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A remark on a closed hypersurface with constant

second mean curvature in a Riemann space

By Tsunehira KovyANAGI
(Received June 15, 1977)

Introduction. Y. Katsurada ([6]”, [5]) proved the following two theorems:

THEOREM A. Let V™ be a closed orientable hypersurface in an Einstein
space which admits a conformal Killing vector field &. If

(i) H, is constant,

(i1) N;& has fixed sign on V™,
then every point of V™ is umbilic, where H, and N, denote the first mean
curvature of V™ and the covariant component of the unit normal vector
to V™ respectively.

THEOREM B. Let V™ be a closed orientable hypersurface in a Riemann
space of constant curvature which admits a conformal Killing vector field
g If

(1) H, is constant for a fixzed v 2=v=m—1),

(ii) Ay, &y, +++, ks are positive at each point on V™,

(iil) N;& has fixed sign on V™,
then every point of V™ is umbilic, where k, (a=1, 2, ---,m) and H, denote
the principal curvature and the v-th mean curvature of V™ respectively.

The present author proved

THEOREM C. Let V™ be a closed orientable hypersurface in a Riemann
space which admits a conformal Killing vector field &. If

(i) H, is constant,

(ii) &y, &y, -++, k,, are positive at each point on V™,

(i) C%2=0 on V™,

(iv) N;& has fixed sign on V™,
then every point of V™ is umbilic.

It is one of the interesting problems for us to find the conditions that

1) Numbers in brackets refer to the references at the end of the paper.

2) Cap are defined by &) bap—b." brs, where, bap and 9%# denoting the covariant component
of the second fundamental tensor and the contravariant component of the metric
tensor of V= respectively, b = bapg® and b," = bapgf?. And C%;a = Caprg®?, where the
symbol “;” means the covariant derivative.
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an umbilical hypersurface in a Riemann space is isometric to a sphere.
On this problem, the following theorems were proved by Y. Katsurada [7]:

THEOREM A-1. Let V™ be a closed orientable hypersurface in an
Einstein space R™' which admits a conformal Killing vector field &, i.e.,
Eis+65=20G,>. If

(1) H, is constant,

(ii) N;@* has fixed sign on V™ and is not constant along V™,
then V™ is isometric to a sphere, where @' denote G“®,;.

THEOREM A-2. Let V™ be a closed orientable hypersurface in an
Einstein space which admits a conformal Killing vector field &. If

(1) H, is constant,

(i1) N,€° has fixed sign on V™,

(ili) @ is not constant along V™,
then V™ is isometric to a sphere.

THEOREM B-1. Let V™ be a closed orientable hypersurface in a con-
stant curvature space which admits a conformal Killing vector field &'. If
(1) H, is constant for a fixed v (2<v=m—1),
(ii) ky, &y, ++-, k,, are positive at each point on V™,
(iii) N;@' has fixed sign on V™ and is not constant along V",
then V™ is isometric to a sphere.

THEOREM B-2. Let V™ be a closed orientable hypersurface in a con-
stant curvature space which admits a conformal Killing vector field &. If

(i) H, is constant for a fixed v (2=Sv=m—1),

(ii) Ay, &y, -+, k,, are positive at each point on V™,

(iii) N,& has fixed sign on V™,

(iv) @ is not constant along V™,
then V™ is isometric to a sphere.

To prove B, C, B-1 and B-2, the restriction that at each
point on V™, the principal curvature k&, &, -, k,, of V™ are postive plays
a very important role. But, for A, A-1 and A-2, this restriction
is not necessary. The purpose of the present paper is to prove some
theorems except its restriction for closed orientable hypersurfaces with
positive constant second mean curvature. §1 is devoted to give notations
and fundamental formulas in the theory of hypersurfaces in a general
Riemann space R™*. In §2 we derive the integral formulas which are
valid for a closed orientable hypersurface in R™*. In §3 we apply the
integral formulas obtained in § 2 to a closed orientable hypersurface whose

3) G;; denote the covariant component of the metric tensor of Rm+l,
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second mean curvature H, is positive constant, and give some theorems.
In the last section 4, making use of results obtained in §3, we give
characteristic properties of a hypersurface which is isometric to a sphere.

