On the construction of p-adic L-functions

By Hideo Imai
(Received August 14, 1980 ; Revised September 29, 1980)

Let \boldsymbol{Q} be the rational number field, $\overline{\boldsymbol{Q}}$ the algebraic closure of $\boldsymbol{Q}, \boldsymbol{C}$ the complex number field, p a prime number, \boldsymbol{Q}_{p} the p-adic rational number field, \boldsymbol{Z}_{p} the integer ring of $\boldsymbol{Q}_{p}, \boldsymbol{C}_{p}$ the completion of the algebraic closure of \boldsymbol{Q}_{p} and let \mathfrak{m} be the maximal ideal of the integer ring of \boldsymbol{C}_{p}. We fix an imbedding of $\overline{\boldsymbol{Q}}$ into \boldsymbol{C} and also fix an imbedding of $\overline{\boldsymbol{Q}}$ into \boldsymbol{C}_{p}. Let $L_{i}(z)=L_{i}\left(z_{1}, \cdots, z_{r}\right)=\sum_{1 \leqq j \leqq r} a_{i j} z_{j}$ be linear forms of r variables, where i ranges from 1 to n, r and n are natural numbers. We suppose that the coefficients $a_{i j}$ are algebraic numbers and satisfy the following conditions: $a_{i j}$ are real positive when considered as complex numbers, and $a_{i j} \in \mathfrak{m}$ when considered as p-adic numbers. Let $L_{j}^{*}(t)=L_{j}^{*}\left(t_{1}, \cdots, t_{n}\right)=\sum_{1 \leqq i \leqq n} a_{i j} t_{i}$ be linear forms with above coefficients $a_{i j}$, where j ranges from 1 to r.

In the following, let us agree that the suffix i ranges from 1 to n and the suffix j ranges from 1 to r. We also agree that an algebraic number may be considered both as a complex number and as a p-adic number by the above fixed imbeddings.

Let $\chi_{j}:\left(\boldsymbol{Z} / d_{j} \boldsymbol{Z}\right)^{\times} \rightarrow \overline{\boldsymbol{Q}}^{\times}$be Dirichlet characters defined modulo d_{j}, which may be not necessarily primitive (here R^{\times}denotes the multiplicative group of invertible elements of a ring R and \boldsymbol{Z} denotes the ring of rational integers). Let $\xi_{j} \in \overline{\boldsymbol{Q}}^{\times}$be such that $\xi_{j}^{d_{j}} \equiv 1(\bmod \mathfrak{m})$ and $\left|\xi_{j}\right| \leqq 1$ where $\left|\xi_{j}\right|$ is the absolute value of ξ_{j} considered as a complex number. Let x_{j} be real algebraic number such that $0 \leqq x_{j}<1$ and $L_{i}(x) \equiv 1(\bmod \mathfrak{m})$ for $i=1, \cdots, n$, where we have put $x=\left(x_{1}, \cdots, x_{r}\right)$.

Now we define a function $Z(s)=Z\left(s_{1}, \cdots, s_{n}\right)$ of n complex variables $s=\left(s_{1}, \cdots, s_{n}\right)$ by

$$
Z(s)=\sum_{m_{1}, \cdots, m_{r}=0}^{\infty} \frac{\chi_{1}\left(m_{1}\right) \cdots \chi_{r}\left(m_{r}\right) \xi_{1}^{m_{1}} \ldots \xi_{r}^{m} r}{L_{1}(x+m)^{s_{1}} \cdots L_{n}(x+m)^{s_{n}}}
$$

where $x+m=\left(x_{1}+m_{1}, \cdots, x_{r}+m_{r}\right)$.
It is easy to see that this series is absolutely convergent when the real parts of s_{1}, \cdots, s_{n} are sufficiently large to give there a complex analytic function.

