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1. Introduction.

In our previous paper we constructed parametrices for some double
characteristic pseudo-differential operators, whose characteristic sets are closed
conic manifolds of codimension 2 in the cotangent space. In this paper we
shall show that the condition of Theorem 1.2 in [1I] is necessary and suf-
ficient condition for existence of parametrices.

In order to describe the result more precisely we must recall some no-
tations and hypothese. Let X be a paracompact C* manifold of dimension
n and T*(X)\0O be the cotangential space minus the zero section. P (x, D)
is a properly supported classical pseudo-differential operator on X of order
m. We denote the principal symbol of P by pn(z, & =C*(T* (X)\0). For
arbitrary C*(T* (X)\0) functions f and g we denote the Poisson bracket of
f and ¢ by {f, 9} and the Hamilton vector field of f by H, For a non-
negative integer k and a connected closed conic non-involutory submanifold
Y of T*(X)\0 with codim Y=2, we use the notations M™*(3, X) and ¢
(P) for Pe M™*(3, X) when k is odd. These notations are defined in def-
inition 1.1 of [1I].

We consider the following properly supported pseudo-differential operator
L (x, D) with double characteristics given by
(1.1) L(x, D)= (P-Q)(zx, D)+R(x, D).

Here P M™% (3, Xj, Qe M™.* (3, Xj and Re Mm+m—1k-1(3, X),

In the following theorem we write A=B for operators A and B; &/
(X)—>2' (X)if A— B is an integral operator with the C*-kernel. We also write
diag (V)={(p, 0); p€V}(T* (X)\0) x (T* (X)\0) for any conic subset V of
T*(X)\0. Our statement is the following

THEOREM. Let L(x,D) be a double characteristic pseudo-differential
operator defined by (1.1), where k is an odd integer and o(P)=1, ¢(Q)=
—1. We assume that (H, ) gm, (x,§)=0 on X for I=1,---,k—1 and (H, )
Tmm,-1 (2, §)=0 on 3 for 1l:1, o, k—2 where k>1. Then the followz'nlg
statements are equivalent.
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1) For any real number s if uc%'(X) and Luc H3,,(X) then u belongs
to Hirmwtm—2k/Ge+D) (X))

i) There exists a properly supported linear operator F; %' (X)—Z%'
(X) which is continuous from H3,(X) to Hirstm—2"%+0(X) for all real s
such that

F.L(x,D)=L(x, D)F=1I and WF' (F)=diag (T* (X)\0), where I is the
identity in 2’ (X).

iti) Whatever the positive integer n, the function

(1. 2) (Hpml)k_l (rm,+m2—1 +14 {ng qm2}> (, §)

does not vanishes at any point of X, where A=(1—n(k+1))/k or —n(k+1)
[k and H;, s the identity.

1

REMARK. 1. When ¢(P)=—1 and o(Q)=1 then the condition iii) of
above changes the following statement.

ity Whatever the positive integer n, the function (1.2) does not van-
ishes on 3 when A=(1+ (n—1) (k+1))/k or (n—1) (k+1)/k.

2. If L(z, D) satisfies the condition iii) of then so does the
adjoint operator L* (x, D).

The present work is closely related to that of Boutet de Monvel and
Treves [2], [3], Boutet de Monvel and Sjostrand [10]. When k=1 they
showed the hypoellipticity and constructed parametrices of pseudo-differential
operators whose characteristic sets are non-involutory manifold. Our the-
orem is generalization of that in and partial extension of Theorem 8.6
in [4].

In our previous paper we showed that iii) implies ii). In order
to prove the implication i) to iii), Boutet de Monvel-Treves [2], used the
Hermite functions and their property essentially. However, when £>1 the
Hermite functions are not entirely useful. In stead of the Hermite functions
we use the functions which are the null solutions of ordinary differential
equations with smooth parameters (see [Proposition 3.1].). In the special case
these functions are equal to the Hermite functions.

2. Analytic preliminaries.

In this section we shall calculate some special Fourier integral operators,
which are pseudo-differential operators with smooth parameters.

