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\S 1. Introduction and results.

Let E be a (real or complex) Banach space with the dual space E^{*} .
The norms in E and E^{*} are denoted by |||| . Let D be an open set in
E and let F be a closed set in E such that F\subset D.

In this paper we consider the Cauchy problem
(CP) x’=f(t,x), x(t_{0})=u_{0}\in D , t_{0}\in[0, \infty) .

Here f is a continuous mapping from [0, \infty)^{\backslash }’<D into E. By a solution to
(CP) or to (CP;t_{0}, u_{0}), we mean a continuously differentiate function u
from [t_{0}, \infty)intoD such that u(t_{0})=u_{0} ond u’(t)=f(t, u(t)) for all t\in[t_{0}, \infty).

As for the existence of a solution of this kind of problem, various
results have been established, for example, see F. E. Browder [3], S. Kato
[6, 7] , N. Kenmochi and T. Takahashi [8], D. L. Lovelady and R. Martin
[10], R. Martin [11, 12] and N. Pavel [14].

We say the set F is flow-invariant for f if u_{0}\in F implies that u(t)\in F

on [t_{0}, \infty) for the solution to (CP;t_{0}, u_{0}).
J. Bony [1] and H. Brezis [2] gave sufficient conditions for the set F

to be flow-invariant for f in case E is a finite dimensional Euclidean space
and f is a locally Lipschitz continuous function of D into E. The sufficient
conditions proposed by them were generalized into a class of functions
satisfying some dissipative type condition by R. M. Redheffer [15], and
moreover some results were extended by R. Martin [12] to the case of
general Banach space. Recently, N. Kenmochi and T. Takahashi [8] gave
some simplications and improvements of results of [12].

The purpose of this paper is to give a criterion for the set F to be
flow-invariant for f under more general dissipative type conditions on f.

If we consider [8, 12] from the view-point of the notion of flow-invari-
ant sets, the condition of the present paper is weaker than those of [8, 12] .
In \S 5 we shall give some remarks and examples which connect our results
with those of others. Our approach is essentially based on the methods
in [5, 6, 7, 8].
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Let us consider first the following scalar differential equation

(1. 1) w’(t)=g(t, w(t)) , w(t_{0})=w_{0} .

Here g(t, \tau) is a real-valued function defined on (0, \infty)\cross[0, \infty) which is
measurable in t for each fixed \tau, and continuous nondecreasing in \tau for
each fixed t. We say w is a solution of (1. 1) on an interval [t_{0}, t_{0}+a] if
w is an absolutely continuous function defined on [t_{0}, t_{0}+a] satisfying (1. 1)
almost everywhere on [t_{0}, t_{0}+a] . We assume furthermore that g satisfies
the following conditions:

(i) g(t, 0)=0 for a.e.t\in(0, \infty), and for each bounded subset B of
(0, \infty)\cross[0, \infty) there exists a function \alpha_{B} defied on (0, \infty) such that

|g(t, \tau)|\leqq\alpha_{B}(t) for all (t, \tau)\in B

and \alpha_{B} is Lebesgue integrable on (t_{1}, t_{2}) for each t_{2}>t_{1}>0 .
(ii) For each T\in[0, \infty), w\equiv 0 is the only solution of (1. 1) on [0, T]

satisfying the condition w(0)=(D^{+}w)(0)=0 , where D^{+} denotes the right-
sided derivative of w.

From the above conditions (i) and (ii) we see that for each t_{1}, t_{2}\in[0, \infty)

with t_{2}<t_{1} , w\equiv 0 is the only solution of (1. 1) on [t_{1}, t_{2}] satisfying w(t_{1})=

(D^{+}w)(t_{1})=0 .
We define the functional [

,\cdot
]: E\cross E- R by

[x, y]= \lim_{harrow-0}(||x+hy||-||x||)/h .

Now, let f be a mapping from [0, \infty)\cross D into E and consider the
following conditions:

(K_{1}) f is continuous from [0, \infty) \rangle_{\backslash }^{\prime D} into E .
(K_{2}) [x-y,f(t, x)-f(t, y)]\leqq g(t, ||x-y||)

for all x, y in D and for a.e.t\in(0, \infty).
Then we have the following main result.

THEOREM. Suppose that f satisfifies the conditions (K_{1}) and (K_{2}). Thm
the set F is fiow-invariant for f if and only if
(1. 2) \lim_{harrow}\inf_{+0}p(x+hf(t, x), F)/h=0

for all (t, x)\in[0, \infty)\cross F, where d(z, F) denotes the distance from z\in E to F.
The author would like to express his hearty thanks to Professor T.

Shirota for the kind criticism. The author thanks also Mr. N. Kenmochi
and Mr. T. Takahashi for usefull suggestions.
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\S 2. Some lemmas.

In this section we give some lemmas without proof. For proofs of
Lemmas 2. 1-2. 3 see [6]. In Lemmas 2. 1-2. 5 we assume that g satisfies
the conditions (i) and (ii) stated in \S 1.

