On infinitesimal projective transformations satisfying the certain conditions

By Kazunari Yamauchi
(Received May 20, 1977 : Revised July 6, 1977)

§ 1. Introduction.

We consider the following problem
Problem. Let M be a compact Riemannian manifold with positive constant scalar curvature. If M adminits a nonisometric infinitesimal projective transformation, then is M a space of positive constant curvature?

For this problem, the following results are known.
Theorem A. Let M be a complete Riemannian manifold with parallel Ricci tensor. If M admits nonaffine infinitesimal projective transformations, then M is a space of positive constant curvature. [1].

Theorem B. Let M be a compact Riemannian manifold with consant scalar curvature K. If the scalar curvature is nonpositive, then an infinitesimal projective transformation is a motion. [2].

Theorem C. Let M be a compact Riemannian manifold satisfying a condition $\nabla_{k i} K_{j i}-\nabla_{j} K_{k i}=0,(K \neq 0)$, where $\nabla_{k}, K_{j i}$ denote a covariant derivative and Ricci tensor, respectively. The projective Killing vector v^{b} can be decomposed uniquely as follows,

$$
v^{h}=w^{h}+q^{h},
$$

where w^{h} and q^{h} are Killing vector and gradient projective Killing vector, respectively. [2].

Theorem D. Let M be a compact Riemannian manifold satisfying a condition $\nabla_{k} K_{j i}-\nabla_{j} K_{k i}=0,(K \neq 0)$. If M admits nonisometric infinitesimal projective transformations, then M is a space of positive constant curvature. [2].

The purpose of this paper is to prove the following theorems
Theorem 1. Let M be a complete, connected and simply connectected Riemannian manifold with positive constant scalar curvature. If a projective Killing vector v^{h} is decomposable as follows,

$$
v^{h}=w^{h}-\frac{n(n-1)}{2 K} f^{h},
$$

where w^{h} and $\frac{n(n-1)}{2 K} f^{h}$ are a Killing vector and a non-zero gradient projective Killing vector, respectively, then M is isometric to a sphere of radius $\sqrt{\frac{n(n-1)}{K}}$.

Theorem 2. Let M be a compact Riemannian manifold with constant scalar curvature and let v^{h} be a projective Killing vector. Put $f=\nabla_{i} v^{i} / n+1$. Then the following conditions are equivalent.
(1 $\quad w^{h}=v^{h}+\frac{n(n-1)}{2 K} f^{h}$ is a Killing vector,
(2) $Z_{k j i}^{h} f^{k}=0$, where $Z_{k j i}^{h}=K_{k j i}^{h}+\frac{K}{n(n-1)}\left(\delta_{j}^{h} g_{k i}-\delta_{k}^{h} g_{j i}\right)$, and $K_{k j i}^{h}$ denotes the Riemannian curvature tensor,
(3) $G_{j i} f^{j}=0$, where $G_{j i}=K_{j i}-\frac{K}{n} g_{j i}$.

A vector field v^{h} is called an infinitesimal projective transformation or a projective Killing vector if it satisfies

$$
\mathfrak{Z}\left\{\begin{array}{l}
h \tag{1.1}\\
j i
\end{array}\right\}=\nabla_{j} \nabla_{i} v^{h}+K_{k j i}^{h} v^{k}=\delta_{j}^{h} \varphi_{i}+\delta_{i}^{h} \varphi_{j}
$$

where $\mathfrak{Z},\left\{\begin{array}{l}h \\ j i\end{array}\right\}, \varphi_{i}$ denote Lie derivation with respect to v^{h}, Christoffel's symbol and associated vector, respectively. From this equations, we get following results

$$
\begin{aligned}
& \Re K_{k j i}^{h}=-\delta_{k}^{h} \nabla_{j} \varphi_{i}+\delta_{j}^{h} \nabla_{k} \varphi_{i}, \\
& \mathbb{K} K_{j i}=-(n-1) \nabla_{j} \varphi_{i}, \\
& \nabla^{i} \nabla_{i} v_{j}+K_{j i} v^{i}=2 \varphi_{j}, \\
& \nabla_{j}\left(\nabla_{i} v^{i}\right)=(n+1) \varphi_{j} .
\end{aligned}
$$

We have $f_{j}=\varphi_{j}$, where f_{j} means $\nabla_{j} f$, therefore φ_{j} is a gradient vector and in the following discussions, we use f_{j} instead of φ_{j}.

§ 2. Proof of Theorem 1.

Lemma 1. Let M be a complete, connected and simply connected Riemannian manifold of dimension n. In order that M admits a nontrivial solution ψ for the system of differential equations

$$
\nabla_{k} \nabla_{j} \psi_{i}+K\left(2 \psi_{k} g_{j i}+\psi_{j} g_{i k}+\psi_{i} g_{k j}\right)=0, \quad K>0, \quad \psi_{i}=\nabla_{i} \psi,
$$

it is necessary and sufficient that M be isometric with a sphers S^{n} of radius $\frac{1}{\sqrt{K}}$ in Euclidean $(n+1)$-space.

