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0. Introduction

Throughout this paper, we work in the piecewise linear category, con-
sisting of simplicial complexes and piecewise linear maps. The theorems
concern “knot types” of a connected, closed ( compact, without boundary),
oriented surface ( =2-dimensional manifold) F in the 3-dimensional sphere
S^{3} with a fixed orientation.

In the previous paper [25], we showed a unique prime decomposition
theorem for special linear graphs in S^{3} as generalization of knots [23] and
links [12], see [20] and also [2], [10], [26], [27]. In the paper, we shall
formulate a prime decomposition theorem for pairs (F\subset S^{3})’s as the same
way as that of [25] and [27] except for obvious modifications, and discuss
the uniqueness of the prime decompositions.

The author wishes to express his hearty thanks to Prof. T. Homma,
Prof. F. Hosokawa and the members of Kobe Topology Seminar for con-
versations.

1. Prime Decompositions for (F\subset S^{3})

In the paper, homeomorphism and isomorphism are denoted by the
same symbol\cong , while\simeq , \simeq and \sim refer, respectively, to isotopy, hom0-
topy and homology. \partial X, cl(X) and \circ X denote, respectively, the boundary,
the closure and the interior of a manifold X, and when applied to oriented
objects these respect orientations. By Z we shall denote the infinite cyclic
group.

We shall say that a submanifold X of a manifold Y is properly embedded
(or simply proper) if X\cap\partial Y=\partial X.

By D^{n} and S^{\text{\’{e}}^{- 1}}
’ we shall denote the standard n-cell and the standard

(n-1)- sphere\partial D^{n}, respectively. We always assume that S^{3} has the right-
handed orientation.

For a connected surface F, g(F) stands for the genus of F.
We shall now formulate the prime decomposition for pairs (F\subset S^{3}) of

closed, connected and oriented surfaces in S^{3} .
1. 1. Definition. Two pairs (F_{1}\subset S^{3}) and (F_{2}\subset S^{3}) are said to be con-

grumt, denoted by (F_{1}\subset S^{3})\cong(F_{2}\subset S^{3}), if there is an orientation-preserving
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homeomorphism \psi : S^{3}arrow S^{3} such that \psi(F_{1})=F_{2} and \psi|_{F_{1}} is also orientation-
preserving.

Then it is trivial that the relation of congruence is an equivalence
relation. By Fisher [6], this definition is the same as that of Tsukui [27],
cf. Gugenheim [11]. We call the congruence class of a pair (F\subset S^{3}) the
knot type of (F\subset S^{3}) . For a pair (F\subset S^{3}) , we denote the pair having the
opposite orientation to F by (-F\subset S^{3}) . Of course, (F\subset S^{3}) and (-F\subset S^{3})

are not always congruent.
1. 2. Cmposition: Let (F_{1}\subset S^{3}) and (F_{2}\subset S^{3}) be pairs, and let D_{1}^{3}\subset S^{3}

and D_{2}^{3}\subset S^{3} be 3-cells with D_{1}^{3}\cap F_{1}\cong D^{2} and D_{2}^{3}\cap F_{2}\cong D^{2} . Then, the composi-
tion (F_{1}\subset S^{3})\#(F_{2}\subset S^{3}) of two pairs (F_{1}\subset S^{3}) and (F_{2}\subset S^{3}) is a new pair (F\subset S^{3})

obtained by matching the boundaries \partial(S^{3}-^{o}D_{1}^{3}) and \partial(S^{3}-^{o}D_{2}^{3}) using an
orientation-reversing homeomorphism \zeta such that \zeta(\partial(F_{1}^{o}-D_{1}^{3}))=\partial(F_{2^{-}}^{o}D_{2}^{3})

and \zeta|(F_{1}-^{\circ}D:) is also orientation-reversing.
By the Alexander’s theorem [1] and the homogeneity theorem of

Newman-Gugenheim [11], up to congruence, the operation \# of composition
is well-defined, associative and commutative.

Conversely, we shall say that (F_{1}\subset S^{3})\#(F_{2}\subset S^{3}) is a decomposition for
(F\subset S^{3}), and that such the 2-sphere \partial D_{1}^{3}=\partial D_{2}^{3} gives the decomposition.

For any pair (F\subset S^{3}), the existence of a 3-cell D_{0}^{3}\subset S^{3} with D_{0}^{3}\cap F\cong D^{2}

is obvious. Let D_{1}^{3|\lrcorner}\cdots\cup D_{n}^{3} be mutually disjoint 3-cells in S^{3} with D_{i}^{3}r)F\cong D^{2} .
Then, it will be convenient to call the proper pair (F\cap(S^{3}-\cup^{o}D_{i}^{3})\subset(S^{3}-\cup^{o}D_{1}^{3}))

is equivalmt to (F\subset S^{3}) .
From 1. 2, we obtain at once the

1. 3. Proposition. If (F\subset S^{3})\cong(F_{1}\subset S^{3})\#(F_{2}\subset S^{3}), then g(F)=g(F_{1})+g(F_{2}) .
1.4. Definition. We call a pair (F\subset S^{3}) non-trivial if g(F)\neq 0, that is,

(F\subset S^{3})\neq(S^{2}\subset S^{3}) . A non-trivial pair (F\subset S^{3}) is said to be prime if there is
no decomposition (F\subset S^{3})\cong(F_{1}\subset S^{3})\#(F_{2}\subset S^{3}) with both (F_{1}\subset S^{3}) and (F_{2}\subset S^{3})

non-trivial.
1. 5. Proposition. Every (F\subset S^{3}) with g(F)=1 is prime.
By Propositions 1.3. and 1.5 and the finiteness of genus, we have the

following :
1. 6. Theorem. (Existence of Prime Decomposition) Every non-trivial

pair (F\subset S^{3}) has a prime decomposition
(F\subset S^{3})\cong(F_{1}\subset S^{3})\#\cdots\#(F_{u}\subset S^{3})

of prime pairs (F_{\dot{\iota}}\subset S^{3}) .
The following question immediately come to mind.
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1. 7. Question. Is the prime decomposition for (F\subset S^{3}) unique p. That
is, are the summands (F_{i}\subset S^{3}) in 1. 6 uniquely determined up to order and
congruence p.

