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1. Introduction.

Let G be a finite group, p a fixed rational prime and P be a Sylow
p-subgroup of G. In the following, we will consider the group algrbeas
over a complete discrete valuation ring R with the unique maximal ideal
(\pi)\ni p , where its residue class field F=R/(\pi) of characteristc p is a splitting
field for G.

In this paper we shall introduce two invariants n(B) , m(B) (both positive
integers) which can be associated with a given p-block B of G. Namely,
n(B) is the number of indecomposable direct summands of B_{P\cross P} (the restric-
tion of a G\cross G -modules B to P\cross P), and m(B) is the number of indecomposa-
ble direct summands of B_{\Delta(P)} , where \Delta is the diagonal map from G to G\cross G .
These ideas are derived from module-theoretic concepts of a block ideal B
which is due to works of J. A. Green ([10], [11], [13]).

On the other hand, Brauer investigated the relation between the invari-
ants k(B) , l(B) (the number of ordinary and modular irreducible characters
in B, respectively) and the integer v(B) defined by

dim B=p^{2a-d}v(B) .
where p^{a}=|P| and d is the defect of B (see section 2 in this paper and
Brauer [5] ). Following R. Brauer, we shall obtain an elementary inequality

(2E, 1) p^{a-a}v(B)\leqq m(B)\leqq p^{a}n(B)\leqq p^{a}v(B)

Our main interest is in the “extreme” cases of (2E, 1) , namely,

n(B)=v(B) and m(B)=p^{a}v(B)

Then, in section 3, we will give the structure of G in the above cases.
Consequently, for example, it is proved that if B=B_{0}, the principal block,
then n(B_{0})=v(B_{0}) if and only if G=O_{p’pp’}(G) , and m(B_{0})=p^{a}v(B_{0}) if and
only if G=O_{p’p}(G) and P is abelian. In section 4, we will consider another
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“extreme” cases for the invariants k(B) , l(B) , namely,

l(B)=v(B) and k(B)=p^{a}v(B)

Then, it turns out that there exist some relations among these four “extreme”
cases.

NOTATION. For the gereral notation and terminology in the theory of
modular representations of finite groups, we shall refer to the books of
Curtis-Reiner [6], Dornhoff [7], Feit [8] and Gorenstein [9].

We denote by Irr(B) , IBr(B) and Pin(B) the set of all irreducible
ordinary, Brauer characters and principal indecomposable characters in B,
respectively. Let KerB= \bigcap_{\chi\epsilon Irr(B)}Ker\chi and KerB^{*}= \bigcap_{\varphi\in IBr(B)}Ker\varphi . For a group

H, R_{H} means the trivial RH module with R-rank 1. We identify a block
with a block ideal of RG, and we write B in both cases. Concluding this
section we shall summerize the results of Green.

LEMMA (1 A) (Green [11], Theorem 1). Let B be a block of G with

defect group D. Then B is an indecomposable R(G\cross G) -submodule of RG

with vertex \Delta(D) .
Let X be a p-group acting on \Omega . Then the module [\Omega] whose basis

consists of all elements of \Omega is an indecomposable RX-module with vertex
the stabilizer X(a) of a\in\Omega . Moreover, now, G\cross G acts transitively on G,
by the rule a(x, y)=x^{-1}ay .

LEMMA (1 B) (Green, [11]). Let B be a block of G with defect group
D, and X be a p-subgroup of G\cross G which contains \Delta(D) . Then

1) B_{X} \cong\bigoplus_{somea^{x}}[a^{X}] , where a^{X} is an X-Orbit of G,

2) X(a)\subseteqq_{G\cross G}\Delta(D) for any a^{X} in the right of 1),

3) there exists a_{0}^{X} in the right of 1) such that X(a_{0})=\Delta(D_{X})\cdot

In Lemma (1 B), if X=P\cross Q for p-subgroups P, Q of G, then X(a)=
(P, Q, a)=\{(x, x^{a})|x\in P\cap Q^{a^{-1}}\}\subseteqq P\cross Q , and if X=\Delta(P) , then X(a)=\Delta(C_{P}(a))

\subseteq\Delta(P) for a\in G .

2. The invariants n(B), m(B).
Let X be a p-subgroup of G\cross G , and B be a block of G. Then, as

in section 1, every indecomposable direct summand of B_{X} is isomorphic to
the module [a^{X}] where a^{X} is an X-0rbit of a\in G . If X=P\cross Q , for p-
subgroups P, Q of G, then a^{X}=PaQ , and if X=\Delta(P) , then a^{X}=a^{P} (P-

conjugate class contains a).