LEMMA 2. 1. Let t_{1}, t_{2}\in[0, \infty) be such that t_{1}<t_{2} and let \{w_{n}\} be a se-
quence of functions from [t_{1}, t_{2}] to [0, \infty) converging unifomly on [t_{1}, t_{2}] to
a function w_{0} . Let M>0 be such that

|w_{n}(t)-w_{n}(s)|\leqq M|tarrow s| for all s, t\in[t_{1}, t_{2}] and n\geqq 11

Suppose furthermore that for each n\geqq 1 and \sigma_{n}\geqq 0 with \sigma_{n}\downarrow 0

w_{n}’(t)\leqq g(t, w_{n}(t))+\sigma_{n}

for t\in(t_{1}, t_{2}) such that w_{n}’(t) exists. Then

w_{0}’(t)\leqq g(t, w_{0}(t)) for a.e.t\in(t_{1}, t_{2}) .

Lemma 2. 2. Let t_{1}, t_{2}\in[0, \infty) be such that t_{1}<t_{2} and let \Phi be a uni-
fomly bounded family of functions from [t_{1}, t_{2}] into [0, \infty) with the prO-
perty that, for each s, t\in[t_{1}, t_{2}] and w\in\Phi, |w(t)-w(s)|\leqq M|t-s| for some
constant M>0 .
Let w_{0}= \sup\{w;w\in\Phi\} and let \sigma\geqq 0 be a constant. Suppose furthermore
that for each w\in\Phi

w’(t)\leqq g(t, w(t))+\sigma

for t\in(t_{1}, t_{2}) such that w’(t) exists. Then

w_{0}’(t)\leqq g(t, w_{0}(t))+\sigma for a.e.t\in(t_{1}, t_{2}) .

Lemma 2. 3. Let w be an absolutely continuous function from [t_{1}, t_{2}]

(0\leqq t_{1}<t_{2}<\infty) to [0, \infty) such that w(t_{1})=(D^{+}w)(t_{1})=0 and

w’(t)\leqq g(t, w(t)) for a.e.t\in(t_{1}, t_{2}) .
Then w\equiv 0 on [t_{1}, t_{2}] .

Let t_{0}>0 . We define a functian g_{t_{0}} by

g_{t_{0}}(t, \tau)=\{\begin{array}{l}g(t,\tau) (t\geqq t_{0},\tau\geqq 0)0 (otherwise).\end{array}

For each t_{0}>0 we consider the following scalar differential equation

(2. 1) w’(t)=g_{t_{Q}}(t, w(t)),\cdot w(t_{0})=w_{0} .
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Concerning this equation we give the following two lemmas which are
used in the proof of the Theorem.

LEMMA 2. 4. Let t_{0}>0 and suppose that the maximal solution m_{t_{0}}(\cdot, w_{0})

of (2. 1) through (t_{0}, w_{0}) exists over an interval [t_{0}, t_{0}+a] . Then there exists
a \delta>0 such that (2. 1) has a maximal solution m_{t_{0}}(\cdot, \sigma) for each \sigma, w_{0}\leqq\sigma<

w_{0}+\delta on [t_{0}, t_{0}+a] with m_{t_{0}}(t_{0}, \sigma)=\sigma . Moreover, m_{t_{0}}(\cdot, \sigma)-m_{t_{0}}(\cdot, w_{0}) as \sigmaarrow

w_{0}+0, uniformly on [t_{0}, t_{0}+a] .
For a proof see [4, Theorem 2. 4, p. 47].

Lemma 2. 5. Suppose that the hypothesis of Lemma 2. 4 are satisfified,
and let w be an absolutely continuous function on [t_{0}, t_{0}+a] . Suppose fur-
thermore that

w’(t)\leqq g_{t_{0}}(t, w(t)) for a.e.t\in[t_{0}, t_{0}+a]\Gamma

Then w(t_{0})\leqq w_{0} implies that w(t)\leqq m_{t_{0}}(t, w_{0}) on [t_{0}, t_{0}+a] .
For a proof of the above lemma see [9, Theorem 1. 10. 4, p. 43].

The following lemma on the functional [ . ] : E\cross Earrow R is well-known.

Lemma 2. 6. Let x, y and z be in E. Then the functional [ ] has
the following properties :

(1 ) |[x, y]|\leqq||y|| .
(2) [x, y+z]\leqq[x, y]+||z|| .
(3 ) [x, y]\leqq[x, y-z]+||z|| .
(4) Let u be a function from a real interval I into E such that u’(t)

and \frac{d}{dt}||u(t)|| exist for a.e.t\in I. Then

\frac{d}{dt}||u(t)||=[u(t), u’(t)] for a.e.t\in It

\S 3. Local existence.

Assume that conditions (K_{1}), (K_{2}) and (1. 2) are satisfied. Then we have
the following important

PROPOSITION 3. 1. Let (t_{0}, u_{0})\in[0, \infty)\cross F and let M, r_{0} and T_{1} be posi-
tive numbers such that S(u_{0},2r_{0})\subset D and

||f(t, x)||\leqq M for all (t, x)\in[t_{0}, t_{0}+2T_{1}]\cross S(u_{0},2r_{0}) .

