mathrm{II})_{a}, V(\mathrm{II})_{b}, \cdots, V(\mathrm{III})$ separately, we can arrive at the following conclusion (again, the calculations are omitted for brevity's sake):

Proposition 6.1. When the V is $V(\mathrm{I})$, we have

$$
\begin{equation*}
v_{i j k}=0 . \tag{6.6}
\end{equation*}
$$

When the V is $V(\mathrm{II})$, we have

$$
\begin{equation*}
v_{i j k}=c_{1} \mu_{i} g_{j k}+c_{2} \mu_{j} g_{i k}+c_{3} \mu_{k} g_{i j}+c_{4} \mu_{i} \mu_{j} \mu_{k}+c_{5} \eta_{i j k k} \mu^{l}, \tag{6.7}
\end{equation*}
$$

where c's are arbitrary constants and μ_{i} is the parallel unit vector uniquely determined (i.e. $\stackrel{2}{v_{i}}$ or $\stackrel{3}{v_{i}}$ or $\stackrel{4}{v_{i}}$ in $V\left(\mathrm{II}_{2}\right)$ or $V\left(\mathrm{I}_{3}\right)$ or $V\left(\mathrm{II}_{4}\right)$ respectively. When the V is $V(\mathrm{III})$, we have

$$
\left\{\begin{align*}
v_{i j k}= & \left(c_{1} \mu_{i}+c_{1}^{\prime} \nu_{i}\right) g_{j k}+\left(c_{2} \mu_{j}+c_{2}^{\prime} \nu_{j}\right) g_{i k}+\left(c_{3} \mu_{k}+c_{3}^{\prime} \nu_{k}\right) g_{i j} \tag{6.8}\\
& +c_{4} \mu_{i j} \mu_{j} \mu_{k}+c_{4}^{\prime} \nu_{i} \nu_{j} \nu_{k}+\left(c_{5} \nu_{i} \mu_{j} \mu_{k}+c_{5}^{\prime} \mu_{i} \nu_{j} \nu_{k}\right)+\cdots \\
& +\left\{\left(c_{8} \mu_{i}+c_{8}^{\prime} \nu_{i}\right) \eta_{j k p_{k q}}+\cdots+\left(c_{10} \mu_{k}+c_{10}^{\prime} \nu_{k}\right) \eta_{i j p q}\right\} \mu^{p_{\nu}} \nu^{2}
\end{align*}\right.
$$

where c's and c"s are arbitrary constants and μ_{i} and ν_{i} are mutually orthogonal parallel unit vectors stated in Prop. $3.1\left(\right.$ i.e. $\left(\stackrel{3}{v_{i}}, \stackrel{4}{v_{i}}\right)$ or $\left(\stackrel{4}{v_{i}}, \stackrel{2}{v_{i}}\right)$ or
$\left(\stackrel{2}{v_{i}}, \stackrel{3}{v_{i}}\right)$ in $V\left(\mathrm{II}_{2}\right)$ or $V\left(\mathrm{II}_{3}\right)$ or $V\left(\mathrm{II}_{4}\right)$ respectively). The number of arbitrary constants is 20.

Arranging the results in Prop. 3.1, §5 and Prop. 6.1, we have
Propusition 6.2. When the non-flat V is $V(\mathrm{I})$ or $V(\mathrm{II})$ or $V(\mathrm{III})$, we have

$$
\begin{array}{rlrl}
v_{i_{1} \cdots i_{n}} & =(g, \eta)_{n} & & \text { or } \\
& =(g, \eta, \mu)_{n} & & \text { or } \\
& =(g, \eta, \mu, \nu)_{n} & \tag{6.11}
\end{array}
$$

respectively, if we assume $1 \leqq n \leqq 3$.
Here the notation $(g, \eta, \mu)_{n}$, for example, means a tensor of n-th order obtained as a linear combination (with constant coefficients) of the tensors of n-th order each of which is composed of $g_{i j}, \eta_{i j l m}$ and μ_{i} by the process of outer products and contractions. Examples are given in (5.3) ($\left.\mu_{i}=\stackrel{2}{v_{i}}\right)$ and (6.7).

