On surfaces in 3-sphere: Prime decompositions

By Shin'ichi Suzuki

0. Introduction

Throughout this paper, we work in the piecewise linear category, consisting of simplicial complexes and piecewise linear maps. The theorems concern "knot types" of a connected, closed (=compact, without boundary), oriented surface ($=2$-dimensional manifold) F in the 3-dimensional sphere S^{3} with a fixed orientation.

In the previous paper [25], we showed a unique prime decomposition theorem for special linear graphs in S^{3} as generalization of knots [23] and links [12], see [20] and also [2], [10], [26], [27]. In the paper, we shall formulate a prime decomposition theorem for pairs $\left(F \subset S^{3}\right)$'s as the same way as that of [25] and [27] except for obvious modifications, and discuss the uniqueness of the prime decompositions.

The author wishes to express his hearty thanks to Prof. T. Homma, Prof. F. Hosokawa and the members of Kobe Topology Seminar for conversations.

1. Prime Decompositions for $\left(\boldsymbol{F} \subset \boldsymbol{S}^{3}\right)$

In the paper, homeomorphism and isomorphism are denoted by the same symbol \cong, while \approx, \simeq and \sim refer, respectively, to isotopy, homotopy and homology. $\partial X, c l(X)$ and ${ }^{\circ} X$ denote, respectively, the boundary, the closure and the interior of a manifold X, and when applied to oriented objects these respect orientations. By \boldsymbol{Z} we shall denote the infinite cyclic group.

We shall say that a submanifold X of a manifold Y is properly embedded (or simply proper) if $X \cap \partial Y=\partial X$.

By D^{n} and S^{n-1} we shall denote the standard n-cell and the standard $(n-1)$-sphere ∂D^{n}, respectively. We always assume that S^{3} has the righthanded orientation.

For a connected surface $F, g(F)$ stands for the genus of F.
We shall now formulate the prime decomposition for pairs $\left(F \subset S^{3}\right)$ of closed, connected and oriented surfaces in S^{3}.
1.1. Definition. Two pairs $\left(F_{1} \subset S^{3}\right)$ and $\left(F_{2} \subset S^{3}\right)$ are said to be congruent, denoted by $\left(F_{1} \subset S^{3}\right) \cong\left(F_{2} \subset S^{3}\right)$, if there is an orientation-preserving
homeomorphism $\psi: S^{3} \rightarrow S^{3}$ such that $\psi\left(F_{1}\right)=F_{2}$ and $\left.\psi\right|_{F_{1}}$ is also orientationpreserving.

Then it is trivial that the relation of congruence is an equivalence relation. By Fisher [6], this definition is the same as that of Tsukui [27], cf. Gugenheim [11]. We call the congruence class of a pair $\left(F \subset S^{3}\right)$ the knot type of $\left(F \subset S^{3}\right)$. For a pair $\left(F \subset S^{3}\right)$, we denote the pair having the opposite orientation to F by $\left(-F \subset S^{3}\right)$. Of course, $\left(F \subset S^{3}\right)$ and $\left(-F \subset S^{3}\right)$ are not always congruent.
1.2. Composition: Let $\left(F_{1} \subset S^{3}\right)$ and $\left(F_{2} \subset S^{3}\right)$ be pairs, and let $D_{1}^{3} \subset S^{3}$ and $D_{2}^{3} \subset S^{3}$ be 3 -cells with $D_{1}^{3} \cap F_{1} \cong D^{2}$ and $D_{2}^{3} \cap F_{2} \cong D^{2}$. Then, the composition $\left(F_{1} \subset S^{3}\right) \#\left(F_{2} \subset S^{3}\right)$ of two pairs $\left(F_{1} \subset S^{3}\right)$ and $\left(F_{2} \subset S^{3}\right)$ is a new pair $\left(F \subset S^{3}\right)$ obtained by matching the boundaries $\partial\left(S^{3}-{ }^{0} D_{1}^{3}\right)$ and $\partial\left(S^{3}-{ }^{\circ} D_{2}^{3}\right)$ using an orientation-reversing homeomorphism ζ such that $\zeta\left(\partial\left(F_{1}-{ }^{\circ} D_{1}^{3}\right)\right)=\partial\left(F_{2}-{ }^{\circ} D_{2}^{3}\right)$ and $\left.\zeta\right|_{\left(P_{1}-D_{1}^{3}\right)}$ is also orientation-reversing.

By the Alexander's theorem [1] and the homogeneity theorem of Newman-Gugenheim [11], up to congruence, the operation \# of composition is well-defined, associative and commutative.

Conversely, we shall say that $\left(F_{1} \subset S^{3}\right) \#\left(F_{2} \subset S^{3}\right)$ is a decomposition for $\left(F \subset S^{3}\right)$, and that such the 2 -sphere $\partial D_{1}^{3}=\partial D_{2}^{3}$ gives the decomposition.

For any pair $\left(F \subset S^{3}\right)$, the existence of a 3 -cell $D_{0}^{3} \subset S^{3}$ with $D_{0}^{3} \cap F \cong D^{2}$ is obvious. Let $D_{1}^{3\rfloor} \ldots \cup D_{n}^{3}$ be mutually disjoint 3 -cells in S^{3} with $D_{i}^{3} \cap F \cong D^{2}$. Then, it will be convenient to call the proper pair $\left(F \cap\left(S^{3}-\cup^{\circ} D_{i}^{3}\right) \subset\left(S^{3}-\cup^{\circ} D_{1}^{3}\right)\right)$ is equivalent to $\left(F \subset S^{3}\right)$.

From 1.2, we obtain at once the
1.3. Proposition. If $\left(F \subset S^{3}\right) \cong\left(F_{1} \subset S^{3}\right) \#\left(F_{2} \subset S^{3}\right)$, then $g(F)=g\left(F_{1}\right)+g\left(F_{2}\right)$.
1.4. Definition. We call a pair $\left(F \subset S^{3}\right)$ non-trivial if $g(F) \neq 0$, that is, $\left(F \subset S^{3}\right) \not \equiv\left(S^{2} \subset S^{3}\right)$. A non-trivial pair $\left(F \subset S^{3}\right)$ is said to be prime if there is no decomposition $\left(F \subset S^{3}\right) \cong\left(F_{1} \subset S^{3}\right) \#\left(F_{2} \subset S^{3}\right)$ with both $\left(F_{1} \subset S^{3}\right)$ and $\left(F_{2} \subset S^{3}\right)$ non-trivial.
1.5. Proposition. Every $\left(F \subset S^{3}\right)$ with $g(F)=1$ is prime.

By Propositions 1.3. and 1.5 and the finiteness of genus, we have the following :
1.6. Theorem. (Existence of Prime Decomposition) Every non-trivial pair $\left(F \subset S^{3}\right)$ has a prime decomposition

$$
\left(F \subset S^{3}\right) \cong\left(F_{1} \subset S^{3}\right) \# \cdots \#\left(F_{u} \subset S^{3}\right)
$$

of prime pairs $\left(F_{i} \subset S^{3}\right)$.
The following question immediately come to mind.
1.7. Question. Is the prime decomposition for $\left(F \subset S^{3}\right)$ unique? That is, are the summands $\left(F_{i} \subset S^{3}\right)$ in 1.6 uniquely determined up to order and congruence?

This has been shown to be true for some kind of pairs in [27] and [30].