DEFINITION (2 A). Let B be a block of G, and P, Q be p-subgroups
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of G. We denote by n_{P,Q}(B) the number of indecomposable direct summands
of B_{P\cross Q} , and by m_{P}(B) the number of indecomposable direct summands of
B_{\Delta(P)} .

Now we shall show that n_{P,Q}(B) and m_{P}(B) can be given in terms of
characters in B, and those are a block refinement of the number of (P,Q) -

double cosets of G and that of P-conjugate classes of G. The following
formulas are frequently used in section 3 and are helpfull to investigate
examples.

PROPOSITION (2 B). Let B be a block of G, and P, Q be p-subgroups
of G. Then

1) n_{P,Q}(B)= \sum_{\chi\in Irr(B)}(\chi_{P}, 1_{P})(\chi_{Q}, 1_{Q}) .

2) m_{P}(B)= \sum_{\chi\in Irr(B)}(\chi_{P}, \chi_{P}) , in particular m_{P}(B)\geqq k(B) .

PROOF. Let X be a p-subgroup of G\cross G , and K be the quotient field
of R of characteristic 0 which is a splitting field for G. We consider the
K-character afforded by B_{X} . Then it is\sum_{\chi\in Irr(B)}(\overline{\chi}\chi)_{X}. On the other hand,

since B_{X} \cong\bigoplus_{some a^{X}}[a^{X}] and X acts on a^{X} transitively, the multiplicity of 1_{X} in

the K-character afforded by every module [a^{X}] is 1 . Therefore the number
of indecomposable direct summands of B_{X} is equal to

\sum_{x\epsilon Irr(B)}((\overline{\chi}\chi)_{X}, 1_{X})

Set X=P\cross Q , \Delta(P) , then it is easily verified that 1), 2) holds respectively
from the above equation. The last comment is clear from k(B)= \sum_{\chi\epsilon Irr(B)}(\chi, \chi) .

From now we fix a Sylow p-subgroup P of order p^{a} of G, and let us
set n(B)=n_{P\cross P}(B) and m(B)=m_{P}(B) . In the following we will discuss
relation among the numbers l(B) , k(B) , n(B) and m(B) by the medium of
R-rank of a block ideal B. As in section 1, rank B=p^{2a-d}v(B) . Brauer
has shown that v(B) decomposes into two parts, namely,

v(B)=u(B)^{2}w(B) ,

where u(B) is the G. C. D. of \varphi(1)/p^{a-d} for all \varphi\in IBr(B) , and it is also
the G. C. D. of \chi(1)/p^{a-d} for all \chi\in Irr(B) , furthermore it is also the G. C. D.
of \Phi(1)/p^{a} for all \Phi\in Pin(B) . Then Brauer obtained the following.

PROPOSITION (2 C) (Brauer [5], Theorem 4). Let B be a block of G

of defect d. Then
1) l(B)\leqq w(B) .
2) l(B)=1 iff w(b)=1 .



322 T. Wada

3) l(B)=w(B) iff \varphi(1)=p^{a-d}u(B) , \Phi(1)=p^{a}u(B) for every \varphi\in IBr(B) ,
\Phi\in Pin(B) .

4) l(B)=v(B) iff l(B)=w(B) and u(B)=1 .
Similar argument immediately yields the following.

PROPOSITION (2 D).
1) k(B)\leqq p^{d}w(B) .
2) k(B)=p^{d}w(B) iff k(B)=p^{d} and w(B)=1 iff \chi(1)=p^{a-d}u(B) for

all \chi\in Irr(B) .
3) k(B) =p^{d}v(B) iff k(B)=p^{a} and v(B)=1 iff \chi(1)=p^{a-\bm{d}} for all \chi\in

Irr(B) .
PROPOSITION(2 E).
1) p^{a- d} v(B) m(B)\leqq p^{a}n(B)\leqq p^{a}v(B) .
2) n(B)=1 iff v(B)=1 , in particular if n(B)=1 , then l(B)=1 .
3) p^{a- d} v(B) m(B)iff n(B)=p^{-d}v(B) iff d=0.

PROOF. Now we have B_{\Delta(P)} \cong\bigoplus_{some y^{P}}
[y^{P}] and B_{P\cross P} \cong\bigoplus_{somePxP}[PxP] . We

shall compare R-rank of the above equations. It follows from Lemma (1 B), 2)
that the rank of the modules [y^{P}] , [PxP] in the right of the above equa-
tions is divisible by p^{a-d} , p^{2a-d} respectively. Then there exists an integer
0\leqq e(y^{P})\leqq d, 0\leqq e(PxP)\leqq d such that rank [y^{P}]=p^{a-d+e(y^{P_{)}}} , rank [PxP]=
p^{2a-d+e(PxP)} . Then we have that

p^{2a-d}v(B)=p^{a-d} \sum p^{e(y^{P})}=p^{2a-d}\sum p^{e(PxP)}

Hence
m(B) \leqq p^{a}v(B)=\sum p^{e(y^{P})}\leqq p^{d}m(B) ,

and also
n(B) \leqq v(B)=\sum p^{e(PxP)}\leqq p^{d}n(B) .