We shall define a linear operator A; Cg (R*1)—C*(R" by an integral
formula |
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(2.1) Az, t, Dx)f — (Zn)—(n—l)Sei<x,e>gp (&)1/2¢+D
xa(2,0©% 1,6/p(©)) f @) dt,

where f stands for the Fourier transform of f&Cy(R*!) and the element
¢ (€) in C*(R*Y) is real non-zero function such that ¢ (§)=|¢| if |£§/>1 and
¢ (£)>|¢]. Moreover a(z,t, ®) is an element of C*(R"X4) and belongs to
the space 7 (R) of Schwarz as a function of ¢, where 4={wER"!; |0|<
2}). We remark that a(x, ¢ (§)V**tV ¢ &/p(6) belongs to 8% 4+n(R™ X R*™Y)
which is the space of the symbols introduced in [9]. We shall investigate
the properties of the operators given by (2. 1).

LemMma 1.1. If al(x,t,w) has a fixed compact support with respect to

z, then for an arbitrary positive integer N there exists a constant Cy such
that for all (y,§)€ R ' X R"1

2.2 0@ lal o @ 40t o @)
<CalL+l7,

where 4 means the Fourier transform with respect to z.

ProOOF. Put s=¢ (§)V**V¢, then we may show that

Slv“d (5, Elo (6))]Fds < C,

where |a/=N and |7|>1. Since a has a fixed compact support with respect
to x, by Schwarz’s inequality we see that

|9=d (9, s, € @ =

Se"i<”’5>D; a(z, s, &lp () dxf?
gcj,u;; a(z, s, &o @)Pdz.

Since D¢ a(x,s, &/¢(£)) belongs to C§(R*') uniformly with respect to s, &,
we get the inequality (2.2). This completes the proof.
By this lemma we can get the following

ProrosITION 2.2. For any real number s the operator A (z,t, D,) de-
fined in (2.1) is a continuous operator from H: (R*') to Hi, (R).

Proor. For arbitrary A (x, )eCg (R") and «<Cy (R*!) we shall show
that
(2. 3) |hAu || <Csllulls .

First we shall show (2.3) when s=0. Let f(x) and g () be element of
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Cy (R*Y) and Cf (R) respectively such that A(x,)=f(x)g () h(x,t). Since
HhAullo=||fghAu||,<Cj|lh(fA)ull, we may assume that a(xz,t,E&/p(f) has
a fixed compact support with respect to x. For an arbitrary element v (z, ¢)
of L?(R*) we get

KAu, v)| =

2ryo (o (@ 5 o rrasn x

a(x, ¢ V<01, &p (€) d (§) &< dx dt dél
@ry2n [[[ 8 (—n 0 g @rern
(18, 0 ©V*+D1, 8/ (&) 2 (E)dy di dtl .

Q

From Schwarz’s inequality we have
2.4 Kaw vp<ea = ({{[10(—nla+m—en
ayde ) ({[[ @ +1n-erg@eriat—e,

o EVE DL, &l (€)]2 1 (&) 2 dy e dt) .

By the second term in the right hand side of (2. 4) is estimated
by

Cffa+m—enlaepds ay.

SinceS(l—i—Iry—El)‘”dn andS(l—l—lr)—E!)‘” df is constant, we have (2.3) when
s=0. If we use (2.3) when s=0, we easily show that ||Dz D4 (hAw)|,<C
[|#|]1axst, Which implies that (2.3) holds for all non-negative integer s. We
remark that since by iii) of Theorem 1.4.1 in [9] A is a continuous map
from & (R*!) to £’ (R"), Au is well-defined for u= H:(R* ). Since Cy
(R*71) is a dense set of H*(R"!), we can regard the operator hA as a
continuous operator from H*(R*!) to H*(R® when s non-negative integer.
Therefore by standard interpolation between Sobolev spaces we get (2.3)
for all u H( R ') and any s>0. Let A* be the dual operator of A via

the sesquilinear fromj' fgdxdt. By same argument we see that A* is con-

tinuous operator from H?(R") to H$,.(R* 1) when s>0. From the duality
between H!(R") and Hi’ (R") we can show that A is continuous from
H:(R*Y) to Hi,(R" for any real s. This completes the proof.