Next we define a mermorphic (i.e., meromorphic in each variable) function $G(t)=G\left(t_{1}, \cdots, t_{n}\right)$ of n complex variables $t=\left(t_{1}, \cdots, t_{n}\right)$ by

$$
G(t)=\prod_{1 \leqq j \leq r} \frac{\sum_{0 \leqq m<d_{j}} \exp \left(\left(x_{j}+m\right) L_{j}^{*}(t)\right) \chi_{j}(m) \xi_{j}^{m}}{1-\exp \left(d_{j} L_{j}^{*}(t)\right) \xi_{j}^{d_{j}}}
$$

In this note we shall prove the following two theorems.
Theorem 1. Under the above assumptions, the function $Z(s)$ has an analytic continuation to a meromorphic (i.e., meromorphic in each variable) function to the whole space \boldsymbol{C}^{n}. Moreover, its value at non-positive integers, $i . e .$, the value at $s_{1}=-a_{1}, \cdots, s_{n}=-a_{n}$ with non-negative integers a_{1}, \cdots, a_{n}, is evaluated as the coefficient of $\frac{t_{1}^{a_{1}}}{a_{1}!} \cdots \frac{t_{n}^{a_{n}}}{a_{n}!}$ in the Laurent expansion at the origin of the function $G(t)$.

Theorem 2. Under the same assumptions as in Theorem 1, there exists a p-adic analytic function $Z_{p}(s)=Z_{p}\left(s_{1}, \cdots, s_{n}\right)$ of n variables such that $Z_{p}(-a)=Z(-a)$ for $a=\left(a_{1}, \cdots, a_{n}\right)$ with non-negative integers a_{1}, \cdots, a_{n} (this function $Z_{p}(s)$ is also an analogue of Iwasawa function of n variables).

The method of proof is essentially due to N. Koblitz [6] which gives a simple proof of the existence of p-adic Dirichlet L-functions.

We remark that a variant of an abelian L-function of a totally real algebraic number field may be expressed as a finite linear combination of certain special types of functions we are considering (c.f., T. Shintani [10] and P. Cassou-Noguès [1], especially [1] Théorème 4). Hence we obtain another (somewhat simplified) proof of the following theorem (c. f., Théorème 26 of P . Cassou-Noguès [1]) which states the existence of the p-adic L function for a totally real algebriac number field.

ThEOREM. Let K be a totally real algebraic number field of finite degree, M a totally real finite abelian extension of K with Galois group $G(M / K)$. Let $\chi: G(M / K) \rightarrow \overline{\boldsymbol{Q}}^{\times}$be a character with trivial kernel. Let $\omega: \boldsymbol{Z}_{p}^{\times} \rightarrow \boldsymbol{Z}_{p}^{\times}$be the homomorphism defined by $\omega(x)=\lim _{n \rightarrow \infty} x^{p^{n}}$. Let θ be the character of the ideal group of K defined by $\theta(\mathfrak{a})=\omega(N(\mathfrak{a}))$ for an ideal \mathfrak{a} of K, where $N(\mathfrak{a})$ is the absolute norm of \mathfrak{a}. Then there exists a function $L_{p}(\chi, s)$ defined over $s \in \boldsymbol{Z}_{p}$ such that $L_{p}(\chi, 1-m)=L\left(\chi \theta^{-m}, 1-m\right)$ for any positive integer m.

Proof of Theorem 1. When the real parts of s_{1}, \cdots, s_{n} are sufficiently large, we have

$$
\begin{aligned}
& \prod_{i} L_{i}(x+m)^{-s_{i}}= \\
& \prod_{i} \Gamma\left(s_{i}\right)^{-1} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \exp \left(-t_{1} L_{1}(x+m)\right) t_{1}^{s_{1}-1} \cdots \exp \left(-t_{n} L_{n}(x+m)\right) t_{n}^{s_{n}-1} d t_{1} \cdots d t_{n}
\end{aligned}
$$

