A remark on a closed hypersurface with constant second mean curvature in a Riemann space

By Tsunehira KOYANAGI

(Received June 15, 1977)

Introduction. Y. Katsurada ([6]¹⁾, [5]) proved the following two theorems:

THEOREM A. Let V^m be a closed orientable hypersurface in an Einstein space which admits a conformal Killing vector field ξ^i . If

(i) H_1 is constant,

(ii) $N_i \xi^i$ has fixed sign on V^m ,

then every point of V^m is umbilic, where H_1 and N_i denote the first mean curvature of V^m and the covariant component of the unit normal vector to V^m respectively.

THEOREM B. Let V^m be a closed orientable hypersurface in a Riemann space of constant curvature which admits a conformal Killing vector field ξ^i . If

(i) H_{ν} is constant for a fixed ν $(2 \leq \nu \leq m-1)$,

(ii) k_1, k_2, \dots, k_m are positive at each point on V^m ,

(iii) $N_i \xi^i$ has fixed sign on V^m ,

then every point of V^m is umbilic, where k_{α} ($\alpha = 1, 2, \dots, m$) and H_{ν} denote the principal curvature and the ν -th mean curvature of V^m respectively.

The present author [8] proved

THEOREM C. Let V^m be a closed orientable hypersurface in a Riemann space which admits a conformal Killing vector field ξ^i . If

(i) H_2 is constant,

(ii) k_1, k_2, \dots, k_m are positive at each point on V^m ,

(iii) $C^{\alpha}_{\beta,\alpha}^{(2)}=0$ on V^m ,

(iv) $N_i \xi^i$ has fixed sign on V^m ,

then every point of V^m is umbilic.

It is one of the interesting problems for us to find the conditions that

¹⁾ Numbers in brackets refer to the references at the end of the paper.

²⁾ $C_{\alpha\beta}$ are defined by $b_7^{\gamma} b_{\alpha\beta} - b_{\alpha}^{\gamma} b_{7\beta}$, where, $b_{\alpha\beta}$ and $g^{\alpha\beta}$ denoting the covariant component of the second fundamental tensor and the contravariant component of the metric tensor of V^m respectively, $b_7^{\gamma} = b_{\alpha\beta} g^{\alpha\beta}$ and $b_{\alpha}^{\gamma} = b_{\alpha\beta} g^{\beta\gamma}$. And $C^{\alpha}{}_{\beta;\alpha} = C_{\alpha\beta;\gamma} g^{\alpha\gamma}$, where the symbol ";" means the covariant derivative.

an umbilical hypersurface in a Riemann space is isometric to a sphere. On this problem, the following theorems were proved by Y. Katsurada [7]:

THEOREM A-1. Let V^m be a closed orientable hypersurface in an Einstein space R^{m+1} which admits a conformal Killing vector field ξ^i , i.e., $\xi_{i;j} + \xi_{j;i} = 2\Phi G_{ij}^{3}$. If

(i) H_1 is constant,

(ii) $N_i \Phi^i$ has fixed sign on V^m and is not constant along V^m ,

then V^m is isometric to a sphere, where Φ^i denote $G^{ij}\Phi_{jj}$.

THEOREM A-2. Let V^m be a closed orientable hypersurface in an Einstein space which admits a conformal Killing vector field ξ^i . If

(i) H_1 is constant,

(ii) $N_i \xi^i$ has fixed sign on V^m ,

(iii) Φ is not constant along V^m ,

then V^m is isometric to a sphere.

THEOREM B-1. Let V^m be a closed orientable hypersurface in a constant curvature space which admits a conformal Killing vector field ξ^i . If

(i) H_{ν} is constant for a fixed ν $(2 \leq \nu \leq m-1)$,

(ii) k_1, k_2, \dots, k_m are positive at each point on V^m ,

(iii) $N_i \Phi^i$ has fixed sign on V^m and is not constant along V^m , then V^m is isometric to a sphere.

THEOREM B-2. Let V^m be a closed orientable hypersurface in a constant curvature space which admits a conformal Killing vector field ξ^i . If

(i) H_{ν} is constant for a fixed ν $(2 \leq \nu \leq m-1)$,

(ii) k_1, k_2, \dots, k_m are positive at each point on V^m ,

(iii) $N_i \xi^i$ has fixed sign on V^m ,

(iv) Φ is not constant along V^m ,

then V^m is isometric to a sphere.

