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1. Introduction.

In our previous paper [11] we constructed parametrices for some double
characteristic pseud0-differential operators, whose characteristic sets are closed
conic manifolds of codimension 2 in the cotangent space. In this paper we
shall show that the condition of Theorem 1. 2 in [11] is necessary and suf-
ficient condition for existence of parametrices.

In order to describe the result more precisely we must recall some n0-

tations and hypothese. Let X be a paracompact C^{\infty} manifold of dimension
n and T^{*}(X^{\cdot})\backslash 0 be the cotangential space minus the zero section. P(x, D)
is a properly supported classical pseud0-differential operator on X of order
m. We denote the principal symbol of P by p_{m}(x, \xi)\in C^{\infty}(T^{*}(X)\backslash 0) . For
arbitrary C^{\infty}(T^{*}(X)\backslash 0) functions f and g we denote the Poisson bracket of

f and g by \{/, g\} and the Hamilton vector field of f by H_{f} . For a non-
negative integer k and a connected closed conic non-involutory submanifold
\Sigma of T^{*}(X)\backslash 0 with codim \Sigma=2 , we use the notations M^{mk},(\Sigma, X) and \sigma

(P) for P\in M^{m,k}(\Sigma, X) when k is odd. These notations are defined in def-
inition 1. 1 of [11].

We consider the following properly supported pseud0-differential operator
L(x, D) with double characteristics given by

(1. 1) L(x, D)=(P\cdot Q)(x, D)+R(x, D) .
Here P\in M^{m_{1}k},(\Sigma, X) , Q\in M^{m_{-\prime}k}.(\Sigma, X) and R\in M^{m_{1}\dagger m_{2}-1k-1},(\Sigma, X) .

In the following theorem we write A\equiv B for operators A and B;\mathscr{D}’

(X)arrow z’ ’ (X) if A –B is an integral operator with the C^{\infty}-kernel. We also write
diag (V)=\{(\rho, \rho);\rho\in V\}\subset(T^{*}(X)\backslash 0)\cross(T^{*}(X)\backslash 0) for any conic subset V of
T^{*}(X)\backslash 0 . Our statement is the following

THEOREM. Let L(x, D) be a double characteristic pseudO-differential
operator defifined by (1. 1), where k is an odd integer and \sigma(P)=1 , \sigma(Q)=

-1. We assume that (H_{p_{m_{1}}})^{l}q_{m_{o}}.(x, \xi)=0 on \Sigma for l=1, \cdots , k –1 and (H_{pm_{1}}.’ 1^{l}

r_{m_{1}+m_{l}-1}(x, \xi)=0 on \Sigma for l=1 , \cdots , k-2 where k>1 . Then the following
statements are equivalent.
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i) For any real number s if u\in \mathscr{D}’(X) and Lu\in H_{1oc}^{s}(X) then u belongs
to H_{1oc}^{s+m_{1}+m_{2}-2k/(k+1)}(X) .

ii) There exists a properly supported linear operator F;\mathscr{D}’(X)arrow \mathscr{D}’

(X) which is continuous from H_{1oc}^{s}(X) to H_{1oc}^{s+m_{1}+m_{2}-2k/(k+1)}(X) for all real s
such that

F\cdot L(x, D)\equiv L(x, D)\cdot F\equiv I and WF’(F)=diag(T^{*}(X)\backslash 0) , where I is the
identity in \mathscr{D}’(X) .

iii) Whatever the positive integer n, the function
(1. 2) (H_{p_{m_{1}}})^{k-1}(r_{m_{1_{\sim}}}+m_{\mathfrak{n}}-1+i\lambda\{p_{m_{1}}, q_{m_{2}}\})(x, \xi)

does not vanishes at any point of \Sigma, where \lambda=(1-n(k+1))/k or - n(k+1)
/k and H_{p_{m_{1}}}^{0} is the identity.

REMARK. 1. When \sigma(P)=-1 and \sigma(Q)=1 then the condition iii) of
above Theorem changes the following statement.

iii)’ Whatever the positive integer n, the function (1. 2) does not van-
ishes on \Sigma when \lambda=(1+(n-1)(k+1))/k or (n-1)(k+1)/k.

2. If L(x, D) satisfifies the condition iii) of Theorem, then so does the
adjoint operator L^{*}(x, D) .

The present work is closely related to that of Boutet de Monvel and
Treves [2], [3], Boutet de Monvel [4] and Sj\"ostrand [10]. When k=1 they
showed the hypoellipticity and constructed parametrices of pseud0-differential
operators whose characteristic sets are non-involutory manifold. Our the-
orem is generalization of that in [2] and partial extension of Theorem 8. 6
in [4].

