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On the construction of p-adic L-functions

By Hideo IMAI
(Received August 14, 1980; Revised September 29, 1980)

Let Q be the rational number field, \overline{Q} the algebraic closure of Q, C
the complex number field, p a prime number, Q_{p} the p-adic rational number
field, Z_{p} the integer ring of Q_{p}, C_{p} the completion of the algebraic closure
of Q_{p} and let nt be the maximal ideal of the integer ring of C_{p} . We fix
an imbedding of \overline{Q} into C and also fix an imbedding of \dot{\overline{Q}} into C_{p} . Let
L_{i}(z)=L_{i}(z_{1^{ }}, \cdots, z_{r})=\sum_{1\leqq j\leqq r}a_{ij}z_{j} be linear forms of r variables, where i ranges
from 1 to n, r and n are natural numbers. We suppose that the coeffi-
cients a_{ij} are algebraic numbers and satisfy the following conditions : a_{ij}

are real positive when considered as complex numbers, and a_{ij}\in \mathfrak{m} when
considered as p-adic numbers. Let L_{j}^{*}(t)=L_{j}^{*}(t_{1}, \cdots, t_{n})=\sum_{1\leqq i\leqq n}a_{ij}t_{i} be linear
forms with above coefficients a_{ij} , where j ranges from 1 to r.

In the following, let us agree that the suffix i ranges from 1 to n and
the suffix j ranges from 1 to r. We also agree that an algebraic number
may be considered both as a complex number and as a p-adic number by
the above fixed imbeddings.

Let \chi_{j} : (Z/d_{j}Z)^{\cross}arrow\overline{Q}^{\cross} be Dirichlet characters defined modulo d_{j} , which
may be not necessarily primitive (here R^{\cross} denotes the multiplicative group
of invertible elements of a ring R and Z denotes the ring of rational in-
tegers). Let \xi_{j}\in\overline{Q}^{\cross} be such that \xi_{j}^{a_{j}}\not\equiv 1 (mod \mathfrak{m}) and |\xi_{j}|\leqq 1 where |\xi_{j}| is
the absolute value of \xi_{j} considered as a complex number. Let x_{j} be real
algebraic number such that 0\leqq x_{j}<1 and L_{i}(x)\equiv 1 (mod \mathfrak{m}) for i=1 , \cdots , n,
where we have put x=(x_{1^{ }},\cdots, x_{r}) .

Now we define a function Z(s)=Z(s_{1}, \cdots, s_{n}) of n complex variables
s=(s_{1^{ }},\cdots, s_{n}) by

Z(s)= \sum_{m_{1},\cdots,m_{r}=0}^{\infty}\frac{\chi_{1}(m_{1})\cdots\chi_{r}(m_{r})\xi_{1}^{m_{1}}\cdots\xi_{r}^{m_{\gamma}}}{L_{1}(x+m)^{s_{1}}\cdots L_{n}(x+m)^{s_{n}}}

where x+m=(x_{1}+m_{1^{ }},\cdots, x_{r}+m_{r}) .
It is easy to see that this series is absolutely convergent when the real parts
of s_{1} , \cdots , s_{n} are sufficiently large to give there a complex analytic function.

Next we define a mermorphic (i. e. , meromorphic in each variable)
function G(t)=G(t_{1}, \cdots, t_{n}) of n complex variables t=(t_{1}, \cdots, t_{n}) by
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\sum exp ((x_{j}+m)L_{j}^{*}(t))\chi_{j}(m)\xi_{j}^{m}

G(t)= \prod_{1\leqq j\leqq r}\frac{0\leqq m<d_{j}}{1-\exp(d_{j}L_{j}^{*}(t))\xi_{j}^{tl_{j}}}