This has been shown to be true for some kind of pairs in [27] and [30].
1. 8. Proposition. (Tsukui [27, Th. 2]) For any pair (F\subset S^{3}) with

g(F)=2, the prime decomposition in 1. 6 is unique.
In order to state our version of Waldhausen’s result [30], we need some

preparation.
1. 9. Let (F\subset S^{3}) be a pair of a connected, closed, oriented suaface F

in S^{3} . Then, S^{3}-F consists of two oriented open 3-manifolds. We denote
the closures of these manifolds in S^{3} by V_{F} and W_{l\theta} and in particular, we
alwa.vs assume that the orientation of \partial V_{F} is consistent with that of F. It
will be noticed that V_{F}\cup W_{F}=S^{3}, V_{F}\cap W_{F}=F and V_{F}=S^{3}-^{o}W_{F}=cl(S^{3}-W_{F}),
W_{F}=S^{3}– \circ V_{F}=cl(S^{3}-- V_{F}), see Edward [3].

1. 10. Definition. A non-trivial pair (F\subset S^{3}) is said to be unknotted if
both V_{F} and W_{F} are solid-tori of genus g(F). Here, a solid-torus of genus
p is a 3-manifold homeomorphic to a regular neighborhood in S^{3} of a con-
nected compact 1-dimensional complex of Euler characteristic 1-p. (Refer
to 2. 12, 2. 17 and 2. 18 below.)

1. 11. Proposition. For any unknotted pairs (F\subset S^{3}) and (F’\subset S^{3}) with
g(F)=g(F’)=1, (F\subset S^{3})\cong(F’\subset S^{3}) .

The proof of 1.11 is by the Dehn’s lemma [14], [22], or the loop theorem
[21], see [27], [30], etc..

This Proposition enables us to denote an unknotted pair of genus 1 by
(T\subset S^{3}), and we also denote (n-1)(T\subset S^{3})\#(7^{\tau}\subset S^{3}) simply by n(T\subset S^{3}) .

H a pair (F\subset S^{3}) is unknotted, it forms a Heegaard-splitting of S^{3}, and
so we have :

1. 12. Proposition. (Waldhausen [30, (3. 1)]) If (F\subset S^{3}) is unknotted,
then (F\subset S^{3}) has the unique prime decomposition

(F\subset S^{3})\cong g(F)(T\subset S^{3}) .
We will study unknotted pairs in the forthcoming papers.
In the remainder of this paper, we shall give in \S 2 and 3 some ele-

mentary properties of V_{F} and W_{F}, and in \S 4 an affirmative answer to
Question 1.7 in a special case, and in \S 5 some examples of prime pairs.

2. Preliminary Remarks
In this section, let us explain several definitions and well-known facts

to be used freely in the sequel.
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2. 1. 3-manifolds are to be compact, connected and oriented.
We shall call a homeomorphic image of S^{1} (resp. of D^{1} ) a simple loop

(resp. a simple arc).
For a subcomplex X of a complex Y, by N(X;Y) we denote a regular

neigoborhood of X in Y, that is, we construct its second derived and take
the closed star of X. It will be noted that if Y is a manifold, N(X;Y)^{(\urcorner}

\partial Y=N(X\cap\partial Y;\partial Y) .
An isotopy (i) of a homeomorphism \psi:Yarrow Y’ is a homeomorphism

H:Y\cross[0,1]arrow Y\cross[0,1] such that H(y, t)=(\eta_{t}(y), t) , where \eta_{t} : Yarrow Y is
a homeomorphism, and \eta_{0}=\psi ;

(ii) of subcomplexes X_{1} and X_{2} in Y is an isotopy of the identity map
on Y such that \eta_{1}(X_{1})=X_{2} .

2. 2. Convention: In the paper, we often consider two 2-manif0lds
X_{1} and X_{2}, which may not be connected, properly embedded in a 3-manif0ld
M. The well-known general position argument asserts that there is an
isotopy of the identity map on M so that \eta_{1}(X_{1}) and X_{2} intersect trans-
versally. From now on, unless otherwise specified, we assume that X_{1}^{11}X_{2}

consists of a fifinite number of mutually disjoint simple loops and simple
arcs proper in both X_{1} and X_{2} .

We make full use of socalled innermost curves. A simple loop \Gamma in
X_{1}\cap X_{2} is said to be an innermost loop on X_{1} if \Gamma bounds a 2-cell C^{2} on
X_{1} so thatC^{2}\circ\cap X_{2}=Pf , and a simple arc \gamma in X_{1}\cap X_{2} is said to be an innermost
arc on X_{1} if \gamma cuts off a 2-cell C^{2} on X_{1} so that \circ c^{2}\cap X_{2}=\emptyset . It will be
noticed that if X_{1}\cong S^{2} or X_{1}\cong D^{2}, there is at least one innermost curves
on X_{1} provided X_{1}\cap X_{2}\neq\emptyset , and moreover there is at least one innermost
loop on X_{1} provided that X_{1}\cap X_{2} contains simple loops.

2. 3. Definition. A 3-manifold M is said to be irreducible if every
2-sphere in M bounds a 3-cell in M, and to be \partial-irreducible if for any
proper 2-cell C^{2} in M, \partial C^{2} bounds a 2-cell on \partial M.

There are several properties of irreducible and \partial irreducible 3-manif0lds
with boundary, see [22], [26], [29], etc.. Some of them will be recorded
below.

2. 4. Lemma. (Papakyriakopoulos [21], Stallings [24], etc.) A 3-mani-
fold M is \partial-irreducible if and only if the homomorphism \iota_{*}:

\pi_{1}(\partial M)-\pi_{1}(M),

induced by the natural inclusion, is a monomorphism.

