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Geometrization of Jet bundles
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Introduction

Let $(M, N, p)$ be a fibred manifold of fibre dimension $m$ . Let $J^{k}(M, N, p)$

be the bundle of $k$-jets of local sections of $(M, N, p)$ . It is classically known
(cf. [2], [1]) that the pseud0-group of local diffeomorphisms which preserve
the canonical differential system $C^{k}$ on $J^{k}(M, N, p)$ is isomorphic with the
pseud0-group of local contact transformations of $J^{1}$ $(M, N, p)$ if $m=1$ and with
the pseud0-group of local diffeomorphisms of $M$ if $m\geqq 2$ . Thus there is
a marked difference in $C^{k}$ between these cases.

In the present note we characterize the canonical system $C^{k}$ on $J^{k}(M,$ $N$,
$p)$ for $m\geqq 2$ (the characterization for $m=1$ was given in [8]) and explain
the distinction between the case of $m=1$ and that of $m\geqq 2$ . For this purpose,
we introduce the notion of contact mainfolds of order $k$ of bidegree {ny$m$)
(Definition 2. 2) : Let $D$ be a differential system on a manifold K. Then
$(K, D)$ is called a contact manifold of order $k$ of bidegree $(n, m)$ if and only
if the following conditions are satisfified;

(1) There exists a family $\{D^{1_{ }},\cdots, D^{k}\}$ of differential systems on $K$

such that $D^{k}=D$ and $D^{r}=\partial D^{r+1}$ for $r=1$ , $\cdots$ , $k-1$ , where $\partial D^{r+1}$ is the derived
system of $D^{r+1}$ .

(2) $D^{1}$ is a differential system of codimension $m$ .
(3) There exists a completely integrable subbundle $F$ of $D^{1}$ of codi-

mension $n$ such that $F\supset Ch(D^{1})$ .
(4) The Cauchy-Cartan characteristic system $Ch(D^{r})$ of $D^{r}$ is a sub-

bundle of $D^{r\dagger 1}$ of codimension $n$ for $r=1$ , $\cdots$ , $k-1$ .
(5) $Ch(D^{k})(x)=\{0\}$ at each $x\in K$.
(6) $Ch(D^{k-1})=D^{k}\cap F$ $(k\geqq 2)$ .
(7) dim $K=m \cross(\sum_{r=1}^{k}{}_{n}H_{r})+m+n$ , where ${}_{n}H_{r}=(\begin{array}{l}n+r-1r\end{array})$ .
Then our main result is stated as follows;

THEOREM 2. 4’. Let $D$ be a differential system on a manifold $K$.
Then $(K, D)$ is a contact manifold of order $k$ of bidegree { $n$ ,$m)$ if and only
if it is locally isomorphic with $(J^{k}(M, N, p), C^{k})$ , where dim $N=n$ and
dim $M=m+n$ .
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One should observe that, without (7), other conditions of Definition 2. 2
characterize the canonical differential system $D=C^{k}|_{K}$ restricted to a sub-
manifold $K$ of $J^{k}(M, N, p)$ of some class (cf. the proof of Theorem 2. 4 and
\S \S 4, 5 [8] $)$ . In this case, in general, the completely integrable system $F$ of
condition (3) is not uniquely determined by $D$. However, in the presence
of condition (7), $F$ is uniquely determined by $D$ if $m\geqq 2$ (Remark 2. 5 (1)).
This is the marked difference from the case $m=1$ .

In \S 1, we will characterize $C^{1}$ on $J^{1}(M, N, p)$ as a regular differential
system of some type. Recently we learned that Dr. Bryant, in his thesis
[3], also gave a characterization of $C^{1}$ on $J^{1}(M,$ $N$, $p\grave{)}$ , which essentially
includes our result. However we will give it, since our formulation is some-
what different from his, and also for the sake of completeness. \S 2 is con-
cerned with the notion of higher order contact manifolds of bidegree $(n, m)$ .
Finally in \S 3, we will give a remark on global contact diffeomorphisms of
Jet bundles. Throughout the present note, we always assume the differen-
tiability of class $C^{\infty}$ and use the terminology in [8].

\S 1. Canonical systems on Grassmann bundles

1. 1. Canonical systems on Grassmann bundles. Let $M$ be a manifold
of dimension $m+n$ . We consider the Grassmann bundle $J(M, n)$ over $M$

consisting of $n$ -dimensional contact elements to $M$, $i$ . $e.$ ,

$J(M, n)= \bigcup_{z\in M}Gr(T_{x}(M),$ $n)$ ,

where $Gr(T_{x}(M), n)$ denotes the Grassmann manifold of $n$ -dimensional sub-
spaces of $T_{x}(M)$ (cf. $[5, p. 44]^{1},$ . Let $\pi$ be the bundle projection of $J(M, n)$

onto $M$. Let $z\in J(M, n)$ . Then $\pi_{*};$ $T_{z}(J(M, n))arrow T_{x}(M)$ is onto and $z$

is an $n$-dimensional subspace of $T_{x}(M)$ , where $x=\pi(z)$ .
DEFINITION 1. 1. The canonical (differential) system $C$ on $J(M, n)$ is

the differential system of codimension $m$ defifined by

$C(z)=\{X\in T_{z}(J(M, n))|\pi_{*}(X)\in z\}(_{\backslash }=\pi_{*}^{-1}(z))$ for $z\in J(M, n)$

Let $V$ and $W$ be vector spaces over $R$ of dimension $n$ and $m$ respectively.
Let $\mathfrak{C}^{1}(n, m)=\mathfrak{C}^{1}(V, W)$ be the contact algebra of first order of bidegree
$(n, m)$ (Definition 3. 5 [8]). Recall that $\mathfrak{C}^{1}(V, W)$ is defined as $fo1^{1}1ows$ ;

$\mathfrak{C}^{1}(V, W)=\mathfrak{C}_{-2}^{1}(V, W)\oplus \mathfrak{C}_{-1}^{1}(V, W)$ (direct sum) ,

where $\mathfrak{C}_{-2}^{1}(V, W)=W$, $\mathfrak{F}^{1}(V, W)=W\otimes V^{*}$ and $\mathfrak{C}_{-1}^{1}(V, W)=V\oplus \mathfrak{F}^{1}(V, W)$

(direct sum). The bracket operation of $\mathfrak{C}^{1}(V, W)$ is given by
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$[w, w’]=0$ , $[w, v]=0$ , $[v, v’]=0$ ,
$[w\otimes\xi, v]=\langle\xi, v\rangle w$ ,

for $v$, $v’\in V$, $w$, $w\acute{\in}W$ and $\xi\in V^{*}$ . Then, by using canonical coordinates
(\S 1. 5 [8]), we easily have (cf. Proposition 3. 6 [8])

PROPOSITION 1. 2 Let $M$ be a manifold of dimension $m+n$ . Then
$(J(M, n)$ , $C)$ is a regular differential system of type $\mathfrak{C}^{1}(n, m)$ . Furthermore
$(J(M, n)$ , $C)$ is locally isomorphic with the standard differential system of
type $\mathfrak{C}^{1}(n, m)$ .

One should note that, if $m=1$ , $(J(M, n)$ , $C)$ is a contact manifold of
dimension $2n+1$ .

