On the non-existence of smooth actions of complex symplectic group on cohomology quaternion projective spaces

By Fuichi Uchida
(Received October 8, 1982 ; Revised December 23, 1982)

0. Introduction

We have studied actions of non-compact classical Lie groups $\boldsymbol{S L}(n, \boldsymbol{R})$ and $\boldsymbol{S L}(n, \boldsymbol{C})$, in the previous papers [4], [5]. It seems to be important to consider the restricted actions of maximal compact groups. In this paper, we shall study smooth actions of complex symplectic group $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$ and its maximal compact group $\boldsymbol{S p}(n)$ on rational cohomology quaternion projective spaces. We shall show the following result.

Theorem. Suppose $n \geqq 5$ and $m \leqq 2 n-2$. Then $\boldsymbol{S p}(n, \boldsymbol{C})$ does not act smoothly and non-trivially on any rational cohomology quaternion projective m-space.

By a rational cohomology quaternion projective m-space we mean a closed orientable smooth manifold whose cohomology ring with rational coefficients is isomorphic to that of the quaternion projective m-space.

1. Certain subgroups of $\operatorname{Sp}(\boldsymbol{n}, \boldsymbol{C})$

Let $\boldsymbol{G} \boldsymbol{L}(m, \boldsymbol{C})$ and $\boldsymbol{U}(m)$ denote the group of regular matrices of degree m with complex coefficients and the group of unitary matrices of degree m, respectively. Let I_{n} denote the unit matrix of degree n, and we put

$$
J_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) .
$$

Define $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})=\left\{A \in \boldsymbol{G L}(2 n, \boldsymbol{C}):{ }^{t} A J_{n} A=J_{n}\right\}$ and $\boldsymbol{S p}(n)=\boldsymbol{S p}(n, \boldsymbol{C}) \cap \boldsymbol{U}(2 n)$. Then $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$ and $\boldsymbol{S} \boldsymbol{p}(n)$ are connected closed subgroups of $\boldsymbol{G L}(2 n, \boldsymbol{C})$.

As usual, we regard $M_{m}(C)$ with the bracket operation $[A, B]=A B$ $B A$ as the Lie algebra of $\boldsymbol{G L}(\boldsymbol{m}, \boldsymbol{C})$. Let $\mathfrak{g p}(n, \boldsymbol{C})$ and $\mathfrak{B p}(n)$ denote the Lie subalgebras of $M_{2 n}(\boldsymbol{C})$, considered as a real Lie algebra, corresponding to the subgroups $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$ and $\boldsymbol{S} \boldsymbol{p}(n)$, respectively. Then

$$
\begin{aligned}
& \mathfrak{p}(n, \boldsymbol{C})=\left\{X \in M_{2 n}(\boldsymbol{C}):{ }^{t} X J_{n}=-J_{n} X\right\}, \\
& \mathfrak{w p}(n)=\left\{X \in M_{2 n}(\boldsymbol{C}):{ }^{t} X J_{n}=-J_{n} X,{ }^{t} X+\bar{X}=0\right\} .
\end{aligned}
$$

We can describe more explicitly as follows.

$$
\begin{aligned}
& \mathfrak{B}(n, \boldsymbol{C})=\left\{\left(\begin{array}{cc}
X & Z \\
Y & -{ }^{t} X
\end{array}\right):{ }^{t} Y=Y,{ }^{t} Z=Z ; X, Y, Z \in M_{n}(\boldsymbol{C})\right\}, \\
& \mathfrak{g p}(n)=\left\{\left(\begin{array}{cc}
X & -\bar{Y} \\
Y & \bar{X}
\end{array}\right):{ }^{t} Y=Y,{ }^{t} X+\bar{X}=0 ; X, Y \in M_{n}(\boldsymbol{C})\right\}
\end{aligned}
$$

Put

$$
\mathfrak{h}(n)=\left\{\left(\begin{array}{rr}
X & \bar{Y} \\
Y & -\bar{X}
\end{array}\right):{ }^{t} Y=Y,{ }^{t} X=\bar{X} ; X, Y \in M_{n}(\boldsymbol{C})\right\} .
$$