2. 5. Proposition. (Fox [7], Homma [13]) For every non-trivial pair
(F\subset S^{3}), at least one of V_{F} and W_{F} is not \partial-irreducible. (Refer to Kinoshita
[17] ) .
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2. 6. Proposition. Let M be an irreducible 3-manifold, and let C_{1}^{2} and
C_{2}^{\urcorner}2 be proper 2-cells in M with \partial C_{1}^{2}=\partial C_{2}^{2} . Then, there exists an isotopy of
C_{1}^{2} and C_{2}^{2} in M keeping \partial M fifixed.

This follows from the irreducibility of M. The proof, which is omitted
here, is by an induction on the number of components in C_{1}^{2}\cap C_{2}^{2} .

2. 7. Definition. (1) Let J and K be systems of mutually disjoint simple
loops on a 2-manifold F. We shall say that J and K are in reduced posi-
tion, if J\cap K consists of a finite number of points crossing one another, and
there is no 2-cell on F whose boundary consists of an arc in J and arc in K.

(2) Let A and B be systems of mutually disjoint proper 2-cells in a
3-manifold M. We shall say that A and B are in reduced position, if \partial A

and \partial B are in reduced position on \partial M, and A\cap B consists no simple loops.

2. 8. Proposition. (Epstein [4]) Let J and K be systems of mutually
disjoint simple loops on a closed 2-manifold F. Then, there is an isotopy
of the identity map on F such that \eta_{1}(J) and K are in reduced position.

2. 9. Proposition. Let M be an irreducible 3-manifold, and let A and
B be systems of mutually disjoint proper 2-cells in M such that \partial A and \partial B

are in reduced position on \partial M. Then, there is an isotopy of the identity
map on M so that \eta_{1}(A) and B are in reduced position,

2. 10. Definition. Let M and M’ be 3-manifolds with \partial M and \partial M’

connected. The disk-sum MQM’ of M and M’ is a 3-manifold obtained by
matching a 2-cell on \partial M with a 2-cell on \partial M’ , using an orientation-reversing
homeomorphism. The operation | \prod_{1} of disk-sum is well-defined up to home0-
morphism, and associative and commutative. The reader is refered to
Dohi [2], Gross [10], Swarup [26]. A 3-manifold M with connected boundary
is said to be \partial-prime, if M\neq D^{3} and there is no decomposition M\cong M_{1}QM_{2}

with both M_{1}\neq D^{3} and M_{2}-\not\cong D^{3} .
2. 11. Proposition. (Dohi [2], Gross [10], Swarup [26]) Let M be a 3-

manifold with connected boundary. If M\not\equiv D^{3}, then M is homeomorphic
to a disk-sum P_{1}|\exists\cdots DP_{u} of \partial-prime Z-manifolds, and the summands P_{i} are
uniquely determined up to order and homeomorphism.

2. 12. Definition. Let SPC denote the class of 3-manifolds M with
connected boundary such that M can be embedded in S^{3} . A 3-manif0ld
U in the class SPC is called a solid-torus of genus p if U\cong p(D^{2}\cross S^{1})=

(p-1) (D^{2}\cross S^{1})Q(D^{2}\backslash ,<S^{1}) ; a disk-sum of p copies of D^{2}\cross S^{1} .
2. 13. Proposition. (Fox [7]) For a 3-manifold M in the class SPC,

there exists a pair (F\subset S^{3}) with V_{F}\cong M and W_{F}\cong g(F)(D^{2}\cross S^{1}) .
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2. 14. Proposition. (Papakyriakopoulos [22]) 3-manifolds in the class
SPC are irreducible. (Refer to [26, Prop. 2.7].)

2. 15. Proposition. Let M and M’ be 3-manifolds in the class SPC.
Then, we have the fallowings :

(1) The disk-sum Mb.M’ is also in the class SPC.
(2) If g(\partial M)=1 , then M is \partial-prime.
(3) If g(\partial M)\geqq 2 , then M is \partial-prime if and only if M is \partial-imeducible.
(4) M\cong D^{2}\cross S^{1} is an only 3-manifold in the class SPC that is \partial-prrime

but not \partial irreducible.
(5) (Jaco [15]) M is \partial-prime if and only if \pi_{1}(M) is indecomposable

with respect to free products.

2. 16. Meridian and Meridian-Disk: Let M be a 3-manifold with
connected boundary \partial M. A simple loop J on \partial M will be called a meridian
of M if J\simeq 1 in M and \partial M-J is connected. A system of mutually disjoint
n meridians J_{1}\cup\cdots\cup J_{n} of M is called a system of meridians of M if \partial M-

(J_{1}\cup\cdots\cup J_{n}) is connected, whence it is a 2-manifold of genus g(\partial M)-n with
2n holes. A proper 2-cell A in M and a system of mutually disjoint n
proper 2-cells A_{1}\cup\cdots\cup A_{n} in M will be called a meridian-disk and a system
of meridian-disks, respectively, if \partial A and \partial A_{1}\cup\ldots|\lrcorner\partial A_{n} are a meridian and
a system of meridians. By Dehn’s lemma and the well-known cut-and-
exchange method, for any system of meridians J_{1}\cup\cdots\cup J_{n} of M there is
a system of meridian-disks A_{1}\dagger J\ldots 1JA_{n} of M with \partial A_{1}^{\cup\ldots Ll}\partial A_{n}=J_{1}\cup\cdots\cup J_{n} ,
and if M is irreducible this system of meridian-disks is unique up to isotopy
by 2.6.

We have the following well-known characterization of the solid-torus.
2. 17. Proposition. Let U be a 3-manifold in the class SPC with

g(\partial M)=p . Then the fallowings are equivalent.
(1) U\cong p(D^{2}\cross S^{1}) ; a solid-torus of gmus p.
(2) There is a systm of meridians J_{1}\cup\cdots\cup J_{p} of U.
(3) \pi_{1}(U) is a free group of rank p.
2. 18. Proposition. (Feustel [5], Griffiths [9], etc.) Let U be a solid-

torus of genus p with p>0, and let \gamma be a simple loop on \partial U. Then, the
followings are eqivalmt.

(1) The 3-manifold obtained by attaching a 3-cell to U along \gamma is
a solid-torus of genus p-1 .