In our previous paper [11] we showed that iii) implies ii). In order
to prove the implication i) to iii), Boutet de Monvel-Treves [2], [3] used the
Hermite functions and their property essentially. However, when k>1 the
Hermite functions are not entirely useful. In stead of the Hermite functions
we use the functions which are the null solutions of ordinary differential
equations with smooth parameters (see Proposition 3. 1.). In the special case
these functions are equal to the Hermite functions.

2. Analytic preliminaries.

In this section we shall calculate some special Fourier integral operators,
which are pseud0-differential operators with smooth parameters.

We shall define a linear operator A;C_{0}^{\infty}(R^{n-1})arrow C^{\infty}(R^{n}) by an integral
formula
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(2. 1) A(x, t, D_{x})f=(2 \pi)^{-(n-1)}\int e^{i<x,\xi>}\varphi(\xi)^{1/2(k+1)}

\cross a (x, \varphi(\xi)^{1/(k+1)}t, \xi/\varphi(\xi) ) \hat{f}(\xi)d\xi ,

where \backslash \hat{f} stands for the Fourier transform of f\in C_{0}^{\infty}(R^{n-1}) and the element
\varphi(\xi) in C^{\infty}(R^{n-1}) is real non-zero function such that \varphi(\xi)=|\xi| if |\xi|\geq 1 and
\varphi(\xi)\geq|\xi| . Moreover a(x, t, \omega) is an element of C^{\infty}(R^{n}\cross\Delta) and belongs to
the space \mathscr{S}(R) of Schwarz as a function of t, where \Delta=\{\omega\in R^{n-1} ; |\omega|<

2\} . We remark that a (x, \varphi(\xi)^{1/(k+1)}t, \xi/\varphi(\xi)) belongs to S_{1,1/(k+1)}^{n}(R^{n}\cross R^{n-1})

which is the space of the symbols introduced in [9], We shall investigate
the properties of the operators given by (2. 1).

Lemma 1. 1. If a(x, t, \omega) has a fifixed compact support with respect to
x, then for an arbitrary positive integer N there exists a constant C_{N} such
that for all (\eta, \xi)\in R^{n-1}\cross R^{n-1}

(2. 2) \varphi(\xi)^{1/(k+1)}\int|\hat{a}(\eta, \varphi(\xi)^{1/(k+1)}t, \xi/\varphi(\xi))|^{2}dt

\leq C_{N}(1+|\eta|)^{-2N} ,

where \^a means the Fourier transform with respect to x.
PROOF. Put s=\varphi(\xi)^{1/(k+1)}t , then we may show that

\int|\eta^{\alpha}\hat{a}(\eta, s, \xi/\varphi(\xi))|^{2}ds\leq C ,

where |\alpha|=N and |\eta|\geq 1 . Since a has a fixed compact support with respect
to x, by Schwarz’s inequality we see that

| \eta^{\alpha}\hat{a}(\eta, s, \xi/\varphi(\xi))|^{2}=|\int e^{-i’x,\xi>}\backslash D_{x}^{\alpha}a(x, s, \xi/\varphi(\xi))dx|2

\leq C\int|D_{x}^{\alpha}a(x, s, \xi/\varphi(\xi))|^{2}dx .

Since D_{x}^{\alpha}a(x, s, \xi/\varphi(\xi)) belongs to C_{0}^{\infty}(R^{n-1}) uniformly with respect to s, \xi ,

wt get the inequality (2. 2). This completes the proof.
By this lemma we can get the following
PROPOSITION 2. 2. For any real number s the operator A(x, t, D_{x}) de-

fixed in (2. 1) is a continuous operator from H_{c}^{s}(R^{n-1}) to H_{1oc}^{s}(R^{n}) .
PROOF. For arbitrary h(x, t)\in C_{0}^{\infty}(R^{n}) and u\in C_{0}^{\infty}(R^{n-1}) we shall show

that

(2. 3) ||hAu||_{s}\leq C_{s}||u||_{s} .

First we shall show (2. 3) when s=0. Let f(x) and g(t) be element of
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C_{0}^{\infty}(R^{n-1}) and C_{0}^{\infty}(R) respectively such that h(x, t)=f(x)g(t)h(x, t) . Since
||hAu||_{0}=||fghAu||_{0}\leq C||h(fA)u||_{0} , we may assume that a(x, t, \xi/\varphi(\xi)) has
a fixed compact support with respect to x. For an arbitrary element v(x, t)
of L^{2}(R^{n}) we get

| \langle Au, v\rangle|=|(2\pi)^{-(n-1)}\int\int\int v(x, t)\varphi(\xi)^{1/2(k+1)}\cross

a (x, \varphi(\xi)^{1/(k+1)}t, \xi/\varphi(\xi)) \^u (\xi)e^{i<x,\xi>}dxdtd\xi|

=|(2 \pi)^{-2(n-1)}\int\int\int\hat{v}(-\eta, t)\varphi(\xi)^{1/2(k+1)}\cross

\^a (\eta-\xi, \varphi(\xi)^{1/(k+1)}t , \xi/\varphi(\xi)) \^u (\xi)d\eta d\xi dt|

From Schwarz’s inequality we have

(2. 4) | \langle Au, v\rangle|^{2}\leq(2\pi)^{-4(n-1)}(\int\int\int|\hat{v} (-\eta, t)|^{2}(1+|\eta-\xi|)^{-n}

d \eta d\xi dt)(\int\int\int(1+|\eta-\xi|)^{n}\varphi(\xi)^{1/(k+1)} |\^a (\eta-\xi .