Let $A d: \boldsymbol{S p}(n, \boldsymbol{C}) \rightarrow \boldsymbol{G} \boldsymbol{L}(\mathfrak{m p}(n, \boldsymbol{C}))$ be the adjoint representation defined by $\operatorname{Ad}(A) X=A X A^{-1}$ for $A \in \boldsymbol{S p}(n, \boldsymbol{C}), X \in \mathfrak{g p}(n, \boldsymbol{C})$. Then $\mathfrak{p p}(n)$ and $\mathfrak{h}(n)$ are $\operatorname{Ad}(\boldsymbol{S p}(n))$-invariant real vector subspaces of $\mathfrak{p p}(n, \boldsymbol{C})$, the correspondence of $M \in \mathfrak{Z p}(n)$ into $\sqrt{-1} M \in \mathfrak{h}(n)$ is an $\operatorname{Ad}(\boldsymbol{S p}(n))$-equivariant isomorphism, and

$$
\mathfrak{B p}(n, \boldsymbol{C})=\mathfrak{B} \mathfrak{p}(n) \oplus \mathfrak{h}(n)
$$

as a direct sum of $A d(\boldsymbol{S p}(n))$-vector spaces. Define certain real vector subspaces of $\mathfrak{p p}(n, \boldsymbol{C})$ as follows:

$$
\begin{aligned}
& \mathfrak{g} \mathfrak{p}(n-1, \boldsymbol{C})=\left\{\left(\begin{array}{cc|cc}
0 & 0 & 0 & 0 \\
0 & X_{11} & 0 & X_{12} \\
\hline 0 & 0 & 0 & 0 \\
0 & X_{21} & 0 & X_{22}
\end{array}\right): X_{i j} \in M_{n-1}(\boldsymbol{C})\right\}, \\
& \mathfrak{a}=\left\{\left(\begin{array}{lr|lr}
0 & -{ }^{t} V & 0 & { }^{t} U \\
X & 0 & U & 0 \\
\hline 0 & { }^{t} Y & 0 & -{ }^{t} X \\
Y & 0 & V & 0
\end{array}\right): X, Y, U, V \in C^{n-1}\right\}, \\
& z=\left\{\left(\begin{array}{ll|rr}
\alpha & 0 & \gamma & 0 \\
0 & 0 & 0 & 0 \\
\hline \beta & 0 & -\alpha & 0 \\
0 & 0 & 0 & 0
\end{array}\right): \alpha, \beta, \gamma \in \boldsymbol{C}\right\},
\end{aligned}
$$

$\mathfrak{g p}(n-1)=\mathfrak{g} \mathfrak{p}(n-1, C) \cap \mathfrak{p}(n), \mathfrak{h}(n-1)=\mathfrak{p}(n-1, C) \cap \mathfrak{h}(n)$.

Let $\boldsymbol{S p}(n-1, \boldsymbol{C})$ and $\boldsymbol{S p}(n-1)$ denote the connected subgroups of $\boldsymbol{S p}(n, \boldsymbol{C})$ corresponding to the Lie subalgebras $\mathfrak{p}(n-1, \boldsymbol{C})$ and $\mathfrak{p}(n-1)$, respectively. Then

$$
\mathfrak{B} \mathfrak{p}(n, \boldsymbol{C})=\mathfrak{B} \mathfrak{p}(n-1) \oplus \mathfrak{h}(n-1) \oplus \mathfrak{a} \oplus \mathfrak{z}
$$

as a direct sum of $\operatorname{Ad}(\boldsymbol{S p}(n-1))$-invariant vector spaces.
Denote by $\mathfrak{a}(a+j b, c+j d)$, the real vector subspace of \mathfrak{a} consisting of all matrices of the form

$$
\left(\begin{array}{cc|cc}
0 & * & 0 & * \\
X a-\bar{Y} b & 0 & X c-\bar{Y} d & 0 \\
\hline 0 & * & 0 & * \\
Y a+\bar{X} b & 0 & Y c+\bar{X} d & 0
\end{array}\right): X, Y \in \boldsymbol{C}^{n-1}
$$

Here a, b, c, d are complex numbers and j is a quaternion such that $j^{2}=-1$ and $j u=\bar{u} j$ for each complex number u. It is easy to see that $a(a+j b$, $c+j d)$ is $\operatorname{Ad}(\boldsymbol{S p}(n-1))$-invariant and each $\operatorname{Ad}(\boldsymbol{S p}(n-1))$-invariant proper subspace of \mathfrak{a} is of the form $\mathfrak{a}(a+j b, c+j d)$. By definition, there is a relation

$$
\begin{equation*}
\mathfrak{a}\left(q_{0} q_{1}, q_{0} q_{2}\right)=\mathfrak{a}\left(q_{1}, q_{2}\right) \quad \text { for } \quad q_{r}=a_{r}+j b_{r} \text { and } q_{0} \neq 0 \tag{1}
\end{equation*}
$$

By the relation (1), we obtain the following relations:

$$
\begin{array}{lll}
\mathfrak{a}(a+j b, c+j d)+\mathfrak{a}(a-j b, c-j d)=\mathfrak{a} & \text { if } \quad a d \neq b c \tag{2}\\
\mathfrak{a}(a+j b, c+j d)=\mathfrak{a}(a-j b, c-j d) & \text { if } \quad a d=b c
\end{array}
$$