$$
=\prod_{i} \Gamma\left(s_{i}\right)^{-1} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \exp \left(-\sum_{j}\left(x_{j}+m_{j}\right) L_{j}^{*}(t)\right) t_{1}^{s_{1}-1} \cdots t_{n}^{s_{n}-1} d t_{1} \cdots d t_{n}
$$

where $x+m=\left(x_{1}+m_{1}, \cdots, x_{r}+m_{r}\right)$ and $t=\left(t_{1}, \cdots, t_{n}\right)$.
After multiplying $\prod_{j}\left(\chi_{j}\left(m_{j}\right) \xi_{j}^{m}\right)$ both sides, we sum up over m_{1}, \cdots, m_{r}. We remark that

$$
\begin{aligned}
& \sum_{m_{1}, \cdots, m_{r}=0}^{\infty}\left(\exp \left(-\sum_{j}\left(x_{j}+m_{j}\right) L_{j}^{*}(t)\right) \prod_{j}\left(\chi_{j}\left(m_{j}\right) \xi_{j}^{m_{j}}\right)\right) \\
& \quad=\exp \left(-\sum_{j} x_{j} L_{j}^{*}(t)\right) \prod_{j} \frac{\sum_{0 \leq m<d_{j}} \exp \left(-m L_{j}^{*}(t)\right) \chi_{j}(m) \xi_{j}^{m}}{1-\exp \left(-d_{j} L_{j}^{*}(t)\right) \xi_{j}^{d_{j}}}
\end{aligned}
$$

because χ_{j} is a character defined modulo d_{j}. Let $g(t)$ denote the right hand side of the above equality. Then we have

$$
Z(s)=\prod_{i} \Gamma\left(s_{i}\right)^{-1} \int_{0}^{\infty} \cdots \int_{0}^{\infty} g(t) t_{1}^{s_{1}-1} \cdots t_{n}^{s_{n}-1} d t_{1} \cdots d t_{n}
$$

For a positive number $\varepsilon<1, C_{\varepsilon}$ denotes the integral path in C consisting of the interval $(+\infty, \varepsilon]$, counterclockwise circle of radius ε around the origin and the interval $[\varepsilon,+\infty)$.

Since $L_{1}^{*}, \cdots, L_{r}^{*}$ are linear forms with positive coefficients and $\xi_{j}^{d_{j}} \neq 1$, for sufficiently small $\varepsilon<1$, we have

$$
Z(s)=\prod_{i}\left(\Gamma\left(s_{i}\right)\left(\exp \left(2 \pi \sqrt{-1} s_{i}\right)-1\right)\right)^{-1} \int \cdots \int_{\left(G_{i}\right)^{n}} g(t) t_{1^{s_{1}-1} \cdots t_{n}^{s_{n}-1}} d t_{1} \cdots d t_{n}
$$

It is easy to see that, as a function of $s=\left(s_{1}, \cdots, s_{n}\right)$, the above integral is meromorphic (i.e., meromorphic in each variable) in the whole space \boldsymbol{C}^{n}. Moreover, since

$$
\begin{aligned}
\prod_{1 \leqq i \leqq n} & \left(\Gamma\left(s_{i}\right)\left(\exp \left(2 \pi \sqrt{-1} s_{i}\right)-1\right)\right)^{-1} \\
& =(2 \pi \sqrt{-1})^{-n} \prod_{1 \leqq i \leqq n}\left(\Gamma\left(1-s_{i}\right) \exp \left(-\pi \sqrt{-1} s_{i}\right)\right),
\end{aligned}
$$

the value of the integral at $s_{1}=-a_{1}, \cdots, s_{n}=-a_{n}$ is equal to $(-1)^{\frac{\Sigma a_{i}}{i}} \prod_{i}\left(a_{i}!\right)$
 the function $g(t)$. As $G(t)=g(-t)$, theorem 1 is now proved.