\varphi(\xi)^{1/(k+1)}t , \xi/\varphi(\xi))|^{2}|u^{A}(\xi)|^{2}d\eta d\xi dt)\tau

By Lemma 1. 1 the second term in the right hand side of (2. 4) is estimated
by

c\int^{(}J^{(1+|\eta-\xi|)^{-n}|\hat{u}(\xi)|^{2}d\xi d\eta} .

Since \int(1+|\eta-\xi|)^{-n}d\eta and \int(1+|\eta-\xi|)^{-n}d\xi is constant, we have (2. 3) when
s=0. If we use (2. 3) when s=0, we easily show that ||D_{x}^{\alpha}D_{t}^{\beta}(hAu)||_{0}\leq C

||u||_{I\alpha+\beta^{1}} , which implies that (2. 3) holds for all non-negative integer s. We
remark that since by iii) of Theorem 1. 4. 1 in [9] A is a continuous map
from \mathcal{E}’(R^{n-1}) to \Delta^{Ci}

’ (R^{n}) , Au is well-defined for u\in H_{c}^{s}(R^{n-1}) . Since C_{0}^{\infty}

(R^{n-1}) is a dense set of H^{s}(R^{n-1}) , we can regard the operator hA as a
continuous operator from H^{s}(R^{n-1}) to H^{s}(R^{n}) when s non-negative integer.
Therefore by standard interpolation between Sobolev spaces we get (2. 3)
for all u\in H^{s}(R^{n-1}) and any s\geq 0 . Let A^{*} be the dual operator of A via
the sesquilinear from \int f\overline{g}dxdt . By same argument we see that A^{*} is con-
tinuous operator from H_{\epsilon}^{s}(R^{n}) to H_{1oc}^{s}(R^{n-1}) when s\geq 0 . From the duality
between H_{c}^{s}(R^{n}) and H_{1oc}^{-s}(R^{n}) we can show that A is continuous from
H_{t}^{s}(R^{n-1}) to H_{1oc}^{s}(R^{n}) for any real s. This completes the proof.

Using the above proposition we can show the following,

Lemma 1. 3. Let p(x, \xi) be an element of S_{1,0}^{m}(R^{n-1}\cross R^{n-1}) with compact
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support with respect to x. If a(x, t, \omega) has a fifixed compact support with
respect to x, then we can write

(2. 5) P(x, D_{x})\cdot A(x, t, D_{x})u=A(x, t, D_{x})u+R_{1}u ,

(2. 6) A(x, t, D_{x})\cdot P(x, D_{x})u=A(x, t, D_{x})u+R_{2}u .
Here R_{j}(.\mathfrak{j}=1,2) is a continuous linear operator from H_{c}^{s}(R^{n-1}) to H_{1oc}^{s-m+1}

(R^{n}) and

A(x, t, D_{x})u=(2 \pi)^{-(n-1)}\int e^{i<x,\xi>}\varphi(\xi)^{1/2(k+1)}\cross

a (x, \varphi(\xi)^{1/(k+1)}t , \xi/\varphi(\xi) ) p(x, \xi) \^u(\mbox{\boldmath $\xi$}) d\xi

PROOF. Since P(x, D_{x}) is a continuous operator from C_{0}^{\infty}(R^{n-1}) to C_{0}^{\infty}

(R^{n-1}) , we have

P(x, D_{x})A(x, t, D_{x})u(x, t)=(2 \pi)^{-(n-1)}\int e^{i<x,\xi>}\tilde{a}(x, t, \xi)

\varphi(\xi)^{1/2(k+1)} \^u (\xi)d\xi ,

where \tilde{a}(x, t, \xi)=e^{-i<x,\xi>}P(x, D_{v})(e^{i<x,\xi>}a (x, \varphi(\xi)^{1/(k+1)}t, \xi/\varphi(\xi)) . From Then
rem 2.6 in [8], we see that

b(x, t, \xi)=\tilde{a}(x, t, \xi)-\sum p^{(\alpha)}|\alpha|<N(x, \xi)D_{x}^{\alpha}a(x, \varphi(\xi)^{1/(k+1)}t, \xi/\varphi(\xi))/\alpha !

