On the radical of the center of a group algebra

By Tetsuro Okuyama

(Received September 26, 1980)

1. Let $k G$ denote the group algebra of G over a field k of characteristic $p>0$ and $Z=Z(k G)$, the center of $k G$. In this short note we shall prove the following;

Theorem. Let e be a block idempotent of $k G$ with defect d. If $J(Z)$ denotes the Jacobson radical of Z, then the following hold;
(1) $J(Z)^{p^{d}} e=0$.
(2) If k is algebraically closed, then $J(Z)^{p^{d}-1} e \neq 0$ if and only if the block of $k G$ corresponding to e is p-nilpotent with a cyclic defect group.

As a corollary of the theorem we have the following which extends the result of Passman (Theorem, [8]) ;

Corollary. Let $|G|=p^{a} m$ with $(p, m)=1$. Then $J(Z)^{p^{a}}=0$.

2. Proof of the theorem.

To prove the theorem we may assume that k is algebraically closed (see Corollary 12.12, [6] and (9.10) Chapter III, [4]). We shall prove the statement (1) by induction on d. If $d=0$, then $J(Z) e=0$ and the result follows easily. Assume $d>0$ and we shall show;
(a). Let x be a p-element of G of order $p^{b}, b>0$ which is contained in a defect group of e and σ the Brauer homomorphism from Z to $Z\left(k C_{G}(x)\right)$. Then

$$
\sigma\left(J(Z)^{p^{d}-1} e\right) \subseteq \alpha k C_{G}(x)
$$

where $\alpha=\sum_{i=0}^{p^{b}-1} x^{i}$.
Proof of (a). Let f be a block idempotent of $k C_{G}(x)$ with $f \sigma(e)=f$. Then the defect of f is at most d (see $\S 9$, Chapter III, [4]). Consider the homomorphism τ from $k C_{G}(x)$ onto $k C_{G}(x) /\langle x\rangle$ induced by the natural homomorphism of $C_{G}(x)$ to $C_{G}(x) /\langle x\rangle$. The kernel of τ is $(x-1) k C_{G}(x)$ and $\tau(f)$ is a block idempotent of $k C_{G}(x) \mid\langle x\rangle$ with defect at most $d-b$ (see $\S 4$, Chapter V, [4]). Thus by induction it follows that $J\left(Z\left(k C_{G}(x)\right)\right)^{p^{d-b}} f \subseteq$ $(x-1) k C_{G}(x)$. Since $p^{d}-1 \geq p^{d-b}\left(p^{b}-1\right), J\left(Z\left(C_{G}(x)\right)\right)^{p^{d}-1} f \subseteq\left((x-1) k C_{G}(x)^{p^{b}-1}\right.$
$=(x-1)^{p^{b}-1} k C_{G}(x)=\alpha k C_{G}(x)$. Therefore the assertion (a) follows since $\sigma(J(Z))$ $\subseteq J\left(Z\left(k C_{G}(x)\right)\right)$.

Next we shall prove;
(b) If $Z_{p^{\prime}}$ denotes the k-subspace of Z spanned by all p^{\prime}-section sums in $k G\left(Z_{p^{\prime}}\right.$ is an ideal of $Z($ see [9] $)$), then

$$
J(Z)^{p^{d}-1} e \subseteq Z_{p^{\prime}}
$$

Proof of (b). Let y be a p^{\prime}-element of g and x a p-element of G of order p^{b} such that $x y=y x$. It will suffice to show that for any β in $J(Z)^{p^{d}-1} e$ the coefficients of y and $x y$ in β are equal. If x is not contained in any defect group of e, then the coefficients of y and $x y$ in β are 0 by definition of defect groups of blocks. Thus we may assume that x is contained in a defect group of e. Let σ be the Brauer homomorphism from Z to $Z\left(k C_{G}(x)\right)$. Then by (a) $\sigma(\beta) \in \alpha k C_{G}(x)$ where $\alpha=\sum_{i=0}^{p^{b}-1} x^{i}$. Thus the coefficients of y and $x y$ in $\sigma(\beta)$ are equal and therefore the result follows.

From the result of Brauer [1] $J(Z) Z_{p^{\prime}}=0$ (see also Theorem (1. C), [7]). Hence the statement (1) of the theorem follows.

If the blcok of $k G$ corresponding to e is p-nilpotent with a cyclic defect group, the $J(Z) e \simeq J(k P)$ where P is a defect group of e from the result of Broué and Puig [2]. Thus $J(Z)^{p^{d}-1} e \neq 0$.

Conversely assume that $J(Z)^{p^{d}-1} e \neq 0$. We claim that a defect group of e is cyclic. If a defect group of e is not cyclic, then any element in the defect group of e is of order p^{b} with $b<d$. Since $p^{d}-2 \geq p^{d-b}\left(p^{b}-1\right)$ for such b, the proofs of the statements (a) and (b) in the above show that $J(Z)^{p^{d}-2} e \subseteq Z_{p^{\prime}}$ and therefore $J(Z)^{p^{d}-1} e=0$ which is a contradiction. Thus a defect group of e is cyclic and our claim follows. By the result of Dade [3] $\operatorname{dim}_{k} Z e \leq p^{d}$. From this we can conclude that $\operatorname{dim}_{k} Z e=p^{a}$ and $\operatorname{dim}_{k} Z_{p^{\prime}} e$ $=1$. Since $\operatorname{dim}_{k} Z_{p^{\prime}} e$ is the number of irreducible $k G$-modules in the block B of $k G$ corresponding to e (see [5]), it follows that B has the inertial index 1 and its is p-nilpotent. Thus the statement (2) is proved and the proof of the theorem is complete.

Remark. If $J(Z)^{p^{a}-1} \neq 0$ in Corollary, then the proof of the statement (2) of the theorem shows that G has a cyclic Sylow p-subgroup. But in general it is not true that G is p-nilpotent. For example let H be a cyclic group of odd order $p^{a} n, n \neq 1$ and $(p, n)=1, t \in$ Aut H of order 2 such that $h^{t}=h^{-1}$ for any $h \in H$ and $G=\langle t\rangle H$. Then for any non-principal block idempotent e of $k G$ it holds that $J(Z)^{p^{a}-1} e \neq 0$.

References

[1] R. Brauer: Number theoretical investigations on groups of finite order, Proceedings of the International Symposium on Algebraic Number Theory, Tokyo and Nikko, 1955, 55-62, Science Council of Japan, Tokyo, 1956.
[2] M. Broué and L. Puig: A Frobenius theorem for blocks, Inventiones Math. 56 (1980), 117-128.
[3] E. C. Dade: Blocks with cyclic defect groups, Ann. of Math. 84 (1966), 20-48.
[4] W. Feit: Representations of Finite Groups, Yale University, 1969.
[5] K. Iizuka, Y. Ito and A. Watanabe: A remark on the representations of finite groups IV, Memo. Fac. Gener. Ed. Kumamoto Univ. 8 (1973), 1-5 (in Japanese).
[6] G. O. Michler: Blocks and Centers of Group Algebras, Lecture Notes in Math. 246, Springer Verlag, Berlin and New York, 1972.
[7] T. Okuyama: Some studies on group algebras, to appear in Hokkaido Math. J.
[8] D. S. Passman: The radical of the center of a group algebra, Proc. Amer. Math. Soc. 78 (1980), 323-326.
[9] W. F. Reynolds: Sections and ideals of characters of group algebras, J. of Alg. 20 (1972), 176-181.

Department of Mathematics
Osaka City University