Then (CP;t_{0}, u_{0}) has a unique solution u on [t_{0}, t_{0}+T_{0}] such that u(t)\in F\cap

S(u_{0}, r_{0}) for all t\in[t_{0}, t_{0}+T_{0}] , where T_{0}={\rm Min}\{r_{0}/(2M), T_{1}/2\} and S(u_{0}, r_{0})=

\{v;||v-u_{0}||\leqq r_{0}\} .
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In order to prove this proposition, under the same assumptions and
notations as in the proposition for each \epsilon>0 sufficiently small we consider
the set H_{\epsilon} of all pairs (z, a) such that t_{0}<a\leqq t_{0}+T_{0} and z=z(t) is a func-
tion from [t_{0}, a] into S(u_{0},2r_{0}) satisfying the following conditions:

(i) z(t_{0})=u_{0} and z(a)\in F ;
(ii) ||z(t)-z(s)||\leqq 2M|t-s| for all s, t\in[t_{0}, a] ;
(iii) ||z’(t)-f(t, z(t))||\leqq\epsilon for a.e.t\in[t_{0}, a] ;
(iv) every subinterval of [t_{0}, a] , with length being \geqq\epsilon, contains at least

one point \tau such that z(\tau)\in F.
Also, define an order ”\leqq ” in H_{\epsilon} by the following manner: (z_{1}, a_{1})\leqq(z_{2}, a_{2})

if and only if a_{1}\leqq a_{2} and z_{1}(t)=z_{2}(t) for all t\in[t_{0}, a_{1}] . Then H_{*} becomes
a partially ordered set and we have

LEMMA 3. 1. H\’e is non-empty and inductive with respect to the order
”\leqq ”.

PROOF. For simplicity we may assume that t_{0}=0 . Let (t^{0}, v_{0})\in[0,2T_{0}]

\cross(F\cap S(u_{0}, r_{0})). Now, take a number \delta so that
0<\delta<{\rm Min}\{r, \epsilon_{0}, M\}

and

(3. 1) ||f(t, x)-f(t^{0}, v_{0})||\leqq\epsilon/2

whenever t^{0}\leqq t\leqq t^{0}+\delta and ||x-v_{0}||\leqq\delta, and by using (1. 2), take a number
h_{1} with 0<h_{1}<{\rm Min}\{\delta/(\delta+2M), \delta\} having the property: for each h\in(0, h_{1}]

there is v_{h}\in F such that

(3. 2) ||(v_{h}-v_{0})/h-f(t^{0}, v_{0})||\leqq\delta/2

Then it follows from (3. 2) that

(3. 3) ||v_{h}-v_{0}||/h\leqq\delta/2+||f(t^{0}, v_{0})||

\leqq\delta/2+M\leqq\delta/2h

for all h\in(0, h_{1}] . Therefore, defining
(3. 4) Q(t)=Q(t;v_{0}, t^{0}, h)=v_{0}+(t-t^{0})(v_{h}-v_{0})/h

for t\in[t^{0}, t^{0}+h] with h\in(0, h_{1}] , we have by (3. 3)

||Q(t)-v_{0}||\leqq||v_{h}-v_{0}||\leqq\delta/2<r_{0}

and hence Q(t)\in S(u_{0},2r_{0}) for all t\in[t^{0}, t^{0}+h] . In particular Q(t^{0})=v_{0}\in F

and Q(t^{0}+h)=v_{h}\in F. Besides it follows from (3. 2) and (3. 3) that
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||Q(t)-Q(s)||=|t-s|||v_{h}-v_{0}||/h

\leqq(\delta/2+M)|t-s|\leqq 2M|t-s|

and

||Q’(t)-f(t, Q(t))||=||(v_{h}-v_{0})/h-f(t, Q(t))||

\leqq||(v_{h}-v_{0})/h-f(t^{0}, v_{0})||+||f(t^{0}, v_{0})-f(t, Q(t))||

\leqq\delta/2+\epsilon/2\leqq\epsilon

for all t, s\in[t^{0}, t^{0}+h] . Thus (Q, h)\in H_{\iota} if we take t^{0}=0 and v_{0}=u_{0}, so that
H_{\epsilon}\neq\phi.

Next we show that H. is inductive. Let L=\{(z_{\lambda}, a_{\lambda});\lambda\in\Lambda\} be any
totally ordered subset of H_{\epsilon} , and put

a = \sup\{a_{\lambda} ; \lambda\in\Lambda\} .
If \overline{a}=a_{\lambda} for some \lambda\in\Lambda, then (z_{\lambda}, a_{\lambda}) is clearly an upper bound for L. In
case a_{\lambda}<\overline{a} for all \lambda\in\Lambda, define a function z:[0,\overline{a})arrow S(u_{0},2r_{0}) by putting

z(t)=z_{\lambda}(t) if t<a_{\lambda}r

Then it is easy to see that z satisfies the properties (ii), (iii) and (iv) on
[o, \overline{a}). Since ||z(a_{\lambda})-z(a_{\gamma})||\leqq 2M|a_{\lambda}-a_{-}| for \lambda , \gamma\in\Lambda, the limit z( \overline{a})=\lim_{t\uparrow\overline{a}}z(t)

exists and z(\overline{a})\in F. If we denote again by z the function extended on
[0, \overline{a}] by the limit, the pair (z,\overline{a}) is clearly an upper bound for L. Thus
H\’e is inductive. Q. E. D.