It follows from Lemma (1 B), 3) that 3) holds. The remainder of 1) is
proved as follows; let B_{P\cross P}\cong\oplus[Px_{i}P] , where i=1 , \cdots , n(B) . If Px_{i}P de-
composes into r_{i} P-conjugate classes of G, namely, y_{i1}^{P}, \cdots , y_{ir_{i}}^{P}, then

B_{\Delta(P)} \cong\bigoplus_{i-1}^{n(B)}\bigoplus_{j-1}^{r_{i}}[y_{ij}^{P}]

Therefore m(B)= \sum_{i-1}^{n(B)}r_{i} and p^{2a-d+e(Px_{i}P)}=p^{a-d} \sum_{j}p^{e(y_{ij}^{P})} . Now since y_{ij}^{P} is a
\Delta(P) -0rbit of Px_{i}P, the stabilizer of y_{ij}^{P} is contained in a stabilizer of
Px_{i}P. This means that e(y_{ij}^{P})\geqq e(Px_{i}P) for all j=1 , \cdots , r_{i} . Hence

p^{2a-d+e(Px_{i}P)}\geqq r_{i}p^{a-d+e(Px_{i}P)} .
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Therefore r_{i}\leqq p^{a}, and we have that m(B)\leqq p^{a}n(B) .
2) Suppose n(B)=1 , then B_{P\cross P}\cong[PxP] for some x\in G . It follows

from Lemma (1 B), 3) that e(PxP)=0 and hence v(B)=1 . By Proposition
(2 C), 2), if n(B)=1 , then l(B)=1 .

REMARK (2 F). It is immediate from the proof of (2 E) and (1 B, 2)
that the “extreme” cases occur if and only if R-rank of every indecomposable
direct summand of B_{P\cross P}, B_{\Delta(P)} is just p^{2a-d}, p^{a-d} , respectively.

REMARK (2 G). Concerning (2 E, 2), in fact, it holds that l(B)\leqq n(B) .
This result will be presented in another paper.

REMARK (2 H). Relating to (2 D, 1), Brauer has proved a stronger
result that k(B)\leqq p^{d}l(B) in [2], (5 D). Therefore we have l(B)\leqq k(B)\leqq

P^{d}l(B)\leqq p^{d}w(B) . And this relation is similar to that between n(B) and
m(B) in (3 C, 1). If Brauer’s conjecture “

k(B)\leqq p^{d}
” is valid, then it should

hold that k(B)=p^{d}l(B) if and only if k(B)=p^{d}w(B) , and hence it also seems
to hold that m(B)=p^{a}n(B) if and only if m(B)=p^{a}v(B) . In the next sec-
tion, it will be clarified that the above conjecture is related to Glauberman’s
Z^{*} -theorem (see Theorem 67. 1 in [7]).

3. The structure of G whose block B satisfies \bm{m(B)}=\bm{p}^{\bm{a}}\bm{v}\bm{(}\bm{B}\bm{)} or
\bm{n(B)}=\bm{v}\bm{(}\bm{B}\bm{)} .

Let K\subseteq H be subgroups of G. We call K strongly closed in H with
respect to G if K^{x}\cap H\underline{\subset}K for x\in G . Let K be a subset of H\subseteq G. We
call K weakly closed in H with respect to G if K=K^{x} when K^{x}\subseteq H for
x\in G . The main tool of this section is the character theory of G. The
purpose in this section is to prove the following theorems.

THEOREM (3 A). Let B be a block of G with defect group D which
is contained in P\in Syl_{p}(G) . Suppose D is strongly closed in P with respect
to G, then the following are equivalent.

a) n(B)=v(B) .
b) If \chi_{P}\supset 1_{P}, then D\underline{\subset}Ker\chi for all \chi\in Irr(B) .
c) D\cdot KerB\triangleleft G .
THEOREM (3 B). Let B be a block of G with defect group D which is

contained in P\in Syl_{p}(G) . Then
1) the following are equivalent.

a) m(B)=p^{a}n(B) .
b) Every element of D is weakly closed in P with respect to G,

in particular D is abelian.
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2) the following are equivalent.
a) m(B)=p^{a}v(B) .
b) [G, D]\underline{\subset}KerB .