To prove Theorem B, C, B-1 and B-2, the restriction that at each point on V^m , the principal curvature k_1, k_2, \dots, k_m of V^m are postive plays a very important role. But, for Theorem A, A-1 and A-2, this restriction is not necessary. The purpose of the present paper is to prove some theorems except its restriction for closed orientable hypersurfaces with positive constant second mean curvature. § 1 is devoted to give notations and fundamental formulas in the theory of hypersurfaces in a general Riemann space R^{m+1} . In § 2 we derive the integral formulas which are valid for a closed orientable hypersurface in R^{m+1} . In § 3 we apply the integral formulas obtained in § 2 to a closed orientable hypersurface whose

³⁾ G_{ij} denote the covariant component of the metric tensor of \mathbb{R}^{m+1} .

second mean curvature H_2 is positive constant, and give some theorems. In the last section 4, making use of results obtained in § 3, we give characteristic properties of a hypersurface which is isometric to a sphere.

The present author wishes to express his very sincere thanks to Professor Y. Katsurada for her valuable advices and kind guidances.

§1. Notations and fundamental formulas.

We consider an (m+1)-dimensional Riemann space R^{m+1} of class C^r $(r \ge 3)$ with the positive definite metric tensor G_{ij} , which admits a continuous one-parameter transformation group G of R^{m+1} generated by an infinitesimal transformation

$$\bar{x}^i = x^i + \xi^i(x) \,\delta\tau^{4},$$

where x^i are local coordinates in \mathbb{R}^{m+1} . If the generating vector field ξ^i satisfies the equation

$$\pounds_{\xi} G_{ij} \equiv \xi_{i;j} + \xi_{j;i} = 2 \varPhi G_{ij} \qquad (\xi_i = G_{ij} \xi^j)$$

for a scalar field Φ in \mathbb{R}^{m+1} , ξ^i is called a conformal Killing vector field and G a conformal transformation group, where $\pounds G_{ij}$ denotes the Lie derivative of the metric tensor G_{ij} with respect to ξ^i .

We now consider a closed orientable hypersurface $V^m(m \ge 3)$ imbedded in \mathbb{R}^{m+1} whose local expression is

$$x^i = x^i(u^{\alpha}),$$

where u^{α} are local coordinates on V^{m} . If we put

$$B^i_{\alpha}=\frac{\partial x^i}{\partial u^{\alpha}},$$

then $B_1^i, B_2^i, \dots, B_m^i$ are *m* linearly independent vectors tangent to V^m , and the covariant component $g_{\alpha\beta}$ of the metric tensor of V^m are given by

$$g_{\alpha\beta} = G_{ij} B^i_{\alpha} B^i_{\beta}.$$

And we choose the unit vector N^i normal to V^m in such a way that

$$B_1^i, B_2^i, \cdots, B_m^i, N^i$$

give the positive orientation in V^m .

Denoting by ";" the operation of covariant differentiation due to van

⁴⁾ Throughout this paper Latin indices take the values 1 to m+1 and Greek indices the values 1 to m.

T. Koyanagi

der Waerden-Bortolotti, we have the following Gauss's formula and Weingarten's formula :

$$(1.1) B^i_{\alpha;\beta} = b_{\alpha\beta} N^i,$$

(1.2)
$$N^i_{;\alpha} = -b_{\alpha}{}^{\beta}B^i_{\beta},$$

where $b_{\alpha\beta}$ is the second fundamental tensor of V^m and $b_{\alpha}^{\ \beta} = b_{\alpha\gamma} g^{\gamma\beta}$. We also obtain the equations of Gauss

(1.3)
$$R_{\alpha\beta\gamma\delta} = b_{\alpha\delta}b_{\beta\gamma} - b_{\alpha\gamma}b_{\beta\delta} + K_{ijkl}B_{\alpha}^{i}B_{\beta}^{i}B_{\gamma}^{k}B_{\delta}^{l}$$

for hypersurface V^m , where $R_{\alpha\beta\gamma\delta}$, K_{ijkl} is the covariant component of the curvature tensor of V^m and of R^{m+1} respectively.