Moreover we obtain the following relations by a routine work.

$$
\begin{align*}
& {[\mathfrak{a}, \mathfrak{a}]=\mathfrak{g} \mathfrak{p}(n-1, C) \oplus \mathfrak{z},} \\
& {[\mathfrak{h}(n-1), \mathfrak{a}(a+j b, c+j d)]=\mathfrak{a}(a-j b, c-j d),} \tag{3}\\
& {[\mathfrak{a}(a+j b, c+j d), \mathfrak{a}(a+j b, c+j d)]=(a d-b c) \mathfrak{B} \mathfrak{p}(n-1) \oplus \mathfrak{z}^{\prime},}
\end{align*}
$$

where z^{\prime} is a real vector subspace of z.
Lemma 1.1. Suppose $n \geqq 2$. Let g be a proper real Lie subalgebra
 conjugation :

$$
\begin{aligned}
& \mathfrak{i p}(n-1, \boldsymbol{C}) \oplus \mathfrak{a}(0,1) \oplus \mathfrak{z}^{\prime}, \quad \mathfrak{j p}(n-1, \boldsymbol{C}) \oplus \mathfrak{z}^{\prime}, \\
& \mathfrak{B} \mathfrak{p}(n-1) \oplus \mathfrak{a}(0,1) \oplus \mathfrak{z}^{\prime}, \quad \mathfrak{j p}(n-1) \oplus \mathfrak{a}(1, j) \oplus \mathfrak{z}^{\prime}, \\
& \mathfrak{j p}(n-1) \oplus \mathfrak{z}^{\prime},
\end{aligned}
$$

where \mathfrak{z}^{\prime} is a real vector subspace of \mathfrak{z}. In fact, there is an element M of
the centralizer of $\boldsymbol{S p}(n-1, \boldsymbol{C})$ in $\boldsymbol{S p}(n, \boldsymbol{C})$ such that $\operatorname{Ad}(M) \mathrm{g}$ coincides with one of the above.

Proof. Since \mathfrak{g} contains $\mathfrak{g p}(n-1), \mathfrak{g}$ is an $\operatorname{Ad}(\boldsymbol{S p}(n-1))$-invariant vector subspace of $\mathfrak{B p}(n, \boldsymbol{C})$. Hence we have

$$
\mathfrak{g}=\mathfrak{B p}(n-1) \oplus(\mathfrak{g} \cap \mathfrak{h}(n-1)) \oplus(\mathfrak{g} \cap \mathfrak{a}) \oplus(\mathfrak{g} \cap \mathfrak{z})
$$

as a direct sum of $\operatorname{Ad}(\boldsymbol{S} \boldsymbol{p}(n-1))$-invariant vector subspaces. Since $\mathfrak{h}(n-1)$ is irreducible, we have $\mathfrak{g} \cap \mathfrak{G}(n-1)=0$ or $\mathfrak{h}(n-1)$. Since \mathfrak{g} is a proper Lie subalgebra of $\mathfrak{B p}(n, \boldsymbol{C}), \mathfrak{g}$ does not contain \mathfrak{a} by (3), and hence $\mathfrak{g} \cap \mathfrak{a}$ is of the form $\mathfrak{a}(a+j b, c+j d)$. By a routine work from (1), (2) and (3), we see that g is one of the following:

$$
\begin{aligned}
& \mathfrak{z p}(n-1, \boldsymbol{C}) \oplus \mathfrak{a}(a, c) \oplus \mathfrak{z}^{\prime}(a, c: \text { complex }), \quad \mathfrak{Z p}(n-1, C) \oplus \mathfrak{z}^{\prime}, \\
& \mathfrak{z p}(n-1) \oplus \mathfrak{a}(a, c) \oplus \mathfrak{z}^{\prime}(a, c: \text { complex }), \quad \mathfrak{Z p}(n-1) \oplus \mathfrak{z}^{\prime}, \\
& \mathfrak{z p}(n-1) \oplus \mathfrak{a}(a+j b, c+j d) \oplus \mathfrak{z}^{\prime}(a d-b c=1) .
\end{aligned}
$$

Let a, b, c, d be complex numbers with $a d-b c=1$. Put

$$
M\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc|cc}
a & 0 & b & 0 \\
0 & I_{n-1} & 0 & 0 \\
\hline c & 0 & d & 0 \\
0 & 0 & 0 & I_{n-1}
\end{array}\right)
$$

Then $M\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is an element of the centralizer of $\boldsymbol{S} \boldsymbol{p}(n-1, \boldsymbol{C})$ in $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$, and

$$
\begin{aligned}
& \operatorname{Ad}\left(M\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \mathfrak{a}(1, j)=\mathfrak{a}(d-j c,-b+j a) \\
& \operatorname{Ad}\left(M\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \mathfrak{a}(0,1)=\mathfrak{a}(-c, a)
\end{aligned}
$$

Thus we have the desired result.
q. e. d.