Using the above proposition, we can show the following

LemMa 1.3, Let p(x, &) be an element of ST (R* ! X R*!) with compact



288 K. Yamamoto

support with respect to . If a(x,t,w) has a fixed compact support with
respect to x, then we can write

(2.5) Pz, D)+A(z,t, D)) u = Az, t, D,) u+Ru,
(2. 6) Az, t, Dy)+P(x, D)) u = A(x,t, Dy) u+ Rou.
Here R;(j=1,2) is a continuous linear operator from H?:(R"Y) to H{; "
(R and
A (z, t, D)u = (27)~ =D Sez'<x,e> @ (&)1/2k+D

a(z, ¢ €140 1,8/0 () p(x, &) A(E) de .
Proor. Since P(z, D,) is a continuous operator from C§7 (R*!) to Cy
(R*1), we have
Pz, D)) A(x, t, Do) uz, ) = (27)- @D Sem,» a(xt,8)

o (E)1/20+D 4 (&) g |
where d(x,t, &) =e" "> P(z, D,) (e"**> a(x, ¢ (§)V**V ¢, &/0 (£)). From Theo-
rem 2.6 in [8], we see that

b(a 1,8 = dlx 1,8~ p (4,6 D a0 V0 1, &/p €) fa!

ja)|<N

belongs to S7H#A, (R*X R*1Y). By the proof of Proposition 2. 2| the operator
defined by the symbol ¢ (§)V2%*2 p@ (g, &) D% a(x, ¢ (§)V** V¢, &/p (€))/a! is a con-
tinuous operator from H:(R*!) to H**'*'=™(R". For any s and any positive
integer M if we take a sufficiently large N, then the operator defined by
@ (&)V2®D b (z, ¢, &) is continuous from Hj (R*!) to C¥(R™. This shows that
R, has a desired property. By a similar way we can prove the equality
(2.6). This completes the proof.

ProrositioN 2.4. Let Al(x, t, D,) be an operator defined by (2.1).
Then the operator A*A is a pseudo-differential operator of order 0 and
type 1, 0. The principal symbol of (A*A) (x, D,) is given by

2.7) Sla (2, Elo (©)Pdt .

Proor. To prove this porposition we shall use the argument of vector
valued pseudo-differential operators (see Section 3 in [I1I]J). The operator

a(z,8) 2= @E*% a(z, (EV*P £, ¢/p (§)) 2
belongs to S°(R**'; C, L*(R)). Therefore the adjoint operator A* belongs
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to L°(R*'; L¥R),C) and its principal symbol is the operator

s (5, Qu (1) = ¢ 2 (@ (2,0 @4 1,610 ©) u O) .

This implies that the operator A*A belongs to L'(R*!; C,C) and its prin-
cipal symbol is equal to (2.7). This completes the proof.

3. The proof of Theorem

Since the implication of iii) to ii) was proved in [11], in this section
we shall prove the implication ii) to i) and 1) to iii).

It is easy to prove the implication ii) to i). Let k(x,y) be the distri-
bution kernel of F.L. Since F and L are properly supported operators,
both projections z,, 7,; suppk—X are proper. We may show that if z&
2’ (X) and LuesHj,, (X} then huc Hetmtm 2@ (X) for all heCf (X).
Let 4 be an element of C&(X) such that A=1 on supphUr,-z;* (supph).
Then we have hh=h and hFLu=hFLhu. Since FL=I+K where K is an
integral operator with C®-kernel, we see that hAFLu=hu+hKhu. The left
hand side belongs to Hetmitm-2/+0 (X) It implies that hu e Hetmitm: =2/ &+D
(X).

In order to prove the implication i) to ii) we shall prepare the following
two statements.

PropPOSITION 3.1. Let k be an odd integer and L,(x,t,®, D, be an
ordinary differential operator with parameter (x, w) given by

L,(x, t, w, D;) = (D,—ia(x, w) t*) (D,—ib (x, w) t*)
+2A(a—b) (x, w) t*71.