1. 8. Proposition. (Tsukui [27, Th. 2]) For any pair $\left(F \subset S^{3}\right)$ with $g(F)=2$, the prime decomposition in 1.6 is unique.

In order to state our version of Waldhausen's result [30], we need some preparation.
1.9. Let $\left(F \subset S^{3}\right)$ be a pair of a connected, closed, oriented suaface F in S^{3}. Then, $S^{3}-F$ consists of two oriented open 3 -manifolds. We denote the closures of these manifolds in S^{3} by V_{F} and W_{F}, and in particular, we always assume that the orientation of ∂V_{F} is consistent with that of F. It will be noticed that $V_{F} \cup W_{F}=S^{3}, V_{F} \cap W_{F}=F$ and $V_{F}=S^{3}-{ }^{\circ} W_{F}=c l\left(S^{3}-W_{F}\right)$, $W_{F}=S^{3}-{ }^{\circ} V_{F}=c l\left(S^{3}-V_{F}\right)$, see Edward [3].
1.10. Definition. A non-trivial pair $\left(F \subset S^{3}\right)$ is said to be unknotted if both V_{F} and W_{F} are solid-tori of genus $g(F)$. Here, a solid-torus of genus p is a 3-manifold homeomorphic to a regular neighborhood in S^{3} of a connected compact 1 -dimensional complex of Euler characteristic $1-p$. (Refer to $2.12,2.17$ and 2.18 below.)

1. 11. Proposition. For any unknotted pairs $\left(F \subset S^{3}\right)$ and $\left(F^{\prime} \subset S^{3}\right)$ with $g(F)=g\left(F^{\prime}\right)=1,\left(F \subset S^{3}\right) \cong\left(F^{\prime} \subset S^{3}\right)$.

The proof of 1.11 is by the Dehn's lemma [14], [22], or the loop theorem [21], see [27], [30], etc..

This Proposition enables us to denote an unknotted pair of genus 1 by $\left(T \subset S^{3}\right)$, and we also denote $(n-1)\left(T \subset S^{3}\right) \#\left(T \subset S^{3}\right)$ simply by $n\left(T \subset S^{3}\right)$.

If a pair $\left(F \subset S^{3}\right)$ is unknotted, it forms a Heegaard-splitting of S^{3}, and so we have:

1. 12. Proposition. (Waldhausen [30, (3.1)]) If $\left(F \subset S^{3}\right)$ is unknotted, then $\left(F \subset S^{3}\right)$ has the unique prime decomposition

$$
\left(F \subset S^{3}\right) \cong g(F)\left(T \subset S^{3}\right) .
$$

We will study unknotted pairs in the forthcoming papers.
In the remainder of this paper, we shall give in $\S 2$ and 3 some elementary properties of V_{F} and W_{F}, and in §4 an affirmative answer to Question 1.7 in a special case, and in $\S 5$ some examples of prime pairs.

2. Preliminary Remarks

In this section, let us explain several definitions and well-known facts to be used freely in the sequel.
2.1. 3-manifolds are to be compact, connected and oriented.

We shall call a homeomorphic image of S^{1} (resp. of D^{1}) a simple loop (resp. a simple arc).

For a subcomplex X of a complex Y, by $N(X ; Y)$ we denote a regular neigoborhood of X in Y, that is, we construct its second derived and take the closed star of X. It will be noted that if Y is a manifold, $N(X ; Y)^{\cap}$ $\partial Y=N(X \cap \partial Y ; \partial Y)$.

An isotopy (i) of a homeomorphism $\psi: Y \rightarrow Y^{\prime}$ is a homeomorphism $H: Y \times[0,1] \rightarrow Y^{\prime} \times[0,1]$ such that $H(y, t)=\left(\eta_{t}(y), t\right)$, where $\eta_{t}: Y \rightarrow Y^{\prime}$ is a homeomorphism, and $\eta_{0}=\psi$;
(ii) of subcomplexes X_{1} and X_{2} in Y is an isotopy of the identity map on Y such that $\eta_{1}\left(X_{1}\right)=X_{2}$.
2.2. Convention: In the paper, we often consider two 2 -manifolds X_{1} and X_{2}, which may not be connected, properly embedded in a 3 -manifold M. The well-known general position argument asserts that there is an isotopy of the identity map on M so that $\eta_{1}\left(X_{1}\right)$ and X_{2} intersect transversally. From now on, unless otherwise specified, we assume that $X_{1} \cap X_{2}$ consists of a finite number of mutually disjoint simple loops and simple arcs proper in both X_{1} and X_{2}.

We make full use of socalled innermost curves. A simple loop Γ in $X_{1} \cap X_{2}$ is said to be an innermost loop on X_{1} if Γ bounds a 2-cell C^{2} on X_{1} so that ${ }^{\circ} C^{2} \cap X_{2}=\emptyset$, and a simple arc γ in $X_{1} \cap X_{2}$ is said to be an innermost arc on X_{1} if γ cuts off a 2 -cell C^{2} on X_{1} so that ${ }^{\circ} C^{2} \cap X_{2}=0$. It will be noticed that if $X_{1} \cong S^{2}$ or $X_{1} \cong D^{2}$, there is at least one innermost curves on X_{1} provided $X_{1} \cap X_{2} \neq \emptyset$, and moreover there is at least one innermost loop on X_{1} provided that $X_{1} \cap X_{2}$ contains simple loops.
2.3. Definition. A 3 -manifold M is said to be irreducible if every 2 -sphere in M bounds a 3 -cell in M, and to be ∂-irreducible if for any proper 2 -cell C^{2} in $M, \partial C^{2}$ bounds a 2 -cell on ∂M.

There are several properties of irreducible and ∂-irreducible 3 -manifolds with boundary, see [22], [26], [29], etc.. Some of them will be recorded below.
2. 4. Lemma. (Papakyriakopoulos [21], Stallings [24], etc.) A 3-manifold M is ∂-irreducible if and only if the homomorphism ${ }^{*}: ~: \pi_{1}(\partial M) \rightarrow \pi_{1}(M)$, induced by the natural inclusion, is a monomorphism.
2. 5. Proposition. (Fox [7], Homma [13]) For every non-trivial pair $\left(F \subset S^{3}\right)$, at least one of V_{F} and W_{F} is not ∂-irreducible. (Refer to Kinoshita [17]).
2.6. Proposition. Let M be an irreducible 3-manifold, and let C_{1}^{2} and C_{2}^{2} be proper 2-cells in M with $\partial C_{1}^{2}=\partial C_{2}^{2}$. Then, there exists an isotopy of C_{1}^{2} and C_{2}^{2} in M keeping ∂M fixed.

