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A remark on a closed hypersurface with constant

second mean curvature in a Riemann space

By Tsunehira KOYANAGI
(Received June 15, 1977)

Introduction. Y. Katsurada ([6]^{1)}, [5]) proved the following two theorems:
THEOREM A. Let V^{m} be a closed orientable hypersurface in an Einstein

space which admits a conformal Killing vector fifield \xi^{i} . If
(i) H_{1} is constant,
(ii) N_{i}\xi^{i} has fifixed sign on V^{n\iota},

then every point of V^{m} is umbilic, where H_{1} and N_{i} denote the fifirst mean
curvature of V^{m} and the covariant component of the unit normal vector
to V^{m} respectively.

THEOREM B. Let V^{m} be a closed orientable hypersurface in a Riemann
space of constant cumature which admits a conformal Killing vector fifield
\xi^{i} . If

(i) H_{\nu} is constant for a fifixed \nu(2\leqq\nu\leqq m-1),
(ii) k_{1}, k_{2}, \cdots , k_{m} are positive at each point on V^{n},
(iii) N_{i}\xi^{i} has fifixed sign on V^{m},

then every point of V^{m} is umbilic, where k_{\alpha}(\alpha=1,2, \cdots, m) and H_{\nu} denote
the principal curvature and the \nu-th mean curvature of V^{m} respectively.

The present author [8] proved

THEOREM C. Let V^{m} be a closed orientable hypersurface in a Rimann
space which admits a conformal Killing vector fifield \xi^{i} . If

(i) H_{2} is constant,
(ii) k_{1} , k_{2}, \cdots , k_{m} are positive at each point on V^{m},
(iii) C_{\beta,\alpha}^{\alpha 2)}=0 on V^{m},
(iv) N_{i}\xi^{i} has fifixed sign on V^{m},

then every point of V^{m} is umbilic.
It is one of the interesting problems for us to find the conditions that

1) Numbers in brackets refer to the references at the end of the paper.
2) C_{\alpha}p are defined by b_{\gamma}^{\gamma}b_{\alpha}p-b_{\alpha}^{\gamma}b_{\gamma\beta}, where, b_{\alpha\beta} and q^{\alpha\beta} denoting the covariant component

of the second fundamental tensor and the contravariant component of the metric
tensor of V^{m} respectively, b_{\gamma}^{\gamma}=b_{\alpha\beta Q^{\alpha\beta}} and b_{\alpha}^{\gamma}=b_{\alpha\beta Q}\beta\gamma. And C_{\beta,\alpha}^{\alpha}.=C_{\alpha\beta i\mathcal{T}}q^{\alpha\gamma}, where the
symbol “ ; ” means the covariant derivative.
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an umbilical hypersurface in a Riemann space is isometric to a sphere.
On this problem, the following theorems were proved by Y. Katsurada [7]:

THEOREM A-l. Let V^{m} be a closed orientable hypersurface in an
Einstein space R^{m+1} which admits a conformal Killing vector fifield \xi^{i} , i.e. ,
\xi_{i;f}+\xi_{f;i}=2\Phi G_{if}^{3)} . If

(i) H_{1} is constant,
(ii) N_{i}\Phi^{i} has fifixed sign on V^{m} and is not constant along V^{m},

then V^{m} is isometric to a sphere, where \Phi^{i} denote G^{if}\Phi_{;j} .
THEOREM A-2. Let V^{m} be a closed orientable hypersurface in an

Einstein space which admits a conformal Killing vector fifield \xi^{i} . If
(i) H_{1} is constant,
(ii) N_{i}\xi^{i} has fifixed sign on V^{m},
(iii) \Phi is not constant along V^{m},

then V^{m} is isometric to a sphere.
THEOREM B-l. Let V^{m} be a closed orientable hypersurface in a con-

stant curvature space which admits a conformal Killing vector fifield \xi^{i} . If
(i) H_{\nu} is constant for a fifixed \nu(2\leqq\nu\leqq m-1),
(ii) k_{1} , k_{2}, \cdots , k_{m} are positive at each point on V^{m},
(iii) N_{i}\Phi^{i} has fifixed sign on V^{m} and is not constant along V^{m},

then V^{m} is isometric to a sphere.
THEOREM B-2. Let V^{m} be a closed orientable hypersurface in a con-