If we denote by k_1, k_2, \dots, k_m the principal curvatures of V^m , that is, the roots of the characteristic equation

$$\det\left(b_{\alpha\beta}-kg_{\alpha\beta}\right)=0,$$

then the ν -th mean curvature H_{ν} of V^m is defined to be the ν -th elementary symmetric function of k_1, k_2, \dots, k_m divided by the number of terms, that is,

$$\binom{m}{\nu}H_{\nu} = \sum_{\alpha_1 < \alpha_2 < \cdots < \alpha_{\nu}} k_{\alpha_1} k_{\alpha_2} \cdots k_{\alpha_{\nu}} \qquad (1 \leq \nu \leq m).$$

From the above definition, the first mean curvature H_1 , the second mean curvature H_2 and the third mean curvature H_3 of V^m are respectively given by

(1.4)
$$mH_1 = \sum_{\alpha} k_{\alpha} = b_{\alpha}^{\alpha}$$
,

(1.5)
$$\binom{m}{2}H_2 = \sum_{\alpha < \beta} k_\alpha k_\beta = \frac{1}{2} \left\{ (b_\alpha^{\ \alpha})^2 - b_\alpha^{\ \beta} b_\beta^{\ \alpha} \right\}$$

and

(1.6)
$$\binom{m}{3}H_3 = \sum_{\alpha < \beta < \gamma} k_{\alpha} k_{\beta} k_{\gamma} = \frac{1}{3!} \left\{ (b_{\alpha}^{\ \alpha})^3 + 2b_{\alpha}^{\ \beta} b_{\beta}^{\ \gamma} b_{\gamma}^{\ \alpha} - 3b_{\alpha}^{\ \alpha} (b_{\beta}^{\ \gamma} b_{\gamma}^{\ \beta}) \right\},$$

where $b_{\alpha}^{\ \alpha} = b_{\alpha\beta}g^{\alpha\beta}$ and $b_{\alpha}^{\ \beta} = b_{\alpha\gamma}g^{\gamma\beta}$.

§ 2. Some integral formulas for a closed orientable hypersurface in \mathbb{R}^{m+1} .

At the each point of the hypersurface V^m we can put as follows

(2.1)
$$\boldsymbol{\xi}^{i} = B^{i}_{\boldsymbol{\alpha}} \boldsymbol{\xi}^{\boldsymbol{\alpha}} + \Theta N^{i}$$

for some vector ξ^{α} and scalar Θ on V^m . Since $G_{ij}B^i_{\alpha}N^j = 0$, it follows immediately that

$$\xi_{\alpha}=B^i_{\alpha}\xi_i,$$

where $\xi_{\alpha} = \xi^{\beta} g_{\beta\alpha}$ and $\xi_i = \xi^j G_{ji}$. We differentiate covariantly the above equation along V^m , making use of (1.1) and (2.1), we get

$$\xi_{\alpha;\beta} = b_{\alpha\beta}\Theta + B^i_{\alpha}B^j_{\beta}\xi_{i;j}.$$

Multiplying both sides by the contravariant metric tensor $g^{\alpha\beta}$ of V^m , contracting and using (1.4), we get

(2.2)
$$\xi_{\alpha;\beta}g^{\alpha\beta} = mH_1\Theta + \frac{1}{2}g^{\alpha\beta}B^i_{\alpha}B^j_{\beta} \underset{\xi}{\pounds}G_{ij}.$$

If we put

(2.3)
$$\mathbf{\pounds}_{\boldsymbol{\xi}} g_{\boldsymbol{\alpha}\boldsymbol{\beta}} = B^i_{\boldsymbol{\alpha}} B^j_{\boldsymbol{\beta}} \mathbf{\pounds}_{\boldsymbol{\xi}} G_{ij} ,$$

then (2, 2) is rewritten as follows:

$$\frac{1}{m}\xi^{\alpha}_{;\alpha} \equiv \frac{1}{m}\xi_{\alpha;\beta}g^{\alpha\beta} = H_1\Theta + \frac{1}{2m}g^{\alpha\beta} \pounds g_{\alpha\beta}.$$

Since V^m is orientable and closed, we have

$$\int_{V^m} \xi^{\alpha}_{;\alpha} dA = 0 ,$$

where dA is the area element of V^m [10]. Hence we obtain the following integral formula:

(2.4)
$$\int_{v^m} H_1 \Theta dA + \frac{1}{2m} \int_{v^m} g^{\alpha\beta} \pounds g_{\alpha\beta} dA = 0.$$

Next, if we put

$$\eta_{\beta} = 2C_{\beta}^{\ \alpha}B_{\alpha}^{i}\xi_{i},$$

where the symbols $C_{\beta r}$ are the component of the symmetric tensor of V^m defined by

$$(2.5) C_{\beta\gamma} = b_{\alpha}^{\ \alpha} b_{\beta\gamma} - b_{\beta}^{\ \alpha} b_{\alpha\gamma},$$

and $C_{\beta}^{\alpha} = C_{\beta} g^{r\alpha}$, then we have, by covariant differentiation along V^{m} and using (1.1),

$$\eta_{\beta;\gamma} = 2C_{\beta;\gamma}^{a} B_{a}^{i} \xi_{i} + 2C_{\beta}^{a} b_{a\gamma} \Theta + 2C_{\beta}^{a} B_{a}^{i} B_{\gamma}^{k} \xi_{i;k} .$$