PROOF of Theorem (3 A). At first we will prove

v(B)= \sum_{\chi}(\chi(1)/p^{a-d})\cdot(\chi_{P}, 1_{P})

Let \zeta=\sum_{x\epsilon Irr(B)}\chi(1)\cdot\chi , then \zeta_{P\#}=0 by the orthogonality relation. Therefore

\zeta_{P}=p^{a-d}v(B)\cdot\rho_{P} , where \rho_{P} is the regular character of P. Hence

p^{a-d}v(B)=( \zeta_{P}, 1_{P})=\sum\chi(1)(\chi_{P}, 1_{P})

a)\Leftrightarrow b) . Since D is strongly closed in P with respect to G, \chi(x)=0 for
any p-element x which is not contained in D by the theorem of Brauer
or Green (see Feit [8] IV. 2. 4). Hence

(\chi_{P}, 1_{P})=(1/p^{a-d})(\chi_{D}, 1_{D})\leqq(1/p^{a-d})\chi(1) ,

and the equality holds if and only if D\underline{\subset}Ker\chi . Since n(B)= \sum(\chi_{P}, 1_{P})^{2}

from Proposition (2 B) and v(B)= \sum(\chi(1)/p^{a-d})(\chi_{P}, 1_{P}) , we have n(B)=v(B)

if and only if D\subseteq Ker\chi for \chi\in Irr(B) satisfying (\chi_{P}, 1_{P})\neq 0 .
b)\Rightarrow c) . Case 1. \chi=1_{G} if \chi_{P}\supset 1_{P} .
In this case we have n(B)=1 , and from Proposition (2 E), 2) it follows
l(B)=1 . Since in our case B is the principal block, G=O_{p’p}(G) by the
theorem of Brauer. Thus our assertion holds in this case.
Case 2. There exists \chi\neq 1_{G}\in Irr(B) such that \chi_{P}\supset 1_{P} . Let K=Ker\chi , then
D\subseteq K\triangleleft_{[Reject1]}G by by our assumption. Since \chi\in Irr(G/K) and \chi\in Irr(B) , D

must contain a Sylow p-subgroup of K. This means that D is a Sylow
p-subgroup of K. On the other hand, B covers the principal block B_{0}(K)

of K, and hence if \zeta_{D}\supset 1_{D} for \zeta\in Irr(B_{0}(K)) , then there exists \chi’\in Irr(B)

such that \chi_{K}’\supset\zeta and \chi_{P}’\supset 1_{P} . (Since we may take D=P\cap K\triangleleft P, it holds
in general that \chi_{P}’\supset 1_{P}.) From our assumption b), D\subseteq Ker\chi’\cap K\subseteq Ker\zeta .
Thus K with B_{0}(K) has the property b), and so we have from induction
on |G| that K=O_{p’pp’}(K) , since KerB_{0}(K)=O_{p’}(K) by the theorem of
Brauer (Theorem 1 in [1]) and D is a Sylow p-subgroup of K. Then
D\cdot O_{p’}(K)=O_{p’p}(K) char K\triangleleft G , and hence D\cdot O_{p’}(K)\triangleleft G . Therefore we
obtain D\cdot KerB\triangleleft G . (So this direction holds in general, but really it is
easy to see that if D\underline{\subset}Ker\chi for \chi\in Irr(B) , then D is strongly closed in P

with respect to G.)
c)\Rightarrow a) . This direction holds also in general. We may assume KerB=1
by induction on |G| . Then our assumption D\triangleleft G implies that \chi(x)=0 for
any p-element x which is not contained in D. Therefore, if x_{P}\supset 1_{P} , then
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(\chi_{P}, 1_{P})=(1/p^{a-d})(\chi_{D}, 1_{D})=\chi(1) by the theorem of Clifford. Hence we have
n(B)=v(B) . This completes the proof of Theorem (3 A).

PROOF of Theorem (3 B). We have already proved in Proposition (2 E),
1) that m(B)\leqq p^{a}n(B) . However we will, here, again prove it in terms of
characters, in order to clarify the structure of D in G.

From Proposition (2 F), we have

n(B)= \sum_{x\in Irr(B)}(\chi_{P}, 1_{P})^{2}

= \sum_{x}((1/p^{a})\sum_{x\epsilon P}\chi(x))((1/p^{a})\sum_{y\in P}\overline{\chi(y)})

=(1/p^{2a}) \sum_{x,y}(\sum_{\chi}\chi(x)\overline{\chi(y)}) .

Then the term in the above bracket is 0 if x\neq_{G}y by the orthogonality
relation (see Feit, p. 245, (6. 3) in [8]), therefore

n(B)=(1/p^{2a}) \sum_{x}|x^{G}\cap P|\sum_{x}|\chi(x)|^{2}

\geqq(1/p^{2a})\sum_{x}\sum_{\chi}|\chi(x)|^{2}

=(1/p^{a}) \sum_{\chi}(\chi_{P}, \chi_{P})

=(1/p^{a})m(B).