This follows from the irreducibility of M. The proof, which is omitted here, is by an induction on the number of components in $C_{1}^{2} \cap C_{2}^{2}$.
2.7. Definition. (1) Let J and K be systems of mutually disjoint simple loops on a 2-manifold F. We shall say that J and K are in reduced position, if $J \cap K$ consists of a finite number of points crossing one another, and there is no 2-cell on F whose boundary consists of an arc in J and arc in K.
(2) Let A and B be systems of mutually disjoint proper 2 -cells in a 3 -manifold M. We shall say that A and B are in reduced position, if ∂A and ∂B are in reduced position on ∂M, and $A \cap B$ consists no simple loops.
2.8. Proposition. (Epstein [4]) Let J and K be systems of mutually disjoint simple loops on a closed 2-manifold F. Then, there is an isotopy of the identity map on F such that $\eta_{1}(J)$ and K are in reduced position.
2.9. Proposition. Let M be an irreducible 3-manifold, and let A and B be systems of mutually disjoint proper 2 -cells in M such that ∂A and ∂B are in reduced position on ∂M. Then, there is an isotopy of the identity map on M so that $\eta_{1}(A)$ and B are in reduced position.
2.10. Definition. Let M and M^{\prime} be 3 -manifolds with ∂M and ∂M^{\prime} connected. The disk-sum M Ł M^{\prime} of M and M^{\prime} is a 3 -manifold obtained by matching a 2 -cell on ∂M with a 2 -cell on ∂M^{\prime}, using an orientation-reversing homeomorphism. The operation t of disk-sum is well-defined up to homeomorphism, and associative and commutative. The reader is refered to Dohi [2], Gross [10], Swarup [26]. A 3-manifold M with connected boundary is said to be ∂-prime, if $M \nsubseteq D^{3}$ and there is no decomposition $M \cong M_{1} \ddagger M_{2}$ with both $M_{1} \neq D^{3}$ and $M_{2} \neq D^{3}$.
2.11. Proposition. (Dohi [2], Gross [10], Swarup [26]) Let M be a 3manifold with connected boundary. If $M \not \equiv D^{3}$, then M is homeomorphic to a disk-sum $P_{1} \downarrow \cdots \square P_{u}$ of ∂-prime 3-manifolds, and the summands P_{i} are uniquely determined up to order and homeomorphism.
2.12. Definition. Let SPC denote the class of 3 -manifolds M with connected boundary such that M can be embedded in S^{3}. A 3-manifold U in the class SPC is called a solid-torus of genus p if $U \cong p\left(D^{2} \times S^{1}\right)=$ $(p-1)\left(D^{2} \times S^{1}\right) \nmid\left(D^{2} \times S^{1}\right)$; a disk-sum of p copies of $D^{2} \times S^{1}$.
2.13. Proposition. (Fox [7]) For a 3-manifold M in the class SPC, there exists a pair $\left(F \subset S^{3}\right)$ with $V_{F} \cong M$ and $W_{F} \cong g(F)\left(D^{2} \times S^{1}\right)$.
2.14. Proposition. (Papakyriakopoulos [22]) 3-manifolds in the class SPC are irreducible. (Refer to [26, Prop. 2.7].)
2.15. Proposition. Let M and M^{\prime} be 3-manifolds in the class SPC. Then, we have the followings:
(1) The disk-sum $M \square M^{\prime}$ is also in the class SPC.
(2) If $g(\partial M)=1$, then M is ∂-prime.
(3) If $g(\partial M) \geqq 2$, then M is ∂-prime if and only if M is ∂-irreducible.
(4) $M \cong D^{2} \times S^{1}$ is an only 3-manifold in the class SPC that is ∂-prime but not ∂-irreducible.
(5) (Jaco [15]) M is ∂-prime if and only if $\pi_{1}(M)$ is indecomposable with respect to free products.
2.16. Meridian and Meridian-Disk: Let M be a 3-manifold with connected boundary ∂M. A simple loop J on ∂M will be called a meridian of M if $J \simeq 1$ in M and $\partial M-J$ is connected. A system of mutually disjoint n meridians $J_{1} \cup \ldots \cup J_{n}$ of M is called a system of meridians of M if $\partial M-$ $\left(J_{1} \cup \cdots \cup J_{n}\right)$ is connected, whence it is a 2-manifold of genus $g(\partial M)-n$ with $2 n$ holes. A proper 2-cell A in M and a system of mutually disjoint n proper 2-cells $A_{1} \cup \ldots \cup A_{n}$ in M will be called a meridian-disk and a system of meridian-disks, respectively, if ∂A and $\partial A_{1} \cup \ldots \sqcup \partial A_{n}$ are a meridian and a system of meridians. By Dehn's lemma and the well-known cut-andexchange method, for any system of meridians $J_{1} \cup \ldots \cup J_{n}$ of M there is a system of meridian-disks $A_{1} \downharpoonleft \ldots \cup A_{n}$ of M with $\partial A_{1} \cup \ldots \cup \partial A_{n}=J_{1} \cup \ldots \cup J_{n}$, and if M is irreducible this system of meridian-disks is unique up to isotopy by 2.6 .

We have the following well-known characterization of the solid-torus.
2.17. Proposition. Let U be a 3-manifold in the class SPC with $g(\partial M)=p$. Then the followings are equivalent.
(1) $U \cong p\left(D^{2} \times S^{1}\right)$; a solid-torus of genus p.
(2) There is a system of meridians $J_{1} \cup \ldots \cup J_{p}$ of U.
(3) $\pi_{1}(U)$ is a free group of rank p.
2.18. Proposition. (Feustel [5], Griffiths [9], etc.) Let U be a solidtorus of genus p with $p>0$, and let γ be a simple loop on ∂U. Then, the followings are eqivalent.
(1) The 3-manifold obtained by attaching a 3-cell to U along γ is a solid-torus of genus $p-1$.
(2) There exists a system of meridians $J_{1} \cup \ldots \cup J_{p}$ of U such that $\gamma \cap\left(J_{1} \cup \ldots \cup J_{p}\right)=\gamma \cap J_{1}$ consists of one crossing point.
(3) The quotient group $\pi_{1}(U) /\{\gamma\}^{\nu}$ is a free group of rank $p-1$, where $\{\gamma\}^{*}$ is the smallest normal subgroup of $\pi_{1}(U)$ containing the homotopy class [r].

3. Modifications of Proper 2-cells

3.1. Definition. Let C^{2} be a proper 2 -cell in a 3 -manifold M. Suppose that there is a 2 -cell ∇ in M such that $\nabla \cap C^{2}=\partial \nabla \cap C^{2}$ consists of a simple arc and $\nabla \cap \partial M=\partial \nabla \cap \partial M=c l\left(\partial \nabla-C^{2}\right)$, see Fig. 1 (a). Then, using a regular neighborhood of $C^{2} \cup V$ we have disjoint proper 2-cells, say $C_{1}^{2} \cup C_{2}^{2}$, in M as illustrated in Fig. $1(\mathrm{a})$. More precisely, $c l\left(\partial N\left(C^{2} \cup \nabla ; M\right)^{\cap^{\circ}} M\right)$ consists of three proper 2-cells in M, and one of which is parallel to C^{2}; let $C_{1}^{2} \cup C_{2}^{2}$ be the others. We say that C_{1}^{2} and C_{2}^{2} are obtained from C^{2} by a modification (of type) ∇ (along the 2-cell ∇). It should be noticed that $\left(C_{1}^{2} \cup C_{2}^{2}\right)^{n}$ $\left(C^{2} \cup \nabla\right)=\emptyset$.