Multiplying both sides by $g^{\beta r}$ and summing for β and \tilde{r} , we get

(2.6)
$$\eta_{\beta;\tau} g^{\beta\tau} = 2C_{\beta;\tau}^{\alpha} g^{\beta\tau} B^i_{\alpha} \xi_i + 2C_{\beta}^{\alpha} b_{\alpha}^{\beta} \Theta + C^{\tau\alpha} B^i_{\alpha} B^k_{\tau} \pounds G_{ik}.$$

On the other hand, from (1.4) and (1.5), the equation (1.6) is also rewritten as follows:

T. Koyanagi

(2.7)
$$2C_{\beta}^{r}b_{r}^{\beta} = m(m-1)\{mH_{1}H_{2}-(m-2)H_{3}\}.$$

Consequently, by substituting (2.7) and (2.3) into (2.6), we find that

$$\eta^{\boldsymbol{\beta}}_{;\boldsymbol{\beta}} = 2C^{\boldsymbol{\beta}\boldsymbol{\alpha}}_{;\boldsymbol{\beta}}B^{i}_{\boldsymbol{\alpha}}\boldsymbol{\xi}_{i} + m(m-1)\left\{mH_{1}H_{2}-(m-2)H_{3}\right\}\boldsymbol{\Theta} + C^{\boldsymbol{\beta}\boldsymbol{\alpha}} \underset{\boldsymbol{\xi}}{\boldsymbol{\xi}}g_{\boldsymbol{\alpha}\boldsymbol{\beta}},$$

where $C^{\beta\alpha}_{;\beta} = C^{\alpha}_{\beta;\gamma} g^{\beta\gamma}$, and further, since $m \ge 3$, we may write it

$$\begin{aligned} \frac{1}{m(m-1)} \eta^{\beta}{}_{;\beta} &= \frac{2}{m(m-1)} C^{\beta \alpha}{}_{;\beta} B^{i}_{\alpha} \xi_{i} + \left\{ mH_{1}H_{2} - (m-2)H_{3} \right\} \Theta \\ &+ \frac{1}{m(m-1)} C^{\beta \alpha} \pounds g_{\alpha \beta} \,. \end{aligned}$$

Therefore, since V^m is orientable and closed, we get the required integral formula

(2.8)
$$\frac{2}{m(m-1)} \int_{V^m} C^{\beta \alpha}_{;\beta} B^i_{\alpha} \xi_i dA + \int_{V^m} \left\{ m H_1 H_2 - (m-2) H_3 \right\} \Theta dA + \frac{1}{m(m-1)} \int_{V^m} C^{\beta \alpha} \pounds_{\xi} g_{\alpha\beta} dA = 0.$$

We now assume that the vector field ξ^i is conformal, that is, $\underset{\xi}{\mathbf{\pounds}} G_{ij} = 2\mathbf{\Phi}G_{ij}$, then (2.4) becomes

(2.9)
$$\int_{V^m} H_1 \Theta dA + \int_{V^m} \Phi dA = 0$$

and, since it follows, from (1.5) and (2.5), that $C_{\beta r} g^{\beta r} (=C_{\beta}^{\beta}) = m(m-1) H_2$, (2.8) becomes

(2.10)
$$\frac{2}{m(m-1)} \int_{V^m} C^{\beta \alpha}{}_{;\beta} B^i_{\alpha} \xi_i dA + \int_{V^m} \{mH_1 H_2 - (m-2) H_3\} \Theta dA + 2 \int_{V^m} \Phi H_2 dA = 0,$$

where the integral formula (2.9) is due to Y. Katsurada [5].

§ 3. Closed orientable hypersurfaces with H_2 =positive constant.

From (1.5) and (1.4), it follows that

(3.1)
$$m^2 H_1^2 = m(m-1) H_2 + b_{\alpha}^{\beta} b_{\beta}^{\alpha},$$

and then the second term of the right hand member has non-negative sign, because of $b_{\alpha}{}^{\beta}b_{\beta}{}^{\alpha} = b_{\alpha\beta}b^{\alpha\beta}$. If we assume that the second mean curvature H_2 is positive constant, then the left hand member of (3.1) is positive,

102

that is, there exists not any point P on V^m satisfying $H_1(P) = 0$. Accordingly, since the differentiability of H_1 on the closed hypersurface V^m is assumed, H_1 must have fixed sign on V^m . Therefore we have

LEMMA 3.1 If the second mean curvature H_2 is positive constant, then the first mean curvature H_1 has fixed sign on V^m .