Then the equality holds in the above equation if and only if |x^{G}\cap P|=1

for x\in P such that\sum_{\chi\in Irr(B)}|\chi(x)|^{2}\neq 0 . Since \sum_{\chi}

|\chi(x)|^{2}\neq 0 for x\in P if and only
if x\in D, the above condition holds if and only if |x^{G}\cap P|=1 for x\in P and
x\in_{G}D.

Suppose |x^{G}\cap P|=1 for x\in P and x\in_{G}D, and if z\in D and z^{G}\cap P\ni y ,

then z^{G}\cap P\ni z, y and from our assumption z=y, hence if z\in D, then it
holds z^{G}\cap P=\{z\} . Conversely, suppose z^{G}\cap P=\{z\} for z\in D, and if x\in D,
and if x\in P and x^{t}\in D for some t\in G, then x=(x^{t})^{t^{-1}}\in(x^{t})^{G}\cap P and from
our assumption (x^{t})^{G}\cap P=\{x^{t}\} , Hence x=x^{t} , and therefore |x^{G}\cap P|=1 .
Then, consequently, m(B)=p^{a}n(B) if and only if every element of D is
weakly closed in P with respect to G.

In particular, D\subseteq Z(N_{G}(D)) , and hence D is abelian. Thus we have
proved 1).
2). a) \Rightarrow b). In general n(B)\leqq v(B) . Therefore m(B)=p^{a}v(B) implies m(B)
=p^{a}n(B) . Then from 1), we have \chi(x)=0 for any p element x which is
not contained in D, when \chi\in Irr(B) . Now we have
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m(B)= \sum_{\chi\in Irr(B)}(\chi_{P}, \chi_{P})

=(1/p^{a}) \sum_{\chi}.\sum_{x\in P}|\chi(x)|^{2}

=(1/p^{a}) \sum_{\chi}\sum_{x\in D}|\chi(x)|^{2}

\leqq(1/p^{a-d})\sum_{\chi}\chi(1)^{2}

=p^{a}v(B) .

Since now it holds m(B)=p^{a}v(B) , we have \chi(1)=|\chi(x)| for all x\in D . This
implies that [G, D]\underline{\subset}KerB .
b)\Rightarrow a) . We may assume KerB=1 by induction on |G| . Then D\underline{\subset}Z(G)

in our assumption, and it holds that \chi(x)=0 for any p-element x which is

not contained in D, when \chi\in Irr(B) . Hence, in the above equation, the
equality just holds and we have m(B)=p^{a}v(B) . This completes the proof
of Theorem (3 B).

COROLLARY (3 C). Let B_{0} be the principal block of G. Then
1) the following are equivalent,

a) n(B_{0})=v(B_{0})

b) if \chi_{P}\supset 1_{P}, then P\underline{\subset}Ker\chi for \chi\in Irr(B_{0})

c) G=O_{p’pp’}(G) ,
2) the following are equivalent,

a) m(B_{0})=p^{a}n(B_{0})

b) m(B_{0})=p^{a}v(B_{0})

c) G=O_{p’p}(G) and P is abelian.

PROOF. 1) Clear by Ker B_{0}=O_{p’}(G) .
2) a) \Rightarrow c). It follows from Theorem (3 B), 1) that P\underline{\subset}Z(N_{G}(P)) . Hence G

has a normal p-complement by the theorem of Burnside (see Gorenstein,

7. 4. 3 in [9] ) . Other direction is clear.

REMARK. 1) of Corollary (3 C) is a generalization of Corollary 2 in
[5], in the sense that v(B_{0})=1 means n(B_{0})=v(B_{0})=1 .

EXAMPLE (3 D). In Theorem (3 A) the assumption that D is strongly
closed in P with respect to G cannot be dropped.

1). Solvable case.
Let G be the split extension of GL(2,3) by an elementary abelian

group V of order 9. Let p=2, and H be the subgroup SL(2,3)\cdot V of G.
Then H has the unique irreducible character \zeta of degree 8, and then G

has the 2-block B of defect 1 (see Feit [8], X, p. 546). Irr(B)=\{\chi_{1}, \chi_{2}\} ,
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and \chi_{1}+\chi_{2}=\zeta^{G} and \chi_{i}(1)=8 . A defect group D of B is not contained in
H, and then D is not normal in any Sylow 2-subgroup of G. And n(B)=
v(B)=1 , but D\cdot KerB is not normal in G.

2). Non-solvable case.
Let G be the Symmetric group of degree 5, and p=2. Let B be a

block of defect 1 which consists of irreducible characters \chi_{1} , \chi_{2} of degree
4. Then we have

1) D is not normal in any 2-Sylow subgroup of G, and
2) n(B)=v(B)=1 ,

but D\cdot KerB is not normal in G.