Conversely, let C_{1}^{2} and C_{2}^{2} be disjoint proper 2-cells in a 3 -manifold M, and let α be a simple arc on ∂M such that $\alpha^{\cap}\left(\partial C_{1}^{2} \cup \partial C_{2}^{2}\right)=\partial \alpha$ and $\partial \alpha \cap \partial C_{1}^{2}$ $\neq \emptyset \neq \partial \alpha^{\cap} \partial C_{2}^{2}$. Then, $\operatorname{cl}\left(\partial N\left(C_{1}^{2} \cup \alpha \cup C_{2}^{2} ; M\right)^{\cap} M\right)$ consists of three proper 2-cells in M, and one of which is parallel to C_{1}^{2} and another to C_{2}^{2}; let C^{2} be the third, see Fig. $1(\mathrm{~b})$. We say that C^{2} is obtained from C_{1}^{2} and C_{2}^{2}

Fig. 1.
by a modification (of type) $\overline{\bar{V}}$ (along the simple arc α). It should be noticed that $C^{2} \cap\left(C_{1}^{2} \cup \alpha \cup C_{2}^{2}\right)=\emptyset$.
3.2. Lemma. (F. Hosokawa) Let U be a solid-torus of genus p with a system of meridian-disks $A_{1} \cup \ldots \cup A_{p}$, and let C^{2} be a proper 2-cell in U. Then, C^{2} can be obtained (up to isotopy) by a finite sequence of modifications \bar{E} 's from mutually disjoint proper 2 -cells $E_{1}, \cdots, E_{\nu},(1 \leqq \nu<\infty)$, in U, where each E_{i} is isotopic to one of A_{1}, \cdots, A_{p} in U.

Proof. If $\partial C^{2} \simeq 1$ on ∂U, then it is easily checked that C^{2} is obtained by a modification $\overline{\bar{V}}$ from two proper 2 -cells E_{1} and E_{2}, where $E_{1} \approx A_{1} \approx E_{2}$ in U, and so we may assume that $\partial C^{2} \neq 1$ on ∂U. By Propositions 2.14, 2.8 and 2.9 , we may assume that C^{2} and $A_{1} \cup \ldots \cup A_{p}$ are in reduced position.

If $C^{2} \cap\left(A_{1} \cup \ldots \cup A_{p}\right)=0$, then C^{2} is contained properly in the 3 -cell $D_{0}^{3}=$ $c l\left(U-N\left(A_{1} \cup \ldots \cup A_{p} ; U\right)\right)$. Because ∂C^{2} bounds a 2 -cell on ∂D_{0}^{3}, it is easy to see that C^{2} is obtained (up to isotopy) from some of 2 -cells $D_{0}^{3} \cap N\left(A_{1} \cup\right.$ $\left.\cdots \cup A_{p} ; U\right)=\partial D_{0}^{3} \cap \partial N\left(A_{1} \cup \ldots \cup A_{p} ; U\right)=A_{1}^{\prime} \cup A_{1}^{\prime \prime} \cup \ldots \cup A_{p}^{\prime} \cup A_{p}^{\prime \prime}$ by a finite sequence of modifications $\tilde{\bar{V}}$'s. Here, $A_{i}^{\prime} \cup A_{i}^{\prime \prime}=\partial D_{0}^{3} \cap \partial N\left(A_{i} ; U\right)$, and of course, $A_{i}^{\prime} \approx A_{i} \approx A_{i}^{\prime \prime}$ in U for $i=1, \cdots, p$.

If $C^{2} \cap\left(A_{1} \cup \ldots \cup A_{p}\right) \neq \emptyset$, then we choose an innermost arc, say γ_{1}, on one of A_{1}, \cdots, A_{p}, say A_{1}. Let $\nabla_{1} \subset A_{1}$ be the 2 -cell cut off by γ_{1} so that ${ }^{\circ} \nabla_{1} \cap$ $C^{2}=\emptyset$. Then, we have disjoint proper 2 -cells $C_{1}^{2} \cup C_{2}^{2}$ in U from C^{2} by a modification ∇ along ∇_{1}, so that

$$
\left(C_{1}^{2} \cup C_{2}^{2}\right)^{\cap}\left(A_{1} \cup \ldots \cup A_{p}\right)=C^{2} \cap\left(A_{1} \cup \ldots \cup A_{p}\right)-\gamma_{1} .
$$

Repeating of this procedure, we have a finite number of mutually disjoint proper 2-cells, say $C_{1}^{2} \cup \cdots \cup C_{\lambda}^{2}$, in U with $\left(C_{1}^{2} \cup \cdots \cup C_{\lambda}^{2}\right) \cap\left(A_{1} \cup \ldots \cup A_{p}\right)=\emptyset$. According to the first case, we have now a required collection of proper 2 -cells $E_{1} \cup \cdots \cup E_{\nu}$ from $C_{1}^{2} \cup \cdots \cup C_{\lambda}^{2}$ by a finite sequence of modifications ∇ 's, and from the definitions of the $\overline{\bar{V}}$ and $\bar{\nabla}$ we complete the proof.
3.3. In order to generalize 3.2 , we consider the following special decomposition. Suppose $M \cong P_{1} \downarrow \cdots$ 나 P_{u}, where P_{1}, \cdots, P_{u} are ∂-prime 3-manifolds with connected boundary. Let D_{0}^{3} be a 3 -cell, and let $D_{1} \cup \ldots \cup D_{u}$ be mutually disjoint 2 -cells on ∂D_{0}^{3}. The 3 -manifold M^{*} is obtained by pasting a 2 -cell on ∂P_{i} to D_{i}, for $i=1, \cdots, u$. Since $M^{*} \cong P_{1} q \cdots \downarrow P_{u} \cong M$, there is a system of mutually disjoint proper 2 -cells, say $D_{1} \cup \ldots \cup D_{u}$, in M so that
$\left.{ }^{*}\right)^{\text {E }}$ Each D_{i} divides M into two 3-manifolds $M_{i 1} \cong P_{i}$ and $M_{i 2} \cong P_{1}$ 曰 $\cdots \downarrow P_{i-1} \ddagger P_{i+1} \downarrow \cdots \square P_{x}$.
3. 4. Theorem. Let M be a 3-manifold in the class SPC having a ∂-prime decomposition

$$
M \cong P_{1} \emptyset \cdots \nmid P_{r} \downharpoonright P_{r+1} \downharpoonright \cdots \natural P_{u}
$$

with $P_{i} \not \approx D^{2} \times S^{1}$ for $i=1, \cdots, r$, and $P_{j} \cong D^{2} \times S^{1}$ for $j=r+1, \cdots, u$. Let $D_{1} \cup \ldots \cup D_{u}$ be a system of mutually disjoint proper 2 -cells in M satisfying $\left(^{*}\right)$ in 3.3 , and let A_{r+1}, \cdots, A_{u} be meridian-disks of $M_{r+1,1} \cong P_{r+1}, \cdots, M_{u 1} \cong P_{u}$, respectively, such that $A_{j} \cap D_{j}=\emptyset$ for $j=r+1, \cdots, u$. Let C^{2} be a proper 2 -cell in M. Then, C^{2} can be obtained (up to isotopy) by a finite sequence of modifications $\bar{\nabla}$'s from mutually disjoint proper 2 -cells $E_{1} \cup \ldots \cup E_{\nu},(1 \leqq \nu<\infty)$, where each E_{i} is isotopic to one of $D_{1}, \cdots, D_{r}, A_{r+1}, \cdots, A_{u}$ in M.