belongs to S_{1,1/(k+1)}^{m+n-N}(R^{n}\cross R^{n-1}) . By the proof of Proposition 2. 2 the operator
defined by the symbol \varphi(\xi)^{1/2(k+1)}p^{(\alpha)}(x, \xi)D_{x}^{\alpha}a(x, \varphi(\xi)^{1/(k+1)}t, \xi/\varphi(\xi))/\alpha! is a con-
tinuous operator from H_{c}^{s}(R^{n-1}) to H^{s+!\alpha|-m}(R^{n}) . For any s and any positive
integer M if we take a sufficiently large N, then the operator defined by
\varphi(\xi)^{1/2(k+1)}b(x, t, \xi) is continuous from H_{e}^{s}(R^{n-1}) to C^{M}(R^{n)}, . This shows that
R_{1} has a desired property. By a similar way we can prove the equality
(2. 6). This completes the proof.

PROPOSITION 2. 4. Let A(x, t, D_{x}) be an operator defifined by (2. 1).
Then the operator A^{*}A is a pseudO-differential operator of order 0 and
type 1, 0. The principal symbol of (A^{*}A)(x, D_{x}) is given by

(2. 7) \int|a(x, t, \xi/\varphi(\xi))|^{2}dte

PROOF. To prove this porposition we shall use the argument of vector
valued pseud0-differential operators (see Section 3 in [11]). The operator

\alpha(x, \xi)z=\varphi(\xi)^{1/2(k-1)}a(x, \varphi(\xi)^{1/(k+1)}t , \xi/\varphi(\xi))z

belongs to S^{0}(R^{n-1} ; C, L^{2}(R)) . Therefore the adjoint operator A^{*} belongs
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to L^{0} (R^{n-1} ; L^{2}(R), C) and its principal symbol is the operator

\alpha_{0}^{*}(x, \xi)u(t)=\varphi(\xi)^{1/2(k\dagger 1)}\int\overline{a}(x, \varphi(\xi)^{1/(k+1)}t , \xi/\varphi(\xi))u(t)dt .

This implies that the operator A^{*}A belongs to L^{0}(R^{n-1} ; C, C) and its prin-
cipal symbol is equal to (2. 7). This completes the proof.

3. The proof of Theorem

Since the implication oi iii) to ii) was proved in [11], in this section
we shall prove the implication ii) to i) and i) to iii).

It is easy to prove the implication ii) to i). Let k(x, y) be the distri-
bution kernel of F\cdot L . Since F and L are properly supported operators,
both projections \pi_{x}, \pi_{y} ; suppk- X are proper. We may show that if u\in

\mathscr{D}’(X) and Lu\in H_{1oc}^{s}(X) then hu\in H^{s+m_{1}+m_{2}-2k/(k-1)}(X) for all h\in C_{0}^{\infty}(X) .
Let \tilde{h} be an element of C_{0}^{\infty}(X) such that \tilde{h}=1 on supph\cup\pi_{y}\cdot\pi_{x}^{-1} (supph).
Then we have h\tilde{h}=h and hFLu=hFL\tilde{h}u . Since FL=I+K where K is an
integral operator with C^{\infty}- kerne1., we see that hFLu=hu+hK\tilde{h}u . The left
hand side belongs to H^{s+m_{1}+m_{2}-2k/(k+1)}(X) . It implies that hu\in H^{s+m_{1}+m_{2}-2k/(k+1)}

(X) .
In order to prove the implication i) to ii) we shall prepare the following

two statements.

PROPOSITION 3. 1. Let k be an odd integer and L_{\lambda}(x, t, \omega, D_{t}) be an
ordinary differential operator with parameter (x, \omega) given by

L_{\lambda}(x, t, \omega, D_{l})=(D_{l}-ia(x, \omega)t^{k})(D_{t}-ib(x, \omega)t^{k})

+\lambda(a-b)(x, \omega)t^{k-1}

Here a(x, \omega) and b(x, \omega) are elements of C^{\infty}(R^{n-1}\cross\Delta) and Rea(x, \omega)>0 ,
Reb(x, \omega)<0 . If \lambda=-1-(k+1)n for a positive integer n, then there exists
a non-trivial solution {?}_{n}^{+}-(x, t, \omega) such that

i) L_{\lambda}(x, t, \omega, D_{t})\mathscr{B}_{n}^{\nearrow+}(x, t, \omega)=0

ii) {?}_{n}^{+}(x, t, \omega) is an element of C^{\infty}(R^{n}\cross\Delta) and belongs to \mathscr{S} (R) as
a function of t.

iii) {?}_{n}^{+}(x, t, \omega) is even and real analytic as a function of t.
If \lambda=-(k+1)n for some positive integer n, then there exists a non-trivial
solution \mathscr{B}_{n}^{\nearrow-}(x, t, \omega) such that i) and ii) holds and {?}_{n}^{-}(x, t, \omega) is odd and
real analytic as a function of t .