Conversely, it is evident that (6.9), (6.10) and (6.11) give parallel tensors in each V's, since $g_{i j}$ and $\eta_{i j l m}$ are parallel in all V 's, μ_{i} is parallel in $V(\mathrm{II})$, and μ_{i} and ν_{i} are parallel in $V(\mathrm{III})$.

Our conjecture is that Prop. 6.2 holds for all $n \geqq 1$. At the present stage of the investigation, this is only a conjecture.

§7. When $n=4$.

As is stated at the end of the last section, we can not prove Prop. 6.2 even for the case of $n=4$ at the present stage. We have proved only (6.9) for $V(\mathrm{I})_{a}, V(\mathrm{I})_{b}$ and $V(\mathrm{I})_{c}$ assuming $n=4$. The proof for $V(\mathrm{I})_{a}$ is laborious, so we stop here, only noting the conditions corresponding to (6.2) and $\{(6.3),(6.4),(6.5)\}$.

When $k_{2} \neq$ const., $\left(\mathrm{E}_{2}\right)$, which is composed of 4^{4} equations, is equivalent to

$$
\left\{\begin{array}{l}
V_{\alpha \beta \gamma \delta}=V_{\alpha \beta \gamma \delta}(z, t) ; \quad V_{a \rho \sigma \sigma} \stackrel{P}{=} 0, \quad V_{\rho a b c} \stackrel{P}{=} 0, \tag{7.1}\\
V_{11 \rho \sigma}=V_{22 \rho \sigma}, \quad V_{12 \rho \sigma}+V_{21 \rho \sigma}^{=} 0, \\
V_{1111}=V_{2222}=p+q+r, \quad\left(V_{1122}=V_{2211}=p, \quad V_{1212}=V_{2121}=q,\right. \\
\left.V_{1221}=V_{2112}=r\right), \quad V_{2111}=-V_{1222}=b_{1}, \quad V_{1211}=-V_{2122}=b_{2}, \\
V_{1121}=-V_{2212}=b_{3}, \quad V_{1112}=-V_{2221}=b_{4}, \\
b_{1}+b_{2}+b_{3}+b_{4}=0,
\end{array}\right.
$$

where $(a, b, c=1,2 ; \rho, \sigma, \tau=3,4)$ and $p, q, r, b_{1}, \cdots, b_{4}$ are functions of (z, t). When $k_{2}=$ const. $(\neq 0)$, we have from $\left(\mathrm{E}_{2}\right)$

$$
\begin{align*}
& \left\{\begin{array}{l}
V_{\rho \sigma \tau 1} \stackrel{P}{=} p_{\rho \sigma \tau} \sin k_{2} y+q_{\rho \sigma \tau} \cos k_{2} y, \quad V_{\rho \sigma \tau 2} \stackrel{P}{=}-p_{\rho \sigma \tau} \cos k_{2} y+q_{\rho \sigma \tau} \sin k_{2} y \\
V_{\rho \sigma 11}-V_{\rho \sigma 22} \stackrel{P}{=} r_{\rho \sigma} \sin 2 k_{2} y+s_{\rho \sigma} \cos 2 k_{2} y, \\
V_{\rho o 12}+V_{\rho o 21}=-r_{\rho \sigma} \cos 2 k_{2} y+s_{\rho \sigma} \sin 2 k_{2} y
\end{array}\right. \tag{7.2}\\
& \left\{\begin{array}{rr}
V_{2111}+V_{1211}+V_{1121}+V_{1112}= & -a \cos 2 k_{2} y+b \sin 2 k_{2} y \\
& -m \cos 4 k_{2} y+n \sin 4 k_{2} y \\
V_{1222}+V_{2122}+V_{2212}+V_{2221}= & -a \cos 2 k_{2} y+b \sin 2 k_{2} y \\
& +m \cos 4 k_{2} y-n \sin 4 k_{2} y
\end{array}\right. \tag{7.3}
\end{align*}
$$