For this Lemma, see [3].
Lemma 2. If $v_{h}=w_{h}-\frac{n(n-1)}{2 K} f_{h}$, then we have

$$
\nabla_{h} \nabla_{j} f_{i}+\frac{K}{n(n-1)}\left(2 f_{h} g_{j i}+f_{j} g_{n i}+f_{i} g_{n j}\right)=0 .
$$

Proof. Substituting v_{h} into (1.1), since w_{h} is the Killing vector, we obtain

$$
\begin{equation*}
\nabla_{j} \nabla_{i} f_{h}+K_{k j i h} f^{k}=-\frac{2 K}{n(n-1)}\left(g_{n j} f_{i}+g_{n i} f_{j}\right) . \tag{2.1}
\end{equation*}
$$

Since $\nabla_{i} f_{h}=\nabla_{h} f_{i}$, we hove

$$
\begin{aligned}
0= & \nabla_{j} \nabla_{i} f_{h}-\nabla_{j} \nabla_{h} f_{i} \\
= & -K_{k j i h} f^{k}-\frac{2 K}{n(n-1)}\left(g_{h j} f_{i}+g_{h i} f_{j}\right)+K_{k j h i} f^{k} \\
& \quad+\frac{2 K}{n(n-1)}\left(g_{j i} f_{h}+g_{h i} f_{j}\right) \\
= & -2 K_{k j i h} f^{k}-\frac{2 K}{n(n-1)}\left(g_{h j} f_{i}-g_{j i} f_{h}\right) .
\end{aligned}
$$

Substituting this result into (2.1), we get

$$
\nabla_{j} \nabla_{i} f_{h}+\frac{K}{n(n-1)}\left(2 f_{j} g_{h i}+f_{i} g_{h j}+f_{h} g_{i j}\right)=0
$$

From Lemma 1, and Lemma 2, we have Theorem 1.

§3. Proof of Theorem 2.

In this section we assume M is compact and the scalar curvature is constant.

Lemma 3. If $w^{h}=v^{h}+\frac{n(n-1)}{2 K} f^{h}$ is a Killing vector, then we have $Z_{k j i}^{h} f^{k}=0$.

This is obious from the proof of Theorem 1.
Lemma 4. If $Z_{k j i}^{h} f^{k}=0$, then we obtain $G_{j i} f^{j}=0$.
This proof is trivial.
Lemma 5. There is the following equation,

$$
(n-1) \Delta^{2} f+2 K \Delta f+2 K_{j i} \nabla^{j} f^{i}=0
$$

where Δ means $g^{j i} \nabla_{j} \nabla_{i}$.
For this Lemma, see [2].
Lemma 6. If $G_{j i} f^{j}=0$, then we have $\Delta f=-\frac{2(n+1)}{n(n-1)} K f$.
Proof is the same as that in page 266, [2].
Lemma 7. A necessary and sufficient condition for a vector field w^{h} in M to be a Killing vector is $\nabla_{i} w^{i}=0$ and $\nabla^{j} \nabla_{j} w^{h}+K_{i}^{h} w^{i}=0$.
For thisLemma, see [4].
Lemma 8. If $G_{j i} f^{j}=0$, then we get $v^{h}=w^{n}-\frac{n(n-1)}{2 K} f^{n}$.
PROOF. If we put $w^{h}=v^{h}+\frac{n(n-1)}{2 K} f^{h}$, then we have

$$
\begin{aligned}
\nabla^{i} w_{i} & =\nabla^{i} v_{i}+\frac{n(n-1)}{2 K} \Delta f \\
& =(n+1) f-(n+1) f \\
& =0, \\
\nabla^{j} \nabla_{j} w^{i}+K_{i}^{j} w_{j}= & \nabla^{j} \nabla_{j} v^{i}+K_{i}^{j} v_{j}+\frac{n(n-1)}{2 K}\left\{\nabla^{j} \nabla_{j} f_{i}+K_{i}^{j} f_{j}\right\} \\
= & 2 f_{i}+\frac{n(n-1)}{2 K}\left\{-\frac{2(n+1)}{n(n-1)} K f_{i}+\frac{2 K}{n} f_{i}\right\} \\
= & 0
\end{aligned}
$$

Therefore w_{i} is a Killing vector from the Lemma 7. Consequently we arrive at the complete proof of Theorem 2 by means of Lemma 3, Lemma 4 and Lemma 8.

Bibliography

[1] T. NAGANO: The projective transformation on a space with parallel Ricci tensor, Kodai Math. Rep. 11 (1959).
[2] K. Yamauchi: On infinitesimal projective transformations, Hokkaido Math. J. Vol. 3 (1974), No. 2, 262-270.
[3] S. TANNO: Some differential equations on Riemannian manifolds, to appear.
[4] K. Yano: Differential Geometry on Complex and Almost Complex Speces. Pergamon Press (1965).