The proof of Theorem 3.4, which is omitted here, is the same as that of Lemma 3.2 except for obvious modifications. We remark that $c l(M-$ $N\left(D_{1} \cup \ldots \cup D_{r} \cup A_{r+1} \cup \ldots \cup A_{u} ; M\right)$) consists of $r+13$-manifolds homeomorphic to $D^{3}, P_{1}, \cdots, P_{r}$, and that since P_{1}, \cdots, P_{r} are ∂-irreducible by 2.15 , every proper 2-cell C^{2} in $M_{i 1} \cong P_{i}$ is isotopic to $D_{i}, i=1, \cdots, r$, provided that $\partial C^{2} \neq 1$ on ∂M. In Theorem 3.4, the condition $\left(^{*}\right)$ is not always essential, and one of D_{1}, \cdots, D_{r} can be omitted.

Remark. It is interesting to remark that the uniqueness of the ∂-prime decomposition for a 3 -manifold M in the class SPC is easily proved by 3.4. Note that in 3.3 and 3.4 we did not use the uniqueness.
3.5. Corollary to 3.4. Let M be a 3 -manifold in the class SPC, and suppose that $\pi_{1}(M) \cong G_{1} * G_{2}$ and both G_{1} and G_{2} are indecomposable with respect to free products and not free. Let C_{1}^{2} and C_{2}^{2} be proper 2-cells in M with $\partial C_{i}^{2} \neq 1$ on ∂M for $i=1,2$. Then, $C_{1}^{2} \approx C_{2}^{2}$ in M.

Proof. It may be remarked that the existence of such the C_{i}^{2} follows from 2.16, and that $\partial C_{i}^{2} \sim 0$ on ∂M. Thus, C_{1}^{2} divides M into two ∂-prime, d-irreducible 3 -manifolds P_{1} and P_{2} with $\pi_{1}\left(P_{1}\right) \cong G_{1}$ and $\pi_{1}\left(P_{2}\right) \cong G_{2}$. By Theorem 3.4 and the note following 3.4, C_{2}^{2} can be obtained by a finite sequence of modifications $\bar{\nabla}$'s from proper 2-cells $E_{1} \cup \ldots \cup E_{\nu}$ in M with $E_{i} \approx C_{1}^{2}$ in M for $i=1, \cdots, \nu$.

If $\nu=1$, then $C_{1}^{2} \approx E_{1} \approx C_{2}^{2}$ in M, and we are finished.
On the other hand, when we performed a modification $\overline{\bar{V}}$ for two isotopic 2-cells E_{1} and E_{2}, for the result C^{2} it is easily checked that $\partial C^{2} \simeq 1$ on ∂M. So, we can omit these E_{1} and E_{2}, and so on. Thus, we can conclude that $\nu=1$.
3.6. Corollary to 3.4. Let M be a 3 -manifold in the class SPC, and suppose that $\pi_{1}(M) \cong \mathbf{Z} * G$ and G is indecomposable with respect to free products and not free. Let C_{1}^{2} and C_{2}^{2} be proper 2 -cells in M with $\partial C_{i}^{2} \nsim 0$ on ∂M for $i=1,2$. Then, $C_{1}^{2} \approx C_{2}^{2}$ in M.

Proof. Note that the existence of C_{i}^{2} follows from 2.16, and that C_{i}^{2} is a meridian-disk of M. Using the C_{1}^{2} we can choose a proper 2-cell D_{1} in M so that D_{1} divides M into $P_{1} \cong D^{2} \times S^{1}$ and a ∂-prime, ∂-irreducible 3-manifold P_{2} with $\pi_{1}\left(P_{2}\right) \cong G$, and C_{1}^{2} is a meridian-disk of P_{1}. By $3.4, C_{2}^{2}$ is obtained by a finite sequence of modifications $\overline{\bar{V}}$'s from proper 2-cells $E_{1} \cup \ldots \cup E_{\mu} \cup E_{1}^{\prime} \cup \ldots \cup E_{,}^{\prime}$ with $E_{i} \approx C_{1}^{2}$ in M for $i=1, \cdots, \mu$, and $E_{j}^{\prime} \approx D_{1}$ in M for $j=1, \cdots, \nu$.

When we performed a modification $\bar{\nabla}$ for E_{1}^{\prime} and E_{2}^{\prime}, for the result E, $\partial E \simeq 1$ on ∂M. When we performed a modification $\bar{\nabla}$ for E_{1} and E_{1}^{\prime}, for the result E it is easily checked that $E \approx E_{1} \approx C_{1}^{2}$ in M. We therefore assume that $\nu=0$.

On the other hand, let E be a proper 2-cell obtained from E_{1} and E_{2} by a modification $\bar{\nabla}$. Then, it is easy to see that either $\partial E \simeq 1$ on ∂M or E divides M into $P_{1}^{\prime} \cong D^{2} \times S^{1}$ and $P_{2}^{\prime} \cong P_{2}$. In the first case we can omit these E_{1} and E_{2}, and in the second case we can again omit E_{1} and E_{2} by replacing D_{1} by E because we can assume that C_{1}^{2} is a meridian-disk of P_{1}^{\prime} and P_{1}^{\prime} contains the rest $E_{3} \cup \ldots \cup E_{\mu}$ as proper 2-cells.

Since $\partial C_{2}^{2} \nsim 0$ on ∂M, we conclude that $\mu=1$, and completing the proof.

4. Pairs $\left(\boldsymbol{F} \subset \boldsymbol{S}^{3}\right)$ of a Special Kind

In this section, using Theorem 3.4 we shall give an affirmative answer to Question 1.7 for a special kind of pairs.
4. 1. Theorem. Let $\left(F \subset S^{3}\right)$ be a non-trivial pair having a prime decomposition $\left(F \subset S^{3}\right) \cong\left(F_{1} \subset S^{3}\right) \# \cdots \#\left(F_{u} \subset S^{3}\right)$ such that
(**) $\quad V_{F_{i}}\left(\right.$ or $\left.W_{F_{i}}\right)$ is ∂-irreducible for all $i=1, \cdots, u$.
Then, the prime decomposition for $\left(F \subset S^{3}\right)$ is unique.
By virtue of Proposition 2.15, the condition $\left(^{* *}\right)$ may be equivalent to $(* *)^{\prime} \pi_{1}\left(V_{F_{\dot{v}}}\right) \neq \boldsymbol{Z}$ is indecomposable with respect to free products. About the condition $\left({ }^{* *}\right)$ we refer the reader to $\S 5$ below.

We begin with a useful lemma which follows from the definition of the modification $\bar{\nabla}$, and the proof is omitted.
4. 2. Lemma. Let $\left(F \subset S^{3}\right)$ be a pair, and let Σ_{1} and Σ_{2} be disjoint 2 -spheres in S^{3} such that $\Sigma_{1} \cup \Sigma_{2}$ gives a decomposition

$$
\left(F \subset S^{3}\right) \cong\left(F_{1} \subset S^{3}\right) \#\left(F_{2} \subset S^{3}\right) \#\left(F_{3} \subset S^{3}\right)
$$

We suppose that Σ_{1} resp. Σ_{2} gives a decomposition

$$
\left(F \subset S^{3}\right) \cong\left(F_{1} \subset S^{3}\right) \#\left(\left(F_{2} \subset S^{3}\right) \#\left(F_{3} \subset S^{3}\right)\right)
$$

resp.

$$
\left(F \subset S^{3}\right) \cong\left(F_{2} \subset S^{3}\right) \#\left(\left(F_{1} \subset S^{3}\right) \#\left(F_{3} \subset S^{3}\right)\right) .
$$

Let α be a simple arc on F with

$$
\alpha \cap \Sigma_{i}=\partial \alpha \cap \Sigma_{i} \neq \emptyset \quad \text { for } \quad i=1,2,
$$

and let Σ be a 2-sphere in S^{3} such that $\Sigma \cap V_{F}$ and $\Sigma \cap W_{F}$ are obtained by modifications $\bar{\nabla}$'s along α from $\left(\Sigma_{1} \cup \Sigma_{2}\right) \cap V_{F}$ and $\left(\Sigma_{1} \cup \Sigma_{2}\right) \cap W_{F}$, respectively.