stant curvature space which admits a conformal Killing vector fifield \xi^{i} . If
(i) H_{\nu} is constant for a fifixed \nu(2\leqq\nu\leqq m-1),
(ii) k_{1} , k_{2}, \cdots , k_{m} are positive at each point on V^{n},
(iii) N_{i}\xi^{i} has fifixed sign on V^{m} ,
(iv) \Phi is not constant along V^{m},

then V^{m} is isometric to a sphere.
To prove Theorem B, C, B-l and B-2, the restriction that at each

point on V^{m}, the principal curvature k_{1}, k_{2}, \cdots , k_{m} of V^{m} are postive plays
a very important role. But, for Theorem A, A-l and A-2, this restriction
is not necessary. The purpose of the present paper is to prove some
theorems except its restriction for closed orientable hypersurfaces with
positive constant second mean curvature. \S 1 is devoted to give notations
and fundamental formulas in the theory of hypersurfaces in a general
Riemann space R^{m+1} . In \S 2 we derive the integral formulas which are
valid for a closed orientable hypersurface in R^{m+1} . In \S 3 we apply the
integral formulas obtained in \S 2 to a closed orientable hypersurface whose
3) G_{if} denote the covariant component of the metric tensor of R^{m+1} .



A closed hypersurface with constant second mean curvature in a Riemann space 99

second mean curvature H_{2} is positive constant, and give some theorems.
In the last section 4, making use of results obtained in \S 3, we give
characteristic properties of a hypersurface which is isometric to a sphere.

The present author wishes to express his very sincere thanks to PrO-
fessor Y. Katsurada for her valuable advices and kind guidances.

\S 1. Notations and fundamental formulas.

We consider an (m+1)-dimensional Riemann space R^{m+1} of class \sigma

(r\geqq 3) with the positive definite metric tensor G_{if} , which admits a con-
tinuous one-parameter transformation group G of R^{m+1} generated by an
infinitesimal transformation

\overline{x}^{i}=x^{i}+\xi^{i}(x)\delta\tau^{4)} ,

where x^{i} are local coordinates in R^{m+1} . If the generating vector field \xi^{i}

satisfies the equation

s_{\xi}G_{if}\equiv\xi_{i;j}+\xi_{j;i}=2\Phi G_{ij}
(\xi_{i}=G_{if}\xi^{f})

for a scalar field \Phi in R^{m+1}, \xi^{i} is called a conformal Killing vector field
and G a conformal transformation group, where SG_{if} denotes the Lie

\xi

derivative of the metric tensor G_{if} with respect to \xi^{i} .
We now consider a closed orientable hypersurface V^{m}(m\geqq 3) imbedded

in R^{m+1} whose local expression is
x^{i}=x^{i}(u^{\alpha}) ,

where u^{\alpha} are local coordinates on V^{m} . If we put

B_{\alpha}^{i}= \frac{\partial x^{i}}{\partial u^{\alpha}} ,

then B_{1}^{i}, B_{2}^{i}, \cdots , B_{m}^{i} are m linearly independent vectors tangent to V^{m}, and
the covariant component g_{\alpha\beta} of the metric tensor of V^{m} are given by

g_{\alpha\beta}=G_{ij}B_{\alpha}^{i}B_{\beta}^{i} .

And we choose the unit vector N^{i} normal to V^{m} in such a way that
B_{1}^{i} , B_{2}^{i}, \cdots , B_{m}^{i} , N^{i}

give the positive orientation in V^{m} .
Denoting by “ ;” the operation of covariant differentiation due to van

4) Throughout this paper Latin indices take the values 1 to m+1 and Greek indices the
values 1 to m.
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der Waerden-Bortolotti, we have the following Gauss’s formula and Wein-
garten’s formula :

(1. 1) B_{\alpha;\beta}^{i}=b_{\alpha\beta}N^{i} ,

(1. 2) N_{j\alpha}^{i}=-b_{\alpha}^{\beta}B_{\beta}^{7} ,

where b_{\alpha\beta} is the second fundamental tensor of V^{m} and b_{\alpha}^{\beta}=b_{\alpha\gamma}g^{\gamma\beta}. We also
obtain the equations of Gauss

(1. 3) R_{\alpha\beta\gamma\delta}=b_{\alpha\delta}b_{\beta\gamma}-b_{\alpha\gamma}b_{\beta\delta}+K_{ifkl}B_{\alpha}^{i}B_{\beta}^{r}B_{\gamma}^{k}B_{\delta}^{l}

for hypersurface V^{m}, where R_{\alpha\beta\gamma\delta} , K_{ifkl} is the covariant component of the
curvature tensor of V^{m} and of R^{m+1} respectively.