The present author wishes to express his very sincere thanks to Pro-
fessor Y. Katsurada for her valuable advices and kind guidances.

§ 1. Notations and fundamental formulas.

We consider an (m+1)-dimensional Riemann space R™*' of class C”
(r=3) with the positive definite metric tensor G,;, which admits a con-
tinuous one-parameter transformation group G of R™'!' generated by an
infinitesimal transformation

7=z +&(x) oY,

where x‘ are local coordinates in R™".  If the generating vector field &
satisfies the equation

‘wa Eéi;ﬂ'fj;i = ZQG” (Ez = Gijsj)
for a scalar field @ in R™", &' is called a conformal Killing vector field
and G a conformal transformation group, where £G,;; denotes the Lie
¢

derivative of the metric tensor G;; with respect to &

We now consider a closed orientable hypersurface V™(m=3) imbedded
in R™*' whose local expression is

2= i),

where «* are local coordinates on V”. If we put

_ oz
- aua ’

B,

then Bi, Bj, ---, B:, are m linearly independent vectors tangent to V™, and
the covariant component g,; of the metric tensor of V™ are given by

gap = GijBiB;- .
And we choose the unit vector N¢ normal to V™ in such a way that
1i9 %7'“3Bfm Nt

give the positive orientation in V™.
Denoting by “;” the operation of covariant differentiation due to van

4) Throughout this paper Latin indices take the values 1 to m+1 and Greek indices the
values 1 to m.
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der Waerden-Bortolotti, we have the following Gauss’s formula and Wein-
garten’s formula :

(1.1) Bﬁ;p = baﬁN{' )
(1. 2) Mia = —bapB; ’

where b,; is the second fundamental tensor of V and 4,/=b,,9”. We also
obtain the equations of Gauss

(1.3) Raprs = bas by — by by + Kigia By By By B;

for hypersurface V”, where R.z, K is the covariant component of the
curvature tensor of V™ and of R™*!' respectively.

If we denote by kA, &, -+, k,, the principal curvatures of V™, that is,
the roots of the characteristic equation

det (bas—kgap) =0,

then the y-th mean curvature H, of V™ is defined to be the v-th elementary
symmetric function of %, k;, -+, &,, divided by the number of terms, that is,

=
A
<
IA

<m).

v

F)rim, 5 bt

a,<a,<-<a,

From the above definition, the first mean curvature H,, the second mean
curvature H, and the third mean curvature H; of V™ are respectively

given by
(1' 4) mHl = Z ka = baa ’
1
(1.5) () = S kaky= 5 {027 —02 7
and
1
(1. 6) (’g) H, = a<Zﬁ<rka kok, = 3T {(ba“)s +2bL b b, —3b2 (b b Tﬁ)} ,

where b = b,9* and bf = b,,¢".
§2. Some integral formulas for a closed orientable hypersurface
in R™,
At the each point of the hypersurface V” we can put as follows
(2.1) &' = Bi&*+ON!

for some vector & and scalar ® on V™. Since G,;B:N’=0, it follows
immediately that



A closed hypersurface with constant second mean curvature in a Riemann space 101

Ea = sz Ei ’
where &, =&%¢,, and & =¢’G,;. We differentiate covariantly the above
equation along V™, making use of (1.1) and (2. 1), we get

Ea;ﬁ = baﬁ@—l—szBﬁieiﬂ .

Multiplying both sides by the contravariant metric tensor g* of V*, con-
tracting and using (1. 4), we get

2. 2) g = mH6+ 5" BB £G,,.
If we put
(2. 3) f«gaﬂ=BiB§§Gu,
then (2. 2) is rewritten as follows:
1 1
o e =gy Ceng” = Hi0+ 5908 g0

Since V™ is orientable and closed, we have
[ .eaa=o,

where dA is the area element of V™ [10]. Hence we obtain the follow-
ing integral formula :