Lemma 3. 2. H_{e} has a maximal element (z_{\epsilon}, a_{\epsilon}) such that a_{\epsilon}=t_{0}+T_{0}.
PROOF. Since H_{*} is inductive by Lemma 3. 1, it has at least one

maximal element (z_{\epsilon}, a_{\epsilon}). Moreover a_{\epsilon}=t_{0}+T_{0} . In fact, suppose for contra-
diction that a_{\epsilon}<t_{0}+T_{0} . Then z_{\epsilon}(a_{\epsilon})\in F\cap S(u_{0}, r_{0}) by (i) and (ii), and hence
we can extend z_{\epsilon} to the interval [t_{0}, a_{\epsilon}+h] by means of Q(t)=Q(t;z_{\epsilon}(a.),
a_{\text{\’{e}}} , h) on [a_{\epsilon}, a_{\epsilon}+h] , where h is a sufficiently small positive number and
Q(t) is the function as constructed in the previous lemma. This contra-
dicts the fact that (z_{\epsilon}, a_{\epsilon}) is maximal. Q. E. D.

PROOF of PROPOSITION 3. 1. Let \{\epsilon_{n}\} be a sequence of positive num-
bers such that \epsilon_{n}\downarrow 0 as narrow\infty and let (z_{n}, t_{0}+T_{0}) be a maximal element in
H_{\epsilon n} for each n.

We show that the sequence \{z_{n}\} converges uniformly on [t_{0}, t_{0}+T_{0}] .
For simplicity we assume again that t_{0}=0 . Let w_{mn}(t)=||z_{m}(t)-z_{n}(t)|| for
t\in[0, T_{0}] and m>n\geqq 1 , and remark first that w_{mn}’(t) exists for a.e.t\in[0, T_{0}]

since
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(3. 5) |w_{mn}(t)-w_{mn}(s)|\leqq 4M|t-s| for all s, t\in[0, T_{0}] .

Thus we have by Lemma 2. 6 and the condition (K_{2})

(3. 6) w_{mn}’(t)=[z_{m}(t)-z_{n}(t), z_{m}’(t)-z_{n}’(t)]

\leqq g (t, ||z_{m}(t)-z_{n}(t)||)+||z_{m}’(t)-f(t, z_{m}(t))||

+||z_{n}’(t)-f(t, z_{n}(t))||

\leqq g (t, w_{mn}(t))+2\epsilon_{n}

for a.e.t\in(0, T_{0}] and m>n\geqq 1 .
Let w_{n}(t)= \sup_{m>n}\{w_{mn}(t)\} for t\in[0, T_{0}] . Then w_{n}(0)=0 for all n\geqq 1 . It thus
follows from (3. 5), (3. 6) and Lemma 2. 2 that

(3. 7) |w_{n}(t)-w_{n}(s)|\leqq 4M|t-s| for all s, t\in[0, T_{0}]

and

(3. 8) w_{n}’(t)\leqq g(t, w_{n}(t))+2\epsilon_{n} for a.e.t\in(0, T_{0}] .
Since 0\leqq w_{n}(t)\leqq w_{n}(0)+4Mt\leqq 4MT_{0} for t\in[0, T_{0}] and n\geqq 1 , the sequence
\{w_{n}\} is equicontinuous and uniformly bounded, and hence it has a subse-
quence converging uniformly on [0, T_{0}] to a function w=w(t), and obviously
w(0)=0. From (3. 8) and Lemma 2. 1 we have

w’(t)\leqq g(t, w(t)) for all a.e.t\in(0, T_{0}]1

We show next that (D^{+}w)(0)=0 . For each \epsilon>0 we can fined a \delta>0 such
that

||f(t, x)-f(0, u_{0})||<\epsilon for all (t, x)\in[0, \delta]\cross S(u_{0}, \delta) .

Let \delta_{0}={\rm Min}\{\delta, \delta/2M\} . Since ||z_{n}(t)-u_{0}||\leqq 2Mt\leqq\delta by (ii),

||f(t, z_{m}(t))-f(t, z_{n}(t))||<2\epsilon

whenever m>n\geqq 1 and t\in[0, \delta_{0}] . From Lemma 2. 6 we have
w_{mn}’(t)=[z_{m}(t)-z_{n}(t), z_{m}’(t)-z_{n}’(t)]

\leqq||z_{m}’(t)-f(t, z_{m}(t))||+||z_{n}’(t)-f(t, z_{n}(t))||

<2(\epsilon+\epsilon_{n})

+||f(t, z_{m}(t))-f(t, z_{n}(t))||
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for a.e.t\in[0,0_{0}^{Q}] , and hence, by integrating the above inequality, 0\leqq w_{mn}(t)

\leqq 2(\epsilon+\epsilon_{n})t, whence (D^{+}w)(0)=0 . Consequently, from Lemma 2. 3 we de-
duce now that w\equiv 0 , and this implies that the sequencs \{z_{n}\} is uniformly
convsrgent on [0, T_{0}] . The limit z=z(t) of of this sequence satisfies

z(t)=u_{0}+ \int_{0}^{t}f(s, z(s))ds for t\in[0, T_{0}]

Thus z=z(t) is a solution to (CP;0, u_{0}) and z(t)\in F\cap S(u_{0}, r_{0}) on [0, T_{0}] .
Since the uniqueness of a solution to (CP;0, u_{0}) is well-known (cf. [6,

Theorem 1], the proof of Proposition 3. 1 is complete.