In this note we shall prove the following two theorems.
THEOREM 1. Under the above assumptions, the function Z(s) has an

analytic continuation to a meromorphic ( i. e. , meromorphic in each variable)

function to the whole space C^{n} . Moreover, its value at non-positive integers,
i . e. , the value at s_{1}=-a_{1} , \cdots , s_{n}=-a_{n} with non-negative integers a_{1} , \cdots , a_{n} ,

is evaluated as the coefficient of \frac{t_{1}^{a_{1}}}{a_{1}!}\ldots\frac{t_{n}^{a_{n}}}{a_{n}!} in the Laurent expansion at

the origin of the function G(t) .
THEOREM 2. Under the same assumptions as in Theorem 1, there exists

a p-adic analytic function Z_{p}(s)=Z_{p}(s_{1}, \cdots, s_{n}) of n variables such that
Z_{p}( – a)=Z(-a) for a=(a_{1}, \cdots, a_{n}) with non-negative integers a_{1} , \cdots , a_{n} {this
function Z_{p}(s) is also an analogue of Iwasawa function of n variables).

The method of proof is essentially due to N. Koblitz [6] which gives
a simple proof of the existence of p-adic Dirichlet L-functions.

We remark that a variant of an abelian L-function of a totally real
algebraic number field may be expressed as a finite linear combination of
certain special types of functions we are considering (c. f. , Tc Shintani [10]

and P. Cassou-Nogu\‘es [1], especially [1] Th\’eor\‘eme 4). Hence we obtain
another (somewhat simplified) proof of the following theorem (c. f. , Th\’eor\‘eme
26 of P. Cassou-Nogu\‘es [1] ) which states the existence of the p-adic L-
function for a totally real algebriac number field.

THEOREM. Let K be a totally real algebraic number fifield of fifinite
degree, M a totally real fifinite abelian extension of K with Galois group
G(M/K) . Let \chi:G(M/K)arrow\overline{Q}^{\cross} be a character with trivial kernel. Let
\omega:Z_{p}^{\cross}arrow Z_{p}^{\chi} be the homomorphism defifined by \omega(x)=\lim x^{p^{n}} Let \theta be the

narrow\infty

character of the ideal group of K defifined by \theta(a)=\omega(N(\alpha)) for an ideal
a of K, where N(\sigma) is the absolute norm of a. Then there exists a function
L_{p}(\chi, s) defifined over s\in Z_{p} such that L_{p}(\chi, 1-m)=L(\chi\theta^{-m}, 1-m) for any
positive integer m.

PROOF OF THEOREM 1. When the real parts of s_{1} , \cdots , s_{n} are sufficiently
large, we have

\prod_{i}L_{i}(x+m)^{-s_{i}}=

\prod_{i}\Gamma(s_{i})^{-1}\int_{0}^{\infty}\cdots\int_{0}^{\infty} exp (-t_{1}L_{1}(x+m))t_{1}^{s_{1}-1}\cdots exp (-t_{n}L_{n}(x+m))t_{n}^{s_{n}-1}dt_{1}\cdots dt_{n}



On the construction of p-adic L-functions 251

= \prod_{i}\Gamma(s_{i})^{-1}\int_{0}^{\infty}\cdots\int_{0}^{\infty} exp (- \sum_{j}(x_{j}+m_{j})L_{j}^{*}(t))t_{1}^{s_{1}-1}\cdots t_{n}^{s_{n^{-1}}}dt_{1}\cdots dt_{n} ,

where x+m=(x_{1}+m_{I}, \cdots, x_{r}+m_{r}) and t=(t_{1}, \cdots, t_{n}) .
After multiplying \prod_{j}(\chi_{j}(m_{j})\xi_{j}^{m_{j}}) both sides, we sum up over m_{1} , \cdots , m_{r} . We

remark that

m_{1} ,
\sum_{m_{\gamma}=0}^{\infty},(\exp(-\sum_{j}(x_{j}+m_{j})L_{j}^{*}(t))\prod_{j}(\chi_{j}(m_{j})\xi_{j}^{m_{j}}))