(2. 4) 5 H,0dA+ -Z—I—S € gupdA=0.
™ m )y™ ¢

Next, if we put
= ZCA“BZ& >

where the symbols C; are the component of the symmetric tensor of V™

defined by
(2. 5) Cﬂr = baa bﬁr‘—bpa bar s

and Cy” = C;,¢™, then we have, by covariant differentiation along V™ and
using (1. 1),

Ng;r = ZCpa;rBai E‘L + 2Cpa baT@ + ZC'p‘z B:;, B;lf Si;k .
Multiplying both sides by ¢# and summing for B and 7, we get
(2 6) vp;rgpr = 2Cﬂa;rgprBZ Ei + 2Cﬂa baﬁ@ +Cr B:', B;C £ Gilc .
¢

On the other hand, from (1.4) and (1.5), the equation (1.6) is also
rewritten as follows :
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(2.7) 2Cy b} = m{m—1){mH, H,—(m—2) L}

Consequently, by substituting (2. 7) and (2. 3) into (2. 6), we find that
s = 2C%, B, +m(m—1){mH, H,—(m—2) H,} 6 + CH£ga,

where C#, = C,%,¢9", and further, since m=3, we may write it

1, 2 7Oy Big+ {mH, H,—(m—2) H,} 6

mm—1)7*" mim—1

1

+ m(m—1)

Cﬁa £ Jap -
§

Therefore, since V” is orientable and closed, we get the required integral
formula

2 )
28 =D SVmCﬁ“;pB;EidAnL Sym (mH, EH,—(m—2) H,) 6dA
____}__ Ba —
+ =Ty ) O E0adA =0

We now assume that the vector field & is conformal, that is, £G;;=
3
20G,,, then (2. 4) becomes

2. 9) | g Hl@dAJrS OdA =0
v 148

and, since it follows, from (1.5) and (2.5), that C,¢*(=Cf)=m(m—1)H,,
(2. 8) becomes

2 .
mm—1) Sym C*Bi§:dA+ SV {mHle—(m—Z) Ha} OdA

+2( oH.dA=0,
14

(2. 10)

where the integral formula (2. 9) is due to Y. Katsurada [5].

§ 3. Closed orientable hypersurfaces with H,=positive constant.
From (1.5) and (1. 4), it follows that
(3.1) m*H? =m(m—1) H,+bf by,

and then the second term of the right hand member has non-negative
sign, because of 6,5, = b,b%. If we assume that the second mean curva-
ture H, is positive constant, then the left hand member of (3.1) is positive,
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that is, there exists not any point P on V™ satisfying H,(P)=0. Accord-
ingly, since the differentiability of H, on the closed hypersurface V™ is
assumed, A, must have fixed sign on V”. Therefore we have

LemMA 3.1 If the second mean curvature H, is positive constant, then
the first mean curvature H, has fixed sign on V™.
Now we shall prove the following theorem :

THEOREM 3.2 Let V™ be a closed orientable hypersurface in a Rie-
mann space R™*' which admits a conformal Killing vector field &. If
(i) H; is positive constant,
(i) C%e=0 on V™,
(i) N;&(=0) has fixed sign on V™,
then every point of V™ is umbilic.

Proof. Multiplying the formula (2.9) in §2 by 2H,(=positive con-
stant), we obtain

| J2HH,6dA+2( OH,dA -0,
14
and subtracting the above formula from (2. 10), we find

2 i ~
mjymc" ;pBa&-dAﬂL‘(m—Z)Lm {H,H,— H,}6dA =0.

And, from the assumption C*,=0 and m=3, we have
(3. 2) ij{HlHZ—Hs} OdA=0.

Moreover, since H,%0 for any point on V™, the scalar field on V" defined
by H,H,— H, is rewritten as follows :

(4.3 HH—H =g {H(H—H)+(H— HH).

On the other hand, we know the fact that

H!-H, . H,, =20 (=12, m-1) (1} [3]),
where Hy=1. As a special case, we see that

H:—H,>20 and H;—HH,=0.

Accordingly, making use of the assumption H,= positive constant and
Lemma 3.1, from (3.3) we have that H, H,—H,=0 (or £0) on V™. Hence,
from (3. 2), we find that
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H H,—H,=0 on V™,
from which, by virtue of (3. 3), we get
H,(H}—H,)+(H;—H,H;)=0  on V*.