\S 4. Proof of Theorem.

Before proving Theorem, we prepare the following two lemmas.
LEMMA 4. 1. Let b be any positive number and let u_{0}\in F. Then there

exists a \delta>0 for which (CP;s, u_{0}) has a solution u on [s, s+\delta] for each
s\in[0, b] such that u(t)\in F for all t\in[s, s+\delta] .

PROOF. We first see from the continuity of f on [0, \infty)\cross D that there
exist positive constants r_{0} and M such that

||f(t, x)||\leqq M for all (t, x)\in[0,4b]\cross S(u_{0},2r_{0}) .

Let \delta={\rm Min}\{3b/4, r_{0}/2M\} . Then, by Proposition (3. 1), (CP;s, u_{0}) has a
unique solution u on [s, s+\delta] for each s\in[0, b] such that

u(t)\in F for all t\in[s, s+\delta]1 Q. E. D.

LEMMA 4. 2. Let t_{0}>0 and u_{0}\in F. Suppose that T is a positive number
such that (CP;t_{0}, u_{0}) has a solution u such that u(t)\in F for all t\in[t_{0}, t_{0}+T] .
Then there exists a positive number r having the property: for each v_{0}\in

F\cap S(u_{0}, r), (CP;t_{0}, v_{0}) has a solution v such that v(t)\in F for all t\in[t_{0}, t_{0}+T] .
PROOF. By the condition (ii) in \S 1, w\equiv 0 is a maximal solution on

[t_{0}, t_{0}+T] of (2. 1) with w(t_{0})=(D^{+}w)(t_{0})=0 . It thus follows from Lemma
2. 4 that there exists a positive number \delta such that (2. 1) has a maximal
solution m_{t_{0}}(\cdot, \sigma) for each \sigma , 0\leqq\sigma<\delta on [t_{0}, t_{0}+T] with m_{t_{0}}(t_{0}, \sigma)=\sigma . More-
over, m_{t_{0}}(\cdot, \sigma) converges to 0 uniformly on [t_{0}, t_{0}+T] as \sigmaarrow+0 . Since the
set \{(t, u(t));t\in[t_{0}, t_{0}+T]\} is compact in [t_{0}, t_{0}+T]\cross D, there exist positive
constants \rho and M such that

(4. 1) ||f(t, x)||\leqq M for all t\in[t_{0}, t_{0}+T] and x\in S(u(t), \rho)\tau

Here we may choose \rho such that S(u(t), \rho)\subset D for all t\in[t_{0}, t_{0}+T] . Con-
sequently, we can choose a positive number r such that 0<r<{\rm Min}\{\delta, \rho\} and
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(4. 2) |m_{t_{0}}(t, ||v_{0}-u_{0}||)|<\rho

for all (t, v_{0})\in[t_{0}, t_{0}+T]\cross(F\cap S(u_{0}, r)).
By virtue of Proposition 3. 1, (CP;t_{0}, v_{0}) has a unique local solution v with
v(t)\in F on some interval [t_{0}, t_{0}+T(v_{0})) for each v_{0}\in F\cap S(u_{0}, r). Assume
that T(v_{0})\leqq T and [t_{0}, t_{0}+T(v_{0})) is a maximal interval of existence of v
with the property that v(t)\in F on [t_{0}, t_{0}+T(v_{0})).
Since ||v(t)-u(t)|| is absolutely continuous on each closed interval [t_{0}, t_{0}+

T(v_{0})) we have

\frac{d}{dt}||v(t)-u(t)||=[v(t)-u(t), f(t, v(t))-f(t, u(t))]

\leqq g(t, ||v(t)-u(t)||)

for a.e.t\in[t_{0}, t_{0}+T(v_{0})). Hence we have by Lemma 2. 5

||v(t)-u(t)||\leqq m_{t_{0}}(t, ||v_{0}-u_{0}||) for all t\in[t_{0}, t_{0}+T(v_{0}))

It thus follows from (4. 1) and (4. 2) that

||f(t, v(t)) ||\leqq M for all t\in[t_{0}, t_{0}+T(v_{0})) ,

and this implies that lim v(t) exists in F. Applying Proposition 3. 1 once
again we have a contradi^{0c}tarrow T(v)tion. Thus T<T(v_{0}) and the proof is complete.

PROOF of the THEOREM. The method of the following proof is essen-
tially based on that of [8].

Let (t_{0}, u_{0})\in[0, \infty)\cross F. Then, by Proposition 3. 1, (CP;t_{0}, u_{0}) has a
unique local solution u on some interval [t_{0}, t_{1}] such that u(t)\in F for all
t\in[t_{0}, t_{1}] . We note that t_{1}>0 and u(t_{1})\in F. Let b be any positive number
such that b>t_{1} . Then, by Lemma 4. 1, there exists a positive constant \delta

such that (CP;s, u(t_{1})) has a solution v with v(t)\in F on [s, s+\delta] for each
s\in(0, b] . We note here that if s=0, then we can not apply Lemmas 2. 4,
2. 5 and 4. 2 in the following discussion. Therefore, we omit the case s=0.