Then, Σ gives the decomposition

$$
\left(F \subset S^{3}\right) \cong\left(\left(F_{1} \subset S^{3}\right) \#\left(F_{2} \subset S^{3}\right)\right) \#\left(F_{3} \subset S^{3}\right) .
$$

As in [20], [26], etc., Theorem 4.1 will clearly follow from the following lemma.
4.3. Lemma. With $\left(F \subset S^{3}\right)$ as in Theorem 4.1, suppose $\left(F \subset S^{3}\right)$ has a decomposition $\left(G_{1} \subset S^{3}\right) \#\left(G_{2} \subset S^{3}\right)$. Then, we can rearrange the $\left(F_{i} \subset S^{3}\right)$ so that
and $\quad\left(G_{2} \subset S^{3}\right) \cong\left(F_{t+1} \subset S^{3}\right) \# \ldots \#\left(F_{u} \subset S^{3}\right)$

$$
\left(G_{1} \subset S^{3}\right) \cong\left(F_{1} \subset S^{3}\right) \# \cdots \#\left(F_{t} \subset S^{3}\right)
$$

for some t with $0 \leqq t \leqq u$.
Proof. From the hypothesis, we can choose mutually disjoint 3-cells $D_{1}^{3} \cup \cdots \cup D_{i}^{3}$ in S^{3} so that $\left(F \cap D_{i}^{3} \subset D_{i}^{3}\right)$ is equivalent to $\left(F_{i} \subset S^{3}\right)$ for $i=1, \cdots, u$. Let D_{i} be the 2 -cell $\partial D_{i}^{3} \cap V_{F}$ for $i=1, \cdots, u$. Then, from the hypothesis, the system of mutually disjoint proper 2-cells $D_{1} \cup \ldots \cup D_{u}$ in V_{F} satisfies the condition $\left(^{*}\right)$ in 3.3 for a ∂-prime decomposition

$$
V_{F} \cong V_{F_{1}} \downarrow \cdots \sqcup V_{F_{u}} .
$$

On the other hand, from the hypothesis, there exists a 2 -sphere Σ in S^{3} which gives the decomposition $\left(G_{1} \subset S^{3}\right) \#\left(G_{2} \subset S^{3}\right)$. By Theorem 3.4, the proper 2-cell $\sigma=\Sigma \cap V_{F}$ in V_{F} can be obtained (up to isotopy) by a finite sequence of modifications $\bar{\nabla}$'s from mutually disjoint proper 2-cells $\sigma_{1} \cup \ldots \cup_{\nu}$ in V_{F}, where each σ_{j} is isotopic to one of D_{1}, \cdots, D_{u} in V_{F}. Since each ∂D_{i} bounds the 2 -cell $\partial D_{i}^{3} \cap W_{F}$ in W_{F}, there is a system of mutually disjoint proper 2-cells $\tau_{1} \cup \cdots \cup \tau_{\nu}$ in W_{F} with $\partial \tau_{j}=\partial \sigma_{j}$ for $j=1, \cdots, \nu$. Thus, we have a system of mutually disjoint 2 -spheres $\mathscr{S}=\left\{\sigma_{1} \cup \tau_{1}, \cdots, \sigma_{\nu} \cup \tau_{\nu}\right\}$ in S^{3}, and we may assume that $\mathscr{S} \cap\left(\partial D_{1}^{3} \cup \ldots \cup \partial D_{u}^{3}\right)=\emptyset$. Now, it is easy to see that $\mathscr{\mathscr { S }}$ gives a decomposition

$$
\left(F \subset S^{3}\right) \cong\left(F_{1}^{\prime} \subset S^{3}\right) \# \cdots \#\left(F_{\nu+1}^{\prime} \subset S^{3}\right)
$$

such that each $\left(F_{k}^{\prime} \subset S^{3}\right)$ belongs to, up to congruence, the following set

$$
\mathscr{T}=\left\{\text { compositions of some of }\left(S^{2} \subset S^{3}\right),\left(F_{1} \subset S^{3}\right), \cdots,\left(F_{u} \subset S^{3}\right)\right\}
$$

and each ($F_{i} \subset S^{3}$) is contained in exactly one of ($F_{1}^{\prime} \subset S^{3}$), $\cdots,\left(F_{\nu+1}^{\prime} \subset S^{3}\right)$ as a prime component, for $k=1, \cdots, \nu+1$ and $i=1, \cdots, u$.

Now we perform the first modification $\overline{\bar{F}}$ for two of $\sigma_{1} \cup \ldots \cup \sigma_{\nu}$, say $\sigma_{\nu-1}$ and σ_{ϑ}, along a simple arc α_{1} on $F=\partial V_{F,}$, and let us denote the result by $\sigma_{\nu-1}^{\prime}$. Moreover, we perform a modification $\overline{\overline{ }}$ at once for the corresponding 2 -cells $\tau_{\nu-1}$ and τ_{ν} along the same arc α_{1}, and let us denote the result by $\tau_{\nu-1}^{\prime}$. We have now a new system of mutually disjoint 2 -spheres $\mathscr{I}^{\prime}=$ $\left\{\sigma_{1} \cup_{\tau_{1}}, \cdots, \sigma_{\nu-2} \cup \tau_{\nu-2}, \sigma_{\nu-1}^{\prime} \cup \tau_{\nu-1}^{\prime}\right\}$ in S^{3}, which gives a decomposition

$$
\left(F \subset S^{3}\right) \cong\left(F_{1}^{\prime \prime} \subset S^{3}\right) \# \cdots \#\left(F_{\imath}^{\prime \prime} \subset S^{3}\right) .
$$

By Lemma 4.2, we know that exactly one of $\left(F_{1}^{\prime \prime} \subset S^{3}\right), \cdots,\left(F_{\nu}^{\prime \prime} \subset S^{3}\right)$, say ($F_{\nu}^{\prime \prime} \subset S^{3}$), is a composition of two of ($F_{1}^{\prime} \subset S^{3}$), $\cdots,\left(F_{\nu+1}^{\prime} \subset S^{3}\right)$, say $\left(F_{\nu}^{\prime} \subset S^{3}\right)$ and $\left(F_{v+1}^{\prime} \subset S^{3}\right)$, and for every other $k=1, \cdots, \nu-1,\left(F_{k}^{\prime \prime} \subset S^{3}\right) \cong\left(F_{k}^{\prime} \subset S^{3}\right)$. That is, for $k=1, \cdots, \nu$, each ($F_{k}^{\prime \prime} \subset S^{3}$) belongs to \mathscr{T} up to congruence, and for $i=$ $1, \cdots, u$, each $\left(F_{i} \subset S^{3}\right)$ is contained in exactly one of $\left(F_{1}^{\prime \prime} \subset S^{3}\right), \cdots,\left(F_{\nu}^{\prime \prime} \subset S^{3}\right)$ as a prime component.