If we denote by k_{1} , k_{2}, \cdots , k_{m} the principal curvatures of V^{m}, that is,
the roots of the characteristic equation

det (b_{\alpha\beta}-kg_{\alpha\beta})=0 ,

then the \nu-th mean curvature H_{\nu} of V^{m} is defined to be the \nu-th elementary
symmetric function of k_{1}, k_{2} , \cdots , k_{m} divided by the number of terms, that is,

(\begin{array}{l}m\nu\end{array})

H_{\nu}= \sum_{\alpha_{1}<\alpha_{2}<\cdots<\alpha_{y}}k_{\alpha_{1}}k_{\alpha_{2}}\cdots k_{\alpha_{p}}

(1\leqq\nu\leqq m) .

From the above definition, the first mean curvature H_{1} , the second mean
curvature H_{2} and the third mean curvature H_{3} of V^{m} are respectively
given by

(1. 4) mH_{1}= \sum_{\alpha}k_{\alpha}=b_{\alpha}^{\alpha} ,

(1. 5) (\begin{array}{l}m2\end{array}) H_{2}= \sum_{\alpha<\beta}k_{\alpha}k_{\beta}=\frac{1}{2}\{(b_{\alpha}^{\alpha})^{2}-b_{\alpha}^{\beta}b_{\beta}^{\alpha}\}

and

(1. 6) (\begin{array}{l}m3\end{array}) H_{3}= \sum_{\backslash \alpha<\beta\gamma},k_{\alpha}k_{\beta}k_{r}=\frac{1}{3!}\{(b_{\alpha}^{\alpha})^{3}+2b_{\alpha}^{\beta}b_{\beta}^{\gamma}b_{\gamma}^{\alpha}-3b_{\alpha}^{\alpha}(b_{\beta}^{\gamma}b_{\gamma}^{\beta})\} ,

where b_{\alpha}^{\alpha}=b_{\alpha\beta}g\alpha\beta and b_{\alpha}^{\beta}=b_{\alpha\gamma}g^{\gamma\beta}.

\S 2. Some integral formulas for a closed orientable hypersurface
in \bm{R}^{m+1}.

At the each point of the hypersurface V^{m} we can put as follows

(2. 1) \xi^{i}=B_{\alpha}^{i}\xi^{\alpha}+\Theta N^{i}

for some vector \xi^{\alpha} and scalar \Theta on V^{m} . Since G_{if}B_{\alpha}^{i}N^{f}=0, it follows
immediately that
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\xi_{\alpha}=B_{\alpha}^{i}\xi_{i} ,

where \xi_{\alpha}=\xi^{\beta}g_{\beta\alpha} and \xi_{i}=\xi^{f}G_{fi} . We differentiate covariantly the above
equation along V^{m}, making use of (1.1) and (2. 1), we get

\xi_{\alpha;\beta}=b_{\alpha\beta}\Theta+B_{\alpha}^{i}B_{\beta}^{f}\xi_{i;f} .
Multiplying both sides by the contravariant metric tensor g^{\alpha\beta} of V^{m}, con-
tracting and using (1. 4), we get

(2. 2) \xi_{\alpha;\beta}g^{\alpha\beta}=mH_{1}\Theta+\frac{1}{2}g^{\alpha\beta}B_{\alpha}^{i}B_{\beta}^{f}s_{\xi}G_{if} .

If we put

(2. 3) Sg_{\alpha\beta}=B_{\alpha}^{i}B_{\beta}\dot’ SG_{if}\xi\xi ’

then (2. 2) is rewritten as follows :

\frac{1}{m}\xi_{\alpha}^{\alpha}.,\equiv\frac{1}{m}\xi_{\alpha;\beta}g^{\alpha\beta}=H_{1}\Theta+\frac{1}{2m}g^{\alpha\beta}Sg_{\alpha\beta}\xi .