Put

$$
L=\left(\begin{array}{cc|c}
1 & 0 & 0 \\
1 & 1 & 0 \\
\hline 0 & I_{n-2}
\end{array}\right), \quad K=\left(\begin{array}{cc}
L & 0 \\
0 & { }^{t} L^{-1}
\end{array}\right) .
$$

Then K is an element of $\boldsymbol{S p}(n, \boldsymbol{C})$.
Lemma 1.2. Assume that \mathfrak{g} is contained in one of the following:

$$
\mathfrak{z p}(n-1, C) \oplus \mathfrak{z}, \mathfrak{Z p}(n-1) \oplus \mathfrak{a}(0,1) \oplus \mathfrak{z}, \mathfrak{z p}(n-1) \oplus \mathfrak{a}(1, j) \oplus \mathfrak{z}
$$

Then $\mathfrak{p p}(n) \cap A d(K) \mathfrak{g}$ is contained in $\mathfrak{p p}(2) \oplus \mathfrak{p p}(n-2)$.
Proof. Each element of $\mathfrak{B p}(n)$ is of the form

$$
A=\left(\begin{array}{rr}
X & -\bar{Y} \\
Y & \bar{X}
\end{array}\right), \quad{ }^{t} X+\bar{X}=0, \quad{ }^{t} Y=Y
$$

Then

$$
K^{-1} A K=\left(\begin{array}{ll}
L^{-1} X L & -L^{-1} \bar{Y}^{t} L^{-1} \\
{ }^{t} L Y L & -t^{t}\left(L^{-1} X L\right)
\end{array}\right)
$$

Since $\mathfrak{s p}(n) \cap A d(K) \mathfrak{g}=\left\{A \in \mathfrak{p} p(n): K^{-1} A K \in \mathfrak{g}\right\}$, we have the desired result by a routine work.
q. e.d.

Let $L(n), N(n)$ denote the subgroups of $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$ consisting of all matrices of the form

$$
\left(\begin{array}{cc|cc}
1 & * & * & * \\
0 & X_{11} & * & X_{12} \\
\hline 0 & 0 & 1 & 0 \\
0 & X_{21} & * & X_{22}
\end{array}\right), \quad\left(\begin{array}{cc|cc}
* & * & * & * \\
0 & X_{11} & * & X_{12} \\
\hline 0 & 0 & * & 0 \\
0 & X_{21} & * & X_{22}
\end{array}\right)
$$

for $X_{i j} \in M_{n-1}(\boldsymbol{C})$, respectively.
Remark. The standard $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$ action on $\boldsymbol{C}^{2 n}-\{0\}$ is transitive and $L(n)$ is an isotropy group. The standard $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$ action on the complex projective ($2 n-1$)-space is transitive and $N(n)$ is an isotropy group. $N(n)$ is the normalizer of $L(n)$ in $\boldsymbol{S p}(\boldsymbol{n}, \boldsymbol{C})$.

Theorem 1.3. Suppose $n \geqq 4$. Let G be a closed proper subgroup of $\boldsymbol{S p}(n, \boldsymbol{C})$ which contains $\boldsymbol{S p}(n-1)$. Assume that each isotropy group of the restricted $\boldsymbol{S p}(n)$ action on the homogeneous space $\boldsymbol{S p}(n, \boldsymbol{C}) / G$ contains a subgroup conjugate to $\boldsymbol{S p}(n-1)$. Then $L(n) \subset h G h^{-1} \subset N(n)$ for an element h of the centralizer of $\boldsymbol{S p}(n-1, \boldsymbol{C})$ in $\boldsymbol{S p}(n, \boldsymbol{C})$.

Proof. Let $\mathrm{g}=$ Lie G be the Lie algebra of G. By the assumption that G contains $\boldsymbol{S p}(n-1), \mathfrak{g}$ contains $\mathfrak{Z p}(n-1)$, and hence there is an element h of the centralizer of $\boldsymbol{S p}(n-1, \boldsymbol{C})$ in $\boldsymbol{S p}(n, \boldsymbol{C})$ such that $\operatorname{Ad}(h) \mathrm{g}$ coincides with one of the Lie algebras listed in Lemma 1.1. By the second assumption on $G, \mathfrak{p}(n) \cap \operatorname{Ad}(K) \operatorname{Ad}(h) \mathfrak{g}$ contains a subalgebra $\operatorname{Ad}\left(h^{\prime}\right) \mathfrak{Z p}(n-1)$ for some $h^{\prime} \in \boldsymbol{S p}(n)$, and hence $\operatorname{Ad}(h) \mathfrak{g}=\mathfrak{p p}(n-1, \boldsymbol{C}) \oplus \mathfrak{a}(0,1) \oplus \mathfrak{z}^{\prime}$ for certain real vector subspace z^{\prime} of z^{\prime}, by Lemma 1. 2. Let z_{0}, z_{1} denote the subspaces of子 consisting of all matrices of the form