Now we shall prove the following theorem :

THEOREM 3.2 Let V^m be a closed orientable hypersurface in a Riemann space R^{m+1} which admits a conformal Killing vector field ξ^i . If

(i) H_2 is positive constant,

(ii)
$$C^{\alpha}_{\beta;\alpha} = 0$$
 on V^{m} ,

(iii) $N_i \xi^i (=\Theta)$ has fixed sign on V^m ,

then every point of V^m is umbilic.

Proof. Multiplying the formula (2.9) in §2 by $2H_2(=$ positive constant), we obtain

$$\int_{V^m} 2H_1 H_2 \Theta dA + 2 \int_{V^m} \Phi H_2 dA = 0 ,$$

and subtracting the above formula from (2.10), we find

$$\frac{2}{m(m-1)} \int_{\mathcal{V}^{m}} C^{\beta_{\alpha}}_{;\beta} B^{i}_{\alpha} \xi_{i} dA + (m-2) \int_{\mathcal{V}^{m}} \{H_{1}H_{2} - H_{3}\} \Theta dA = 0.$$

And, from the assumption $C^{\beta\alpha}_{;\beta} = 0$ and $m \ge 3$, we have

(3. 2)
$$\int_{V^{m}} \{H_{1}H_{2}-H_{3}\}\Theta dA = 0$$

Moreover, since $H_1 \neq 0$ for any point on V^m , the scalar field on V^m defined by $H_1H_2-H_3$ is rewritten as follows:

(3.3)
$$H_1H_2 - H_3 = \frac{1}{H_1} \left\{ H_2(H_1^2 - H_2) + (H_2^2 - H_1H_3) \right\}.$$

On the other hand, we know the fact that

$$H_{\scriptscriptstyle \nu}^{\scriptscriptstyle 2} - H_{\scriptscriptstyle \nu-1} H_{\scriptscriptstyle \nu+1} \ge 0 \qquad (\nu = 1, \, 2, \, \cdots, \, m-1) \; ([1], \; [3]) \, ,$$

where $H_0 = 1$. As a special case, we see that

$$H_1^2 - H_2 \ge 0$$
 and $H_2^2 - H_1 H_3 \ge 0$.

Accordingly, making use of the assumption $H_2 = \text{positive constant}$ and Lemma 3.1, from (3.3) we have that $H_1H_2-H_3 \ge 0$ (or ≤ 0) on V^m . Hence, from (3.2), we find that T. Koyanagi

$$H_1H_2-H_3=0$$
 on V^m ,

from which, by virtue of (3.3), we get

$$H_2(H_1^2 - H_2) + (H_2^2 - H_1 H_3) = 0$$
 on V^m .

On making use of $H_2(H_1^2-H_2) \ge 0$ and $H_2^2-H_1H_3 \ge 0$ on V^m , we obtain $H_2(H_1^2-H_2)=0$, from which

$$H_1^2 - H_2 = 0$$
.

Therefore, from $H_1^2 - H_2 = \frac{1}{m^2(m-1)} \sum (k_{\alpha} - k_{\beta})^2$, we find that

$$k_1 = k_2 = \cdots = k_m$$

at each point on V^m . (Then we have $H_1 = k_1$, $H_2 = k_1^2$ and $H_3 = k_1^3$, from which we get $H_2^2 - H_1 H_3 = 0$.) This is the required result.

We now assume that the Riemann space R^{m+1} is an Einstein space: $K_{jk} = \frac{K}{m+1}G_{jk}$, where $K_{jk}(=K_{ijkl}G^{il})$ and $K(=K_{jk}G^{jk})$ are the Ricci tensor and the scalar curvature of R^{m+1} respectively. Multiplying (1.3) by $g^{\alpha j}$ and summing for α and δ , we have

$$R_{\beta r} = b_{\alpha}^{\ \alpha} b_{\beta r} - b_{\beta}^{\ \alpha} b_{\alpha r} + K_{ijkl} B_{\alpha}^{i} B_{\beta}^{j} B_{r}^{k} B_{\delta}^{l} g^{\alpha \delta} ,$$