4. The structure of \bm{G} whose block \bm{B} satisfies that \bm{k(B)}=\bm{p}^{\bm{d}}\bm{v}\bm{(}\bm{B}\bm{)}

or \bm{l(B)}=\bm{v}\bm{(}\bm{B}\bm{)} .
In section 3 we investigated the structure of G whose block B satisfies

the condition that m(B)=p^{a}v(B) or n(B)=v(B) . Theorems (3 A), (3 B)
and Propositions (2 C), (2 D) and (2 E) suggest that there exists relation
between above conditions and those in terms of characters in B. Then, in
this section, we shall investigate more closely such relation. The proof is
rather module-theoretical in which Green correspondencef plays an important
role (see Green, [12], [14]).

Now our purpose in this section is to prove the following theorems.

THEOREM (4 A). Let B be a block of G with defect group D. We
assume that D\triangleleft P for a Sylow p-subgroup P of G. If l(B)=v(B), then
D\cdot KerB G.

THEOREM (4 B). Let B be a block of G with defect group D and
defect d. We assume that D\triangleleft P for a Sylow p-subgroup P of G. If
k(B)=p^{d}v(B) , then [G, D]\underline{\subset}KerB .

PROOF of Theorem (4 A). Let N=N_{G}(D) , and b be the block of N
with defect group D satisfying b^{G}=B . We know from Proposition (2 C), 4)
that l(B)=v(B) if and only if \varphi(1)=p^{a-d} for all \varphi\in IBr(B) and \Phi(1)=p^{a}

for all \Phi\in Pin(B) . But, in fact, it is not necessary to use the condition on
\Phi to prove Theorem (4 A).

Step 1. \varphi_{N} is irreducible and belongs to b for all \varphi\in IBr(B) .
Let V be an irreducible FG-module which affords \varphi , then V has a vertex

D, since \varphi is of height 0 in B (see Green [10], Theorem 9 and Theorem
12). Then V_{N} is indecomposable. Otherwise, V_{N}\equiv W\oplus W’ , where W=f(V)
is an indecomposable FN-module with vertex D. Then W\in b , and \dim_{F}W
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is divisible by p^{a-d} , since our assumption implies P\subseteq N. Since \dim_{F}V=p^{a-d} ,
we have V_{N}=W. As W\in b , every irreducible constitutent of W belongs to
b, and its dimension is divisible by p^{a-d} . Therefore V_{N}=W must be irreduci-
ble and belongs to b.

Step 2. D\cdot KerB\triangleleft G.
Now, since D=O_{p}(N), D is contained in the kernel of every irreducible

Brauer character of N, and hence D\subseteq Ker\varphi_{N}\subseteq Ker\varphi for any \varphi\in IBr(B)

by Step 1. We may assume KerB=1 by induction on |G| . Since KerB^{*}/

KerB=O_{p}(G/KerB) (see Brauer [4], Propositon (3 D)), now D\subseteq KerB^{*}=

O_{p}(G) . As D is a defect group of B, we have D\supseteq O_{p}(G) . Thus D\triangleleft G,
and we complete the proof of Theorem (4 A).

PROOF OF THEOREM (4 B). From Proposition (2 D), 3), k(B)=p^{d}v(B) if
and only if \chi(1)=p^{a-d} for all \chi\in Irr(B) , in particular v(B)=1 . Hence
l(B)=v(B)=1 . Therefore under the assumption D\triangleleft P, we have D\cdot Ker

B\triangleleft G by Theorem (4 A). We may assume KerB=1 by induction on |G| ,
and so now we have D\triangleleft G .

Step 1. We may assume PC_{G}(D)=G .
Let us set H=PC_{G}(D) . Since D\triangleleft G and \chi has height 0 for every

\chi\in Irr(B) , D is abelian by the theorem of Reynolds (see Reynolds [18],

Theorem 9). Suppose H<_{[Reject1]}G . As C_{G}(D)\subseteq H, there exists a block B’ of
H satisfying B^{\prime_{G}}=B (for instance see Solomon [19], Lemma 3). Then B’

has a defect group D.
At first we will show k(B’)=p^{d}v(B’) . Since C=C_{G}(D)\triangleleft G and C\subseteq

H\subseteq G, we can find a block b of C which satisfies the following conditions;
a) b^{H}=B’ and b is covered by B’ , and
b) b^{G}=B and b is covered by B.