1. 2. Contact transformations. First, let $A^{1}(V, W)$ be the group of
graded Lie algebra automorphisms of $\mathfrak{C}^{1}(V, W)$ . Then, for the contact
algebra $\mathfrak{C}^{1}(V, W)$ , we have

PROPOSITION 1. 3 If dim $W\geqq 2$ , then

$\mathfrak{F}^{1}(V, W)=\langle\{X\in \mathfrak{C}_{-1}^{1}(V, W)|$ rank $ad(X)\leqq 1\}\rangle$

Hence, if dim $W\geqq 2$ , each $\varphi\in A^{1}(V, W)$ leaves $\mathfrak{F}^{1}(V, W)$ invariant, $i$ . $e.$ ,
$\varphi(\mathfrak{F}^{1}(V, W))=\mathfrak{F}^{1}(V, W)$ .

PROOF. Let $X=v_{X}+f_{X}$ be any element of $\mathfrak{C}_{-1}^{1}(V, W)$ , where $v_{X}\in V$

and $f_{X}\in \mathfrak{F}^{1}(V, W)=Hom$ $(V, W)$ . Then we have

ad (X) $(v)=[X, v]=f_{X}(v)$ for $v\in V_{j}$

ad (X) $(f)=[X,f]=-f(v_{X})$ for $f\in \mathfrak{F}^{1}(V, W)$

Since ad (X) $(\mathfrak{C}_{-2}^{1}(V, W))=\{0\}$ , we see that rank ad $(X)=\dim W$ if $v_{X}\neq 0$ and
rank ad $(X)=rankf_{X}$ if $v_{X}=0$ . On the other hand it is clear that $\mathfrak{F}^{1}(V, W)$

$=Hom$ $(V, W)$ is generated by elements of rank 1. Set $E=\langle\{X\in \mathfrak{C}_{-1}^{1}(V, W)|$

rank ad $(X)\leqq 1\}\rangle$ . Then $E$ is an $A^{1}(V, W)$ -invariant subspace of $\mathfrak{C}^{1}(V, W)$

and it follows that $E=\mathfrak{C}_{-1}^{1}$ $(V, W)$ if dim $W=1$ and $E=\mathfrak{F}^{1}(V, W)$ otherwise.
$q$ . $e$ . $d$ .

Now we have

THEOREM 1. 4 Let $M$ and $\hat{M}$ be manifolds of dimension $m+n$ . Then
a diffeomorphism $\varphi$ of $M$ onto $\hat{M}$ induces a unique isomorphism $p\varphi$ of
$(J(M, n)$ , $C)$ onto $(J(\hat{M}, n),$ $C)$ defifined by $p\varphi(z)=\varphi_{*}(z)$ for $z\in J(M, n)$ . Con-
versely, if $m\geqq 2$ , an isomorphism $\psi$ of $(J(M, n)$ , $C)$ onto $(J(\hat{M}, n),$ $C)$ induces
a unique diffeomorphism $\varphi$ of $M$ onto $\hat{M}$ such that $\psi=p\varphi$ .

PROOF. The first assertion is clear by Definition 1. 1. In order to prove
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the converse, let $z$ be any point of $J(M, n)$ . Let $c(z)$ (resp. $\hat{c}(\psi(z))$ ) be the
graded algebra of $(J(M, n)$ , $C)$ (resp. $(J$ ( $\hat{M}$, $n$), $C)$ ) at $z$ (resp. $\psi(z)$ ). Then
there exist graded Lie algebra isomorphisms $\nu;\mathfrak{C}(V, W)arrow c(z)$ and $\hat{\nu};\mathfrak{C}(V, W)$

$arrow\hat{c}(\psi(z))$ such that $\nu(\mathfrak{F}^{1}(V, W))=f(z)$ and $\hat{\nu}(\mathfrak{F}^{1}(V, W))=\hat{f}(\psi(z))$ , where $f(z)=$

Ker $(\pi_{*})_{z}$ and $\hat{f}(\psi(z))=Ker(\hat{\pi}_{*})_{\psi^{(z)}}$ . Since $\psi$ is an isomorphism of $(J(M, n),$ $C)$

onto $(J(\hat{M}, n)$ , $C)$ , $\psi$ induces an isomorphism $\psi\sim*$ of $c(z)$ onto $\hat{c}(\psi(z))$ . Then,
by Proposition 1. 3, we get $\psi_{*}(Ker\pi_{*})=Ker\hat{\pi}_{*}$ . Since each fibre of $J(M, n)$

and $J(\hat{M}, n)$ is connected, we see that $\psi$ is fibre-preserving. Hence $\psi$ induces
a unique diffeomorphism $\varphi$ of $M$ onto $M\wedge$ such that $\hat{\pi}\cdot\psi=\varphi\cdot\pi$ . $\psi=p\varphi$ easily
follows from $\psi_{*}(C)=C$ and Definition 1. 1. (cf. the proof of Proposition 3. 1
[8] $)$ . $q$ . $e$ . $d$ .

Theorem 1. 4 is, in its local form, due to A. V. B\"ackhand [2] (cf. [1]).
In case $m=1$ , $(J(M, n)$ , $C)$ is a contact manifold of dimension $2n+1$ . Hence
it is well known that the last assertion is false in this case.

1. 3. Characterization by graded algebra. In this paragraph we will
consider the converse of Proposition 1. 2. Let $K$ be a manifold of dimension
$m+n+mn$ and let $D$ be a regular differential system on $K$ of type $\mathfrak{C}^{1}(n, m)$

(cf. [6]). In case $m=1$ . $(K, D)$ is a contact manifold of dimension $2n+1$

(cf. Example (1) [6, p. 10]). Hence, by the Darboux’s theorem, $(K, D)$ is
locally isomorphic with $(J(M, n)$ , $C)$ , where dim $M=n+1$ . Assume that
$m\geqq 2$ . Let $\mathfrak{d}(x)=\mathfrak{d}_{-2}(x)+\mathfrak{d}_{-1}(x)$ be the graded algebra of $(K, D)$ at $x\in K$

(cf. [6]). Since $(K, D)$ isa regular differential system of type $\mathfrak{C}^{1}(n, m)$ , there
exists a graded Lie algebra isomorphism $\nu(x)$ of $\mathfrak{C}^{1}(V, W)$ onto $\mathfrak{d}(x)$ . We
define the subspace $\uparrow(x)$ of $\mathfrak{d}_{-1}(x)=D(x)$ by setting

$\mathfrak{f}(x)=\nu(x)(\mathfrak{F}^{1}(V, W))$

By Proposition 1. 3, $f(x)$ is well defined, $i$ . $e.$ , the above definition is inde-
pendent of the choice of $\nu(x)$ . Hence the assignment $x\mapsto f(x)$ defines a
subbundle $F$ of $D$ of codimension $n$ . Obviously $F$ is a covariant system of
$(K, D)$ (cf. Remark 1. 4 [8]) and is called the symbol system of $(K, D)$ . First
we have

PROPOSITION 1. 5 Let $K$ be a manifold of dimension $m+n+mn$ and
let $D$ be a regular differential system on $K$ of type $\mathfrak{C}^{1}(n, m)$ . Let $M$ be
a manifold of dimension $m+n$ . If $m\geqq 2$ , then $(K, D)$ is locally isomorphic
with $(J(M, n)$ , $C)$ if and only if the symbol system $F$ of $(K, D)$ is completely
integrable.