PROOF. First we shall grantee the existence of the nontrivial null solu-
tion of L_{\lambda} when \lambda=-1-(k+1)n or -(k+1)n for any positive integer n.
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We shall change variable; s=t^{k+1}/(k+1)=\varphi(t) . Note that s varies only in
the non-negative haH line \overline{R}_{+}=\{s\in R;s\geq 0\} . We seek functions w_{n}^{+}(s) and
w_{n}^{-}(s) such that L_{\lambda}(w_{n}^{+}\cdot\varphi)=0 and L_{\mu}(t(w_{n}^{-}\cdot\varphi))=0 in the whole real hne when
\lambda=1-(k+1)n and \mu=-(k+1)n . By the easy computation (see [5]), L_{\lambda}

(w_{n}^{+}\cdot\varphi)=0 and L_{\mu}(t(w_{n}^{-}\cdot\varphi))=0 are equivalent to (L_{\lambda}^{+}w_{n}^{+})(s)=0 and (L_{\mu}^{-}w_{n}^{-})

(s)=0 respectively, where

L_{\lambda}^{+}(x, s, \omega, D_{s})=(D_{s}-ia(x, \omega))(D_{s}-ib(x, \omega))s

+i \frac{k+2}{k+1}D_{s}+(a+\frac{b+\lambda(a-b)}{k+1})(x, \omega) :

L_{\mu}^{-}(x, s, \omega, D_{s})=(D_{s}-ia(x, \omega))(D_{s}-ib(x, \omega))s

+i \frac{k}{k+1}D_{s}+(\frac{ka+\mu(a-b)}{k+1})(x, \omega) .

We shall apply the following theorem to L_{\lambda}^{+} and L_{\mu}^{-} .
THEOREM (Theorem 2. 3 in Chapter 3 of [1]). Let L(s, D_{s}) be an

ordinary differential operator given by

L(s, D_{s})u(s)=P^{2}(D_{s})(su)+P^{1}(D_{s})u\cap

Here P^{1}(D_{s})=p_{1}^{1}D_{s}+p_{0}^{1}, p_{f}^{1}\in C(j=1,2) and P^{2}(D_{s})=D_{s}^{2}+p_{1}^{2}D_{s}+p_{0}^{2} , p_{f}^{2}\in C(j

=0,1) such that the polynomial P^{2}(\tau) has the roots \tau_{+} and \tau_{-} with Im
\tau_{+}>0 and Im\tau_{-}<0 . If there exists a positive integer n such that P^{1}(\tau_{+})

=in (\tau_{+}-\tau_{-}) , then the dimension of KerL and CokerL are 1 as an operator

from W_{1}^{p+2}(R_{+}) to H^{p}(R_{+}) . Here p>Imp_{1}^{1}-3/2 and W_{1}^{p+2}(R_{+})=\{u\in H^{p+1}

(R_{+}) ; su\in H^{p+2}(R_{+})\} .
Using this Theorem, we continue the proof of Proposition 3. 1. By

above Theorem it implies that there exists a non-trivial solution w_{n}^{+}(s) of
L_{\lambda}^{+}u=0 when \lambda=1-(k+1)n for all positive integer n and there also exists
a non-zero null solution w_{n}^{-} of L_{\mu}^{-} when \mu=-(k+1)n for any positive in-
teger n. By Sobolev’s lemma and trace theorem it implies that w_{n}^{+}(s) and
w_{n}^{-}(s) belong to C^{2}(\overline{R}_{+}) when p>3 . If we put W_{n}^{+}(t)=(w_{n}^{+}\cdot\varphi)(t) and W_{n}^{-}

(t)=t(w_{n}^{-}\cdot\varphi)(t) , then they belong to C^{2}(R) and L_{1-(k+1)n}W_{n}^{+}=L_{-(k+1)n}W_{n}^{-}

=0 in the whole real line.
It is clear that W_{n}^{+}(x, t, \omega) and W_{n}^{-}(x, t, \omega) belong to L^{2}(R) as a function

of t . Therefore by Theorem 2. 2 in [6] it implies that W_{n}^{+}(x, t, \omega) and W_{n}^{-}