(2) There exists a system of meridians J_{1}\cup\cdots\cup J_{p} of U such that
\gamma\cap(J_{1}L1\ldots\cup J_{p})=\gamma\cap J_{1} consists of one crossing point.
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(3) The quotient group \pi_{1}(U)/\{\gamma\}^{\nu} is a free group of rank p-1, where
\{\gamma\}^{\nu} is the smallest normal subgroup of \pi_{1}(U) containing the hmot\psi y

class [\gamma] .

3. Modifications of Proper 2\prime cells

3. 1. Definition. Let C^{2} be a proper 2-cell in a 3-manifold M. Suppose
that there is a 2-cell \nabla in M such that \nabla\cap C^{2}=\partial\nabla\cap C^{2} consists of a simple
arc and \nabla\cap\partial M=\partial\nabla^{\cap}\partial M=cl(\partial\nabla-C^{2}), see Fig. 1 (a). Then, using a regular
neighborhood of C^{2}\cup\nabla we have disjoint proper 2-cells, say C_{1}^{2}\cup C_{2}^{2}, in M as
illustrated in Fig. 1 (a). More precisely, cl(\partial N(C^{2}\cup\nabla;M)\cap^{o}M) consists of
three proper 2-cells in M, and one of which is parallel to C^{2} ; let C_{1}^{2}\cup C_{2}^{2}

be the others. We say that C_{1}^{2} and C_{2}^{\backslash _{2}} are obtained from C^{2} by a modififi-
cation (of type) \nabla [along the 2-cell \nabla ). It should be noticed that (C_{1}^{2}\cup C_{2}^{2})\cap

(C^{2}\cup\nabla)=\emptyset .
Conversely, let C_{1}^{2} and C_{2}^{2} be disjoint proper 2-cells in a 3-manifold M,

and let \alpha be a simple arc on \partial M such that \alpha^{\cap}(\partial C_{1}^{2}\cup\partial C_{2}^{2})=\partial\alpha and \partial\alpha^{\cap}\partial C_{1}^{2}

\neq\emptyset\neq\partial\alpha^{()}\partial C_{2}^{2} . Then, cl(\partial N(C_{1}^{2}\cup\alpha\cup C_{2}^{2} ; M)\cap^{o}M) consists of three proper
2-cells in M, and one of which is parallel to C_{1}^{2} and another to C_{2}^{2} ; let C^{2}

be the third, see Fig. 1 (b). We say that C^{2} is obtained from C_{1}^{2} and C_{2}^{2}

(a) Modification \nabla (b) Modification \overline{\nabla}

Fig. 1.
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by a modifification [of type) \overline{\nabla} [along the simple arc \alpha). It should be noticed
that C^{2}\cap(C_{1}^{2}\cup\alpha\cup C_{2}^{2})=\emptyset .

3. 2. Lemma. (F. Hosokawa) Let U be a solid-torus of genus p with
a system of meridian-disks A_{1}\cup\cdots\cup A_{p}, and let C^{2} be a proper 2-cell in U.
Then, C^{2} can be obtained (up to isotopy) by a fifinite sequence of modififications

\overline{\nabla} ’s from mutually disjoint proper 2-cells E_{1} , \cdots , E_{\nu} , (1\leqq\nu<\infty), in U, where
each E_{i} is isotopic to one of A_{1} , \cdots , A_{p} in U.

Proof. If \partial C^{2}\simeq 1 on \partial U, then it is easily checked that C^{2} is obtained
by a modification \overline{\nabla} from two proper 2-cells E_{1} and E_{2} , where E_{1}\simeq A_{1}\approx E_{2}

in U, and so we may assume that \partial C^{2}\not\cong-\prime 1 on \partial U. By Propositions 2.14,
2.8 and 2.9, we may assume that C^{2} and A_{1}\cup\cdots\cup A_{p} are in reduced position.

If C^{2}\cap(A_{1}\cup\cdots\cup A_{p})=\emptyset, then C^{2} is contained properly in the 3-cell D_{0}^{3}=

cl(U-N(A_{1}\cup\cdots\cup A_{p} ; U)) . Because \partial C^{2} bounds a 2-cell on \partial D_{0}^{3}, it is easy
to see that C^{2} is obtained (up to isotopy) from some of 2-cells D_{0}^{3\bigcap_{\backslash }}N(A_{1}\cup

\ldots\cup A_{p} ; U) =\partial D_{0}^{3\cap}\partial N(A_{1}\cup\cdots\cup A_{p} ; U)=A_{1}’\cup A_{1}’\cup\cdots\cup A_{p}’\cup A_{p}’ by a finite se-
quence of modifications \overline{\overline{\nabla}},s . Here, A_{i}’\cup A_{i}’=\partial D_{0}^{3\cap}\partial N(A_{i} ; U), and of coufse,
A_{i}’=A_{i}\simeq A_{i}’ in U for i=1, \cdots,p .

If C^{2}\cap(A_{1}\cup\cdots\cup A_{p})\neq\emptyset , then we choose an innermost arc, say \gamma_{1} , on one
of A_{1} , \cdots , A_{p} , say A_{1} . Let \nabla_{1}\subset A_{1} be the 2-cell cut off by \gamma_{1} so that \circ\nabla_{1}\cap.
C^{2}=\emptyset . Then, we have disjoint proper 2-cells C_{1}^{2}\cup C_{2}^{2} in U from C^{2} by a
modification \nabla along \nabla_{1} , so that

(C_{1}^{2(\lrcorner}C_{2}^{2})\cap(A_{1}\cup\ldots()A_{p})=C^{2}\cap(A_{1}\cup\cdots\cup A_{p})-\gamma_{11}

Repeating of this procedure, we have a finite number of mutually disjoint
proper 2-cells, say C_{1}^{2}\cup\cdots\cup C_{\lambda}^{2} , in U with (C_{1}^{2}\cup\cdots\cup C_{\lambda}^{2})\cap(A_{1}\cup\cdots\cup A_{p})=\emptyset . Ac-
cording to the first case, we have now a required collection of proper 2-cells
E_{1}\cup\cdots\cup E_{\nu} from C_{1}^{2}\cup\cdots\cup C_{\lambda}^{2} by a finite sequence of modifications \nabla’s, and
from the definitions of the \overline{\nabla} and \nabla we complete the proof.