Since V^{m} is orientable and closed, we have

\int_{r^{n\iota}}\xi_{j\alpha}^{\alpha}dA=0 ,

where dA is the area element of V^{m}[10] . Hence we obtain the follow-
ing integral formula :

(2. 4) \int_{r^{n\iota}}H_{1}\Theta dA+\frac{1}{2m}\int_{V^{m}\xi}g^{\alpha\beta}Sg_{\alpha\beta}dA=0 .

Next, if we put
\eta_{\beta}=2C_{\beta}^{\alpha}B_{\alpha}^{i}\xi_{i} ,

where the symbols C_{\beta\gamma} are the component of the symmetric tensor of V^{m}

defined by

(2. 5) C_{\beta\gamma}=b_{\alpha}^{\alpha}b_{\beta\gamma}-b_{\beta}^{\alpha}b_{\alpha\gamma} ,

and C_{\beta}^{\alpha}=C_{\beta\gamma}g^{\gamma\alpha}, then we have, by covariant differentiation along V^{m} and
using (1. 1),

\eta_{\beta iY}=2C_{\beta,\vee}^{\alpha}.B_{\alpha}^{i}\xi_{i}+2C_{\beta}^{\alpha}b_{\alpha\gamma}\Theta+2C_{\beta}^{\alpha}B_{\alpha}^{i}B_{\gamma}^{k}\xi_{i;k}

Multiplying both sides by g^{\beta\gamma} and summing for \beta and \gamma, we get

(2. 6) \eta_{\beta;\gamma}g^{\rho\gamma}=2C_{\beta,\gamma}\alpha.gB_{\alpha}^{i}\beta\gamma\xi_{i}+2C_{\beta}^{\alpha}b_{\alpha}^{\rho}\Theta+C^{\gamma\alpha}B_{\alpha}^{i}B_{\gamma}^{k}SG_{ik}\xi

On the other hand, from (1. 4) and (1. 5), the equation (1. 6) is also
rewritten as follows :
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(2. 7) 2C_{\beta}^{r}b_{\gamma}^{\beta}=m(m-1)\{mH_{1}H_{2}-(m-2)H_{3}\}

Consequently, by substituting (2. 7) and (2. 3) into (2. 6), we find that

\eta_{\beta}^{\beta}=2C_{\beta}^{\beta\alpha}B_{\alpha}^{i}\xi_{i}+m(m-1)\{mH_{1}H_{2}-(m-2)H_{3}I_{\xi}^{\Theta+C^{\beta\alpha}Sg_{\alpha\beta}} ,

where C_{\beta}^{\beta\alpha}.,=C_{\beta,\gamma}^{\alpha\beta\gamma}.g, and further, since m\geqq 3 , we may write it

\frac{1}{m(m-1)}r_{/\cdot\beta}^{\beta},=\frac{2}{m(rn-1)}C_{;\beta}^{\beta\alpha}B_{\alpha}^{i}\xi_{i}+\{mH_{1}H_{2}-(m-2)H_{3}\}\Theta

+ \frac{1}{m(m-1)}C^{\beta\alpha}Sg_{\alpha\beta}\xi .

Therefore, since V^{m} is orientable and closed, we get the required integral
formula

(2. 8) \frac{2}{m(m-1)}\int_{V^{m}}C_{;\beta}^{\beta\alpha}B_{\alpha}^{i}\xi_{i}dA+\int_{V^{\mathcal{D}b}}\{mH_{1}H_{2}-(m-2)H_{3}\}\Theta dA

+ \frac{1}{m(m-1)}\int_{V^{m}\xi}C^{\beta\alpha}Sg_{\alpha\beta}dA=0 .

We now assume that the vector field \xi^{i} is conformal, that is, s_{\xi}G_{if}=

2\Phi G_{if} , then (2. 4) becomes

(2. 9) \int_{V^{m}}H_{1}\Theta dA+\int_{V^{m}}\Phi dA=0

and, since it follows, from (1. 5) and (2. 5), that C_{\beta\gamma}g(\beta\gamma=C_{\beta}^{\rho})=m(m-1) H_{2} ,
(2. 8) becomes

(2. 10) \frac{2}{m(m-1)}\int_{r^{m}}C_{;\beta}^{\beta\alpha}B_{\alpha}^{i}\xi_{i}dA+\int_{V^{ln}}\{mH_{1}H_{2}-(m-2)H_{3}\}\Theta dA

+2 \int_{V^{m}}\Phi H_{2}dA=0’.

where the integral formula (2. 9) is due to Y. Katsurada [5].