Now, let C be a connected component in F containing u(t_{1}) and let

G_{s}=\{x\in C;(CP;s, x) has a solution v such that v(t)\in F for

t\in[s, s+\delta]\} for each s\in(0, b]e

Then G_{s} is not empty since u(t_{1})\in G_{s} for each s\in(0, b] by Lemma 4. 1.
Moreover, G_{s} is relatively open in C for each fixed s\in(0, b] by Lemma 4. 2.
We show that G_{s} is also relatively closed in C. For this, let \{x_{n}\} be any
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sequence in G_{s} which converges to x\in C and let v_{n} be a solution to (CP ;
s, x_{n}) on [s, s+\delta] . Then

\frac{d}{dt}||v_{n}(t)-v_{m}(t)||=[v_{n}(t)-v_{m}(t), f(t, v_{n}(t))-f(t, v_{m}(t))]

\leqq g(t, ||v_{n}(t)-v_{m}(t)||)

for a.e.t\in[s, s+\delta] . Thus we have by Lemma 2. 5

||v_{n}(t)-v_{m}(t)||\leqq m_{s}(t, ||x_{n}-x_{m}||)

for all t\in[s, s+\delta] and for su fHciently large positive integers n and m.
Since \lim_{n,marrow\infty}||x_{n}-x_{m}||=0 , the sequence \{v_{n}\} converges uniformly on [s, s+\delta]

to a function v by Lemma 2. 4, and clearly v is a solulion to (CP;s, x)
on [s, s+\delta] and hence x\in G_{s} . Consequently, G_{s}=C for all s\in(0, b] . In
particular, u(t_{1})\in G_{t_{1}}=C and hence (CP;t_{1}, u(t_{1})) has a solution v on [t_{1}, t_{1}+\delta]

such that v(t)\in F for t\in[t_{1}, t_{1}+\delta] . If t_{1}+\delta<b, then (CP;t_{1}+\delta, v(t_{1}+\delta))

has a solution w on [t_{1}+\delta, t_{1}+2\delta] such that w(t)\in F for t\in[t_{1}+\delta, t_{1}+2\delta] ,
because v(t_{1}+\delta)\in G_{t_{1}+\delta}=C. Obviously

\hat{\tau}|j(t)=

’ u(t) (t_{0}\leqq t\leqq t_{1})

v(t) (t_{1}\leqq t\leqq t_{1}+\delta)

\backslash w(t) (t_{1}+\delta\leqq t\leqq t_{1}+2\delta)

is a solution to (CP;t_{0}, u_{0}) on [t_{0}, t_{1}+2\delta] . Repeating this argument we see
that (CP;t_{0}, u_{0}) has a solution on [t_{0}, b] . Since b was arbitrary number
such that b>t_{1} , it is proved that (CP;t_{0}, u_{0}) has a solution u^{*} on [t_{0}, \infty)

such that u^{*}(t)\in F for all t\in[t_{0}, \infty). Thus the sufficiency is proved.
Conversely, suppose that the set F is flow-invariant for f and let u be

a solution to (CP;t_{0}, u_{0}) on [t_{0}, \infty) such that u(t)\in F for all t\in[t_{0}, \infty). Then

d(u_{0}+hf(t_{0}, u_{0}), F)/h\leqq||(u(t_{0}+h)-u(t_{0}))/h-f(t_{0}, u_{0})||

and

||(u(t_{0}+h)-u(t_{0}))/h-f(t_{0}, u_{0})||arrow 0 as harrow+0 .

Hence the necessity follows. Q. E. D.

\S 5. Remarks and examples.

In this section we give some remarks and examples which connect
our results with those of others.
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REMARK 1. In the previous paper [6] we used the functional

\langle x, y\rangle=([x, y]-[x, -y])/2 .

But it can be easily seen that [x, y]\leqq\langle x, y\rangle for each x, y in E. Hence the
Theorem of the present paper gives an improvement of Theorem 2 in [6].

Let J be the duality mapping from E into 2^{E^{*}}(i . e. , for each x in E,
J(x)=\{x^{*}\in E^{*} ; x^{*}(x)=||x||^{2}=||x^{*}||^{2}\} .
For each x, y in E, define

\langle x, y\rangle_{i}=\inf\{{\rm Re}(x^{*}(y)) ; x^{*}\in J(x)\} .

Then for each x\neq 0 and y in E, [x, y]=\langle x, y\rangle_{t}/||x|| (see [11]). Thus the
condition (K_{2}) is equivalent to the following :

(5. 1) \langle x-y, f(t, x)-f(t, y)\rangle_{i}\leqq||x-y||g(t, ||x-y||)

for all x, y\in D and for a.e.t\in(0, \infty.)

We note also that Proposition 3. 1 remains valid even if F is a relatively
closed subset of D. Hence, this fact and (5. 1) imply that our Theorem
gives a generalization of Theorems 3 and 4 in R. M. Redheffer [15] into
a general Banach space.