$$
\left(\begin{array}{ll|ll}
0 & 0 & * & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{ll|ll}
* & 0 & * & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & * & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

respectively. We see that if $\mathfrak{p p}(n-1, C) \oplus \mathfrak{a}(0,1) \oplus z^{\prime}$ is a Lie algebra, then $z_{0} \subset \mathcal{z}^{\prime} \subset \mathcal{z}_{1}$. On the other hand, it is easy to see that

$$
\begin{aligned}
& \text { Lie } L(n)=\mathfrak{p} p(n-1, \boldsymbol{C}) \oplus \mathfrak{a}(0,1) \oplus \mathfrak{z}_{0} \\
& \text { Lie } N(n)=\mathfrak{g p}(n-1, \boldsymbol{C}) \oplus \mathfrak{a}(0,1) \oplus \mathfrak{z}_{1}
\end{aligned}
$$

Hence we obtain $L(n) \subset h G^{0} h^{-1} \subset N(n)$, where G^{0} is the identity component of G. Since $N(n) / L(n)$ is isomorphic to the multiplicative group of nonzero complex numbers, we see that $h G^{0} h^{-1}=L(n), N(n)$ or $h G^{0} h^{-1} / L(n)$ is isomorphic to the multiplicative group of positive real numbers or the circle group. For each case the normalizer of $h G^{0} h^{-1}$ in $\boldsymbol{S p}(n, \boldsymbol{C})$ coincides with $N(n)$, and hence $L(n) \subset h G h^{-1} \subset N(n)$.
q.e.d.

2. Smooth $\boldsymbol{S p}(\boldsymbol{n})$ actions

First we prepare the following two lemmas which are proved by a standard method (cf. [1], [5]).

Lemma 2.1. Suppose $n \geqq 5$. Let G be a closed connected proper subgroup of $\boldsymbol{S p}(n)$ such that $\operatorname{dim} \boldsymbol{S p}(n) / G \leqq 8 n-8$. Then G coincides with $\boldsymbol{S p}(n-i) \times K(i=1,2)$ up to an inner automorphism of $\boldsymbol{S p}(n)$, or $n=5$ and G is isomorphic to $\boldsymbol{U}(5)$ or $\boldsymbol{S U (5)}$. Here K is a closed connected subgroup of $\boldsymbol{S p}(i)$.

Lemma 2.2. Suppose $r \geqq 4$ and $k \leqq 8 r-6$. Then an orthogonal nontrivial representation of $\boldsymbol{S p}(r)$ of degree k is equivalent to $\left(\nu_{r}\right)_{R} \oplus \theta^{k-4 r}$ by an inner automorphism of $\boldsymbol{O}(k)$. Here $\left(\nu_{r}\right)_{R}: \mathbf{S p}(r) \rightarrow \mathbf{O}(4 r)$ is the canonical inclusion, and θ^{t} is the trivial representation of degree t.

Remark. $\quad \operatorname{dim} \boldsymbol{S p}(n) / \boldsymbol{S p}(n-k) \times \boldsymbol{S p}(k)=4 k(n-k), \operatorname{dim} \boldsymbol{S p}(5) / \boldsymbol{U}(5)=30$, $\chi(\boldsymbol{S p}(n) / \boldsymbol{S p}(n-k) \times \boldsymbol{S p}(k))=\binom{n}{k}, \chi(\boldsymbol{S p}(5) / \boldsymbol{U}(5))=32$, where $\chi(\quad)$ denotes the Euler characteristic. The normalizer $N(\boldsymbol{U}(5))$ of $\boldsymbol{U}(5)$ in $\boldsymbol{S p}(5)$ has just two connected components and its identity component coincides with $\boldsymbol{U}(5)$.