\S 3. Closed orientable hypersurfaces with \bm{H}_{2}= positive constant.

From (1. 5) and (1. 4), it follows that

(3. 1) m^{2}H_{1}^{2}=m(m-1)H_{2}+b_{\alpha}^{\beta}b_{\beta}^{\alpha} ,

and then the second term of the right hand member has non-negative
sign, because of b_{\alpha}^{\beta}b_{\beta}^{\alpha}=b_{\alpha\beta}b^{\alpha\beta}. If we assume that the second mean curva-
ture H_{2} is positive constant, then the left hand member of (3. 1) is positive,
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that is, there exists not any point P on V^{m} satisfying H_{1}(P)=0 . Accord-
ingly, since the differentiability of H_{1} on the closed hypersurface V^{m} is
assumed, H_{1} must have fixed sign on V^{n\iota}. Therefore we have

Lemma 3. 1 If the second mean curvature H_{2} is positive constant, then
the fifirst mean curvature H_{1} has fifixed sign on V^{m} .

Now we shall prove the following theorem:
THEOREM 3. 2 Let V^{m} be a closed orientable hypersurface in a Rie-

mann space R^{m+1} which admits a conformal Killing vector fifield \xi^{i} . If
(i) H_{2} is positive constant,
(ii) C_{\beta;\alpha}^{\alpha}=0 on V^{m},
(iii) N_{i}\xi^{i}(=\Theta) has fifixed sign on V^{m},

then every point of V^{m} is umbilic.
Proof. Multiplying the formula (2. 9) in \S 2 by 2fI_{2}(=positive con-

stant), we obtain

\int_{V^{m}}2H_{1}H_{2}\Theta dA+2\int_{V^{n\iota}}\Phi H_{2}dA=0 ,

and subtracting the above formula from (2. 10), we find

\frac{2}{m(m-1)}\int_{V^{m}}C_{\beta}^{\beta\alpha}.,B_{\alpha}^{i}\xi_{i}dA+’(m-2)\int_{V^{m}}\{H_{1}H_{2}-H_{3}\}\Theta dA=0 .

And, from the assumption C_{;\beta}^{\beta\alpha}=0 and m\geqq 3 , we have

(3. 2) \int_{r^{m}}\{H_{1}H_{2}-H_{3}\}\Theta dA=0 .

Moreover, since H_{1}\neq 0 for any point on V^{m}. the scalar field on V^{m} defined
by H_{1}H_{2}-H_{3} is rewritten as follows:

(3. 3) H_{1}H_{2}-H_{3}= \frac{1}{H_{1}}\{H_{2}(H_{1}^{2}-H_{2})+(H_{2}^{2}-H_{1}H_{3})\}

On the other hand, we know the fact that
H_{u}^{2}-H_{\nu-1}H_{\nu+1}\geqq 0 (\nu=1,2, \cdots, m-- 1) ([1], [3]),

where H_{0}=1 . As a special case, we see that
H_{1}^{2}-H_{2}\geqq 0 and H_{2}^{2}-fI_{1}H_{3}\geqq 01

Accordingly, making use of the assumption H_{2}=positive constant and
Lemma 3. 1, from (3. 3) we have that H_{1}H_{2}-H_{3}\geqq 0 (or \leqq 0) on V^{m}. Hence,
from (3. 2), we find that
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H_{1}H_{2}-H_{3}=0 on V^{m} ,

from which, by virtue of (3. 3), we get

H_{2}(H_{1}^{2}-H_{2})+(H_{2}^{2}-H_{1}H_{3})=0 on V^{m_{1}}

On making use of H_{2}(H_{1}^{2}-H_{2})\geqq 0 and H_{2}^{2}-H_{1}H_{3}\geqq 0 on V^{m}, we obtain
H_{2}(H_{1}^{2}-H_{2})=0, from which

H_{1}^{2}-H_{2}=0 .