PROOF. The only if part is clear by Proposition 1. 3 (cf. the proof of
Theorem 1. 4). In order to prove the if part, assume that $F$ is completely
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integrable. Let $x$ be any point of $K$. Since $F$ is a completely integrable
subbundle of $T(K)$ of codimension $m+n$ , we can take first integrals $z^{a}$ and
$x_{i}(\alpha=1, \cdots, m, i=1, \cdots, n)$ defined on a neighborhood $U$ of $x$ such that
$dz^{\alpha}$ and $dx_{i}(\alpha=1, \cdots, m, i=1, \cdots, n)$ are linearly independent at each $y\in U$.
Furthermore, since $F$ is a subbundle of $D$ of codimension $n$ , we may assume
that $dx_{1}$ , $\cdots$ , $dx_{n}$ are linearly independent on $D(y)$ at each $y\in U$, $i$ . $e.$ , $dx_{1}$ ,
$\ldots$ , $dx_{n}$ are linearly independent (mod $D^{\perp}(y)$ ) at each $y\in U$. Then there
exist unique functions $p_{i}^{\alpha}(\alpha=1, \cdots, m, i=1, \cdots, n)$ on $U$ such that $D$ is
defined on $U$ by the following l-forms,

$\varpi^{a}=dz^{a}-\sum_{i=1}^{n}p_{i}^{\alpha}dx_{i}$ $(\alpha=1, \cdots, m)$

On the other hand, for $\mathfrak{C}^{1}(V, W)$ , it is easy to see that, if $X\in \mathfrak{C}_{-1}^{1}(V, W)$

and $[X, \mathfrak{C}_{-1}^{1}(V, W)]=0$ , then $X=0$ . Hence $Ch(D)(x)=\{0\}$ at each $x\in K$.
Since dim $K=m+n+mn$, this implies that $\varpi^{\alpha}$ , $dx_{i}$ and $dp_{i}^{a}(\alpha=1,$ $\cdots$ , $m$,
$i=1$ , $\cdots$ , $n)$ are linearly independent at each $y\in U$. Therefore the system
of functions $z^{\alpha}$ , $x_{i}$ and $p_{i}^{\alpha}(\alpha=1, \cdots, m, i=1, \cdots, n)$ is a coordinate system of
$K$ around $x$. $q$ . $e$ . $d$ .

Furthermore, if $m\geqq 3$ , the symbol system $F$ is necessarily completely
integrable (cf. p. 81 [4]). In fact we have

THEOREM 1. 6 (cf. [3]). Let $K$ be a manifold of dimension $m+n+mn$
and let $D$ be a regular differential system on $K$ of type $\mathfrak{C}^{1}(n, m)$ . If $m\neq 2$ ,
then, at each point $x\in K$, there exists a coordinate system $(z^{\alpha}, x_{i},p_{i}^{\alpha})(\alpha=1$ ,
$\ldots$ , $m$ , $i=1$ , $\cdots,n)$ defifined on a neighborhood $U$ of $x$ such that $D$ is defifined
on $U$ by the following l-forms,

$\varpi^{\alpha}=dz^{a}-\sum_{i=1}^{n}p_{i}^{a}dx_{i}$ $(\alpha=1, \cdots, m)\tau$

PROOF. If $m=1$ , the assertion is precisely the Darboux’s theorem for
contact manifolds. If $m\geqq 3$ , in view of Proposition 1. 5, it suffices to show
that the symbol system $F$ is completely integrable. First one should note
that $(K, D)$ is a regular differential system of type $\mathfrak{C}^{1}(n, m)$ if and only if,
at each $x\in K$, there exist 1-forms $\varpi^{\alpha}$ , $\omega_{i}$ and $\varpi_{i}^{a}(\alpha=1, \cdots, m, i=1, \cdots, n)$

defined on a neighborhood $U$ of $x$, which form a basis of 1-forms at each
$y\in U$, such that $D$ is defined on $U$ by $\varpi^{1}$ , $\cdots$ , $\varpi^{m}$ and that the following
equalities hold (cf. the proof of Theorem 6.5 [8]),

(1. 1) $d\varpi^{\alpha}\equiv\sum_{i=1}^{n}\omega_{i}\wedge\varpi_{i}^{\alpha}$ (mod $\varpi^{1}$, $\cdots$ , $\varpi^{m}$) for $\alpha=1$ , $\cdots$ , $m$ .

Then it is easy to see that $F$ is defined on $U$ by $\varpi^{a}$ and $\omega_{i}(\alpha=1$ , $\cdots$ , $m$,
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$i=1$ , $\cdots$ , $n)$ . Since $d\varpi^{\alpha}\equiv 0$ (mod $\varpi^{1}$, $\cdots$ , $\varpi^{m}$, $\omega_{1}$ , $\cdots$ , $\omega_{n}$), it suffices to show
that $d\omega_{i}\equiv 0$ (mod $\varpi^{1}$, $\cdots$ , $\varpi^{m}$, $\omega_{1}$ , $\cdots$ , $\omega_{n}$) for $i=1$ , $\cdots$ , $n$ . First, from (1. 1),
we get

(1. 2) $\sum_{i=1}^{n}d\omega_{i}\wedge\varpi_{i}^{\alpha}\equiv 0$ (mod $F^{\perp}$) for $\alpha=1$ , $\cdots$ , $m$

On the other hand, there exist functions $A_{\alpha}^{ijk}$ and $B_{\alpha\beta}^{ijk}$ on $U$ such that

(1. 3) $d\omega_{i}\equiv\sum_{\beta=1}^{m}\sum_{j<k}A_{\beta}^{ijk}\varpi_{j}^{\beta}\wedge\varpi_{k}^{\beta}+\sum_{j,k=1}^{n}\sum_{\beta<\gamma}B_{\beta\gamma}^{ijk}\varpi_{j}^{\beta}\Lambda\varpi_{k}^{\gamma}$

(mod $F^{\perp}$) for $i=1$ , $\cdots$ , $n$

Substituting (1. 3) into (1. 2), we get

(1. 4) $\sum_{i=1}^{n}\sum_{\beta=1}^{m}\sum_{j<k}A_{\beta}^{ijk}\varpi_{i}^{\alpha}\wedge\varpi_{j}^{\beta}\wedge\varpi_{k}^{\beta}+\sum_{i,j,k=1}^{n}\sum_{\beta<\gamma}B_{\beta\gamma}^{ijk}\varpi_{i}^{\alpha}\wedge\varpi_{j}^{\beta}\wedge\varpi_{k}^{\gamma}$

$\equiv 0$ (mod $F^{\perp}$) for $\alpha=1$ , $\cdots$ , $m$

Take any $\beta$ and $(j, k)$ such that $j<k$ . Since $m\geqq 2$ , there exists $\alpha$ such that
$\alpha\neq\beta$ . Then, for any $i$ , we see that the coefficient of $\varpi_{i}^{a}\wedge\varpi_{j}^{\beta}\wedge\varpi_{k}^{\beta}$ of the
left hand side of (1. 4) equals to $A_{\beta}^{ijk}$ . Hence we get $A_{\beta}^{ijk}=0$ . Similarly
take any $(\beta, \gamma)$ , $j$ and $k$ such that $\beta<\gamma$ . Since $m\geqq 3$ , there exists $\alpha$ such
that $\alpha\neq\beta$ and $\alpha\neq\gamma$ . Then, for any $i$ , we see that the coefficient of $\varpi_{i}^{\alpha}\wedge$

$\varpi_{j}^{\beta}\wedge\varpi_{k}^{\gamma}$ of the left hand side of (1. 4) equals to $B_{\beta 1}^{ijk}$ . Hence we get $B_{\beta\gamma}^{ijk}=0$ .
Thus we obtain

$d\omega_{i}\equiv 0$ (mod $F^{\perp}$) for $i=1$ , $\cdots$ , $n$ $q$ . $e$ . $d$ .
For $m=2$ , the assertion of Theorem 1. 6 does not hold as shown by

the following example.