Here a(x,0) and b(x,w) are elements of C°(R*'X4) and Rea(zx,»)>0,
Reb (2, 0)<0. If 2= —1—(k+1) n for a positive integer n, then there exists
a non-trivial solution '} (z,t, ) such that

1) Ly(xt,e D) %} (x,t,w)=0.

i) &tz t,0) is an element of C*(R*x 4) and belongs to </ (R) as

a function of t.

i) &} (x,t, @ is even and real analytic as a function of t.
If A= —(k+1) n for some positive integer n, then there exists a non-trivial
solution ¢ 7 (x,t,w) such that i) and ii) holds and % ; (x,t, ) is odd and
real analytic as a function of t.

Proor. First we shall grantee the existence of the nontrivial null solu-

tion of L, when A=—1—(k+1) n or —(k+1) n for any positive integer n.
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We shall change variable; s=#*"1/(k4+1)=¢ (¢). Note that s varies only in
the non-negative half-line R,={s&R; s>0}. We seek functions w;} (s) and
w; (s) such that L, (w; +¢)=0 and L, (¢ (wj; +¢)) =0 in the whole real line when
=1—(k+1) n and g=—(k+1) n. By the easy computation (see [5]), L,
(w;+0)=0 and L, (¢ (w; +¢))=0 are equivalent to (L] wj])(s)=0 and (L;wy;)
(s)=0 respectively, where

L (z, s, w, D) = < —ia(x, w >< D;—ib(x, @ >

k+2 b+2(a—b)
+Z k+l s+<a k"l"l )(x, (0),

L; (z, s, 0, Dy) = < —ia(z, ® >< Ds;—1ib (z, » )

ka+p(a—b)
te k+1 ( k+1 )x’ @)

We shall apply the following theorem to L} and L;.

THEOREM (Theorem 2.3 in Chapter 3 of [1]). Let L (s, D) be an
ordinary differential operator given by

L (s, Dy) u (s) = P2(Dy) (su)+ P (D;) u

Here P'(D)=pi Di+ps p3€C(j=1,2) and P*(D)=D;+pi D;+p;, p5€C(
=0,1) such that the polynomial P?(t) has the roots t, and t_ with Im
1,0 and Im 7_<O0. If there exists a positive integer n such that P(z.)
=in (r,—1_), then the dimension of KerL and CokerL are 1 as an operator
from WP+ (R,) to H?(R,). Here p>Impi—3/2 and WP**(R,)={uc H?*!
(Ry); sus HP"*(R,)}.

Using this [Theorem, we continue the proof of [Proposition 3.1. By
above it implies that there exists a non-trivial solution w} (s) of
Liu=0 when 2=1—(k+1) n for all positive integer n and there also exists

a non-zero null solution w, of L, when p=—(k+1)n for any positive in-
teger n. By Sobolev’s lemma and trace theorem it implies that w} (s) and
w; (s) belong to C2(R,) when p>3. If we put Wi (t)=(w}+¢)() and W
(t)=t (w; +¢) (t), then they belong to C2?(R) and L, _¢ivnWi=L_gs0.W,
=0 in the whole real line.

It is clear that W} (x, ¢, ») and W (x, t, ») belong to L?(R) as a function
of t. Therefore by Theorem 2.2 in it implies that W} (z, ¢, w) and W,
(x,t, ) belongs to < (R) as a function of ¢. We shall show that W} («,
0,w) and oW /ot (x, 0, w) are non-zero for every (x, w)ER"'X4. Suppose
Wi (z, 0, w)=0 for some (x, w)ER*1x4. Since W} (z,¢ o) is an even func-
tion as a function of z, aW}/ot(x, t, w)=0. By the uniquness theorem of
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an ordinary differential operator it implies that W} (z,f, /=0 in some
neighbourhood of the original point of R. Since the coefficients of
Li_g+vn(z, t, 0, D,) are real analytic as a function of #, the null solution
of L,_g+1n is also real analytic (see Theorem 7.5.1 in [7]). By the unique
continuation theorem of real analytic function with one variable it implies
that W} (z,¢,w)=0 in the whole real line. This contradicts non-triviality
of W;(x,t,w). By a similar argument we have W /ot (x, 0, w)#0 for all
(z, ) ER1X 4.
Put
¥ (nt, o) =Wzt o/W(x0, o),
5 (xt,0) = W, (x, ¢, w)/(0W,/68) (z, 0, w) .