For, as C\subseteq H, B’ is regular with respect to C, therefore there exists a block
b of C satisfies a) (see Feit [8], V. 3). Then b^{G}=(b^{H})^{G}=B^{\prime_{G}}=B, and B
covers b, since B is regular with respect to C. Now b has a defect group
D. Therefore by the theorem of Reynolds, every \varepsilon\in Irr (b) has height 0,
and since b is covered by B, every \varepsilon\in Irr(b) has degree of a power of p
by the theorem of Clifford. This implies k(b)=p^{d}v(b) . Also now it holds
that every \zeta\in Irr(B’) has height 0, and since B’ covers b, it follows from
the theorem of Clifford

\zeta(1)=e\sum_{i=1}^{r}\varepsilon_{i}(1) , where \zeta\in Irr(B’) , \varepsilon_{1}\in Irr(b)

and r=|H:I_{H}(\varepsilon_{1})| . Since H=PC and I_{H}(\varepsilon_{1})\supseteq C and e is an integer which
divides |I_{H}(\varepsilon_{1}):C| , we have that e, r and \varepsilon_{i}(1) are a power of p. Therefore
\zeta(1) is a power of p, and hence k(B’)=p^{d}v(B’) .
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Secondly, since H<_{[Reject1]}G , it follows [H, D]\subseteq KerB’ by induction on |G| ,
in particular D\underline{\subset}Z(P) since KerB’ is a p’ -group. Then it holds that

\chi_{D}=e\sum_{i=1}^{s}\lambda_{i} , where \chi\in Irr(B) , \lambda_{i}\in Irr(D)

and s=|G:I_{G}(\lambda_{1})| . Since D\underline{\subset}Z(P) , we have I_{G}(\lambda_{1})\supseteq P and so s is an integer
prime to p. Therefore \chi(1)=p^{a-d} means s=1 . Hence

|\chi(x)|=\chi(1) for all \chi\in Irr(B) and all x\in D^{\cdot}

This implies [G, D]\underline{\subset}KerB=1 , and we may assume H=G.
Step 2. Suppose D\not\subseteq Z(G) , then we may assume |G:C_{G}(D)|=p .

From Step 1 we have that |G:C_{G}(D)| is a power of p. Let H be a normal
subgroup of G of index p which contains C_{G}(D) . Then there exists a block
b of H such that b^{G}=B and b is covered by B as in the proof of Step 1.
Since D is abelian normal in G, a similar argument in Step 1 yields that
k(b)=p^{d}v(b) . Then by induction on |G| we have [H, D]\underline{\subset}Kerb . If P_{0} is
a Sylow p subgroup of H, then D\underline{\subset}Z(P_{0}) and hence P_{0}\underline{\subset}C_{G}(D) . Since
H=P_{0}C_{G}(D) , this implies H=C_{G}(D) . Thus we may assume |G:C_{G}(D)|=p .

Step 3. Final assertion.
Let C=C_{G}(D) , then by Step 2 we have C\cross C\triangleleft G\cross G with index p^{2}.

Suppose D\not\subseteq Z(G) , then there exists x\in G-C, and hence (x^{-1}, x^{p-1})\in G\cross G-

C\cross C and normalizes \Delta(D) . Therefore M=N_{G\cross G}(\Delta(D)) must be . a normal
subgroup of G\cross G of index p which contains C\cross C . Now B is an inde-
composable R(G\cross G) -module with vertex \Delta(D) . If B_{M} is not indecomposable,
then B_{M}\cong b_{1}\oplus\cdots\oplus b_{p} , where b_{i} is an indecomposable RM-module, and they
are G\cross G-conjugate each other (see Isaacs and Scott [15], Lemma 2). There-
fore b_{i}^{G\cross G}\cong B for all i , but Green correspondence means that B must deter-
mine uniquely such b_{i} that b_{i}^{G\cross G}\cong B . This is a contradiction. Theorefore
B_{M} is indecomposable, and again we have from Green correspondence that

(B_{M})^{G\cross G}\cong B\oplus B’ ,

where every indecomposable direct summand of B’ has a vertex properly
contained in \Delta(D) under a G\cross G-conjugation. Comparing the rank in the
above isomorphism,

p^{2a-d+1}v(B)=p^{2a-d}v(B)+rank_{R} B’ ,

and now rank_{R}B’ is divisible by p^{2a-d+1} by the theorem of Green. This is
impossible, since now v(B)=1 . Hence our assumption yields a contradiction,
and we complete the proof of Theorem (4 B).
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REMARK. Example (3 D) also shows that the condition D\triangleleft P in Theo-
rem (4 A) and (4 B) cannot be dropped.

COROLLARY (4 C). Let B_{0} be the principal block of G. Then
1) the following are equivalent,

a) l(B_{0})=v(B_{0}) .
b) G=O_{p’pp’}(G) and G/O_{p’p}(G) is abelian.