(x, t, \omega) belongs to \mathscr{S}(R) as a function of t . We shall show that W_{n}^{+}(x,
0, \omega) and \partial W_{n}^{-}/\partial t(x, 0, \omega) are non-zero for every (x, \omega)\in R^{n-1}\cross\Delta . Suppose
W_{n}^{+}(x, 0, \omega)=0 for some (x, \omega)\in R^{n-1}\cross\Delta . Since W_{n}^{+}(x, t, \omega) is an even func-
tion as a function of t, \partial W_{n}^{+}/\partial t(x, t, \omega)=0 . By the uniquness theorem of
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an ordinary differential operator it implies that W_{n}^{+}(x, t, \omega)\equiv 0 in some
neighbourhood of the original point of R. Since the coefficients of
L_{1-(k+1)n}(x, t, \omega, D_{t}) are real analytic as a function of t, the null solution
of L_{1-(k+1)n} is also real analytic (see Theorem 7. 5. 1 in [7]). By the unique
continuation theorem of real analytic function with one variable it implies
that W_{n}^{+}(x, t, \omega)\equiv 0 in the whole real line. This contradicts non-triviality
of W_{n}^{+}(x, t, \omega) . By a similar argument we have \partial W_{n}^{-}/\partial t(x, 0, \omega)\neq 0 for all
(x, \omega)\in R^{n-1}\cross\Delta .

Put
.{?}_{n}^{+}(x, t, \omega)=W_{n}^{+}(x, t, \omega)/W_{n}^{+}(x, 0, \omega) ,
\mathscr{A}_{n}^{-}(x, t, \omega)=W_{n}^{-}(x, t, \omega)/(\partial W_{n}^{-}/\partial t)(x, 0, \omega)

Then the statements i) and iii) are clear, we shall only prove that \mathscr{B}_{n}^{\prime+}

(x, t, \omega) and .\mathscr{A}_{n}^{-}(x, t, \omega) belongs to C^{\infty}(R^{n}\cross\Delta) . Since the initial condition
at t=0 is independent of a parameter (x9\omega), by a well-known theorem of
an ordinary differential operator theory it implies that \mathscr{A}_{n}^{+}(x, t, \omega) and \mathscr{A}_{n}^{-}

(x, t, \omega) belong to C^{\infty}(R^{n}\cross\Delta) . This completes the proof.
REMARK. 1. If a(x, \omega)=1 , b(x, \omega)=-1 and k=1, then \mathscr{F}_{n}^{+}-(t) and

\mathscr{A}_{n}^{-}(t) are (2n-2) -th and (2n-1) -th Hermite function respectively, where
j-th Hermite function H_{j}(t) is defifined by

H_{j}(t)=(2^{j}j!)^{-1/2}(\partial/\partial t-t)^{j} exp (-t^{2}/2)

2. The following two statements are easily verfified by the defifinition
of \mathscr{A}_{n}^{\prime+}(x, t, \omega) and \mathscr{F}_{n}^{-}(x, t, \omega) .

i) For any sequences (n_{1^{ }},\cdots, n_{N}) and (m_{1^{ }},\cdots, m_{M}) such that n_{i} , m_{j} are
positive integers with n_{i}\neq n_{j} and m_{i}\neq m_{j} if i\neq j, the function \mathscr{A}_{n_{i}}^{\zeta\prime+}(x, t, \omega) ,

{?}_{m_{j}^{-}(x, t, \omega)(i=1, \cdots, N, j=1, \cdots, M) are linear independent, i. e. , if \sum_{i}c_{i}

e\mathscr{K}_{n_{i}}^{+}+\sum_{f}d_{j}\mathscr{A}_{m_{j}}^{-}=0 then c_{i}=d_{j}=0(i=1, \cdots, N, j=1, \cdots, M) .
ii) If b(x, \omega)=- a (x, \omega) then we have

\int \mathscr{A}_{n}^{+}(x, t, \omega){?}_{m}^{-}(x, t, \omega)t^{k-1}dt=0 for all n and m ,

\int \mathscr{A}_{n}^{\pm}(x, t, \omega)\mathscr{A}_{m}^{\pm}(x, t, \omega)t^{k-1}dt=0 if n\neq m

Lemma 3. 2. Let P(x, D) be a classical pseudO-differential operator

with the principal symbol p_{m}(x, \xi) . We assume p_{m}(x_{0}, \xi^{0})=0 for some point

of R^{n}\cross R^{n}\backslash \{0\} . Let \Gamma_{0} be an arbitrary open conic neighbourhood of (x_{0},

\xi^{0}) . Then for any \epsilon>0 and all s\in R there exists f_{s}\in H^{s-e}(R^{n}) such that
P(x, D)f_{s}\in H^{s-m}(R^{n}) , f_{s}\not\in H^{s}(R^{n}) and Wf(f_{s})\subset\Gamma_{0} .
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PROOF. Let F be the set of all u\in \mathscr{D}’(R^{n}) such that u\in H^{s-\text{\’{e}}}(R^{n}) , Pu
\in H^{s-m}(R^{n}) and WF(u)\subset\Gamma_{0} . We introduce in F the weakest topology mak-
ing the following map continuous;