REMARK 2. Let \beta be a real-valued function defined on (0, \infty) satis-
fying the following conditions:

(\beta_{1}) For each t_{1}, t_{2}\in(0, \infty) with t_{1}<t_{2}, \beta is Lebesgue integrable on (t_{1}, t_{2}).
(\beta_{2}) For each t>0 , \lim_{\epsilonarrow}\sup_{+0}[\epsilon exp ( \int_{\epsilon}^{t}\beta(\tau)d\tau)]<+\infty .

The condition (\beta_{2}) was considered by C. V. Pao [13] to prove the unique-
ness of solutions to (CP;0, u_{0}).
If g(t, \tau)=\beta(t)\tau , then the conclusion of our Theorem remains valid. In
fact, it is obvious that this function \beta(t)\tau satisfies the condition (i) in \S 1.
To prove that \beta(t)\tau satisfies also the condition (ii) in \S 1, let w be a solu-
tion of the equation w’(t)=\beta(t)w(t) on [0, T] satisfying w(0)=(D^{+}w)(0)=0 .
Then for each \epsilon>0, we have

0\leqq w(t)=w(\epsilon) exp ( \int_{\text{\’{e}}}^{t}\beta(\tau)d\tau)

=\epsilon exp ( \int^{t}.\beta(\tau)d\tau)(w(\epsilon)-w(0))/\epsilon

for t\in[\epsilon, T] . This implies that w\equiv 0 on [0, T] . Thus \beta(t)\tau satisfies (i)

and (ii) in \S 1. However, the function \beta(t)\tau need not be nondecreasing
in \tau for fixed t. The nondecreasing nature is used only in establishing
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Lemma 2. 3 (see [6]) which is valid for g(t, \tau)=\beta(t)\tau. Thus our result ex-
tends those of [10, 11, 14] when g(t, \tau)=\beta(t)\tau.

REMARK 3. Recently, N. Kenmochi and T. Takahashi [8] proved the
following theorem which gives an improvement of [12].

THEOREM A. Let F be a closed subset of E. Suppose that f satisfifies
the following conditions :
(5. 2) f is continuous from [0, \infty)\cross F into E .
(5. 3) \langle x-y , f(t, x)-f(t, y)\rangle_{i}\leqq\omega(t)||x-y||^{2}

for all (t, x), (t, y)\in[0, \infty)\cross F, where \omega is a real-valued continuous function
defifined on [0, \infty). Suppose furthermore that

(5. 4) \lim_{harrow}\inf_{+0}d(x+hf(t, x), F)/h=0

for all (t, x)\in[0, \infty)\cross F. Then (CP;0, u_{0}) has a unique global solution u

defifined on [0, \infty) for each u_{0}\in F.
This result is intimately related to the notion of flow-invariant sets.

If we consider this theorem from the view-point of the notion of flow-
invariant sets we have the following

THEOREM B. Let D be an open set in E and let F be a closed set
in E such that F\subset D. Suppose that f satisfifies (5. 4) and the following
conditions :
(5. 5) f is continuous from [0, \infty)\cross D into E .
(5. 6) \langle x-y , f(t, x)-f(t, y)\rangle_{i}\leqq\omega(t)||x-y||^{2}

for all (t, x), (t, y)\in[0, \infty)\cross D. Then the set F is flow-invariant for f.
Since (5. 1) implies (5. 6), our Theorem contains Theorem B.
The following examples show that the condition (K_{2}) is strictly more

general than (5. 6).

EXAMPLE 1. Let a(t) be the function defined by

a(t)=\{
t^{3/2} (0\leqq t\leqq\rho)

\rho^{3/2} (t\geqq\rho) ,

where \rho is a constant such that \rho>1 . Consider the function G defined by

G(t, u)=

\wedge\frac{\sqrt{}^{3}\overline{u}}{1+^{3}\Gamma a(\overline{t)}}+b(t)u^{3} (t\geqq 0, u\geqq a(t))

\backslash \frac{3r_{a}(\overline{t)}}{1+^{3}\backslash \overline{a(t)}}+b(t)u^{3} (t\geqq 0, u<a(t)) :
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where b is a real-valued continuous function from [0, \infty) into (-\infty, 0] . It
is easily verified that the function G satisfies the following inequality:

(5. 7) |u-v+h(G(t, u)-G(t, v))|

\geqq(1+h/3s\Gamma a\overline{(t)^{2}}(1+3\sqrt\overline{a(t)}))|u-v|

for all h\leqq 0, t>0 and u, v\in(-\infty, \infty).
Let us take as E the Banach space l^{\infty} of bounded sequences of real

numbers. For eabh x=(x_{n}) and t\geqq 0 , define f(t, x)=(G(t, x_{n})). Then f is
continuous from [0, \infty)\cross E into E. For each x=(x_{n}), y=(y_{n}) in E, h<0,
we have by (5. 7)

\sup_{n}|x_{n}-y_{n}+h(G(t, x_{n})-G(t, y_{n}))|-\sup_{n}|x_{n}-y_{n}|

\geqq\frac{h}{33\sqrt\overline{a(t)^{2}}(1+s\sqrt\overline{a(t)})}\sup_{n}|x_{n}-y_{n}|

This implies that

[x-y, f(t, x)-f(t, y)]\leqq||x-y||/33\sqrt\overline{a(t)^{2}}(1+3\sqrt\overline{a(t)})

for all x, y in E and t>0 . Let \beta(t)=1/33\sqrt\overline{a(t)^{2}}(1+\sqrt[3]{}\overline{a(t)}) . Then \int_{0}^{\rho}\beta(\tau)d\tau