3. 3. In order to generalize 3.2, we consider the following special
decomposition. Suppose M\cong P_{1\{\cdots\square P_{u}}^{\xi} , where P_{1} , \cdots , P_{u} are \partial-prime 3-mani-
folds with connected boundary. Let D_{0}^{3} be a 3-cell, and let D_{1}^{I\lrcorner}\cdots\cup D_{u} be
mutually disjoint 2-cells on \partial D_{0}^{3} . The 3-manifold M^{*} is obtained by pasting
a 2-cell on \partial P_{i} to D_{i}, for i=1, \cdots , u. Since M^{*}\cong P_{1}Q\cdots QP_{u}\cong M, there is
a system of mutually disjoint proper 2-cells, say D_{1}\cup\cdots\cup D_{u}, in M so that

(^{*}) Each D_{i} divides M into two 3-manifolds M_{i1}\cong P_{i} and M_{i2}\cong P_{1}b.
\ldots QP_{i-1}b_{1}P_{i+1}Q\cdots QP_{u} .

3. 4. Theorem. Let M be a 3-manifold in the class SPC having a
\partial-prime decomposition
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M\cong P_{1}\grave{q}\cdots bP_{r}Q|P_{r+1}Q\cdots QP_{u}

with P_{i}\not\equiv D^{2}\cross S^{1} for i=1, \cdots , r, and P_{f}\cong D^{2}\cross S^{1} for j=r+1, \cdots , u. Let
D_{1}\cup\cdots\cup D_{u} be a system of mutually disjoint proper 2-cells in M satisfying
(^{*}) in 3.3, and let A_{r+1} , \cdots , A_{u} be meridian-disks of M_{r+1,1}\cong P_{r+1} , \cdots , M_{u1}\cong P_{u} ,
respectively, such that A_{j}^{r)}D_{f}=\emptyset for j=r+1, \cdots , u. Let C^{2} be a proper
2-cell in M. Then, C^{2} can be obtained (up to isotopy) by a fifinite sequence of
modifications \overline{\nabla}’ s from mutually disjoint proper 2-cells E_{1}\cup\ldots|\lrcorner E_{\nu}, (1\leqq\nu<\infty),

where each E_{i} is isotopic to one of D_{1} , \cdots , D_{r}, A_{r+1} , \cdots , A_{u} in M.
The proof of Theorem 3.4, which is omitted here, is the same as that

of Lemma 3.2 except for obvious modifications. We remark that cl(M-
N(D_{1}\cup\cdots\cup D_{r}\cup A_{r+1}\cup\cdots\cup A_{u} ; M)) consists of r+13-manifolds homeomorphic
to D^{3}, P_{1} , \cdots , P_{r}, and that since P_{1} , \cdots , P_{r} are \partial-irreducible by 2.15, every
proper 2-cell C^{2} in M_{i1}\cong P_{i} is isotopic to D_{i} , i=1, \cdots , r, provided that \partial C^{2}\neq 1

on \partial M. In Theorem 3.4, the condition (^{*}) is not always essential, and one
of D_{1},\cdots,D_{r} can be omitted.

Remark. It is interesting to remark that the uniqueness of the \partial-prime
decomposition for a 3-manifold M in the class SPC is easily proved by 3.4.
Note that in 3.3 and 3.4 we did not use the uniqueness.

3. 5. Corollary to 3.4. Let M be a 3-manifold in the class SPC, and
suppose that \pi_{1}(M)\cong G_{1}*G_{2} and both G_{1} and G_{2} are indecomposable with
respect to free products and not free. Let C_{1}^{2} and C_{2}^{2} be proper 2-cells in
M with \partial C_{i}^{2}\neq 1 on \partial M for i=1,2. Then, C_{1}^{2}\simeq C_{2}^{2} in M.

Proof. It may be remarked that the existence of such the C_{i}^{2} follows
from 2.16, and that \partial C_{i}^{2}\sim 0 on \partial M. Thus, C_{1}^{2} divides M into two \partial-prime,
\partial-irreducible 3-manifolds P_{1} and P_{2} with \pi_{1}(P_{1})\cong G_{1} and \pi_{1}(P_{2})\cong G_{2} . By
Theorem 3.4 and the note following 3.4, C_{2}^{2} can be obtained by a finite
sequence of modifications \overline{\nabla}’s from proper 2-cells E_{1}\cup\cdots\cup E_{\nu} in M with
E_{i}\simeq C_{1}^{2} in M for i=1, \cdots , \nu .

If \nu=1 , then C_{1}^{2}\simeq E_{1}\approx C_{2}^{2} in M, and we are finished.
On the other hand, when we performed a modification \overline{\nabla} for two isotopic

2-cells E_{1} and E_{2}, for the result C^{2} it is easily checked that \partial C^{2}\simeq 1 on \partial M.
So, we can omit these E_{1} and E_{2}, and so on. Thus, we can conclude that
\nu=1 .

3. 6. Corollary to 3.4. Let M be a 3-manifold in the class SPC, and
suppose that \pi_{1}(M)\cong Z*G and G is indecomposable with respect to free
products and not free. Let C_{1}^{2} and C_{2}^{2} be proper 2-cells in M with \partial C_{i}^{2_{\eta 6}}0

on \partial M for i=1,2. Then, C_{1}^{2}\simeq C_{2}^{2} in M.
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Proof. Note that the existence of C_{i}^{2} follows from 2.16, and that C_{i}^{2}

is a meridian-disk of M. Using the C_{1}^{2} we can choose a proper 2-cell D_{1}

in M so that D_{1} divides M into P_{1}\cong D^{2}\cross S^{1} and a \partial-prime, \partial-irreducible
3-manifold P_{2} with \pi_{1}(P_{2})\cong G, and C_{1}^{2} is a meridian-disk of P_{1} . By 3.4, C_{2}^{2}

is obtained by a finite sequence of modifications \overline{\nabla} ’s from proper 2-cells
E_{1}\cup\cdots\cup E_{\mu}\cup E_{1}’\lfloor)\ldots|\lrcorner E_{J}’. with E_{i}\approx C_{1}^{2} in M for i=1, \cdots , \mu, and E_{f}’\approx D_{1} in M
for j=1, \cdots , \nu .