Repeating of the same procedure as above, we have a 2 -sphere $\mathscr{Y}^{(\nu-1)}$ $=\sigma_{1}^{(\nu-1)} \cup_{\tau_{1}}^{(\nu-1)}$ in S^{3}, and a decomposition

$$
\left(F \subset S^{3}\right) \cong\left(F_{1}^{(\nu)} \subset S^{3}\right) \#\left(F_{2}^{(\nu)} \subset S^{3}\right)
$$

giving by $\mathscr{Y}^{(\nu-1)}$ such that both $\left(F_{1}^{(\nu)} \subset S^{3}\right)$ and $\left(F_{2}^{(\nu)} \subset S^{3}\right)$ belong to \mathscr{T} up to congruence, and each ($F_{i} \subset S^{3}$) is contained in exactly one of ($F_{1}^{(\nu)} \subset S^{3}$) and $\left(F_{2}^{(\nu)} \subset S^{3}\right)$ as a prime component. Since $\sigma_{1}^{(\nu-1)} \approx \sigma$ in V_{F} and $\tau_{1}^{(\nu-1)} \approx \Sigma^{\cap} W_{F}$ in W_{F} by 2.6 , we conclude that $\left(F_{1}^{(\nu)} \subset S^{3}\right) \cong\left(G_{1} \subset S^{3}\right)$ and $\left(F_{2}^{(\nu)} \subset S^{3}\right) \cong\left(G_{2} \subset S^{3}\right)$, and completing the proof.

5. Existence of Prime Pairs $\left(\boldsymbol{F} \subset \boldsymbol{S}^{3}\right)$

By 1.2 and 2.10 , we have the following.
5. 1. Proposition. For a pair $\left(F \subset S^{3}\right)$, if one of V_{F} and W_{F} is ∂-prime, then $\left(F \subset S^{3}\right)$ is prime.

Using this 5.1 , we will prove the following.
5.2. Theorem. For any positive integer p, there exists a prime pair $\left(F \subset S^{3}\right)$ with $g(F)=p$.

Proof. The case $p=1$ is Proposition 1.5, and the case $p=2$ has been given in Suzuki [25, §5] and Tsukui [27, §7], and see Jaco [16], etc.. Now, we note again Example 5.6 of [25] below, which will be used to construct another examples. It should be noted that 5.6 [25] and 4.11 [25] implies

Fig. 2. $\quad\left(F^{*} \subset S^{3}\right)$

Fig. 3. $\quad\left(F_{1} \subset S^{3}\right)$
that $\pi_{1}\left(V_{F^{*}}\right)$ is indecomposable ; that is, $V_{F^{*}}$ is ∂-prime by 2.15 . (We refer to Kinoshita [17] for the Alexander polynomial of graphs.)

Now, we give the following pair $\left(F_{1} \subset S^{3}\right)$ in Fig. 3. From the construction, we can easily check that $\pi_{1}\left(V_{F_{1}}\right)$ is the free product of two copies of $\pi_{1}\left(V_{F^{*}}\right)$ with the subgroup $\boldsymbol{Z}\left(x_{1}\right)$ and $\boldsymbol{Z}\left(x_{1}^{\prime}\right)$ amalgamated under the map $x_{1} \rightarrow x_{1}^{\prime}$, where $\boldsymbol{Z}\left(x_{1}\right)$ and $\boldsymbol{Z}\left(x_{1}^{\prime}\right)$ are infinite cyclic groups generated by x_{1} and x_{1}^{\prime}, respectively. By a corollary of the Kurosh Subgroup Theorem, we conclude that $\pi_{1}\left(V_{F_{1}}\right)$ is indecomposable with respect to free products; see Magnus et al [19, p. 243 and p. 246]. That is, $\left(F_{1} \subset S^{3}\right)$ is prime with $g\left(F_{1}\right)=3$ by 2.15 and 5.1.

By the same way as above, from prime pairs $\left(F^{*} \subset S^{3}\right)$ and ($F_{1} \subset S^{3}$) with $g\left(F^{*}\right)=2$ and $g\left(F_{1}\right)=3$, we can construct a prime pair $\left(F_{2} \subset S^{3}\right)$ with $g\left(F_{2}\right)=4$ such that $V_{F_{2}}$ is ∂-prime. In general, we can construct inductively a prime pair ($F_{i} \subset S^{3}$) with $g\left(F_{i}\right)=i+2$ such that $V_{F_{i}}$ is ∂-prime, from prime pairs $\left(F^{*} \subset S^{3}\right)$ and $\left(F_{i-1} \subset S^{3}\right)$ with $g\left(F_{i-1}\right)=i+1$, and completing the proof.

On the other hand, for pairs $\left(F \subset S^{3}\right)$ with $g(F)=2$, we have the following :
5. 3. Proposition. (Tsukui [28]) A pair $\left(F \subset S^{3}\right)$ with $g(F)=2$ is prime if and only if either V_{F} or W_{F} is ∂-prime.

Contrary to 5.3 , we record the following, which follows from Examples 5.5 and 5.6 below.
5.4. Theorem. For every integer p with $p \geqq 3$, there is a prime pair $\left(F \subset S^{3}\right)$ such that both V_{F} and W_{F} are not ∂-prime.
5.5. Example. (Fig. 4) For every integer p with $p \geqq 3$, there is a prime pair $\left(F \subset S^{3}\right)$ such that $V_{F} \cong P$ 孔 $\left(D^{2} \times S^{1}\right), W_{F} \cong p\left(D^{2} \times S^{1}\right)$ and P is ∂-irreducible.

Proof. $\left(F \subset S^{3}\right)$ in Fig. 4 shows the case $p=3$, and in the other cases constructions are analogously by using the pairs ($F_{i} \subset S^{3}$) given in the proof of 5.2. We only remark that for the pair $\left(F_{i} \subset S^{3}\right)$ in $5.2, W_{F_{i}}$ is a solid-torus.

To show that the pair $\left(F \subset S^{3}\right)$ has required properties, we use the following pair $\left(G \subset S^{3}\right)$ in Fig. 5. From the construction, we have $V_{F} \cong V_{G}$ $\cong V_{F^{*}} \succcurlyeq\left(D^{2} \times S^{1}\right)$, here $V_{F^{*}}$ is in Fig. 2 and ∂-irreducible by 2.15. Using 2.17, we can easily see that $W_{F} \cong 3\left(D^{2} \times S^{1}\right)$. Now we consider the simple loop α on F given in Fig. 4. It will be noticed that α is meridian of
 meridian-disk with $\partial A=\alpha$. It is clear that $W_{F} \cup N\left(A ; V_{F}\right)$ is a disk-sum

Fig. 4. $\left(F \subset S^{3}\right)$

Fig. 5. ($\left.G \subset S^{3}\right)$
of $D^{2} \times S^{1}$ and the closed complement V_{K} of the clover-leaf knot, that is, $W_{F} \cup N\left(A ; V_{F}\right) \neq 2\left(D^{2} \times S^{1}\right)$. From 2.18 , we can conclude that $\left(F \subset S^{3}\right)$ is prime.
5. 6. Example. (Fig. 6) For every integer p with $p \geqq 3$, there is a prime pair $\left(F \subset S^{3}\right)$ such that $V_{F} \cong P_{1} \downharpoonright P_{2}, W_{F} \cong p\left(D^{2} \times S^{1}\right)$, and both P_{1} and P_{2} are д-irreducible.