EXAMPLE. Let $(x_{i}, z^{1}, z^{2}, p_{i}^{1}, p_{i}^{2})(i=1, \cdots, n)$ be the natural coordinate
of $R^{N}$, where $N=3n+2$ . Let $D$ be the differential system on $K=R^{N}$ of
codimension 2 defined by the following l-forms,

$\varpi^{1}=dz^{1}-\sum_{i=1}^{n}p_{i}^{1}dx_{i}-p_{1}^{1}p_{1}^{2}dp_{1:}^{1}$

$\varpi^{2}=dz^{2}-\sum_{i=1}^{n}p_{i}^{2}dx_{i}$ .

Then we have

$d\varpi^{\alpha}=\sum_{i=1}^{n}\omega_{i}\Lambda dp_{i}^{\alpha}$ $(\alpha=1,2)$ ,

where $\omega_{i}=dx_{1}-p_{1}^{1}dp_{1}^{2}$ and $\omega_{i}=dx_{i}(i=2, \cdots, n)$ . Hence $(K, D)$ is a regular
differential system of type $\mathfrak{C}^{1}(n, 2)$ . Furthermore the symbol system $F$ is
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defined by $\varpi^{\alpha}$ and $\omega_{i}(\alpha=1, \cdots, m, i=1, \cdots, n)$ . It is easy to see that $F$ is
not completely integrable.

REMARK 1. 7. (1) Let $R$ be a submanifold of $J(M, n)$ such that $\pi$ :
$Rarrow M$ is a submersion. Set $D=C|_{R}$ and $F=Ker\pi_{*}$ . One should note, for
a submanifold $R$ of $J(M, n)$ , $(R;D, F)$ is characterized by Lemma 1. 5 [8]
(see also [7]). In particular, $(J(M, n),$ $C)$ is characterized as follows: Let
$D$ be a differential system on a manifold K. Assume that $D$ satisfifies the
following.

(1) $D$ is a differential system of codimension $m$ such that $Ch(D)(x)=$

$\{0\}$ at each $x\in K$.
(2) There exists a completely integrable subbundle $F$ of $D$ of codimen-

sion $n$ .
Then dim $K\leqq m+n+mn$ (In fact, by Lemma 1. 5 [8], $(K;D, F)$ is locally

realized as a submanifold of $J(M, n)$ , where $M=K/F$). The equality holds
if and only if $(K, D)$ is locally isomorphic with $(J(M, n),$ $C)$ . This charac-
terization is due to N. Tanaka [7]. Furthermore, if the equality holds $(m\geqq 2)$ ,
$F$ is a covariant system of $D$ by Proposition 1. 3 (cf. Remark 2. 5 (1)).

(2) We can apply Theorem 1. 6 to the (contact) equivalence and the
integration problems of the following type of involutive systems of second
order (cf. p. 80 [4]): Let $\mathfrak{C}^{2}(V, W)$ be the contact algebra of second order
of degree $n$ (Definition 3. 5 [8]). Let $E$ be an $r$-dimensional subspace of $V$.
We define the involutive subalgebra $(E) of $\mathfrak{C}^{2}(V, W)$ by setting

6 $(E)=6_{-3}(E)\oplus g_{-2}(E)\oplus \mathcal{B}_{-1}(E)$ ,

$8_{-3}(E)=W$ , $@_{-2}(E)=W\otimes V^{*}$ ,

$s_{-1}(E)=V\oplus W\otimes A(E),\cdot$ $A(E)=E^{\perp}\otimes_{S}V^{*}\subset S^{2}(V^{*})$

Let $(R;D^{1}, D^{2})$ be a regularly involutive $PD$ manifold of second order
of type $\mathfrak{s}(E)$ (cf. \S 5 [8]). Then, if $r\geqq 2$ , $(R;D^{1}, D^{2})$ is locally isomorphic
with the involutive system $R_{r}$ of second order defined by

$R_{r}= \{\frac{\partial^{2}z}{\partial x_{i}\partial x_{j}}=0|1\leqq i,j\leqq r\}$ .

Furthermore every solution of $(R, D^{2})$ can be obtained locally by solving
ordinary differential equations.

We will treat this application in a forthcoming paper.

\S 2. Geometrization of Jet bundles

2. 1. Higher prolongation of $(J(M, n), C).$ If $m\geqq 2$ , $Q^{1}=Ker\pi_{*}$ is
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a covariant system of $C$ and is a subbundle of $C$ of codimension $n$ . Hence
$(J(M, n)$ , $C)$ is a differential system with (geometrically defined) $n$ independent
variables (cf. \S 2 [8]). Now, for $k\geqq 2$ , we define the $k$ -th order prolongation
$(J^{k}(M, n)$ , $C^{k})$ of $(J(M, n),$ $C)(m\geqq 2)$ inductively as follows. For $k=1$ , we set

$J^{1}(M, n)=J(M, n)$ , $C^{1}=C$ , $\rho_{0}^{1}=\pi$ and $Q^{1}=Ker\pi_{*}$

(1) The bundle $J^{k}(M, n)$ of $k$-th order: For each $u\in J^{k-1}(M, n)$ , let
$J_{u}^{k}$ be the set of all $n$-dimensional integral elements $v$ of $(J^{k-1}(M, n),$ $C^{k-1})$

at $u$ such that $v\cap Q^{k-1}(u)=\{0\}$ , where $Q^{k-1}=Ker(\rho_{k-2}^{k-1})_{*}$ . Then $J^{k}(M, n)$ is
defined by

$J^{k}(M, n)= \bigcup_{u\in J^{k_{-1}}(M,n)}J_{u}^{k}$
$(k\geqq 2)e$

$J^{k}(M, n)$ is a regular submanifold of $J(J^{k-1}(M, n),$ $n)$ and is a fiber bundle
over $J^{k-1}(M, n)$ with standard fibre $R^{N(k)}$ , where $N(k)=m\cross(\begin{array}{l}n+k-1k\end{array})$ . Let
$\rho_{k-1}^{k}$ be the bundle projection of $J^{k}(M, n)$ onto $J^{k-1}(M, n)$ . We set

$\rho_{r}^{k}=\rho_{k-1}^{k}\cdots\cdot\cdot\rho_{r}^{r+1}$ for $k>r$ and $\rho_{k}^{k}=id_{J^{k}(M,n)}$

(2) The canonical {differential) system $C^{k}$ on $J^{k}(M, n)$ : For $v^{k}\in$

$J^{k}(M, n)$ , $(\rho_{k-1}^{k})$ ; $T_{v^{k}}(J^{k}(M, n))arrow T_{v^{k}}-1(J^{k-1}(M, n))$ is onto and $v^{k}$ is an n-
dimensional subspace of $T_{v^{k_{-1}}}(J^{k-1}(M, n))$ , where $v^{k-1}=\rho_{k-1}^{k}(v^{k})$ . Then $C^{k}$

is defined by

$C^{k}(v^{k})=(\rho_{k-1}^{k})_{*}^{-1}(v^{k})$ for $v^{k}\in J^{k}(M, n)$

In other words $C^{k}$ is the restriction to $J^{k}(M, n)$ of the canonical system on
$J(J^{k-1}(M, n)$ , $n)$ .