2) the following are equivalent,
a) m(B_{0})=p^{a}n(B_{0}) .
b) m(B_{0})=p^{a}v(B_{0}) .
c) k(B_{0})=p^{a}v(B_{0}) .
d) G=O_{p’p}(G) and P is abelian.
PROOF. 1). a) \Rightarrow b) . From Theorem (4 A) we have G=O_{p’pp’}(G) since

Ker B_{0}=O_{p’}(G) . Then G/O_{p’}(G) has only the principal block. Now since
\varphi(1)=1 for all \varphi\in IBr(B_{0}) and Ker B_{0}^{*}=O_{p’p}(G) , we have G/O_{p’p}(G) is
abelian.
b)\Rightarrow a) . It is easy to see that \varphi(1)=1 for all \varphi\in IBr(B_{0}) . And this fact
easily yields that \Phi(1)=p^{a} for all \Phi\in Pin(B_{0}) . 2). The direction c)\Rightarrow d) is
easy to see from Theorem (4 B) and Ker B_{0}=O_{p’}(G) . The converse is
trivial, and other direction is clear from Corollary (3 C), 2).

REMARK. Corollary (4 C), 1) is a generalization of Corollary 2 in [5],
in the sense that v(B_{0})=1 means l(B_{0})=v(B_{0})=1 . And Corollaries (3 C),
(4 C) provide some conditions for G to be of p-length 1 which are related
to the results of Isaacs and Smith [16] and Okuyama [17].

From the results of sections 3, 4, there exists the following relation
between the conditions that m(B)=p^{a}v(B) , n(B)=v(B) and the conditions
in terms of characters in B.

COROLLARY (4 D). Let B be a block of G with defect group D and
defect d. Then the following hold.
1) Suppose D\triangleleft P for a Sylow p-subgroup P of G. If k(B)=p^{a}v(B) , then
m(B)=p^{a}v(B) .
2) If m(B)=p^{a}v(B) , then k(B)=p^{a}w(B) . If m(B)=p^{a}v(B) and v(B)=1 ,
then k(B)=p^{a}v(B) .
3) Suppose D\triangleleft P for Sylow p-subgroup P of G. If l(B)=v(B), then
n(B)=v(B) .

PROOF. 1). It follows from Theorems (3 B), (4 B).
2). It follows from Theorem (3 B) and Theorem 3 of Reynolds in [18].
3). It follows from Theorems (3 A), (4 A). But, as we mentioned in Remark
(2 G), in fact, it turns out that the assumption “D\triangleleft P

” can be dropped.
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As the final remark, we will state some examples which show that
some of our theorems do not work in general.

EXAMPLE(4 E).
1). It is possible to construct Example (3 D) for any prime p. Let H be
a finite group having the unique block b of defect 0, and assume that \zeta(1)=

|H|_{p} for \zeta\in Irr(b) . Let G be a semi direct product of H by an element
x of order p which is contained in Aut(H) . Then \zeta^{G}=\chi_{1}+\cdots+\chi_{p} , and
the set \{\chi_{1}, \cdots, \chi_{p}\} forms Irr(B) , where B is a block of G of defect 1 with
defect group \langle x\rangle which is not normal in and Sylow p-subgroup of G.
Therefore k(B)=pv(B) , and hence v(B)=n(B)=l(B)=1 , however it fails
that D\cdot KerB\triangleleft G . Hence it also fails that m(B)=p^{a}v(B) .

G, in the above, is also an example that the condition “D\triangleleft P
” cannot

be dropped for the theorems of Okuyama [17] which is a generalization of
Corollary 3 in [16] and that of Corollary 2 in [5].

For example, G is the following group; H=PSL(2, p^{p}) and G=\langle x\rangle H,
where x is the field automorphism of order p .
2). In the second statement of Corollary (4 D), 2) the condition v(B)=1 is
necessary. Let B be a block of defect 0, and \chi(1)>_{[Reject1]}p^{a} for \chi\in Irr(B) , then
it holds m(B)=p^{a}v(B) , but fails k(B)=p^{d}v(B) .
3). Theorem (4 B) does not hold when k(B)=p^{d}w(B) , even if D\triangleleft P. Let
G=M_{23} (Mathieu group of degree 23), p=3 and B be the block of defect
1, where Irr(B)=\{\chi_{1}, \chi_{2}, \chi_{3}\} and \chi_{i}(1)=231=3\cross 7\cross 11 . Then a defect group
D is normal in P, since P is abelian of order 9. It holds k(B)=p^{d}w(B)

(and hence l(B)=w(B)=1), but fails [G, D]\underline{\subset}KerB=1 .
Therefore G is also an example that Theorem (4 A) does not hold

when l(B)=w(B) , even if D\triangleleft P .
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