\sum exp (-mL_{j}^{*}(t))\chi_{j}(m)\xi_{j}^{m}

= \exp(-\sum_{j}x_{j}L_{j}^{*}(t))\prod_{j}\frac{0\leqq m<cl_{j}}{1-\exp(-d_{j}L_{j}^{*}(t))\xi_{j}^{a_{j}}}

because \chi_{j} is a character defined modulo d_{j} . Let g(t) denote the right
hand side of the above equality. Then we have

Z(s)= \prod_{i}\Gamma(s_{i})^{-1}\int_{0}^{\infty}\cdots\int_{0}^{\infty}g(t)t_{1}^{s_{1}-1}\cdots t_{n}^{s_{n}-1}dt_{1}\cdots dt_{n}\tau

For a positive number \epsilon<1 , C\’e denotes the integral path in C consisting
of the interval (+\infty, \epsilon] , counterclockwise circle of radius \epsilon around the origin
and the interval [\epsilon, +\infty) .

Since L_{1}^{*} , \cdots , L_{r}^{*} are linear forms with positive coefficients and \xi_{j}^{a_{j}}\neq 1 ,
for sufficiently small \epsilon<1 , we have

Z(s)= \prod_{i}(\Gamma(s_{i})(\exp(2\pi\sqrt{-1}s_{i})-1))^{-1}\int\cdots\int_{(C_{\epsilon})}ng(t)t_{1}^{s_{1}-1}\cdots t_{n}^{s_{n}-1}dt_{1}\cdots dt_{n}\tau

It is easy to see that, as a function of s=(s_{i}, \cdots, s_{n}) , the above integral is
meromorphic ( i . e. , meromorphic in each variable) in the whole space C^{n} .
Moreover, since

\prod_{1\leqq i\leqq n}(\Gamma(s_{i})(\exp(2\pi\sqrt{-1}s_{i})-1))^{-1}

=(2 \pi\sqrt{-1})^{-n}\prod_{1\leqq i\leqq n}(\Gamma(1-s_{i}) exp (-\pi\sqrt{-1}s_{i}))-
,

the value of the integral at s_{1}=-a_{1} , \cdots , s_{n}=-a_{n} is equal to (-1)^{\sum_{i}a_{i}} \prod_{i}(a_{i} !)

times the coefficient of t_{1}^{a_{1}}\cdots t_{n^{n}}^{a} in the Laurent expansion at the origin of
the function g(t) . As G(t)=g(-t) , theorem 1 is now proved.

PROOF OF THEOREM 2. First, we review the results of Koblitz [6].
For a positive ration|al integer d, let X_{0}= \lim(Z/dpNZ) . Let m+dp^{N}Z_{p} ,

\overline{N}

0\leqq m<dp^{N}, denote the set of x\in X_{0} which map to m under the natural
map X_{0}arrow Z/dp^{N}Z. A character defined modulo d can be pulled back to
X_{0} via the map X_{0}arrow Z/dZ. We also have a projection \pi:X_{0}arrow Z_{p} which
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“forgets the mod d information” If f is a function on Z_{p} , we also use f
to denote the function f\circ\pi on X_{0} . For example, for fixed small t\in C_{p}

(namely, for ord pt>1/(p-1) ), the sum \sum_{n=0}^{\infty}(tx)^{n}/n ! x\in Z_{p} , converges to give

a function exp (tx) on Z_{p} , which we also consider as a function exp (tx) on
X_{0} .