F\Leftrightarrow^{-}H^{s-*}(R^{n})j F\ni u-arrow Pu\in H^{s-m} (Rn) and
F\ni uarrow Au\in C^{\infty}(R^{n}) ,

where A is a properly supported pseud0-differential operator with WF(A)
\cap\Gamma_{0}=\phi. If is clear F is a Fr\‘echet space for we need only consider counta-
ble many choices of A and the completeness is obvious. Suppose that F
\subset H^{s}(R^{n}) . Then by the closed graph theorem the inclusion map Fc_{arrow}H^{s} (Rn)
is continuous. There exists properly supported pseud0-differential operators
A_{1} , \cdots , A_{N} with WF(A_{j})\cap\Gamma_{0}=\phi(j=1, \cdots, N) such that for all u\in F

(3. 1) ||u||_{s}^{2} \leq C(||Pu||_{s-m}^{2}+||u||_{s-\epsilon}^{2}+\sum_{j}(sup|\sum_{1K_{j}\alpha|\leq N_{j}}D^{\alpha}(A_{j}u)|)^{2}) .

Here K_{j} is a compact set of R^{n} and N_{j} is a positive integer. Let K be
a compact set of R^{n} such that X_{0} is an interior point of K and K\cross\{\xi^{0}\}\subset

\Gamma_{0} . By the Sobolev’s lemma and (3. 1) it implies for all u\in C_{0}^{\infty}(K)

(3. 2) ||u||_{s}^{2} \leq C(||Pu||_{s-m}^{2}+||u||_{s-\epsilon}^{2}+\sum_{f}||A_{j}u||_{N_{j}+[n/2]+1}^{2})

Set u_{t}=e^{i<x,t\xi^{9}>}u . Then by the definition of pseud0-differential operator (see
Theorem 2. 6 in [8] ) we have

t^{-l}e^{-i<x,t\xi^{0}>}Qu_{t}arrow q_{l}(x, \xi^{0})u ,

when tarrow\infty . Here Q is a pseud0-differential operator of order l with the
principal symbol q_{l}(x, \xi) . Since WF(A_{j})\cap(K\cross\{\xi^{0}\})=\phi,

t^{N}||e^{-i<x,t\xi^{0}>}\Lambda^{N_{f}+[n/2]\dagger 1}A_{j}u_{t}||_{0}arrow 0 as tarrow\infty ,

where \Lambda is the pseud0-differential operator with the symbol (1+|\xi|^{2})^{1/2} and
N is an arbitrary integer. By this fact and (3. 2) it implies that for all u\in

C_{0}^{\infty}(K)

| \xi^{0}|^{2m}\int|u|^{2}dx\leq C\int|p_{m}(x, \xi^{0})u|^{2}dx .

This implies that |\xi^{0}|^{m}\leq C’|p_{m}(x, \xi^{0})| for an interior point of K, since u is
arbitrary. This contradicts to non-elhpticity of (x_{0}, \xi^{0}) . This completes the
proof.

We shall start the proof of the implication i) to iii). We shall consider
the following statement instead of i).

i)’ Whatever s\in R and the point \rho\in T^{*}(X)\backslash 0 , there is a conic open
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neighbourhood \Gamma of \rho such that for all u\in^{c}\overline{z}^{i\prime}(X) if Pu\in H_{1oc}^{s}(X) and
WF(u)\subset\Gamma then u\in H_{1oc}^{s+m_{1}+m_{2}-2k/(k+1)}(X) .

Since it is clear i) arrow i)’ , we shall prove the implication i)’ to iii). Before
embarking on the proof, let us observe that all the statements are microl0-
cal. We shall therefore be reasoning in a conic open subset \Gamma of T^{*}(X)\backslash 0

which intersects \sum (in the complement of \sum L is elliptic, and there the vari-
ous statements are well known). Microlocalizing the pseud0-differential op-
erator L (see Section 2 in [11]), we may consider the second order pseud0-
differential operator M(x, t, D_{x}, D_{l}) given by

M(x, t, D_{x}, D_{t})=(D_{t}-ia(x, t, D_{x})t^{k})(D_{t}-ib(x, t, D_{x})t^{k})

+c(x, t, D_{x}, D_{t})t^{k-1}+t^{k}A(x, t, D_{x}, D_{t})

+B(x, t, D_{x}, D_{t})D_{t}+C(x, t, D_{x}, D_{l})

Here A\in L^{1}(R^{n}) and B, C\in L^{0}(R^{n}) . Moreover a(x, t, D_{x}) , b(x, t, D_{x}) are
pseud0-differential operators defined by the symbol a(x, t, \xi) , b(x, t, \xi) re-
spectively, where a, b are elements of S_{1,0}^{1}(R^{n}\cross R^{n-1}) and positively homogene-
ous of degree 1 when |\xi|\geq 1 and Rea>0 , Reb<0 . c(x, t, D_{x}, D_{t}) is a pseud0-
differential opetator with symbol c(x, t, \xi, \tau) which belongs to S_{1,0}^{1}(R^{n}\cross R^{n})

and is positively homogeneous of degree 1 when |(\xi, \tau)|\geq 1 . Futhermore we
may assume that a(x, t, \xi) , b(x, t, \xi) and c(x, t, \xi, \tau) have a compact support
with respect to x.