where $R_{\beta\gamma}$ is the Ricci tensor of V^m . Remembering $C_{\beta\gamma} = b_{\alpha}^{\ \alpha} b_{\beta\gamma} - b_{\beta}^{\ \alpha} b_{\alpha\gamma}$ and $g^{\alpha\delta} B^i_{\alpha} B^j_{\delta} = G^{il} - N^i N^i$, we can write in the form

$$R_{\boldsymbol{\beta}\boldsymbol{r}} = C_{\boldsymbol{\beta}\boldsymbol{r}} + K_{jk} B_{\boldsymbol{\beta}}^{j} B_{\boldsymbol{r}}^{k} - K_{ijkl} N^{i} B_{\boldsymbol{\beta}}^{j} B_{\boldsymbol{r}}^{k} N^{l} .$$

Accordingly, because of an Einstein space, we obtain

$$R_{\beta r} = C_{\beta r} + \frac{K}{m+1} g_{\beta r} - K_{ijkl} N^i B^j_{\beta} B^k_r N^l.$$

Moreover, multiplying by $g^{\beta \gamma}$ and summing for β and γ , we have

$$R = C_{\beta r} g^{\beta r} + \frac{mK}{m+1} - K_{ii} N^i N^i,$$

where R is the scalar curvature of V^m . Since R^{m+1} is also an Einstein space and $C_{\beta r} g^{\beta r} (=C_{\beta}^{\beta}) = m(m-1) H_2$, we obtain

$$R = m(m-1) H_2 + \frac{m-1}{m+1} K.$$

Therefore, remembering the fact that the scalar curvature K in an Einstein space is constant, we finally reach the following

LEMMA 3.3 Let V^m be a hypersurface in an Einstein space \mathbb{R}^{m+1} .

104

Then, necessary and sufficient condition that the second mean curvature H_2 be constant is that the scalar curvature R of V^m be constant.

Next, as a special case of it, let R^{m+1} be a Riemann space of constant curvature $\kappa : K_{ijkl} = \kappa(G_{il}G_{jk} - G_{ik}G_{jl})$, where $\kappa = \frac{K}{m(m+1)}$. Then, the equation of Gauss (1.3) is written in the form

$$R_{a\beta_{l}\delta} = b_{a\delta}b_{\beta_{l}} - b_{ar}b_{\beta_{l}} + \kappa(g_{a\delta}g_{\beta_{l}} - g_{ar}g_{\beta_{l}}).$$

Similarly, multiplying by $g^{\alpha\delta}$ and summing for α and δ , we have

$$R_{\beta r} = C_{\beta r} + (m-1) \kappa g_{\beta r}.$$

By covariant differentiation along V^m , we get

$$R_{\boldsymbol{\beta}_{\boldsymbol{r};\boldsymbol{\alpha}}} = C_{\boldsymbol{\beta}_{\boldsymbol{r};\boldsymbol{\alpha}}} + (m-1) \, \boldsymbol{\kappa}_{\boldsymbol{\boldsymbol{\pi}}} g_{\boldsymbol{\beta}_{\boldsymbol{r}}} \, .$$

Since κ is constant, we obtain

$$R_{\beta r;\alpha} = C_{\beta r;\alpha},$$

and, moreover, multiplying by $g^{\beta\alpha}$ and summing for β and α , we have $R_{\beta\gamma;\alpha}g^{\beta\alpha} = C_{\beta\gamma;\alpha}g^{\beta\alpha}$, that is,

(3. 4) $R^{\beta}_{r;\beta} = C^{\beta}_{r;\beta}.$

On the other hand, as well-known, the following equation is valid for any Riemann space:

(3.5)
$$R^{\boldsymbol{\beta}}_{\boldsymbol{r};\boldsymbol{\beta}} = \frac{1}{2} R_{;\boldsymbol{r}} \left(= \frac{1}{2} \frac{\partial R}{\partial u^{\boldsymbol{r}}} \right).$$

Accordingly, from (3. 4) and (3. 5), we have

$$C^{\boldsymbol{\beta}}_{\boldsymbol{r};\boldsymbol{\beta}} = \frac{1}{2} R_{;\boldsymbol{r}}.$$

Consequently, it follows from Lemma 3.3 that, if the second mean curvature H_2 is constant, then $C^{\beta}_{r;\beta} = 0$. Therefore, as a special case of the Theorem 3.2, we conclude the following

COROLLARY 3.4 Let V^m be a closed orientable hypersurface in a Riemann space of constant curvature which admits a conformal Killing vector field ξ^i . If

(i) H_2 is positive constant,

(ii) $N_i \xi^i (=\Theta)$ has fixed sign on V^m , then every point of V^m is umbilic.