Thus we have completed our inductive definition of $(J^{k}(M, n)$ , $C^{k})$ .
Let $M_{k}$ be the set of all $k$-tuples of integers 1, $\cdots$ , $n$ . We denote by

$S_{r}$ the set of all $I=(i_{1}, \cdots, i_{r})\in M_{r}$ such that $1\leqq i_{1}\leqq\cdots\leqq i_{r}\leqq n$ and set
$\Sigma_{k}=\bigcup_{r=1}^{k}S_{r}$ . Let $v^{k}$ be any point of $J^{k}(M, n)$ . By using a canonical coordinate
$(x_{1^{ }},\cdots, x_{n}, z^{1_{ }},\cdots, z^{m})$ of $J^{1}(M, n)$ at $v^{1}=\rho_{1}^{k}(v^{k})$ , we get a coordinate system
$(x_{i}, z^{a}, p_{i}^{a})(1\leqq i\leqq n, 1\leqq\alpha\leqq m, I\in\Sigma_{k})$ such that $C^{k}$ is defined by the following
1-forms (cf. Lemma 2. 3 [8]) ;

$\varpi^{a}=dz^{\alpha}-\sum_{i=1}^{n}p_{i}^{\alpha}dx_{i}$ $(\alpha=1, \cdots, m)$ ,

$\varpi_{I}^{\alpha}=dp_{I}^{a}-\sum_{j=1}^{n}p_{I,f}^{\alpha}dx_{j}$ $(\alpha=1, \cdots, m, I\in\Sigma_{k-1})$

Let $\mathfrak{C}^{k}(n, m)=\mathfrak{C}^{k}(V, W)$ be the contact algebra of $k$-th order of bidegree
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$(n, m)$ (Definition 3. 5 [8]). Let $C_{r}^{k}$ and $Q_{r}^{t}$ be differential systems on $J^{k}(M, n)$

defined by

$C_{r}^{k}=(\rho_{r}^{k})_{*}^{-1}(C^{r})(r=1, \cdots, k)$ , $Q_{r}^{k}=Ker(\rho_{r}^{k})_{*}(r=0, \cdots, k-1)$

Then we have easily

PROPOSITION 2. 1 (cf. Proposition 2. 5 [8]). ( 1) $C^{k}$ is a regular $dif$-

ferential system of type $\mathfrak{C}^{k}(n, m)$ . Furthermore $C_{r}^{k}$ coincides with the fifirst
derived system $\partial C_{r+1}^{\urcorner}k$ of $C_{r+1}^{k}$ , $i$ . $e.$ , $C_{r}^{k}=\partial^{k-r}C^{r}(r=1, \cdots, k-1)$ , where $\partial^{\alpha}C^{k}$ is
the $\alpha$-th derived system of $C^{k}$ .

(2) $Q_{r}^{k}$ is a subbundle of $C_{r+1}^{k}$ of codimension $n$ and coincides with
the Cauchy-Cartan characteristic system $Ch(C_{r}^{k})$ of $C_{r}^{k}(r=1, \cdots, k-1)$ . Fur-
thermore $Q_{0}^{k}$ is a completely integrable subbundle of $C_{1}^{k}$ of codimension $n$ .

(3) $Ch(C^{k})(v^{k})=\{0\}$ at each $v^{k}\in J^{k}(M, n)$

(4) $Q^{k}=C^{k}\cap Q_{0}^{k}(k\geqq 2)$ .
2. 2. Contact manifold $(K, D)$ of order $k$ of bidegree $(n, m)$ . In view

of Proposition 2. 1, we first give the following definition (cf. Definition 6. 1
[8] $)$ .

DEFINITION 2. 2 Let $D$ be a differential system on a manifold $K$.
Then $(K, D)$ is called a contact manifold of order $k$ of bidegree $(n, m)$ if
and only if the following conditions are satisfified:

(1) There exists a family $\{D^{1_{ }},\cdots, D^{k}\}$ of differential systems on $K$

such that $D^{k}=D$ and $D^{r}=\partial D^{r+1}$ for $r=1$ , $\cdots$ , $k-1$ , $i$ . $e.$ , the $r$-th derived
sheaf $\partial^{r}\mathscr{D}$ of $D$ defifines a differential system $\partial^{r}D=D^{k-r}$ for $r=1$ , $\cdots$ , $k-1$ .

(2) $D^{1}$ is a differential system of codimension $m$ .
(3) There exists a completely integrable subbundle $F$ of $D^{1}$ of codi-

mension $n$ such that $F\supset Ch(D^{1})$ .
(4) The Cauchy-Cartan characteristic system $Ch(D^{r})$ of $D^{r}$ is a sub-

bundle of $D^{r+1}$ of codimension $n$ for $r=1$ , $\cdots$ , $k-1$ .
(5) $Ch(D^{k})(x)=\{0\}$ at each $x\in K$.
(6) $Ch(D^{k-1})=D^{k}\cap F(k\geqq 2)$ .

(7) dim $K=m \cross(\sum_{r=1}^{k}{}_{n}H_{r})+m+n$ , where ${}_{n}H_{r}=(\begin{array}{l}n+r-1r\end{array})$ .

Obviously, by Proposition 2. 1, $(J^{k}(M, n)$ , $C^{k})$ is a contact manifold of
order $k$ of bidegree $(n, m)$ .

First we have easily
Lemma 2. 3. (cf. Lemma 5. 2 [8]). ( i) $F\supset Ch(D^{1})\supset\cdots\supset Ch(D^{k})$ .
(ii) $Ch(D^{1})=F\cap D^{2}$ and $Ch(D^{r})=Ch(D^{r-1})\cap D^{r+1}$ for $r=2$ , $\cdots$ , $k-1$ .
Now we have (cf. Theorem 6. 2 [8])
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THEOREM 2. 4 Let $D$ be a differential system on a manifold K. Then
$(K, D)$ is a contact manifold of $k$ -th order of bidegree $(n, m)$ if and only
if at each $x\in K$, there exist functions $x_{i}$, $z^{\alpha}$ and $p_{I}^{\alpha}(i=1,$ $\cdots$ , $n$ , $\alpha=1$ , $\cdots$ , $m$,
$I\in\cup kM_{r})$ defifined on a neighborhood $U$ of $x$ such that

$r=1$

(1) $p_{I}$ is symmetric with respect to $I$.
(2) The system of functions $x_{i}$, $z^{\alpha}$ and $p_{I}^{\alpha}(i=1,$ $\cdots$ , $n$ , $\alpha=1$ , $\cdots$ , $m$,

$I\in\Sigma_{k})$ is a coordinate system on $U$.
(3) $D$ is defifined on $U$ by the following l-forms;

$\varpi^{\alpha}=dz^{\alpha}-\sum_{i=1}^{n}p_{t}^{\alpha}dx_{i}$ $(\alpha=1, \cdots, m)$ ,

$\varpi_{I}^{\alpha}=dp_{I}^{a}-\sum_{j=1}^{n}p_{I’ f}^{\alpha}dx_{j}$ $(\alpha=1, \cdots, m, I\in\Sigma_{k-1})$

PROOF. By Proposition 2. 1, it suffices to show the only if part. Let
$(K, D)$ be a contact manifold of order $k$ of bidegree $(n, m)$ . The following
proof is quite similar to that of Theorem 5. 3 [8]. Matters being of local
nature, we may assume that $K$ is regular with respect to $F$, $i$ . $e.$ , the set
$M=K/F$ of all leaves of the foliation defined by $F$ has a differentiable struc-
ture such that the natural projection $\overline{\rho}_{0}$ ; $Karrow M$ is a submersion $(’cf.$ \S 5. 1
[8] $)$ .