Proof. $\left(F \subset S^{3}\right)$ in Fig. 6 shows the case $p=3$, and in the other cases we can construct required pairs analogously.

To show that the $\left(F \subset S^{3}\right)$ has required properties, we refer to the pair $\left(H \subset S^{3}\right)$ in Fig. 7. From the construction, we have $V_{F} \cong V_{H} \cong V_{F}, 4 V_{K}$, here $V_{F^{*}}$ is in Fig. 2 and V_{K} is the closed complement of the clover-leaf knot. Note that both $V_{F^{*}}$ and V_{K} are ∂-irreducible. By virtue of 2.17 , we can check that $W_{F} \cong 3\left(D^{2} \times S^{1}\right)$.

We consider the simple loop β on F given in Fig. 6. It is easy to see that $\beta \simeq 1$ in V_{F} and $\beta \sim 0$ on F. By 3.5 , such the loop is unique up to isotopy. To show that $\left(F \subset S^{3}\right)$ is prime, it is enough to show that $\beta \neq 1$ in W_{F}. Assume the contrary, then β bounds a proper 2-cell in W_{F} which must divide $W_{F} \cong 3\left(D^{2} \times S^{1}\right)$ into $Q_{1} \cong D^{2} \times S^{1}$ and $Q_{2} \cong 2\left(D^{2} \times S^{1}\right)$. So, we

Fig. 6. $\left(F \subset S^{3}\right)$

Fig. 7. $\left(H \subset S^{3}\right)$
may choose a system of meridians $J_{1} \cup J_{2} \cup J_{3}$ of W_{F} with $\beta \cap\left(J_{1} \cup J_{2} \cup J_{3}\right)=\emptyset$. Of course, A in Fig. 6 is a meridian-disk of W_{F} with $\beta \cap A=\emptyset$. From simple observations of the surface $\left(\partial\left(c l\left(W_{F}-N\left(A ; W_{F}\right) \subset S^{3}\right)\right.\right.$, it is easy to see that there does not exist such the system of meridians.

From the pairs $\left(F \subset S^{3}\right)$ in Fig. 4 and $\left(G \subset S^{3}\right)$ in Fig. 5, and the pairs $\left(F \subset S^{3}\right)$ in Fig. 6 and $\left(H \subset S^{3}\right)$ in Fig. 7, we have:
5.7. Proposition. The knotting problem of a closed oriented surface in S^{3} is not reducible. That is, even if $V_{F} \cong V_{F^{\prime}}$ and $W_{F} \cong W_{F^{\prime}}$ (i.e. $S^{3}-$ $\left.F \cong S^{3}-F^{\prime}\right),\left(F \subset S^{3}\right)$ and $\left(F^{\prime} \subset S^{3}\right)$ are not always congruent. (Refer to Fox [8, Prob. 7].)

Department of Mathematics
Kobe University

References

[1] Alexander, J. W.: On the subdivision of 3 -space by a polyhedron. Proc. Nat. Acad. Sci. U.S.A. 10, 6-8 (1924).
[2] DOHI, Y.: A decomposition of an irreducible 3-manifold with a connected boundary. Proc. Inst. Natural Sci. Nihon Univ. Math. 5-9 (1968).
[3] Edward Jr., C. H.: Concentricity in 3-manifolds. Trans. Amer. Math. Soc. 113, 406-423 (1964).
[4] Epstein, D. B. A.: Curves on 2-manifolds and isotopies. Acta Math. 115, 83107 (1966).
[5] Feustel, C. D.: On pasting balls to handlebodies. Bull. Amer. Math. Soc. 76, 720-722 (1970).
[6] Fisher, G. M.: On the group of all homeomorphisms of a manifold. Trans. Amer. Math. Soc. 97, 193-212 (1960).
[7] Fox, R. H.: On the imbedding of polyhedra in 3-space. Ann. of Math. (2) 49, 462-470 (1948).
[8] Fox, R. H.: Some problems in knot theory. Topology of 3-manifolds and related topics. Englewood Cliffs, N. J. : Prentice-Hall 1962.
[9] Griffiths, H. B.: On systems of curves orthogonal to a 3-dimensional handlebody. Abh. Math. Sem. Univ. Hamburg 31, 89-115 (1967).
[10] Gross, J. L.: A unique decomposition theorem for 3 -manifolds with connected boundary. Trans. Amer. Math. Soc. 142, 191-199 (1969).
[11] Gugenheim, V. K. A. M.: Piecewise linear isotopy and embedding of elements and spheres, (I) and (II). Proc. London Math. Soc. (3) 3, 29-53 and 129152 (1953).
[12] Hashizume, Y.: On the uniqueness of the decomposition of a link. Osaka Math. J. 10, 283-300 (1958).
[13] Номма, T.: On the existence of unknotted polygons on 2 -manifolds in E^{3}. Osaka Math. J. 6, 129-134 (1954).
[14] Homma, T.: On Dehn's lemma for S^{3}. Yokohama Math. J. 5, 223-244 (1957).
[15] JACO, W.: Three-manifolds with fundamental group a free product. Bull. Amer. Math. Soc. 75, 972-977 (1969).
[16] JAco, W,: Nonretractible cubes-with-holes. Michigan Math. J. 18, 193-201 (1971).
[17] Kinoshita, S.: On Fox's property of a surface in a 3-manifold. Duke Math. J. 33, 791-794 (1966).
[18] Kinoshita, S.: On elementary ideals of polyhedra in the 3 -sphere. Pacific J. Math. 42, 89-98 (1972).
[19] Magnus, W., Karrass, A. and Solitar, D.: Combinatorial G̀roup Theory. New York: Interscience 1966.
[20] Milnor, J.: A unique decomposition theorem for 3-manifolds. Amer. J. Math. 84, 1-7 (1962).
[21] Papakyriakopoulos, C. D.: On solid tori. Proc. London Math. Soc. (3) 7, 281299 (1957).
[22] Papakyriakopoulos, C. D.: On Dehn's lemma and asphericity of knots. Ann. of Math. (2) 66, 1-26 (1957).
[23] Schubert, H.: Die eindeutige Zerlegbarkeit eines Knots in Primknoten. S. B. Heidelberger Akad. Wiss. Math. Natur. Kl. 3, 57-104 (1949).
[24] Stallings, J.: On the loop theorem. Ann. of Math. (2) 72, 12-19 (1960).
[25] Suzuki, S.: On linear graphs in 3-sphere. Osaka J. Math. 7, 375-396 (1970).
[26] Swarup, G. A.: Some properties of 3 -manifolds with boundary. Quart. J. Math. Oxford (2) 21, 1-24 (1970).
[27] Tsukui, Y.: On surfaces in 3-space. Yokohama Math. J. 18, 93-104 (1970).
[28] Tsukui, Y.: On a prime surface of genus 2 in 3 -space. to appear.
[29] Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. of Math. (2) 87, 56-88 (1968).
[30] Waldhausen, F.: Heegaard-Zerlegungen der 3-Sphäre. Topology 7, 195-203 (1968).
(Received February 9, 1974).