On making use of H,(H}—H,)=0 and H;—H,H;=0 on V", we obtain
H,(H}—H,)=0, from which

H—H,=0.
Therefore, from H:—H, =—7712—(77];_—1)Z(/e¢—-kp)2, we find that

hi=ky= =k,

at each point on V”. (Then we have H,=k, H,=% and H; =k}, from
which we get Hf—H,H,=0.) This is the required result.
We now assume that the Riemann space R™*' is an Einstein space:

K= mIf_l G, where K (=K, G%) and K(=K,,G’*) are the Ricci ten-

sor and the scalar curvature of R™*! respectively. Multiplying (1. 3) by ¢%
and summing for a and 4, we have

Ry =b2by—byb,+ K, ;.. B. Bi B; B; g,
where R, is the Ricci tensor of V™. Remembering Cg = b,"bg—0b" 0., and
9g® B. B = G*— N'N’, we can write in the form
Rﬁ)’ = Cﬁr+KJkB;B7/f_Kz]klNlBgB;ch .

Accordingly, because of an Einstein space, we obtain

Rﬁr=CﬁI’+ —KijklNiBgBl;Nl.

_K_
m+1 9%
Moreover, multiplying by ¢ and summing for 8 and 7, we have

mK
m+1

R=C 9%+ —K,,NtN*?,
where R is the scalar curvature of V”. Since R™'! is also an Einstein
space and C,¢”(=Cy)=m(m—1) H,, we obtain

m—1

R=m(m— 1)H+m+1

K.

Therefore, remembering the fact that the scalar curvature K in an Einstein
space is constant, we finally reach the following

LEMMA 3.3 Let V™ be a hypersurface in an Einstein space R™.
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Then, necessary and sufficient condition that the second mean curvature H,
be constant is that the scalar curvature R of V™ be constant.

Next, as a special case of it, let R™*! be a Riemann space of constant
K
curvature «: K, = k(G;;G — G Gy;), where &= mmEl) Then, the
equation of Gauss (1. 3) is written in the form

Reprs = bas by, — 0o bgs+ £(Gas 9pr— Gar 9p5) -
Similarly, multiplying by ¢* and summing for @ and §, we have
Ry, = Cyp+(m—1) kg .
By covariant differentiation along V™, we get
Rye = Cprat(m—1) k095, -
Since & is constant, we obtain
Rere = Cppia 5

and, moreover, multiplying by ¢* and summing for 8 and a, we have
Rﬂr;a gpa = Cﬁr;a gﬁa’ that 1s,

(3. 4) Rey=CFy.

On the other hand, as well-known, the following equation is valid for any
Riemann space :

1 1 0R
3.5) Riy=3Ro( =5 5o5)-
Accordingly, from (3. 4) and (3. 5), we have
Co=2 R,.

Consequently, it follows from Lemma 3.3 that, if the second mean curva-
ture H, is constant, then C?,;=0. Therefore, as a special case of the
(Theorem 3.2, we conclude the following

COROLLARY 3.4 Let V™ be a closed orientable hypersurface in a Rie-
mann space of constant curvature which admits a conformal Killing vector
freld &. If

(1) H, is positive constant,

(il) N;&(=0) has fixed sign on V™,
then every point of V™ is umbilic.
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§ 4. Characteristic properties of a hypersurface which is isometric
to a sphere.

To prove that the hypersurface is isometric to a sphere, we use the
following theorem due to M. Obata [9].

THEOREM D. Let V™ (m=2) be a complete Riemannian manifold
which admits a non-null function ¢ such that

Piasp = —C'0gap (= constant).

Then V™ is isometric to a sphere of radius 1/c.

Now we consider an Einstein space R™** which has the scalar curva-
ture K30 and admits a proper conformal Killing vector field &, that is,
&' satisfies an equation :

éngj =&45+85:=20G;.

Then the Lie derivative of the curvature tensor K*%;, with respect to & is
given by

(4- 1) £Khz'j/c= 5§@i;k“52¢i;1+Gik@Lf‘Gw@;’% (),
3

where @, =0.;,, &' =G @, and ¢} is the Kronecker delta. Since R™™ is
an Einstein space, we have

K

(4. 2) Ry="727

Gy; (K = constant).