= \int_{0}^{\rho}dt/3t(1+\sqrt\overline{t})=+\infty . However, it is easy to see that \beta(t) satisfies the
condition (\beta_{1}) in Remark 2. Moreover, by a simple calculation, we have

\epsilon exp ( \int_{\epsilon}^{t}\beta(\tau)d\tau)

\leqq\{

(\epsilon^{2}t)^{1/3} (0<\epsilon<t\leqq\rho)

(\epsilon^{2}t)^{1/3} exp ((t-\rho)/3\rho(1+\sqrt\overline{\rho)}) (0<\epsilon<\rho<t) .
Thus, \beta(t) satisfies also the condition (\beta_{2}).
Consequently, for each (t_{0}, u_{0})\in[0, \infty)\cross E, (CP;t_{0}, u_{0}) has a unique global
solution for the above defined f.

On the other hand, for each x=(x_{n}) and y=(y_{n}) in E such that x_{1}>

y_{1}>0 and x_{n}=y_{n}=0 for n\geqq 2 ,

[x-y, f(0, x)-f(0, y)]

= \{\frac{1}{\sqrt{}^{3}\overline{x_{1}^{2}}-^{3}\sqrt\overline{x_{1}y_{1}}+^{3}\sqrt\overline{y_{1}^{2}}}-b(0)(x_{1}^{2}-x_{1}y_{1}+y_{1}^{2})\}||x-y||

Hence we can not apply [8, 10, 11, 12, 13] to this example for the Cauchy
problem (CP;0, u_{0}).
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EXAMPLE 2. Next, let us take as E the Banach space l^{p}(1<p<\infty)

of sequences of real numbers. Let a(t) be as in Example 1 and let M=
( \sum_{n=1}^{\infty}1/n^{p})^{1/p}. For each x=(x_{n})\in E, define

f_{n}(t, x)=\{

\frac{\sqrt{}^{3}x_{n}}{n(1+3\sqrt\overline{a(t)})}-b(t)x_{n} (t\geqq 0, x_{n}\geqq a(t))

\frac{3Ja\overline{(t)}}{n(1+^{sf}\backslash \overline{a(t)})}-b(t)x_{n} (t\geqq 0, x_{n}<a(t))

Here b(t) is a real-valued continuous function defined on [0, \infty) satisfying
b(t)>M/\sqrt{\rho} for all t\geqq 0 .
Define f(t, x)=(f_{n}(t, x)) for (t, x)\in[0, \infty)\cross E. Then f is continuous from
[0, \infty)\cross E into E. Let

F=\{x;E\ni x=(x_{n}) such that x_{n}\geqq 0 for n\geqq 1 and ||x||\leqq\rho\}

Then F is closed in E. We shall show that the mapping f does not
satisfy (5. 3) but does satisfy all the conditions of our Theorem. For this
note that

(5. 8) [x, y]= \sum_{n=1}^{\infty} sgn (x_{n})|x_{n}|^{p-1}y_{n}/||x||^{p-1}

for all x\neq 0 and y in E.
Using (5. 8) we can verify easily that

[x-y, f(t, x)-f(t, y)]

\leqq(b(t)+1/33\sqrt\overline{a(t)^{2}}(1+3\sqrt\overline{a(t)}))||x-y||

for all x, y in E and t>0 . Let \beta(t)=1/33\sqrt\overline{a(t)^{2}}(1+3\sqrt\overline{a(t)}) . Then \int_{0}^{\rho}\beta(t)dt

=+\infty . But \beta(t) satisfies the conditions (\beta_{1}) and (\beta_{2}) in Remark 2 by the
same argument as in Example 1. Thus the above defined f satisfies (K_{1})

and (K_{2}) in \S 1.
To show that f satisfies (5. 4) we note that

x+hf(t, x)

=((1-hb(t))x_{n}+h ( \Gamma x_{n} or \sqrt{}^{3}\overline{a(t)} ) /n(1+3\sqrt\overline{a(t)}))

for each x=(x_{n})\in F and t\geqq 0 . Thus it follows that

||x+hf(t, x)||\leqq(1-hb(t))||x||+h\sqrt{\rho}M

\leqq\rho+(\sqrt{\rho}M-\rho b(t))h .
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By the assumption on b we have for each x\in F and t\geqq 0

x+hf(t, x)\in F for 0<h<{\rm Min}\{1/b(t), \sqrt{\rho}/(\sqrt{\rho}b(t)-M)\}

Consequently, the set F is flow-invariant for f by our Theorem.
On the other hand, for each x=(x_{n}) and y=(y_{n}) in F such that \rho\geqq

x_{1}>y_{1}>0 and x_{n}=y_{n}=0 for n\geqq 2 ,

[x-y, f(0, x)-f(0, y)]

=(1/(^{3}\sqrt\overline{x_{1}^{2}}+^{3}\sqrt\overline{x_{1}y_{1}}+3\sqrt\overline{y_{1}^{2}})-b(0))||x-y|| ,

so that we can not apply [8] to this example.
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