Now we will show that there exists an immerison $\iota$ of $K$ into $J^{k}(M, n)$

such that $\rho_{0}^{k}\cdot\iota=\overline{\rho}_{0}$ and $D=\iota_{*}^{-1}(C^{k})$ . For this purpose, by induction on $r$,
we construct a map $\overline{\rho}_{r}$ ; $Karrow J^{r}(M, n)$ satisfying $\rho_{r-1}^{r}\overline{\rho}_{r}=\overline{\rho}_{r-1}$ , Ker $(\overline{\rho}_{r})_{*}=Ch(D^{r})$

and $D^{r}=(p_{r})_{*}^{-1}(C^{r})$ as follows. For $r=1$ , since $F=Ker(\beta_{0})_{*}$ is a subbundle
of $D^{1}$ of codimension $n$ , we can define $\overline{\rho}_{1}$ by

$\beta_{1}(x)=(\overline{\rho}_{0})_{*}(D^{1}(x))\in J^{1}(M, n)$ for $x\in K$ .

Then it is easy to see that $\rho_{0}^{1}\cdot\overline{\rho}_{1}=\overline{\rho}_{0}$ and $D^{1}=(\overline{\rho}_{1})_{*}^{-1}(C^{1})$ . Furthermore, since
$F\cap Ch(D^{1})=Ch(D^{1})$ , Ker $(\overline{\rho}_{1})_{*}=Ch(D^{1})$ follows from Lemma 1. 5 [8].

Now suppose that we have constructed a map $\overline{\rho}_{r}$ ; $Karrow J^{r}(M, n)$ satisfying
$\rho_{r-1}^{r}\cdot\overline{\rho}_{r}=\overline{\rho}_{r-1}$ , Ker $(\overline{\rho}_{r})_{*}=Ch(D^{r})$ and $D^{r}=(\overline{\rho}_{r})_{*}^{-1}(C^{r})$ . Since Ker $(\overline{\rho}_{r})_{*}=Ch(D^{r})$

is a subbundle of $D^{r\dagger 1}$ of codimension $n$ , we can define $\tilde{\rho}_{r+1}$ ; $Karrow J(J^{r}(M, n),$ $n)$

by setting

$\tilde{\rho}_{r+1}(x)=(\overline{\rho}_{r})_{*}(D^{r+1}(x))\in J(J^{r}(M, n),$ $n)$ for $x\in K$ .
Then, by the definition of the canonical system $C_{r+1}^{*}$ on $J(J^{r}(M, n)$ , $n)$ , we
have $D^{r+1}=(\rho_{r})_{*}^{-1}(C_{r+1}^{*})$ and $\pi^{r+1}\cdot\tilde{\rho}_{r+1}=\overline{\rho}_{r}$ , where $\pi^{r+1}$ is the projection of
$J(J^{r}(M, n)$ , $n)$ onto $J^{r}(M, n)$ . Furthermore Ker $(\tilde{\rho}_{r+1})_{*}=Ch(D^{r+1})$ follows
from Ker $(p_{r})_{*}\cap Ch(D^{r+1})=Ch(D^{r+1})$ and Lemma 1. 5 [8]. Hence it remains
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to show that $\tilde{\rho}_{r+1}(K)\subset J^{r\dagger 1}(M, n)$ . First, from $D^{r}=\partial D^{r+1}$ and $D^{r}=(\overline{\rho}_{r})_{*}^{-1}(C^{r})$ ,
we see that $\tilde{\rho}_{r+1}(x)$ is an integral element of $(J^{r}(M, n),$ $C^{r})$ . On the other
hand, by Lemma 2. 3 (ii), we have $Ch(D^{r})=Ch(D^{r-1})\cap D^{r+1}$, $i$ . $e.$ , Ker $(\overline{\rho}_{r})_{*}=$

$Ch(D^{r-1})\cap D^{r+1}$ . Furthermore, from $\rho_{r-1}^{r}\cdot\overline{\rho}_{r}=\overline{\rho}_{r-1}$ and $Q^{r}=Ker(\rho_{r-1}^{r})_{*}$ , we get
$Ch(D^{r-1})=(p_{r})_{*_{\vee}}^{-1}(Q^{r})$ . Hence we have $(\overline{\rho}_{r})_{*}(D^{r+1}(x))\cap Q^{r}(\overline{\rho}_{r}(x))=\{0\}$ . there
fore we obtain $\tilde{\rho}_{r+1}(x)\in J^{r+1}(M, n)$ . Thus we construct a map $\overline{\rho}_{r+1}$ ; $Karrow$

$J^{r+1}(M,n)$ satisfying $\rho_{r}^{r+1}\cdot\overline{\rho}_{r+1}=\overline{\rho}_{r}$ , Ker $(\overline{\rho}_{r+1})_{*}=Ch(D^{r+1})$ and $D^{r+1}=(\overline{\rho}_{r+1})_{*}^{-1}(C^{r+1})$ .
Accordingly, for $r=k$ , we get a map $\iota=\overline{\rho}_{k}$ ; $Karrow J^{k}(M, n)$ satisfying

$\rho_{k-1}^{k}\cdot\iota=\overline{\rho}_{k-1}$ , Ker $\iota_{*}=Ch(D^{k})$ and $D^{k}=\iota^{-1}\backslash *(U)$ . Since $Ch(D^{k})=\{0\}$ , $\iota$ is an
immersion of $K$ into $J^{k}(M, n)$ . Furthermore, by (7) of Definition 2. 2, $\iota$ is
a local isomorphism of $(K, D)$ into $(J^{k}(M, n),$ $C^{k})$ . $q$ . $e$ . $d$ .

REMARK 2. 5. (1) Let $(K, D)$ be a contact manifold of order $k$ of
bidgree $(n, m)$ . The differential system $D^{r}$ of Definition 2. 2 (1) is a $(k -- r)$ -th
derived system of $D$. Hence the family $\{D^{1_{ }},\cdots, D^{k}\}$ is uniquely determined
by $D$. Furthermore, if $m\geqq 2$ , the completely integrable system $F$ of Defini-
tion 2. 2 (3) is also uniquely determined by $D$. In fact we can show the
uniqueness of $F$ as follows: Matters being of local nature, we may assume
that $K$ is regular with respect to $Ch(D^{1})$ . Then there exists a differential
system $\overline{D}$ on $\overline{K}=K/Ch(D^{1})$ such that $D^{1}=\overline{\rho}_{*}^{-1}(\overline{D})$ , where $\overline{\rho}$ is the projection
of $K$ onto $\overline{K}$ . On the other hand, by Theorem 2. 4, there exist (independent)
first integrals $x_{i}$, $z^{\alpha}$ and $p_{i}^{\alpha}(i=1, \cdots, n, \alpha=1, \cdots, m)$ of $Ch(D^{1})$ such that $D^{1}$

is defined by $\varpi^{\alpha}=dz^{\alpha}-\sum_{i=1}^{n}p_{i}^{\alpha}dx_{i}(\alpha=1, \cdots, m)$ . Hence $\overline{K}$ is a manifold of
dimension $m+n+mn$ and I3 is a differential system on $\overline{K}$ of codimension
$m$ . Furthermore, $(\overline{K},\overline{D})$ is locally isomorphic with $(J(M, n),$ $C)$ . Hence $\overline{D}$

is a regular differential system of type $\mathfrak{C}^{1}(n, m)$ . Let $\overline{F}$ be the symbol system
of $(\overline{K},\overline{D})$ . Then we have $F=\overline{\rho}_{*}^{-1}(\overline{F})$ . This shows the uniqueness of $F$.