Making use of (4.1) and (4. 2), after some calculations we obtain the fol-
lowing result:

K
(4 3) @l,j:p@Glj <p= _m),

and then, by virtue of (4. 2) and the assumption K0, we see that o=
non-zero constant. Consequently, we find that the Einstein space R™"
admitting the proper conformal Killing vector field & must always admit
the vector field @ satisfying (4. 3), which is the special conformal Killing
vector field.

THEOREM 4.1 Let R™*' be an Einstein space with K0 which admits
a conformal Killing vector field & and V™ a closed orientable hypersurface
such that

(1) H, is positive constant,

(ii) C%e=0 on V7,

(iil) N;@° has fixed sign on V™ and is not constant along V™.
Then V™ is isometric to a sphere.
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Proof. (This method is due to Y. Katsurada [7]) By virtue of
Theorem 3.2, every point of V™ is umbilic, that is,

ky=ky=-=k,,
from which we have
(4. 4) H,=F=H;.

Accordingly, from the assumption (i) we obtain H, = non-zero constant.
Consequently, since V™ is the umbilical hypersurface, we find that

(4. 5) Dosg = H, g (H, = constant).

Now we put ¥=0@,N‘. Then, by covariant differentiation along V", we
have

w;a = @i;jBteri + @iMia ’
from which, by means of (4. 3), (1. 2) and (4. 5), it follows that

(4. 6) v.=—Ho,B:. (H, = constant),
that is to say, ¥.,+H,9.,=0. Accordingly, since H, is constant, we get
(4. 7) ¥Y=-Ho+C (C = constant).

Moreover, by covariant differentiation of (4. 6) along V™, we get
U.ps=—H\(0,,;B.Bj+®,B,).
Substituting (4. 3) and (1. 1) into the right hand member of the last equation
and remembering ¥ = @, N°, we obtain
U= —H (099, +Tb,).

Making use of (4.4), (4.5) and (4. 7), the last equation is written as follows:

(4. 8) Vo= — {(H—0) U +0C} g (P = W(%T))

If H,—p =0, then (4. 8) becomes ¥, ;= —PCq,, from which 4¥ = —mpC,
that is, 4¥ = constant, where 40 =V, ,9**. However this is impossible,
unless ¥ = constant along V™ ([4], [2]). Therefore, H,—pP being different
from zero, we have, from (4. 8),

oC eC
(4. 9) (W—i— I{z—p>;a;p= ——(HZ—P)<¥/'+ m> Oap »

from which we get

eC pC
A(W+ T_fz—:o—> = —m(H,—0) (UM— fL—P)'
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Consequently it follows that H,—©>0 [12]. Thus, according to D,
the equation (4. 9) shows that the hypersurface V” is isometric to a sphere.

Especially, restricting R™*' to a Riemann space of constant curvature,
from [Corollary 3. 4 we obtain the following

CoROLLARY 4.2 Let R™' be a Riemann space of constant curvature
which admits a conformal Killing vector field & and V™ a closed orientable
hypersurface such that

(1) H, is positive constant,

(ii) N9 has fixed sign on V™ and is not constant along V™.

Then V™ is isometric to a sphere.

Similarly, making use of the condition that @ is not constant along V"
instead of that N;®" is not constant along V™, we can prove the following
theorem and corollary in a similar way to the proof of Theorem 4. 1.

THEOREM 4.3 Let R™' be an Einstein space with K0 which admits
a conformal Killing vector field & and V™ a closed orientable hypersurface
such that

(i) H, is positive constant,

(i) C%.=0 on V™

(i) N;& has fixed sign on V™,

(iv) @ is not constant along V™.
Then V™ is isometric to a sphere.

COROLLARY 4.4 Let R™' be a Riemann space of constant curvature
which admits a conformal Killing vector field & and V™ a closed orientable
hypersurface such that

(i) H, is positive constant,

(ii) N;& has fixed sign on V™,

(iii) @ is not constant along V™.

Then V™ is isometric to a sphere.
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