When we performed a modification \overline{\nabla} for E_{1}’ and E_{2}’ , for the result E,
\partial E\simeq 1 on \partial M. When we performed a modification \overline{\nabla} for E_{1} and E_{1}’ , for
the result E it is easily checked that E_{\overline{\sim}}E_{1}\simeq C_{1}^{2} in M. We therefore
assume that \nu=0 .

On the other hand, let E be a proper 2-cell obtained from E_{1} and E_{2}

by a modification \overline{\nabla}. Then, it is easy to see that either \partial E\simeq 1 on \partial M or
E divides M into P_{1}’\cong D^{2}\cross S^{1} and P_{2}’\cong P_{2} . In the first case we can omit
these E_{1} and E_{2}, and in the second case we can again omit E_{1} and E_{2} by
replacing D_{1} by E because we can assume that C_{1}^{2} is a meridian-disk of P_{1}’

and P_{1}’ contains the rest E_{3}\cup\cdots\cup E_{\mu} as proper 2-cells.
Since \partial C_{?}^{2}*0 on \partial M, we conclude that \mu=1 , and completing the proof.

4. Pairs (F\subset S^{3}) of a Special Kind

In this section, using Theorem 3.4 we shall give an affirmative answer
to Question 1.7 for a special kind of pairs.

4. 1. Theorem. Let (F\subset S^{3}) be a non-trivid pair having a prime
decomposition (F\subset S^{3})\cong(F_{1}\subset S^{3})\#\cdots\#(F_{u}\subset S^{3}) such that

(^{**}) V_{F_{i}} (or W_{F_{i}}) is \partial-irreducible for dl i=1, \cdots , u .
Then, the prime decomposition for (F\subset S^{3}) is unique.
By virtue of Proposition 2.15, the condition (^{**}) may be equivalent to

(^{**})’\pi_{1}(V_{F})_{}\acute{\simeq}Z is indecomposable with respect to free products. About
the condition (^{**}) we refer the reader to \S 5 below.

We begin with a useful lemma which follows from the definition of
the modification \nabla, and the proof is omitted.

4. 2. Lemma. Let (F\subset S^{3}) be a pair, and let \Sigma_{1} and \Sigma_{2} be disjoint
2-spheres in S^{3} such that \Sigma_{1}()\Sigma_{2} gives a decomposition

(F\subset S^{3})\cong(F_{1}\subset S^{3})\#(F_{2}\subset S^{3})\#(F_{3}\subset S^{3}) .
We suppose that \Sigma_{1} resp. \Sigma_{2} gives a decomposition

(F\subset S^{3})\cong(F_{1}\subset S^{3})\#((F_{2}\subset S^{3})\#(F_{3}^{\urcorner}\subset S^{3}))
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resp. (F\subset S^{3})\cong(F_{2}\subset S^{3})\#((F_{1}\subset S^{3})\#(F_{3}\subset S^{3}))

Let \alpha be a simple arc on F with
\alpha^{\cap}\Sigma_{i}=\partial\alpha\cap\Sigma_{i}\neq\emptyset for i=1,2 ,

and let \Sigma be a 2-sphere in S^{3} such that \Sigma\cap V_{F} and \Sigma\cap W_{F} are obtained by
modififications \overline{\nabla}’ s dong \alpha from (\Sigma_{1}\cup\Sigma_{2})\cap V_{F} and (\Sigma_{1}\cup\Sigma_{2})\cap W_{B} respectively.

Then, \Sigma gives the decomposition

(F\subset S^{3})\cong((F_{1}\subset S^{3})\#(F_{2}\subset S^{3}))\#(F_{3}\subset S^{3}) .
As in [20], [26], etc., Theorem 4.1 will clearly follow from the following

lemma.
4. 3. Lemma. With (F\subset S^{3}) as in Theorem 4. 1, suppose (F\subset S^{3}) has

a decomposition (G_{1}\subset S^{3})\#(G_{2}\subset S^{3}) . Then, we can rearrange the (F_{i}\subset S^{3}) so
that

(G_{1}\subset S^{3})\cong(F_{1}\subset S^{3})\#\cdots\#(F_{t}\subset S^{3})

and (G_{2}\subset S^{3})\cong(F_{t+1}\subset S^{3})\#\cdots\#(F_{u}\subset S^{3})

for some t with 0\leqq t\leqq u .
Proof From the hypothesis, we can choose mutually disjoint 3-cells

D_{1}^{3}\cup\cdots\cup D_{u}^{3} in S^{3} so that (F\cap D_{i}^{3}\subset D_{i}^{3}) is equivalent to (F_{i}\subset S^{3}) for i=1, \cdots , u.
Let D_{i} be the 2-cell \partial D_{i}^{3\cap}V_{F} for i=1, \cdots , u. Then, from the hypothesis,
the system of mutually disjoint proper 2-cells D_{1}\cup\cdots\cup D_{u} in V_{F} satisfies the
condition (^{*}) in 3.3 for a \partial-prime decomposition

V_{F}\cong V_{F_{1}}Q\cdots QV_{F_{u}} .
On the other hand, from the hypothesis, there exists a 2-sphere \Sigma in