(2) Let $(K, D)$ be a contact manifold of order $k$ of bidegree $(n, m)$ .
Then $(K, D)$ is a regular differential system of type $\mathfrak{C}^{k}(n, m)$ . Concerning
with this fact, we have the following (cf. Remark 6. 7 [8]): Let $K$ be a

manifold of dimension $m \cross(\sum_{r=1}^{k}{}_{n}H_{r})+m+n$ and let $D$ be a differential system

on $K(m\geqq 3)$ . Let $x$ be any point of $K$. Then we can find a coordinate
system $(x_{i}, z^{a}, p_{I}^{\alpha})(1\leqq i\leqq n, 1\leqq\alpha\leqq m, I\in\Sigma_{k})$ of $K$ around $x$ such that $D$ is
defined by the following 1-forms ;

$\varpi^{\alpha}=dz^{\alpha}-\sum_{i=1}^{n}p_{i}^{\alpha}dx_{i}$ $(\alpha=1, \cdots, m)$ ,

$\varpi_{I}^{\alpha}=dp_{I}^{\alpha}-\sum_{j=1}^{n}p_{I,j}^{\alpha}dx_{j}$ $(\alpha=1, \cdots, m, I\in\Sigma_{k-1})’\eta$
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if and only if there exist 1-forms $\omega_{1}$ , $\cdots$ , $\omega_{n}$ , $\varpi^{1}$, $\cdots$ , $\varpi^{m}$ and $\varpi_{I}^{a}(1_{\underline{-\leq}\alpha\leqq m}$ ,
$I\in\Sigma_{k})$ defined around $x$, which form a basis of 1-forms around $x$, such
that $D$ is defined by $\varpi^{\alpha}$ and $\varpi_{I}^{\alpha}(1\leqq\alpha\leqq m, I\in\Sigma_{k-1})$ and that the following
equalities hold ;

$d\varpi^{\alpha}\equiv\sum_{i=1}^{n}\omega_{i}\wedge\varpi_{i}^{\alpha}$ (mod $\varpi^{1}$, $\cdots$ , $\varpi^{m}$) ,

$d\varpi_{I}^{\alpha}\equiv\sum_{j=1}^{n}\omega_{j}\wedge\varpi_{Ij}^{\alpha}$, ( $mod \varpi^{\beta}$, $\varpi_{J}^{\beta}(1\leqq\beta\leqq m, J\in\Sigma_{r})$),
for $I\in S_{r}(r=1, \cdots, k-1)$ . For $m=2$ , we must further impose the condition
that $F=\{\varpi^{1}=\cdots=\varpi^{m}=\omega_{1}=\cdots=\omega_{n}=0\}$ is completely integrable.

Let $(K, D)$ be a contact manifold of order $k$ of bidegree $(n, m)$ . $(K, D)$

is a regular differential system of type $\mathfrak{C}^{k}(n, m)$ . Now we will mention about

the prolongations of $(K, D)$ . Let $x$ be any point of $K$ and let $\mathfrak{d}(x)=\sum_{p=-1}^{-(k+1)}\mathfrak{d}_{p}(x)$

be the graded algebra of $D$ at $x$ (cf. [6]). Let $K^{(1)}$ be the prolongation
of $(K, D)$ , $i$ . $e.$ ,

$K^{(1)}= \bigcup_{x\in K}K^{(1)}(x)$ ,

where $K^{(1)}(x)$ is the set of $n$-dimensional integral elements $w$ of $(K, D)$ at
$x$ such that $D(x)=w\oplus Ch(\partial D)(x)$ (direct sum) (cf. \S 6 [8]). Set $V(x)=$

$D(x)/Ch(\partial D)(x)$ . Then, by Proposition 3. 7 [8] (cf. Proposition 5. 10 [8]),
it follows that $K^{(1)}(x)$ is an affine space modeled on $\mathfrak{d}_{-(k+1)}(x)\otimes S^{k+1}(V^{*}(x))$ .
Let $S(K)$ be the vector bundle over $K$ defined by

$S(K)=\mathfrak{d}_{-(k+1)}\otimes S^{k\dagger 1}(V^{*})$ ,

where $\mathfrak{d}_{-(k+1)}=T(K)/\partial^{k-1}D$ and $V=D/Ch(\partial D)$ . Then $K^{(1)}$ is an affine bundle
over $K$ modeled on $S(K)$ . Let $\rho^{(1)}$ be the projection of $K^{(1)}$ onto $K$ and
let $D^{(1)}$ be the restriction to $K^{(1)}$ of the canonical system on $J(K, n)$ . Then
$(K^{(1)}, D^{(1)})$ is a contact manifold of order $k+1$ of bidegree $(n, m)$ and $Ker|$

$\rho_{*_{\backslash }}^{(1)}=Ch(\partial D^{(1)})$ . Thus we obtain

PROPOSITION 2. 6. (1) Let $(K, D)$ be a contact manifold of order $k$ of
bidegree $(n, m)(m\geqq 2)$ . Then the prolongation $(K^{(1)}, D^{(1)})$ of $(K, D)$ is a cont-
act manifold of order $k+1$ of bidegree $(n, m)$ and $K^{(1)}$ is an affine bundle
over $K$ modeled on $S(K)$ .

(2) Let $(K, D)$ and $(K,\hat{D})$ be contact manifolds of order $k$ of bidegree
$(n, m)$ and let $(K^{(1)}, D^{(1)})$ (resp. ($K^{(1)}$ , $Y^{(1)}$ )) be the prolongation of $(K, D)$ (resp.
$(K, D))$ . Let $\varphi$ be an isomorphism of $(K, D)$ onto $(K, D)$ . Then $\varphi$ induces
a unique isomorphism $p\varphi$ of $(K^{(1)}, D^{(1)})$ onto $(K^{(1)}, D^{(1)})$ defifined by $p\varphi(w)=$
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$\varphi_{*}(w)$ for $w\in K^{(1)}$ . Conversely an isomorphism $\psi$ of $(K^{(1)}, D^{(1)})$ onto $(K^{(1)}$ ,
$\hat{D}^{(1)})$ induces a unique isomorphism $\varphi$ of $(K, D)$ onto $(\hat{K},\hat{D})$ such that $\psi=p\varphi$ .

\S 3. A remark on contact diffeomorphisms of Jet bundles

Let $(M, N, p)$ be a fibred manifold of fibre dimension $m$ , $i$ . $e.$ , $p$ is a
submersion of $M$ onto $N$ such that dim $N=n$ and dim $M=m+n$ . Let
$J^{k}(M, N, p)$ be the bundle of $k$-jets of local sections of $(M, N, p)$ . Then
$J^{k}(M, N, p)$ has a canonical differential system $C^{k}$ ( $[5$ , p. 85]). Obviously
$(J^{k}(M, N,p), C^{k})$ is a contact manifold of order $k$ of bidegree $(n, m)$ .