Suppose that there exist \rho\in\sum and the positive integer n such that

(H_{p_{m_{1}}})^{k-1}(r_{m_{1}+m_{2}-1}+i(1-(k+1)n)/k\{p_{m_{1}}, q_{m_{2}}\})(\rho)=0 .

Then by the proof of Proposition 3. 4 in [11] there exists (x_{0}, \xi^{0})\in T^{*}(R^{n-1})

such that

(3. 3) c(x_{0},0, \xi^{0},0)-(1-(k+1)n)(a-b)(x_{0},0, \xi^{0})=0 .

We may assume |\xi^{0}|\geq 1 . Let \mathscr{A}_{n}^{+}(x, t, \omega) be the function given by PropO-
sition 3. 1 and H_{n}^{+}(x, t, D_{x}) be the operator defined by (1. 1) with the symbol
\varphi(\xi)^{1/2(k+1)}h(x) -\swarrow_{n}^{+}(x, \varphi(\xi)^{1/(k\dagger 1)}t, \xi/\varphi(\xi)) , where h(x)\in C_{0}^{\infty}(R^{n-1}) and h(x)
=1 in the neghbourhood of x_{0} . Then by Proposition 2. 2 we have

(3. 4) M(x, t, D_{x}, D_{t})H_{n}^{+}(x, t, D_{x})=(D_{t}-ia(x, 0, D_{x})t^{k})

\cross(D_{t}-ib(x, 0, D_{x})t^{k})H_{n}^{+}

+c(x, 0, D_{x}, 0)\tilde{H}_{n}^{+}\varphi(D_{x})^{2/(k+1)}+R_{1} ,

where \tilde{H}_{n}^{+}(x, t, D_{x}) is the operator defined by a integral from (1. 1) with the
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symbol h(x)\varphi(\xi)^{1/2(k+1)}(\varphi(\xi)^{1/(k\dagger 1)}t)^{k-1}{?}_{n}^{+}(x, \varphi(\xi)^{1/(k+1)}t, \xi/\varphi(\xi)) and R_{1} is a
continuous operator from H_{\epsilon}^{s}(R^{n-1}) to H_{1oc}^{s-1/(k+1)}(R^{n}) for all s\in R . By
Lemma 2. 3 and (3. 4) it implies that

(3. 5) M(x, t, D_{x}, D_{t})H_{n}^{+}=H_{n}^{+}\Lambda(x, D_{x})+R_{2} ,

where \Lambda is a pseud0-differential operator with the symbol (c(x, 0, \xi/\varphi(\xi), 0)-

\langlel–(k+l) n) (a– b) (x, 0, \xi/\varphi(\xi)))\varphi(\xi)^{2/(k+\dot{1}\rangle} and R_{2} is a continuous operator
from H_{e}^{s}(R^{n-1}) to H_{1oc}^{s-1/(k+1)}(R^{n}) . From (3. 3) \Lambda(x, D_{x}) is not elliptic at (x_{0}, \xi^{0}) .
Therefore we can apply Lemma 1. 2 to \Lambda as m=2/(k+1) , \epsilon=1/(k+1) and
\Gamma_{0}=\pi(\Gamma) where \pi is the projection T^{*}(R^{n})arrow T^{*}(R^{n-1}) along (t, \tau) . Let f_{s}

be the distribution which satisfies the conditions of Lemma 3. 2 and supp
(f_{s})\subset supp(h) . Since WF(H_{n}^{+}f_{s})\subset\{(x, 0, \xi, 0) ; (x, \xi)\in WF(f_{s})\} , we have WF
(H_{n}^{+}f_{s})\subset\Gamma From (3. 5) we see that M(x, t, D_{x}, D_{t})H_{n}^{+}f_{s}\in H_{1oc}^{s-2/(k+1)}(R^{n}) .
Finally we observe that H_{n}^{+}f_{s}3H_{1oc}^{s}(R^{n}) , otherwise since by Proposition
2. 4 (H_{n}^{+})^{*}H_{n}^{+} is elliptic in supp(h), we should have f_{s}\in H_{loc}^{s}(R-) . This
contradicts the statement i)’ . We complete the proof of Theorem.

SUPPLEMENT. In the previous paper [11], we announced that the proof
of Proposition 2. 1 of [11] is verified in this paper. However, that is proved
in [12].
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