Then the statements i) and iii) are clear. we shall only prove that &
(x,t,®) and %7 (z,t, w) belongs to C*(R*xd). Since the initial condition
at t=0 is independent of a parameter (z, ®), by a well-known theorem of
an ordinary differential operator theory it implies that %} (x,¢, @) and &,
(z,t, ) belong to C*(R*x 4). This completes the proof.

ReEMARK. 1. If a(x,0)=1, b(x,0)=—1 and k=1, then &} (t) and
< 7 (t) are (2n—2)-th and (2n—1)-th Hermite function respectwely, where
j-th Hermite function H,(t) is defined by

H,(t) = (275" v2(9/ot —1)7 exp (—¢%/2) .

2. The following two statements are easily verfied by the definition
of &} (x,t,w) and &, (x, t, w).

i) For any sequences (ny, -++, ny) and (my, -+-, my) such that n;, m; are
positive integers with n;#n; and m;+m; if i#j, the function % 3, (z, t, w),
H (b, 0) (=1, N, j=1,- - M) are linear independent, i.e., if Zijc,-

ﬂj{z—l-z dj c,é//;,lj——_o then Ci:djzo (221, Y N’ J:]-, ] M)'
7
i) If b(x, w)=—a(x, w) then we have

S:}C(/: (z,t, w) & (2, t,0) " 1dt=0 for all n and m,

Su?/,f (2, t, w) L L (2, t, ) 51 dt=0 if n¥m.

LeMMA 3.2. Let P(x,D) be a classical pseudo-differential operator
with the principal symbol pn(x,€). We assume pu(x, §°)=0 for some point
of R*XR\{0}. Let I'y be an arbitrary open conic neighbourhood of (xo,
9. Then for any ¢>0 and all SER there exists f,€ H*(R") such that
P(z, D) f,e H™(R", f,& H*(R") and Wf(f)CI.
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Proor. Let F be the set of all u2’ (R") such that uc H**(R*), Pu
e H*™(R") and WF (u)CI',, We introduce in F the weakest topology mak-
ing the following map continuous;

FsH**(R"Y), F3u—PusH*™(R" and
Fou—AueC> (R,

where A is a properly supported pseudo-differential operator with WF (A)
NI'y=¢. If is clear F is a Fréchet space for we need only consider counta-
ble many choices of A and the completeness is obvious. Suppose that F
CH*(R"). Then by the closed graph theorem the inclusion map F¢, H*® (R")
is continuous. There exists properly supported pseudo-differential operators

A, -+, Ay with WF(A)NTy=¢ (j=1, ---, N) such that for all ucF

31 B IPuE -+ S (supl T D (Ag])).

Kj ]dlSNj

Here K; is a compact set of R and N, is a positive integer. Let K be
a compact set of R" such that X, is an interior point of K and KX {£% C
I, By the Sobolev’s lemma and (3.1) it implies for all x€C¥ (K)

3.2) B C (1Pt 1l B (A1 )

Set u;=e<*%*’>y. Then by the definition of pseudo-differential operator (see
Theorem 2.6 in [8]) we have

t—le—i<x’tfo> Qut_)QL (x, $0> u ’

when t—oo. Here Q is a pseudo-differential operator of order ! with the
principal symbol q; (z,£). Since WF (A,)N(K X {¢})=4¢,

tN'le—i<z,te°>ANj+[n/2]+1 Aju[;—0 as t—oo,

where /4 is the pseudo-differential operator with the symbol (14 |&[2)!/2 and

N is an arbitrary integer. By this fact and (3. 2) it implies that for all v
Cs (K)

|5012m§ lulzdeCSIPm (z, &) ul d.

This implies that || <C'|pn (x, €% for an interior point of K, since u is
arbitrary. This contradicts to non-ellipticity of (xy, £%. This completes the
proof.