Therefore, from H_{1}^{2}-H_{2}= \frac{1}{m^{2}(m-1)}\sum(k_{\alpha}-k_{\beta})^{2}, we find that

k_{1}=k_{2}=\cdots=k_{m}

at each point on V^{m} . (Then we have H_{1}=k_{1} , H_{2}=k_{1}^{2} and H_{3}=k_{1}^{3} , from
which we get H_{2}^{2}-H_{1}H_{3}=0. ) This is the required result.

We now assume that the Riemann space R^{m+1} is an Einstein space:

K_{fk}= \frac{K}{m+1}G_{fk} , where K_{fk}(=K_{ifkl}G^{il}) and K(=K_{fk}G^{fk}) are the Ricci ten-

sor and the scalar curvature of R^{m+1} respectively. Multiplying (1. 3) by g^{\alpha J}

and summing for \alpha and \delta, we have
R_{\beta\gamma}=b_{\alpha}^{\alpha}b_{\beta\gamma}-b_{\beta}^{\alpha}b_{\alpha\gamma}+K_{ijkl}B_{\alpha}^{i} B_{\beta}^{f}B_{\gamma}^{k}B_{\delta g}^{l\alpha\delta} ,

where R_{\beta\gamma} is the Ricci tensor of V^{m} . Remembering C_{\beta\gamma}=b_{\alpha}^{\alpha}b_{\beta\gamma}-b_{\beta}^{\alpha}b_{\alpha\gamma} and
g^{\alpha\delta}B_{\alpha}^{i} B_{\delta}^{l}=G^{il} – N^{i}N^{l}, we can write in the form

R_{\beta\gamma}=C_{\beta\gamma}+K_{jk}B_{\beta}^{i}B_{\gamma}^{k}-K_{ijkl}N^{i}B_{\beta}^{f}B_{\gamma}^{k} N^{l}

Accordingly, because of an Einstein space, we obtain

R_{\beta\gamma}=C_{\beta\gamma}+ \frac{K}{m+1}g_{\beta\gamma}-K_{tfkl}N^{i}B_{\beta}^{f}B_{\gamma}^{k}N^{l}\tau

Moreover, multiplying by g^{\beta\gamma} and summing for \beta and \gamma, we have

R=C_{\beta\gamma}g+ \beta\Gamma\frac{mK}{m+1}-K_{il}N^{i}N^{\iota}

where R is the scalar curvature of V^{n\iota}. Since R^{m+1} is also an Einstein
space and C_{\beta\gamma}g(\beta\gamma=C_{\beta}^{\beta})=m(m-1)H_{2}, we obtain

R=m(m-1)H_{2}+ \frac{m-1}{m+1}K

Therefore, remembering the fact that the scalar curvature K in an Einstein
space is constant, we finally reach the following

Lemma 3. 3 Let V^{m} be a hypersurface in an Einstein space R^{m+1} .
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Then, necessary and sufficient condition that the second mean curvature H_{2}

be constant is that the scalar curvature R of V^{m} be constant.
Next, as a special case of it, let R^{m+1} be a Riemann space of constant

curvature \kappa:K_{ifkl}=\kappa(G_{il}G_{fk} -- G_{ik}G_{fl}), where \kappa=\frac{K}{m(m+1)}. Then, the
equation of Gauss (1. 3) is written in the form

R_{\alpha\beta\gamma\delta}=b_{\alpha\delta}b_{\beta\gamma}-b_{\alpha\gamma}b_{\beta;}+\kappa(g_{\alpha\delta}g_{\beta\gamma}-g_{\alpha\gamma}g_{\beta 3}) .

Similarly, multiplying by g^{\alpha\delta} and summing for \alpha and \delta , we have
R_{\beta}, =C_{\beta\gamma}+(m-1)\kappa g_{\beta\gamma} .

By covariant differentiation along V^{m} , we get

R_{\beta r;\alpha}=C_{\beta\gamma;\alpha}+(m-1)\kappa_{;\alpha}g_{\beta_{J}}, .

Since \kappa is constant, we obtain
R_{\beta fj\alpha}=C_{\beta\gamma;\alpha}.

,

and, moreover, multiplying by g^{\beta\alpha} and summing for \beta and \alpha, we have
R_{\beta\gamma,\alpha}.g\beta\alpha=C_{\beta\gamma;\alpha}g^{\beta\alpha}, that is,

(3. 4) R_{\gamma;\beta}^{\beta}=C_{\gamma;\beta}^{\beta} .
On the other hand, as well-known, the following equation is valid for any
Riemann space:

(3. 5) R_{r;\beta}^{\beta}= \frac{1}{2}R_{;\gamma}(=\frac{1}{2}\frac{\partial R}{\partial u^{\gamma}}) .