In the following, let M be a closed connected smooth manifold with a non-trivial smooth $\boldsymbol{S p}(n)$ action, and suppose $n \geqq 5$ and $\operatorname{dim} M \leqq 8 n-8$. Put

$$
F_{(i)}=\left\{x \in M: \boldsymbol{S p}(n-i) \subset \boldsymbol{S p}(n)_{x} \subset \mathbf{S p}(n-i) \times \boldsymbol{S} \boldsymbol{p}(i)\right\}
$$

$$
M_{(i)}=\boldsymbol{S p}(n) F_{(i)}=\left\{g x: g \in \boldsymbol{S} \boldsymbol{p}(n), x \in F_{(i)}\right\} .
$$

Here $\boldsymbol{S} \boldsymbol{p}(n)_{x}$ denotes the isotropy group at x.
Proposition 2.3. Suppose $M=M_{(0)} \cup M_{(1)} \cup M_{(2)}$. Then, (a) the fixed point set $F\left(\boldsymbol{S p}(n-k), M_{(i)}\right)$ of the restricted $\boldsymbol{S p}(n-k)$ action on $M_{(i)}$ is empty for $k<i \leqq n-i$, (b) if $M_{(0)}$ is non-empty, then $M_{(2)}$ is empty.

Proof. To prove (a), suppose that $F\left(\boldsymbol{S} \boldsymbol{p}(n-k), M_{(i)}\right)$ is non-empty. Then there are $x \in F_{(i)}$ and $g \in \boldsymbol{S} \boldsymbol{p}(n)$ such that $g x \in F\left(\boldsymbol{S} \boldsymbol{p}(n-k), M_{(i)}\right)$, and hence

$$
\boldsymbol{S} \boldsymbol{p}(n-k) \subset \boldsymbol{S} \boldsymbol{p}(n)_{g x}=g \boldsymbol{S} \boldsymbol{p}(n)_{x} g^{-1} \subset g(\boldsymbol{S} \boldsymbol{p}(n-i) \times \boldsymbol{S} \boldsymbol{p}(i)) g^{-1} .
$$

Since $\boldsymbol{S p}(n-k)$ is a simple Lie group, we obtain $n-k \leqq \max (n-i, i)$, and hence $k \geqq \min (i, n-i)$. Therefore, if $k<i \leqq n-i$, then $F\left(\boldsymbol{S p}(n-k), M_{(i)}\right)$ is empty. Next we show (b). Notice that $M_{(0)}$ is the fixed point set of the $\boldsymbol{S} \boldsymbol{p}(n)$ action on M. Let σ be the isotropy representation at $x \in M_{(0)}$. By Lemma 2.2, σ is equivalent to $\left(\nu_{n}\right)_{R} \oplus$ trivial. Then $\boldsymbol{S} \boldsymbol{p}(n-1)$ is a principal isotropy group, and hence $M_{(2)}$ is empty by (a). q.e.d.

Proposition 2.4. Suppose $M=M_{(1)} \cup M_{(2)}$. If $M_{(1)}$ and $M_{(2)}$ are nonempty, then $F_{(1)}$ is a finite set and $\operatorname{dim} M=8 n-8$.

Proof. Fix $x \in F_{(1)}$. Let σ and ρ denote the slice representation at x and the isotropy representation of the orbit $\boldsymbol{S p}(n) x$, respectively. Then the restriction $\boldsymbol{\sigma} \mid \boldsymbol{S} \boldsymbol{p}(n-1)$ is equivalent to $\left(\nu_{n-1}\right)_{R} \oplus$ trivial by Lemma 2.2 and the assumption that $M_{(2)}$ is non-empty. On the other hand, we see that the restriction $\rho \mid \boldsymbol{S} \boldsymbol{p}(n-1)$ is equivalent to $\left(\nu_{n-1}\right)_{R} \oplus$ trivial by considering adjoint representations. Hence $(\boldsymbol{\sigma} \oplus \rho) \mid \boldsymbol{S p}(n-1)$ is equivalent to $2\left(\nu_{n-1}\right)_{\mathbb{R}} \oplus$ trivial. The desired result follows immediately.
q. e.d.

Proposition 2.5. Suppose $M=M_{(0)} \cup M_{(1)}$. Then there is a compact connected $\boldsymbol{S p}(1)$ manifold X such that the $\boldsymbol{S p}(1)$ action is free on the boundary ∂X and the $\boldsymbol{S p}(n)$ manifold M is equivariantly diffeomorphic to $\partial\left(\boldsymbol{D}^{4 n} \times X\right) / \boldsymbol{S p}(1)$. Here $\boldsymbol{S p}(n)$ acts naturally on $\boldsymbol{D}^{4 n}$ and trivially on X, and $\boldsymbol{S p}(1)$ acts on $\boldsymbol{D}^{4 n}$ as right scalar multiplication.