We shall start the proof of the implication i) to iii). We shall consider
the following statement instead of i).

if Whatever s&R and the point p&T* (X)\0, there is a conic open
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neighbourhood I of p such that for all u€2' (X) if PuesH;3, (X) and
WF (u)C I’ then ue Hifmtm2/G+D (X)),

Since it is clear i)—i), we shall prove the implication i) to iii). Before
embarking on the proof, let us observe that all the statements are microlo-
cal. We shall therefore be reasoning in a conic open subset I" of T* (X)\0
which intersects > (in the complement of > L is elliptic, and there the vari-
ous statements are well known). Microlocalizing ‘the pseudo-differential op-
erator L (see Section 2 in [11]), we may consider the second order pseudo-
differential operator M(x, ¢, D,, D,) given by ’

M(z,t,D,, D) = (Di—ia(z, t, D,) ) (D,—ib (, t, D)) t*)

+c(z,t, D, D,) t* ' 4+t* A (x, t, D,, D))
+B<x’ t} Dx’ Dt) Dt+C(x’ t, D.m Dt) .

Here A=L'(R") and B, CeL’(R"). Moreover al(x,t,D,), b(x,t,D,) are
pseudo-differential operators defined by the symbol a(x,t,¢), b(x, ¢, &) re-
spectively, where a, b are elements of S}, (R” X R*"!) and positively homogene-
ous of degree 1 when |§|>1 and Rea>0, Reb<0. c(x,t, D,, D,) is a pseudo-
differential opetator with symbol c(z,¢, & 7) which belongs to S}, (R*X R"
and is positively homogeneous of degree 1 when |(§,7)|>1. Futhermore we
may assume that a(x,t,€), b(x,t,€) and c(x, 1, & 7) have a compact support
with respect to z.

Suppose that there exist p ), and the positive integer n such that

(Hpp )=t (Tmympmr 3 (1= (k+1) 2)/k (P> G }) (0)=0.

Then by the proof of Proposition 3.4 in there exists (xy, £ T* (R*Y)
such that

(3.3) ¢ (20, 0, €%, 0)— (1—(k+1) ) (a—b) (zr, 0,89 =0.

We may assume [§°|>1. Let & (x,¢, w) be the function given by Propo-
sition 3.1 and H} (x,¢, D,) be the operator defined by (1.1) with the symbol
@ GV h(x) 5 (2, 0 (§)V*P L, Elp (€), where h(x)ECT (R and h(x)
=1 in the neghbourhood of x,, Then by [Proposition 2.2 we have

(3. 4) M (z,t, D,, D) H} (z,t, Dy) = (D, —ia(x, 0, Dy) t*)
X (Dt—z’b (2,0, D,) t*) Hy
+¢(z,0, Dy, 0) H3 ¢ (D)¥*°+R,,
where H} (z,t, D,) is the operator defined by a integral from (1. 1) with the
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symbol A (x) g (E)V2F+ (o (V& =1 gt (z, 0 (EV*+D 1, £l () and R, is a
continuous operator from H?!(R*Y) to H/**Y (R for all s&eR. By
Lemma 2.3 and (3.4) it implies that

(3. 5) M(z,t,D,, D) Hf = H} A(x, D,)+R,,

where /4 is a pseudo-differential operator with the symbol (c(z, 0, &/¢ (¢), 0)—
(1—(k+1) n) (a—b) (z,0,&/p(8) ¢ (&)Y ®+D and R, is a continuous operator
from H: (R 1) to H/**D(R*. From (3.3) A(x, D,) is not elliptic at (x,, &°).
Therefore we can apply Lemma 1.2 to 4 as m=2/(k+1), e=1/(k+1) and
v=n () where = is the projection T* (R")—T*(R""!) along (¢,7). Let f;
be the distribution which satisfies the conditions of and supp
(f)Csupp (h). Since WF (H} f;)C{(x,0,&,0); (x, ) €WF(f,)}, we have WF
(Hf fycI'. From (3.5) we see that M(x,t, D,, D)) H} f,€ HiJ/**Y (R").
Finally we observe that H} f,3 Hj, (R"), otherwise since by
2.4 (H})*H} is elliptic in supp (h), we should have fye Hj, (R*!). This
contradicts the statement if. We complete the proof of

SuppLEMENT. In the previous paper [11I], we announced that the proof
of Proposition 2.1 of is verified in this paper. However, that is proved

in .
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