Proof of Theorem 2. First, we review the results of Koblitz [6]. For a positive rational integer d, let $X_{0}=\underset{\Vdash_{N}}{\lim }\left(\boldsymbol{Z} / d p^{N} \boldsymbol{Z}\right)$. Let $m+d p^{N} \boldsymbol{Z}_{p}$, $0 \leqq m<d p^{N}$, denote the set of $x \in X_{0}$ which map to m under the natural map $X_{0} \rightarrow \boldsymbol{Z} / d p^{N} \boldsymbol{Z}$. A character defined modulo d can be pulled back to X_{0} via the map $X_{0} \rightarrow \boldsymbol{Z} / d \boldsymbol{Z}$. We also have a projection $\pi: X_{0} \rightarrow \boldsymbol{Z}_{p}$ which
"forgets the mod d information". If f is a function on \boldsymbol{Z}_{p}, we also use f to denote the function $f \circ \pi$ on X_{0}. For example, for fixed small $t \in \boldsymbol{C}_{p}$ (namely, for $\operatorname{ord}_{p} t>1 /(p-1)$), the sum $\sum_{n=0}^{\infty}(t x)^{n} / n!x \in \boldsymbol{Z}_{p}$, converges to give a function $\exp (t x)$ on \boldsymbol{Z}_{p}, which we also consider as a function $\exp (t x)$ on X_{0}.

For each p-adic number $\xi \in \boldsymbol{C}_{p}$ such that $\xi^{a p N} \neq 1$ for all N, we define a \boldsymbol{C}_{p}-valued finitely additive set function μ_{ξ} (i. e., μ_{ξ} is a map from the set of open-compact subsets of X_{0} to \boldsymbol{C}_{p}, which is finitely additive) by the following formula :

$$
\begin{equation*}
\mu_{\xi}\left(m+d p^{N} \boldsymbol{Z}_{p}\right)=\frac{\xi^{m}}{1-\xi^{d p^{N}}}, \quad 0 \leqq m<d p^{N} \tag{2.1}
\end{equation*}
$$

The results of Koblitz [6] state that μ_{ξ} is always finitely additive (i. e., μ_{ξ} can be extended to all open-compact subsets of X_{0}, which is finitely additive), and μ_{ε} is bounded (i. e., the p-adic absolute values of $\mu_{s}(U), U$ open-compact subsets of X_{0}, are bounded) if and only if $\xi^{d} \neq 1 \bmod \mathrm{~m}$. If μ_{ξ} is bounded, we can integrate a \boldsymbol{C}_{p}-valued continuous function f on X_{0} by the "measure" μ_{ξ} :

$$
\begin{equation*}
\int_{X_{0}} f d \mu_{\xi}=\lim _{N \rightarrow \infty} \sum_{0 \leqq m<d p^{N}} f(m) \mu_{\xi}\left(m+d p^{N} Z_{p}\right) . \tag{2.2}
\end{equation*}
$$

Now we return to our previous notations. With the same notations at the beginning of this note, let $X_{j}=\underset{\overleftarrow{N}_{N}}{\lim }\left(\boldsymbol{Z} / d_{j} p^{N} \boldsymbol{Z}\right)$ and let $\mu_{\xi_{j}}\left(m+d_{j} p^{N} \boldsymbol{Z}_{p}\right)=$ $\frac{\xi_{j}^{m}}{1-\xi_{j}^{d_{j} p^{N}}}$ be the measure on X_{j}. Let $X=\prod_{1 \leq j \leq r} X_{j}$ be the product space and let $\mu_{\mathrm{s}}=\prod_{1 \leq j \leq r} \mu_{\xi_{j}}$ be the product measure on X. Fix p-adic variables $t=\left(t_{1}, \cdots, t_{n}\right)$ such that $\exp \left(\sum_{j}\left(x_{j}+y_{j}\right) L_{j}^{*}(t)\right)$ is convergent for any $y=\left(y_{1}, \cdots, y_{r}\right) \in X$. A simple calculation using (2.1) and (2.2) shows that