Accordingly, from (3. 4) and (3. 5), we have

C_{\gamma;\beta}^{\beta}= \frac{1}{2}R_{;\gamma} .

Consequently, it follows from Lemma 3. 3 that, if the second mean curva-
ture H_{2} is constant, then C_{\gamma;\beta}^{\beta}=0 . Therefore, as a special case of the
Theorem 3. 2, we conclude the following

COROLLARY 3. 4 Let V^{m} be a closed orientable hypersurface in a Rie-
mann space of constant curvature which admits a conformal Killing vector

fifield \xi^{i} . If
(i) H_{2} is positive constant,
(ii) N_{i}\xi^{i}(=\Theta) has fifixed sign on V^{m},

thm every point of V^{n} is umbilic.
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\S 4. Characteristic properties of a hypersurface which is isometric
to a sphere.

To prove that the hypersurface is isometric to a sphere, we use the
following theorem due to M. Obata [9].

THEOREM D. Let V^{m}(m\geqq 2) be a complete Riemannian manifold
which admits a non-null function \varphi such that

\varphi_{;\alpha i\beta}=-c^{2}\varphi g_{\alpha\beta} (c=constant) .
Then V^{n} is isometric to a sphere of radius 1/c.

Now we consider an Einstein space R^{m+1} which has the scalar curva-
ture K\neq 0 and admits a proper conformal Killing vector field \xi^{i} , that is,
\xi^{i} satisfies an equation :

s_{\xi}G_{ij}=\xi_{i;j}+\xi_{j;i}=2\Phi G_{ij} .
Then the Lie derivative of the curvature tensor K_{ifk}^{h} with respect to \xi^{i} is
given by

(4. 1) s_{\xi}K_{ijk}^{h}=\delta_{j}^{h}\Phi_{i;k}-\delta_{k}^{h}\Phi_{i;j}+G_{ik}\Phi_{j}^{h}.,-G_{if}\Phi_{k}^{h},\cdot ([11]),

where \Phi_{i}=\Phi_{;i} , \Phi^{i}=G^{ij}\Phi_{f} and \delta_{f}^{i} is the Kronecker delta. Since R^{m+1} is
an Einstein space, we have

(4. 2) K_{ij}= \frac{K}{m+1}G_{ij} (K=constant) .

Making use of (4. 1) and (4. 2), after some calculations we obtain the fol-
lowing result :

(4. 3) \Phi_{i;f}=\rho\Phi G_{if} ( \rho=-\frac{K}{m(m+1)}) ,

and then, by virtue of (4. 2) and the assumption K\neq 0, we see that \rho=

non-zero constant. Consequently, we find that the Einstein space R^{m+1}

admitting the proper conformal Killing vector field \xi^{i} must always admit
the vector field \Phi^{i} satisfying (4. 3), which is the special conformal Killing
vector field.

THEOREM 4. 1 Let R^{m+1} be an Einstein space with K\neq 0 which admits
a conformal Killing vector fifield \xi^{i} and V^{m} a closed orientable hypersurface
such that

(i) H_{2} is positive constant,
(ii) C_{\beta,\alpha}^{\alpha}.=0 on V^{m},
(iii) N_{i}\Phi^{i} has fifixed sign on V^{m} and is not constant along V^{m} .

Then V^{m} is isometric to a sphere.
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Proof. (This method is due to Y. Katsurada [7].) By virtue of
Theorem 3. 2, every point of V^{m} is umbilic, that is,

k_{1}=k_{2}=\cdots=k_{m} ,

from which we have
(4. 4) H_{2}=k_{1}^{2}=H_{1}^{2} .
Accordingly, from the assumption (i) we obtain H_{1}= non-zero constant.
Consequently, since V^{m} is the umbilical hypersurface, we find that
(4. 5) b_{\alpha\beta}=H_{1}g_{\alpha\beta} (H_{1}=constant .
Now we put \Psi=\Phi_{i}N^{i} . Then, by covariant differentiation along V^{m}, we
have