For each p-adic number \xi\in C_{p} such that \xi^{dp^{N}}\neq 1 for all N, we define
a C_{p}-valued finitely additive set function \mu_{\xi}(i. e. , \mu_{\xi} is a map from the set
of open-compact subsets of X_{0} to C_{p} , which is finitely additive) by the fol-
lowing formula :

\mu_{\xi}(m+dp^{N}Z_{p})=\frac{\xi^{m}}{1-\xi^{dp^{N}}} . 0\leqq m<dp^{N} (2. 1)

The results of Koblitz [6] state that \mu_{\xi} is always finitely additive (i. e. , \mu_{\xi}

can be extended to all open-compact subsets of X_{0} , which is finitely additive),
and \mu_{\xi} is bounded (i. e. , the p-adic absolute values of \mu_{\xi}(U) , U open-compact
subsets of X_{0} , are bounded) if and only if \xi^{d} \yen 1 mod \mathfrak{m} . If \mu_{\xi} is bounded,
we can integrate a C_{p}-valued continuous function f on X_{0} by the “measure”
\mu_{\xi} :

\int_{X_{0}}fd\mu_{\xi}=\lim_{Narrow\infty}\sum_{0\leqq m<dp^{N}}f(m)\mu_{\xi}(m+dp^{N}Z_{p}) (2. 2)

Now we return to our previous notations. With the same notations
at the beginning of this note, let X_{j}=\varliminf_{N}(Z/d_{j}p^{N}Z)

and let \mu_{\xi_{j}}(m+d_{j}p^{N}Z_{p})=

\frac{\xi_{j}^{m}}{1-\xi_{j}^{d_{j}pN}} be the measure on X_{j} . Let X= \prod_{1\leqq j\leqq r}X_{j} be the product space and

let \mu_{\xi}=\prod_{1\leqq j\leqq r}\mu_{\xi_{j}} be the product measure on X. Fix p-adic variables t=(t_{1^{ }},\cdots, t_{n})

such that exp ( \sum_{j}(x_{j}+y_{j})L_{j}^{*}(t)) is convergent for any y=(y_{1}, \cdots, y_{r})\in X.
A simple calculation using (2. 1) and (2. 2) shows that

\int_{X} exp ( \sum_{j}(x_{j}+y_{j})L_{j}^{*}(t))\prod_{j}\chi_{j}(y_{j})d\mu_{\xi}(y)

\sum exp ((x_{j}+m)L_{j}^{*}(t))\chi_{j}(m)\xi_{j}^{m}

= \prod_{j}\frac{0\leq m<d_{j}}{1-\exp(d_{j}L_{j}^{*}(t))\xi_{j}^{a_{j}}}=G(t) .
Expanding exp ( \sum_{1\leqq j\leqq r}(x_{j}+y_{f})L_{j}^{*}(t))=\exp(\sum_{1\leqq i\leqq n}t_{i}L_{i}(x+y)) , equating the coef-

ficient of \frac{t_{1}^{a_{1}}}{a_{1}!}\ldots\frac{t_{n^{n}}^{a}}{a_{n}!} , we have

Z(-a)=Z(-a_{1^{ \cdots }},,- a_{n})= \int\prod_{X1\leqq i\leqq n}L_{i}(x+y)^{a_{i}}\prod_{1\leqq j\leqq r}\chi_{f}(y_{j})d\mu_{\xi}(y) .
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From the hypotheses that the coefficients of L_{i} are contained in nt and
L_{i}(x)\equiv 1 mod \mathfrak{m} , we have L_{i}(x+y)\equiv 1 mod nt for any y\in X. Hence the
value L_{i}(x+y)^{s_{i}} is well-defined for any s_{i}\in Z_{p} . Now define

Z_{p}(s)=Z_{p}(s_{1^{ }}, \cdots, s_{n})=\int_{X1\leqq i\leqq n}\prod(L_{i}(x+y))^{-s_{i}}\prod_{1\leqq j\leqq r}\chi_{j}(y_{j})d\mu_{\text{\’{e}}}(y)t

This is the function what we want; i . e. , Z_{p}(s) is a p-adic analytic function
(also an analogue of Iwasawa function) such that Z_{p}(-a)=Z(-a) for a=
(a_{1}, \cdots, a_{n}) with non-negative integers a_{1} , \cdots , a_{n} .
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