Proof. Let U be a closed $\boldsymbol{S p}(n)$ invariant tubular neighborhood of $M_{(0)}$ in M. Then U is regarded as a $4 n$-disk bundle over $M_{(0)}$ with a smooth $\boldsymbol{S} \boldsymbol{p}(n)$ action as bundle isomorphisms. It follows from Lemma 2.2 that there is an equivariant decomposition :

$$
U=\left(\boldsymbol{D}^{4 n} \times F(\boldsymbol{S p}(n-1), \partial U)\right) / \boldsymbol{S p}(1),
$$

where we regard $\boldsymbol{S} \boldsymbol{p}(1)=N(\boldsymbol{S p}(n-1)) / \boldsymbol{S p}(n-1)$. Put $E=M-$ int U. Then
there is an equivariant decomposition :

$$
E=(\boldsymbol{S p}(n) / \boldsymbol{S p}(n-1) \times F(\boldsymbol{S p}(n-1), E)) / \boldsymbol{S p}(1)
$$

Notice that $F(\boldsymbol{S p}(n-1), \partial U)=\partial F(\boldsymbol{S p}(n-1), E)$. Then we see that there is an equivariant decomposition :

$$
M=\partial\left(\boldsymbol{D}^{4 n} \times F(\boldsymbol{S p}(n-1), E)\right) / \boldsymbol{S p}(1)
$$

Here $X=F(\boldsymbol{S p}(n-1), E)$ is a compact connected $\boldsymbol{S p}(1)$ manifold. If $M_{(0)}$ is non-empty, then X has non-empty boundary on which $\boldsymbol{S p}(1)$ acts freely. q.e.d.

Remark. T. Wada [6] has described explicitly about the equivariant decomposition of U. Proposition 2.5 is proved in his paper.

Theorem 2.6. Suppose $5 \leqq n \leqq m \leqq 2 n-2$. Let M be a rational cohomology quaternion projective m-space on which $\boldsymbol{S p}(n)$ acts smoothly and non-trivially. Then there is a compact connected orientable smooth $\mathbf{S p}(1)$ manifold X such that the $\boldsymbol{S p}(1)$ action is free on the boundary ∂X and the $\boldsymbol{S p}(n)$ manifold M is equivariantly diffeomorphic to $\partial\left(\boldsymbol{D}^{4 n} \times X\right) / \boldsymbol{S p}(1)$. Moreover X is rationally acyclic.

Proof. Suppose first $M=M_{(i)}(i=1,2)$. Then there is a fibration: $F_{(i)} \rightarrow M \rightarrow \boldsymbol{S p}(n) / \boldsymbol{S p}(n-i) \times \boldsymbol{S p}(i)$, and hence

$$
m+1=\chi(M)=\chi\left(F_{(i)}\right) \cdot \chi(\boldsymbol{S p}(n) / \boldsymbol{S p}(n-i) \times \boldsymbol{S} \boldsymbol{p}(i)) \equiv 0 \quad \bmod \binom{n}{i}
$$

This contradicts the assumption : $5 \leqq n<m+1<2 n$. Suppose next $M=$ $M_{(1)} \cup M_{(2)}$. Then we see from Proposition 2.4 that $m=2 n-2$ and the isotropy group at each point of $F_{(1)}$ coincides with $\boldsymbol{S p}(n-1) \times \boldsymbol{S p}(1)$. Let σ denote the slice representation at a point of $F_{(1)}$. Then σ is a non-trivial representation of degree $4 n-4$, because $M_{(2)}$ is non-empty. We see that $\boldsymbol{\sigma} \mid \boldsymbol{S} \boldsymbol{p}(n-1)=\left(\nu_{n-1}\right)_{R}$ by Lemma 2.2. Therefore the principal isotropy group is isomorphic to $\boldsymbol{S p}(n-2) \times \boldsymbol{S} \boldsymbol{p}(1)$, and hence M has a codimension one orbit. Then M has a non-principal isotropy group $\boldsymbol{S p}(n-i) \times K$ where K is a closed subgroup of $\boldsymbol{S p}(i)$, and

$$
2 n-1=\chi(M)=\chi(\boldsymbol{S p}(n) / \boldsymbol{S p}(n-1) \times \boldsymbol{S p}(1))+\chi(\boldsymbol{S p}(n) / \boldsymbol{S p}(n-i) \times K)
$$

This follows from the fact that if M has a codimension one orbit, then M is a union of closed tubular neighborhoods of just two non-principal orbits (cf. [2], [3]). But there is not such a closed subgroup K. This is a contradiction. Suppose that $n=5$ and M has an isotropy group whose identity component is isomorphic to $\boldsymbol{S} \boldsymbol{U}(5)$ or $\boldsymbol{U}(5)$. We see that $m=8$ and M
has an orbit of codimension 1 or 2 . Then we have a contradiction by computing Euler characteristics. Hence we obtain $M=M_{(0)} \cup M_{(1)}=\partial\left(D^{4 n} \times\right.$ $X) / \boldsymbol{S p}(1)$ by Proposition 2.5. Since M is orientable, we see that X is orientable. It remains to show that X is rationally acyclic. In the following, we consider the cohomology theory with rational coefficients. Since $\left(D^{4 n} \times\right.$ $\partial X) / \boldsymbol{S p}(1) \rightarrow \partial X / \boldsymbol{S p}(1)$ is an orientable $4 n$-disk bundle, there is an isomorphism

$$
H^{i}\left(M,\left(S^{4 n-1} \times X\right) / \boldsymbol{S p}(1)\right) \cong H^{i-4 n}(\partial X / \boldsymbol{S p}(1))
$$