For $k=1$ , there exists a canonical open imbedding $\iota$ of $J^{1}(M, N, p)$ into
$J(M, n)$ defined by $\iota(z)=f_{*}(T_{x}(N))$ for $x=p_{-1}^{1}(z)$ and $z=j_{x}^{1}f$. Furthermore,
if $m=1$ , $\mathfrak{C}=(J^{1}(M, N, p), C^{1})$ is a contact manifold. In this case, there
exists a canonical open imbedding $\iota^{2}$ of $J^{2}(M, N, p)$ into $L(\mathfrak{C})$ defined by
$\iota^{2}(w)=(j^{1}f)_{*}(T_{x}(N))$ for $x=p_{-1}^{2}(w)$ and $w=j_{x}^{2}f$, where $(L, (\mathfrak{C}),$ $E)$ is the
Lagrange-Grassmann bundle over $\mathfrak{C}$ (\S 2 [8]). In both cases one should note
that $C^{1}=\iota_{*}^{-1}(C)$ and $C^{2}=(\iota^{2})_{*^{1}}^{-1}(E)$ .

Let $(M, N, p)$ and $(\hat{M},\hat{N},\hat{p})$ be fibred manifolds of fibre dimension $m$ .
Let $\varphi$ be a fibre-preserving diffeomorphism of $M$ onto $\hat{M}$. Obviously $\varphi$

induces a unique isomorphism $p^{k}\varphi$ of $(J^{k}(M, N, p), C^{k})$ onto $(J^{k}(\hat{M},\hat{N},\hat{p}), C^{k})$ .
For the converse problem we note

THEOREM 3. 1. Let $(M, N, p)$ and $(\hat{M}, l\hat{V},\hat{p})$ be fifibred manifolds of
fifibre dimension $m$ such that each fifibre is connected. Let $\psi$ be an isomor-
phism of $(J^{k}(M, N, p), C^{k})$ onto $(J^{k}( \hat{M},\hat{N}, \oint), C^{k})$ . Then, if $(k, m)\neq(1,1)$ ,
there exists a unique fifibre-preserving diffeomorphism $\varphi$ of $M$ onto $\hat{M}$ such
that $\psi=p^{k}\varphi$ .

PROOF. By Proposition 3. 1 [8] and Proposition 2. 6, it suffices to prove
the assertion in the following two cases.

(i) $k=1$ and $m\geqq 2$ . As in the proof of Theorem 1. 4, $\psi$ induces a
diffeomorphism $\varphi$ of $M$ onto $\hat{M}$ such that $\hat{p}_{0}^{1}\psi=\varphi\circ p_{0}^{1}$ . Then, applying Lemma
1. 5 [8] to $(J^{1}(M, N, p), C^{1}, \varphi\cdot p_{0}^{1},\hat{M})$ , we get $\hat{\iota}\cdot\psi=p\varphi\cdot\iota$, where $\iota$ (resp. $\hat{\iota}$) is
the canonical open imbedding of $J^{1}(M, N, p)$ (resp. $J^{1}(\hat{M},\hat{N},\hat{p})$ ) into $J(M, n)$

(resp. $J$ ( $\hat{M}$, $n$)) and $p\varphi$ is the lift of $\varphi$ (Theorem 1. 4). On the other hand,
for $J_{y}^{1}(M, N, p)=(p_{0}^{1})^{-1}(y)$ , $y\in M$, we have

$\iota(J_{y}^{1}(M, N, p))=B(F(y))’$
’

where $F(y)=Ker(p_{-1}^{0})_{*y}$ and

$B(F(y))=\{z\in Gr(T_{y}(M),$ $n)|z\cap F(y)=\{0\}\}\tau$
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Hence, from $\varphi_{*}(B(F(y))=B(\hat{F}(\varphi(y)))$ , we get $\varphi_{*}(Ker(p_{-1}^{0})_{*})=Ker(\hat{p}_{-1}^{0})_{*}$

Therefore $\varphi$ is fibre-preserving.
(ii) $k=2$ and $m=1$ . Since $(p_{1}^{2})_{*}^{-1}(C^{1})=\partial C^{2}$ and Ker $(p_{1}^{2})_{*}=Ch(\partial C^{2})$ , $\psi$

induces a unique isomorphism $\tilde{\varphi}$ of $(J^{1}(M, N,p), C^{1})$ onto $(J^{1}(\hat{M},\hat{N}, \phi), C^{1})$

such that $\hat{p}_{1}^{2}\cdot\psi=\tilde{\varphi}\cdot p_{1}^{2}$ . Then, by Corollary 5. 4 [8], we have $\hat{\iota}^{2}\circ\psi=q\tilde{\varphi}\circ\iota^{2}$,
where $\iota^{2}$ (resp. $\hat{\iota}^{2}$) is the canonical open imbedding of $J^{2}(M, N, p)$ (resp.
$J^{2}(\hat{M},\hat{N},\hat{p}))$ into $L(\mathfrak{C})$ (resp. $L(\hat{\mathfrak{C}})$) and $q\tilde{\varphi}$ is the lift of $\tilde{\varphi}$ (Theorem 3, 2
[8] $)$ . On the other hand, $L_{z}=\pi^{-1}(z)$ being considered as the Lagrange-
Grassmann manifold $\Lambda(n)$ $($ \S 2 $[8[),$ $\iota^{2}(J_{z}^{2}(M, N,p))$ coincides with the open
cell $\Lambda(F(z))\subset L_{z}$ consisting of those elements of $L_{z}$ which are transversal
to $F(z)=Ker(p_{0}^{1})_{*}\in L_{z}$ . From $\hat{\iota}^{2}\circ\psi=q\tilde{\varphi}\circ\iota^{2}$ , we get $q\tilde{\varphi}(\Lambda(F(z)))=\Lambda(F(\tilde{\varphi}(z)))$ .
Furthermore, from $\cap$ $\Lambda(w)=\{F(z)\}$ , we obtain $\tilde{\varphi}_{*}(F(z))=F(\tilde{\varphi}(z))$ , $i$ . $e.$ ,

$w\epsilon A(F(z))$

$\tilde{\varphi}_{*}(Ker(p_{0}^{1})_{*})=Ker(\hat{p}_{0}^{1})_{*}$ . Hence $\tilde{\varphi}$ induces a diffeomorphism $\varphi$ of $M$ such
that $\hat{p}_{0}^{1}\circ\tilde{\varphi}=\varphi\circ p_{0}^{1}$ . Then, as in (i), it follows that $\varphi$ is fibre-preserving.

$q$ . $e$ . $d$ .
COROLLARY 3. 2. Let $X$ be an infifinitesimal isomorphism of $(J^{k}(M,$ $N$,

$p)$ , $C^{k})$ which is complete, $i$ . $e.$ , $X$ generates a global 1-parameter group of
isomorphisms of $(J^{k}(M, N, p), C^{k})$ . Then, if $(k, m)\neq(1,1)$ , $X$ is projectable
to $N$, $i$ . $e.$ , there exists a vector fifield $X$ on $N$ such that $X$ is $p_{-1}^{k}$ -related
to $X$.
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