\Psi_{;\alpha}=\Phi_{i;j}B_{\alpha}^{f}N^{i}+\Phi_{i}N_{\alpha}^{i},\cdot ,

from which, by means of (4. 3), (1. 2) and (4. 5), it follows that
(4. 6) \Psi_{;\alpha}=-H_{1}\Phi_{i}B_{\alpha}^{i} (H_{1}=constant ,

that is to say, \Psi_{;\alpha}+H_{1}\Phi_{;\alpha}=0 . Accordingly, since H_{1} is constant, we get

(4. 7) \Psi=-H_{1}\Phi+C (C=constant .
Moreover, by covariant differentiation of (4. 6) along V^{m}, we get

\Psi_{;\alpha;\beta}=-H_{1}(\Phi_{i;j}B_{\alpha}^{i}B_{\beta}^{j}+\Phi_{i}B_{\alpha;\beta}^{i}) .
Substituting (4. 3) and (1. 1) into the right hand member of the -ast equation
and remembering \Psi=\Phi_{i}N^{i} , we obtain

\Psi_{\alpha;\beta},\cdot=-H_{1}(\rho\Phi g_{\alpha\beta}+\Psi b_{\alpha\beta}) .
Making use of (4. 4), (4. 5) and (4. 7), the last equation is written as follows:

(4. 8) \Psi_{;\alpha;\beta}=-\{(H_{2}-\rho)\Psi+\rho C\}g_{\alpha\beta} ( \rho=-\frac{K}{m(m+1)}) .

If H_{2}-\rho=0 , then (4. 8) becomes \Psi_{;\alpha;\beta}=-\rho Cg_{\alpha\beta} , from which \Delta\Psi=-m\rho C,
that is, \Delta\Psi=constant , where \Delta\Psi=\Psi_{;\alpha;\beta}g\alpha\beta. However this is impossible,
unless \Psi=constant along V^{m}([4], [2]). Therefore, H_{2}-\rho being different
from zero, we have, from (4. 8),

(4. 9) ( \Psi+\frac{\rho C}{H_{2}-\rho})_{;\alpha;\beta}=-(H_{2}-\rho)(\Psi+\frac{\rho C}{H_{2}-\rho})g_{\alpha\beta} ,

from which we get

\Delta(\Psi+\frac{\rho C}{H_{2}-0}.)=-m(H_{2}-\rho)(\Psi+\frac{\rho C}{H_{2}-\rho}) .



108 T. Koyanagi

Consequently it follows that H_{2}-\rho>0[12] . Thus, according to Theorem D,
the equation (4. 9) shows that the hypersurface V^{m} is isometric to a sphere.

Especially, restricting R^{m+1} to a Riemann space of constant curvature,
from Corollary 3. 4 we obtain the following

COROLLARY 4. 2 Let R^{m+1} be a Riemann space of constant cumature
which admits a conformal Killing vector fifield \xi^{i} and V^{m} a closed orientable
hypersurface such that

(i) H_{2} is positive constant,
(ii) N_{i}\Phi^{i} has fifixed sign on V^{m} and is not constant along V^{m}.

Then V^{m} is isometric to a sphere.
Similarly, making use of the condition that \Phi is not constant along V^{m}

instead of that N_{i}\Phi^{i} is not constant along V^{m}, we can prove the following
theorem and corollary in a similar way to the proof of Theorem 4. 1.

THEOREM 4. 3 Let R^{m+1} be an Einstein space with K\neq 0 which admits
a conformal Killing vector fifield \xi^{i} and V^{m} a closed orientable hypersurface
such that

(i) H_{2} is positive constant,
(ii) C_{\beta,\alpha}^{\alpha}=0 on V^{m},
(iii) N_{i}\xi^{i} has fifixed sign on V^{m},
(iv) \Phi is not constant along V^{m}.

Then V^{m} is isometric to a sphere.
COROLLARY 4. 4 Let R^{m+1} be a Riemann space of constant cumature

which admits a conformal Killing vector fifield \xi^{i} and V^{m} a closed orientable
hypersurface such that

(i) H_{2} is positive constant,
(ii) N_{i}\xi^{i} has fifixed sign on V^{m},
(iii) \Phi is not constant along V^{m}.

Then V^{m} is isometric to a sphere.
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