$$
\begin{aligned}
& \int_{X} \exp \left(\sum_{j}\left(x_{j}+y_{j}\right) L_{j}^{*}(t)\right) \prod_{j} \chi_{j}\left(y_{j}\right) d \mu_{s}(y) \\
& \quad=\prod_{j} \frac{\sum_{m<d_{j}} \exp \left(\left(x_{j}+m\right) L_{j}^{*}(t)\right) \chi_{j}(m) \xi_{j}^{m}}{1-\exp \left(d_{j} L_{j}^{*}(t)\right) \xi_{j}^{d_{j}}}=G(t) .
\end{aligned}
$$

Expanding $\exp \left(\sum_{1 \leq j \leq r}\left(x_{j}+y_{j}\right) L_{j}^{*}(t)\right)=\exp \left(\sum_{1 \leqq i \leq n} t_{i} L_{i}(x+y)\right)$, equating the coefficient of $\frac{t_{1}^{a_{1}}}{a_{1}!} \cdots \frac{t_{n}^{a_{n}}}{a_{n}!}$, we have

$$
Z(-a)=Z\left(-a_{1}, \cdots,-a_{n}\right)=\int_{x 1 \leq i \leq n} \prod_{i} L_{i}(x+y)^{a_{i}} \prod_{1 \leq j \leq r} \chi_{j}\left(y_{j}\right) d \mu_{\varepsilon}(y)
$$

From the hypotheses that the coefficients of L_{i} are contained in \mathfrak{m} and $L_{i}(x) \equiv 1 \bmod \mathfrak{m}$, we have $L_{i}(x+y) \equiv 1 \bmod \mathfrak{m}$ for any $y \in X$. Hence the value $L_{i}(x+y)^{s_{i}}$ is well-defined for any $s_{i} \in \boldsymbol{Z}_{p}$. Now define

$$
Z_{p}(s)=Z_{p}\left(s_{1}, \cdots, s_{n}\right)=\int_{X} \prod_{1 \leqq i \leqq n}\left(L_{i}(x+y)\right)^{-s_{i}} \prod_{1 \leqq j \leqq r} \chi_{j}\left(y_{j}\right) d \mu_{\xi}(y)
$$

This is the function what we want; i. e., $Z_{p}(s)$ is a p-adic analytic function (also an analogue of Iwasawa function) such that $Z_{p}(-a)=Z(-a)$ for $a=$ $\left(a_{1}, \cdots, a_{n}\right)$ with non-negative integers a_{1}, \cdots, a_{n}.

References

[1] P. CASSOU-NogUÈS: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Inv. math. 51 (1979) 29-59.
[2] J. Coates: p-adic L-functions and Iwasawa's theory, Durham symposium in algebraic number fields (A. Fröhlich, ed.), New York, London, Academic Press, 1977.
[3] P. Deligne and K. Ribet: Values of abelian L-functions at negative integers over totally real fields, Inv. math. 59 (1980) 227-286.
[4] K. Iwasawa: Lectures on p-adic L-functions, Princeton Univ. Press (Annals of Math. Studies, No. 74), 1972.
[5] N. KatZ: Formal groups and p-adic interpolation, Astérisque Soc. Math. de France 41-42 (1977) 55-65.
[6] N. Koblitz: A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979) 455-468.
[7] C. Queen: The existence of p-adic abelian L-functions, Number Theory and Algebra, New York, London, Academic Press, 1977.
[8] K. Ribet: Report on p-adic L-functions over totally real fields, Astérisque Soc. Math. de France 61 (1979) 177-192.
[9] J-P. Serre: Sur la résidu de la fonction zêta p-adiques d'un corps de nombres, C. R. Acad. Sc. Paris, 287 (1978) 183-188.
[10] T. Shintani: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sc. Univ. of Tokyo, Sec. IA 23 (1976) 393-417.