§ 4. Characteristic properties of a hypersurface which is isometric to a sphere.

To prove that the hypersurface is isometric to a sphere, we use the following theorem due to M. Obata [9].

THEOREM D. Let V^m $(m \ge 2)$ be a complete Riemannian manifold which admits a non-null function φ such that

 $\varphi_{;\alpha;\beta} = -c^2 \varphi g_{\alpha\beta} \qquad (c = constant).$

Then V^m is isometric to a sphere of radius 1/c.

Now we consider an Einstein space R^{m+1} which has the scalar curvature $K \neq 0$ and admits a proper conformal Killing vector field ξ^i , that is, ξ^i satisfies an equation:

$$\oint_{\xi} G_{ij} = \xi_{i;j} + \xi_{j;i} = 2 \varPhi G_{ij} \,.$$

Then the Lie derivative of the curvature tensor K^{h}_{ijk} with respect to ξ^{i} is given by

where $\Phi_i = \Phi_{;i}$, $\Phi^i = G^{ij} \Phi_j$ and δ^i_j is the Kronecker delta. Since R^{m+1} is an Einstein space, we have

(4.2)
$$K_{ij} = \frac{K}{m+1} G_{ij}$$
 (K = constant).

Making use of (4.1) and (4.2), after some calculations we obtain the following result:

(4.3)
$$\Phi_{i;j} = \rho \Phi G_{ij} \qquad \left(\rho = -\frac{K}{m(m+1)}\right),$$

and then, by virtue of (4.2) and the assumption $K \neq 0$, we see that $\rho =$ non-zero constant. Consequently, we find that the Einstein space R^{m+1} admitting the proper conformal Killing vector field ξ^i must always admit the vector field Φ^i satisfying (4.3), which is the special conformal Killing vector field.

THEOREM 4.1 Let \mathbb{R}^{m+1} be an Einstein space with $K \neq 0$ which admits a conformal Killing vector field ξ^i and V^m a closed orientable hypersurface such that

- (i) H_2 is positive constant,
- (ii) $C^{\alpha}_{\beta;\alpha} = 0$ on V^{m} ,

(iii) $N_i \Phi^i$ has fixed sign on V^m and is not constant along V^m . Then V^m is isometric to a sphere. Proof. (This method is due to Y. Katsurada [7].) By virtue of Theorem 3.2, every point of V^m is umbilic, that is,

$$k_1=k_2=\cdots=k_m\,,$$

from which we have

$$(4. 4) H_2 = k_1^2 = H_1^2.$$

Accordingly, from the assumption (i) we obtain $H_1 = \text{non-zero constant}$. Consequently, since V^m is the umbilical hypersurface, we find that

$$(4.5) b_{\alpha\beta} = H_1 g_{\alpha\beta} (H_1 = \text{constant})$$

Now we put $\Psi = \Phi_i N^i$. Then, by covariant differentiation along V^m , we have

$$\Psi_{;\alpha} = \Phi_{i;j} B^j_{\alpha} N^i + \Phi_i N^i_{;\alpha}$$
 ,

from which, by means of (4.3), (1.2) and (4.5), it follows that

(4.6)
$$\Psi_{;\alpha} = -H_1 \Phi_i B^i_{\alpha} \qquad (H_1 = \text{constant}),$$

that is to say, $\Psi_{;\alpha} + H_1 \Phi_{;\alpha} = 0$. Accordingly, since H_1 is constant, we get (4.7) $\Psi = -H_1 \Phi + C$ (C = constant).

Moreover, by covariant differentiation of (4.6) along V^m , we get

$$\Psi_{;\alpha;\beta} = -H_1(\Phi_{i;j}B^i_{\alpha}B^j_{\beta} + \Phi_iB^i_{\alpha;\beta}).$$

Substituting (4.3) and (1.1) into the right hand member of the last equation and remembering $\Psi = \Phi_i N^i$, we obtain

$$\Psi_{;\alpha;eta} = -H_1(
ho \Phi g_{lphaeta} + \Psi b_{lphaeta}).$$

Making use of (4.4), (4.5) and (4.7), the last equation is written as follows:

(4.8)
$$\Psi_{;\alpha;\beta} = -\left\{ (H_2 - \rho) \Psi + \rho C \right\} g_{\alpha\beta} \quad \left(\rho = -\frac{K}{m(m+1)}\right)$$