S^{3} which gives the decomposition (G_{1}\subset S^{3})\#(G_{2}\subset S^{3}) . By Theorem 3.4, the
proper 2-cell \sigma=\Sigma\cap V_{F} in V_{f} can be obtained (up to isotopy) by a finite
sequence of modifications \overline{\nabla}’ s from mutually disjoint proper 2-cells \sigma_{1}\cup\cdots\cup\sigma_{\nu}

in V_{R} where each \sigma_{f} is isotopic to one of D_{1} , \cdots , D_{u} in V_{F} . Since each
\partial D_{i} bounds the 2-cell \partial D_{i}^{3\cap}W_{F} in W_{F}, there is a system of mutually disjoint
proper 2-cells \tau_{1}\cup\cdots\cup\tau_{\nu} in W_{F} with \partial\tau_{f}=\partial\sigma_{f} for j=1, \cdots , \nu . Thus, we have
a system of mutually disjoint 2-spheres .\mathscr{S}=\{\sigma_{1}^{U}\tau_{1^{ }},\cdots, \sigma_{\nu}\cup\tau_{v}\} in S^{3}, and we
may assume that \mathscr{S}\cap(\partial D_{1}^{3\cup\ldots()}\partial D_{u}^{3})=\emptyset . Now, it is easy to see that .\mathscr{S}

gives a decomposition
(F\subset S^{3})\cong(F_{1}’\subset S^{3})\#\cdots\#(F_{\nu+1}’\subset S^{3})

such that each (F_{k}’\subset S^{3}) belongs to, up to congruence, the following set
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\swarrow_{=}\{compositions of some of (S^{2}\subset S^{3}) , (F_{1}\subset S^{3}), \cdots , (F_{u}\subset S^{3})\}

and each (F_{i}\subset S^{3}) is contained in exactly one of (F_{1}’\subset S^{3}), \cdots , (F_{\nu+1}’\subset S^{3}) as
a prime component, for k=1, \cdots , \nu+1 and i=1, \cdots , u.

Now we perform the first modification \overline{\Gamma\prime} for two of \sigma_{1}\cup\cdots\cup\sigma_{\nu}, say \sigma_{\nu-1}

and \sigma_{\nu} , along a simple arc \alpha_{1} on F=\partial V_{H} and let us denote the result by
\sigma_{\acute{\nu}-1} . Moreover, we perform a modification \overline{\nabla} at once for the corresponding
2-cells \tau_{\nu-1} and \tau_{\nu} along the same arc \alpha_{1} , and let us denote the result by
\tau_{\nu-1}’ . We have now a new system of mutually disjoint 2-spheres .\mathscr{S}’=

\{\sigma_{1}^{\cup}\tau_{1^{ }},\cdots, \sigma_{\nu-2}\cup\tau_{\nu-2}, \sigma_{\nu-1}’\cup\tau_{\nu-1}’\} in S^{3}, which gives a decomposition
(F\subset S^{3})\cong(F_{1}’\subset S^{3})\#\cdots\#(F_{\nu}’\subset S^{3}) .

By Lemma 4.2, we know that exactly one of (F_{1}’\subset S^{3}), \cdots , (F_{\nu}’\subset S^{3}) , say
(F_{\nu}’\subset S^{3}), is a composition of two of (F_{1}’\subset S^{3}) , \cdots , (F_{\nu+1}’\subset S^{3}), say (F_{\nu}’\subset S^{3}) and
(F_{v+1}’\subset S^{3}) , and for every other k=1 , \cdots , \nu-1 , (F_{c}’,\subset S^{3})\cong(F_{k}’\subset S^{3}) . That is,
for k=1, \cdots , \nu, each (F_{k}’\subset S^{3}) belongs to \mathscr{T} up to congruence, and for i=
1 , \cdots , u, each (F_{i}\subset S^{3}) is contained in exactly one of (F_{1}’\subset S^{3}) , \cdots , (F_{\nu}’\subset S^{3})

as a prime component.
Repeating of the same procedure as above, we have a 2-sphere .\mathscr{S}^{(\nu-1)}

=\sigma_{1}^{(\nu-1)\cup}\tau_{1}^{(\nu-1)} in S^{3}, and a decomposition
(F\subset S^{3})\cong(F_{1}^{(v)}\subset S^{3})\#(F_{2}^{(\nu)}\subset S^{3})

giving by \mathscr{S}^{(\nu-1)} such that both (F_{1}^{(\nu)}\subset S^{3}) and (F_{2}^{(\nu)}\subset S^{3}) belong to \mathscr{T} up to
congruence, and each (F_{i}\subset S^{3}) is contained in exactly one of (F_{1}^{(\nu)}\subset S^{3}) and
(F_{2}^{(\nu)}\subset S^{3}) as a prime component. Since \sigma_{1}^{(\nu-1)}=\sigma in V_{F} and \tau_{1}^{(v-1)}\simeq\Sigma\cap W_{F}

in W_{F} by 2.6, we conclude that (F_{1}^{(\nu)}\subset S^{3})\cong(G_{1}\subset S^{3}) and (F_{2}^{(\nu)}\subset S^{3})\cong(G_{2}\subset S^{3}),
and completing the proof.

5. Existence of Prime Pairs (F\subset S^{3})

By 1.2 and 2.10, we have the following.
5. 1. Proposition. For a pair (F\subset S^{3}), if one of V_{F} and W_{F} is \partial-prime,

then (F\subset S^{3}) is prime.
Using this 5.1, we will prove the following.

5. 2. Theorem. For any positive integer p, there exists a prime pair
(F\subset S^{3}) with g(F)=p.

Proof The case p=1 is Proposition 1.5, and the case p=2 has been
given in Suzuki [25, \S 5] and Tsukui [27, \S 7], and see Jaco [16], etc.. Now,
we note again Example 5.6 of [25] below, which will be used to construct
another examples. It should be noted that 5.6 [25] and 4.11 [25] implies
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Fig. 2. (F^{*}\subset S^{3})

Fig. 3. (F_{1}\subset S^{3})

that \pi_{1}(V_{F^{*}}) is indecomposable; that is, V_{F^{*}} is \partial-prime by 2.15. (We refer
to Kinoshita [17] for the Alexander polynomial of graphs.)

Now, we give the following pair (F_{1}\subset S^{3}) in Fig. 3. From the construc-
tion, we can easily check that \pi_{1}(V_{F_{1}}) is the free product of two copies
of \pi_{1}(V_{J^{R}}) with the subgroup Z(x_{1}) and 7_{d}(x_{1}’) amalgamated under the map
x_{1}arrow x_{1}’, where Z(x_{1}) and Z(x_{1}’) are infinite cyclic groups generated by x_{1}

and x_{1}’ , respectively. By a corollary of the Kurosh Subgroup Theorem, we
conclude that \pi_{1}(V_{F_{1}}) is indecomposable with respect to free products; see
Magnus et al [19, p. 243 and p. 246]. That is, (F_{1}\subset S^{3}) is prime with
g(F_{1})=3 by 2. 15 and 5. 1.