$\left\{\begin{aligned} V_{1111} & =(a / 2) \sin 2 k_{2} y+(b / 2) \cos 2 k_{2} y+(m / 4) \sin 4 k_{2} y+(n / 4) \cos 4 k_{2} y+f, \\ V_{2222} & =-(a / 2) \sin 2 k_{2} y-(b / 2) \cos 2 k_{2} y+(m / 4) \sin 4 k_{2} y+(n / 4) \cos 4 k_{2} y+f, \\ V_{1122}+ & V_{2211}+V_{1212}+V_{2121}+V_{1221}+V_{2112} \\ & =-(3 / 2)\left(m \sin 4 k_{2} y+n \cos 4 k_{2} y\right)+2 f,\end{aligned}\right.$
$\left\{\begin{array}{l}3 V_{\rho 1}^{\alpha}+X_{\rho 2}^{\alpha} \stackrel{P}{=} u_{\rho} \sin k_{2} y+v_{\rho} \cos k_{2} y, \\ 3 V_{\rho 2}^{\alpha}+X_{\rho 2}^{\alpha}=-u_{\rho} \cos k_{2} y+v_{\rho} \sin k_{2} y,\end{array}\right.$
where $(a, b, c=1,2 ; \rho, \sigma, \tau=3,4), r$'s, s 's, a, b, m, n, f, u 's and v 's are arbitrary functions of (z, t). Further, for example, $V_{\rho 1}^{1}=V_{\rho 111}, V_{\rho 2}^{1}=V_{\rho 222}, X_{\rho 1}^{1}=V_{\rho 211}+$ $V_{\rho 121}+V_{\rho 112}$ and $X_{\rho 2}^{2}=V_{1 \rho 22}+V_{2 \rho 12}+V_{2 \rho 21}$, and the upper index α indicates the position of ρ.

Further it should be noted that the condition $\{(7.2), \cdots,(7.5)\}$ is not sufficient for $\left(\mathrm{E}_{2}\right)$ with $k_{2}=$ const. $\neq 0$. Some other equations are necessary, but we omit them for brevity's sake.
Hiroshima Institute of Technology

Itsukaichi-machi, Hiroshima-ken and | Fukui University |
| :--- |
| Fukui-shi |

References

[1] H. Takeno and S. Kitamura: On some special kind of space-times, I, Tensor, N.S., 24 (1972), 266-272.
[2] H. Takeno and S. Kitamura: On some special kind of space-times, II, Hokkaido Math. J., 1 (1972), 43-62.
[3] H. Takeno and S. Kitamura: On the characteristic system of the space-time V, Tensor, N.S., 25 (1972), 63-75.
[4] H. Takeno: Discrimination of the space-time V, I, Hokkaido Math. J., 2 (1973), 1-23.
[5] H. Takeno: Discrimination of the space-time V, II, Hokkaido Math. J., 2 (1973), 26-39.
[6] H. Takeno: On the recurrency of the space-time V, Tensor, N.S., 27 (1973), 309-318.
[7] H. Takeno and S. Kitamura: Group of motions in the space-time V, I, Tensor, N.S., 27 (1973), 197-207.
[8] H. Takeno and S. Kitamura: Group of motions in the space-time V, II, Tensor, N.S., 27 (1973), 265-275.
[9] H. Takeno and S. Kitamura: Group of motions in the space-time V, III, Tensor, N.S., 28 (1974), 25-33.
[10] H. Takeno and S. Kitamura: On the imbedding of the space-time V, Math Japon., 18 (1973), 137-148.
[11] H. Takeno: The theory of spherically symmetric space-times, Sci. Rep. Res. Inst. Theor. Phys., Hiroshima Univ., No. 3 (1963).
[12] H. Takeno: The theory of spherically symmetric space-times, (Revised edition), Sci. Rep. Res. Inst. Theor. Phys., Hiroshima Univ., No. 5 (1966).
(Received January 28, 1974)