If $H_2 - \rho = 0$, then (4.8) becomes $\Psi_{;\alpha;\beta} = -\rho C g_{\alpha\beta}$, from which $\Delta \Psi = -m\rho C$, that is, $\Delta \Psi = \text{constant}$, where $\Delta \Psi = \Psi_{;\alpha;\beta} g^{\alpha\beta}$. However this is impossible, unless $\Psi = \text{constant}$ along V^m ([4], [2]). Therefore, $H_2 - \rho$ being different from zero, we have, from (4.8),

(4.9)
$$\left(\Psi + \frac{\rho C}{H_2 - \rho} \right)_{;\alpha;\beta} = -(H_2 - \rho) \left(\Psi + \frac{\rho C}{H_2 - \rho} \right) g_{\alpha\beta},$$

from which we get

$$\Delta\left(\Psi+\frac{\rho C}{H_2-\rho}\right)=-m(H_2-\rho)\left(\Psi+\frac{\rho C}{H_2-\rho}\right).$$

Consequently it follows that $H_2 - \rho > 0$ [12]. Thus, according to Theorem D, the equation (4.9) shows that the hypersurface V^m is isometric to a sphere.

Especially, restricting R^{m+1} to a Riemann space of constant curvature, from Corollary 3.4 we obtain the following

COROLLARY 4.2 Let \mathbb{R}^{m+1} be a Riemann space of constant curvature which admits a conformal Killing vector field ξ^i and V^m a closed orientable hypersurface such that

(i) H_2 is positive constant,

(ii) $N_i \Phi^i$ has fixed sign on V^m and is not constant along V^m . Then V^m is isometric to a sphere.

Similarly, making use of the condition that Φ is not constant along V^m instead of that $N_i \Phi^i$ is not constant along V^m , we can prove the following theorem and corollary in a similar way to the proof of Theorem 4.1.

THEOREM 4.3 Let \mathbb{R}^{m+1} be an Einstein space with $K \neq 0$ which admits a conformal Killing vector field ξ^i and \mathbb{V}^m a closed orientable hypersurface such that

- (i) H_2 is positive constant,
- (ii) $C^{\alpha}_{\beta;\alpha} = 0$ on V^{m} ,
- (iii) $N_i \xi^i$ has fixed sign on V^m ,
- (iv) Φ is not constant along V^m .

Then V^m is isometric to a sphere.

COROLLARY 4.4 Let \mathbb{R}^{m+1} be a Riemann space of constant curvature which admits a conformal Killing vector field ξ^i and \mathbb{V}^m a closed orientable hypersurface such that

- (i) H_2 is positive constant,
- (ii) $N_i \xi^i$ has fixed sign on V^m ,
- (iii) Φ is not constant along V^m .

Then V^m is isometric to a sphere.

References

- BECKENBACH, E. F. and R. BELLMAN: Inequalities, Springer-V. (1965) (Erg. d. Math. Band 30).
- [2] BOCHNER, S.: Vector fields and Ricci curvature, Bull. Amer. Math. Soc., 52 (1946), 776-797.
- [3] HARDY, G. H., J. E. LITTLEWOOD and G. PÓLYA: Inequalities, Cambridge Univ. Press (1967).
- [4] HOPF, E.: Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitzungs ber. Preuss Akad. Wiss., 19 (1972), 147–152.

108

- [5] KATSURADA, Y.: Generalized Minkowski formulas for closed hypersurfaces in Riemann space, Ann. Mat. p. and appl., 57 (1962), 283-293.
- [6] KATSURADA, Y.: On a certain property of closed hypersurfaces in an Einstein space, Comment. Math. Helv., 38 (1964), 165-171.
- [7] KATSURADA, Y.: Some characterizations of a submanifold which is isometric to a sphere, Jour. Fac. Sci. Hokkaido Univ. Ser. I, 21 (1970), 85-96.
- [8] KOYANAGI, T.: On a certain property of a closed hypersurface in a Riemann space, Jour. Fac. Sci. Hokkaido Univ. Ser. I, 20 (1968), 115-121.
- [9] OBATA, M.: Certain conditions for a Riemann manifold to be isometric with a sphere, Jour. Math. Soc. Japan, 14 (1962), 333-340.
- [10] YANO, K. and S. BOCHNER: Curvature and Betti numbers, Princeton (1953) (Annals of Math. Studies 32).
- [11] YANO, K.: The theory of Lie derivative and its applications, North-Holland, Amsterdam (1957).
- [12] YANO, K.: Differential geometry on complex and almost complex space, Pargamon, 49 (1965).

Department of Mathematics Hokkaido University Sapporo, Japan