By the same way as above, from prime pairs (F^{*}\subset S^{3}) and (F_{1}\subset S^{3})

with g(F^{*})=2 and g(F_{1})=3 , we can construct a prime pair (F_{2}\subset S^{3}) with
g(F_{2})=4 such that V_{F_{2}} is \partial-prime. In general, we can construct inductively
a prime pair (F_{i}\subset S^{3}) with g(F_{i})=i+2 such that V_{F_{i}} is \partial-prime, from prime
pairs (F^{*}\subset S^{3}) and (F_{i-1}\subset S^{3}) with g(F_{i-1})=i+1 , and completing the proof.

On the other hand, for pairs (F\subset S^{3}) with g(F)=2, we have the fol-
lowing:
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5. 3. Proposition. (Tsukui [28]) A pair (F\subset S^{3}) with g(F)=2 is prime
if and only if either V_{F} or W_{F} is \partial-prime.

Contrary to 5.3, we record the following, which follows from Examples
5. 5 and 5. 6 below.

5. 4. Theorem. For every integer p with p\geqq 3 , there is a prime pair
(F\subset S^{3}) such that both V_{F} and W_{F} are not \partial-prime.

5. 5. Example. (Fig. 4) For every integer p with p\geqq 3 , there is a prime
pair (F\subset S^{3}) such that V_{F}\cong Pq(D^{2}\cross S^{1}) , W_{f}\cong p(D^{2}\cross S^{1}) and P is \partial-irreducible.

Proof (F\subset S^{3}) in Fig. 4 shows the case p=3, and in the other cases
constructions are analogously by using the pairs (F_{i}\subset S^{3}) given in the proof
of 5.2. We only remark that for the pair (F_{i}\subset S^{3}) in 5.2, W_{P_{\dot{i}}} is a solid-torus.

To show that the pair (F\subset S^{3}) has required properties, we use the
following pair (G\subset S^{3}) in Fig. 5. From the construction, we have V_{F}\cong V_{G}

\cong V_{F^{h}}b_{\{}.(D^{2}\cross S^{1}), here V_{F^{t}} is in Fig. 2 and \partial-irreducible by 2. 15. Using
2.17, we can easily see that W_{F}\cong 3(D^{2}\cross S^{1}) . Now we consider the simple
loop \alpha on F given in Fig. 4. It will be noticed that \alpha is meridian of
V_{F}\cong V_{F}\wedge f\dagger(D^{2}\cross S1) which is unique up to isotopy by 3. 6. Let A be a
meridian-disk with \partial A=\alpha . It is clear that W_{F}\cup N(A;V_{F}) is a disk-sum

Fig. 4. (F\subset S^{3})

Fig. 5. (G\subset S^{3})
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of D^{2}\cross S^{1} and the closed complement V_{K} of the clover-leaf knot, that is,
W_{F}\cup N(A ; V_{F})\not\cong 2(D^{2}\cross S^{1}) . From 2. 18, we can conclude that (F\subset S^{3}) is
prime.

5. 6. Example. (Fig. 6) For every integer p with p\geqq 3 , there is a prime
pair (F\subset S^{3}) such that V_{F}\cong P_{1}QP_{2} , W_{F}\cong p(D^{2}\cross S^{1}), and both P_{1} and P_{2} are

\partial-irreducible.

Proof. (F\subset S^{3}) in Fig. 6 shows the case p=3, and in the other cases
we can construct required pairs analogously.

To show that the (F\subset S^{3}) has required properties, we refer to the pair
(H\subset S^{3}) in Fig. 7. From the construction, we have V_{F}\cong V_{H}\cong V_{F^{t}}fJ_{l}V_{K}, here
V_{F^{e}} is in Fig. 2 and V_{K} is the closed complement of the clover-leaf knot.
Note that both V_{F^{*}} and V_{K} are \partial-irreducible. By virtue of 2.17, we can
check that W_{F}\cong 3(D^{2}\cross S^{1}) .

We consider the simple loop \beta on F given in Fig. 6. It is easy to
see that \beta\simeq 1 in V_{F} and \beta\sim 0 on F. By 3.5, such the loop is unique up
to isotopy. To show that (F\subset S^{3}) is prime, it is enough to show that \beta\neq 1

in W_{F} . Assume the contrary, then \beta bounds a proper 2-cell in W_{F} which
must divide W_{F}\cong 3(D^{2}\cross S^{1}) into Q_{1}\cong D^{2}\cross S^{1} and Q_{2}\cong 2(D^{2}\cross S^{1}) . So, we

Fig. 6. (F\subset S^{3})

Fig. 7. (H\subset S^{3})
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may choose a system of meridians J_{1}\cup J_{2}\cup J_{3} of W_{F} with \beta^{q}(J_{1}\cup J_{2}^{1J}J_{3})=\emptyset .
Of course, A in Fig. 6 is a meridian-disk of W_{F} with \beta\cap A=\emptyset . From
simple observations of the surface (\partial(cl(W_{F}-N(A;W_{F}))\subset S^{3}), it is easy to
see that there does not exist such the system of meridians.

From the pairs (F\subset S^{3}) in Fig. 4 and (G\subset S^{3}) in Fig. 5, and the pairs
(F\subset S^{3}) in Fig. 6 and (H\subset S^{3}) in Fig. 7, we have:

5. 7. Proposition. The knotting problem of a closed oriented surface
in S^{3} is not reducible. That is, even if V_{P}\cong V_{F’} and W_{F}\cong W_{F’}(i.e. S^{3}-

F\cong S^{3}-F’), (F\subset S^{3}) and (F’\subset S^{3}) are not always congruent. (Refer to Fox
[8, Prob. 7].)
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