Then we have

$$
\begin{equation*}
H^{i}(M) \cong H^{i}\left(\left(S^{4 n-1} \times X\right) / \boldsymbol{S p}(1)\right) \quad \text { for } \quad i \leqq 4 n-2 \tag{*}
\end{equation*}
$$

Now we show that the Euler class $e(p)$ of the principal $\boldsymbol{S p}(1)$ bundle p : $\partial\left(D^{4 n} \times X\right) \rightarrow M$ is non-zero in $H^{4}(M)$. Assume $e(p)=0$. Then the Euler class of the bundle $S^{4 n-1} \times X \rightarrow\left(S^{4 n-1} \times X\right) / \boldsymbol{S p}(1)$ is zero, and hence there is an isomorphism

$$
H^{*}\left(S^{4 n-1}\right) \otimes H^{*}(X) \cong H^{*}\left(S^{3}\right) \otimes H^{*}\left(\left(S^{4 n-1} \times X\right) / \boldsymbol{S p}(1)\right)
$$

as graded modules by a Gysin sequence. Therefore, rank $H^{4 i}(X)=1$ for $0 \leqq i<n \leqq m$ by $\left(^{*}\right)$ and the assumption that M is a rational cohomology quaternion projective m-space. Since X is a compact connected manifold with non-empty boundary, we see that $\operatorname{dim} X>4 n-4$. On the other hand, $\operatorname{dim} X=4(m-n+1) \leqq 4 n-4$. This is a contradiction. Therefore $e(p) \neq 0$ and hence $\partial\left(D^{4 n} \times X\right)$ is a rational homology $(4 m+3)$-sphere by a Gysin sequence. By the Poincaré-Lefschetz duality for the compact orientable manifold $D^{4 n} \times X$ and the homology exact sequence for the pair $\left(D^{4 n} \times X\right.$, $\partial\left(D^{4 n} \times X\right)$), we obtain $H^{i}(X)=0$ for $0<i \leqq 4 n$. Hence X is rationally acyclic.
q. e.d.

REmARK. This result is essentially due to T. Wada [6]. In particular, the second half of the above proof is the same as the proof of Theorem 2.1 [6].

3. Proof of main theorem

First we prepare the following result.
Lemma 3.1. Let X be a rationally acyclic compact orientable manifold. Suppose that $\boldsymbol{S p}(1)$ acts smoothly on X and the $\boldsymbol{S p}(1)$ action on the non-empty boundary ∂X is free. Then the fixed point set $F(\boldsymbol{U}(1), X)$ of the restricted $\boldsymbol{U}(1)$ action consists of just one point x, and the isotropy
group $\boldsymbol{S p}(1)_{x}$ coincides with $\boldsymbol{S p}(1)$ or the normalizer $N(\boldsymbol{U}(1))$ of $\boldsymbol{U}(1)$ in $\boldsymbol{S p}(1)$.

Proof. Since $\boldsymbol{S p}(1)$ acts freely on ∂X, each connected component of $F(\boldsymbol{U}(1), X)$ is a closed orientable manifold. On the other hand, $F(\boldsymbol{U}(1), X)$ is rationally acyclic by the Smith theorem. Therefore, $F(U(1), X)$ consists of just one point x. The isotropy group $\boldsymbol{S p}(1)_{x}$ coincides with $\boldsymbol{U}(1)$, $N(\boldsymbol{U}(1))$ or $\boldsymbol{S p}(1)$. Suppose $\boldsymbol{S p}(1)_{x}=U(1)$. Then the subset $F(\boldsymbol{U}(1), \boldsymbol{S p}(1) x)$ of $F(\boldsymbol{U}(1), X)$ consists of two points. This is a contradiction. q.e.d.

REMARK. $\quad N(\boldsymbol{U}(1)) / \boldsymbol{U}(1)$ is a cyclic group of order two. The standard $\boldsymbol{S p}(n, \boldsymbol{C})$ action on the complex projective $(2 n-1)$-space is transitive and $N(n)$ is an isotropy group. The restricted $\boldsymbol{S p}(n)$ action is transitive and $\boldsymbol{S p}(n) \cap N(n)=\boldsymbol{U}(1) \times \boldsymbol{S p}(n-1) . \quad$ In particular,

$$
\boldsymbol{S p}(n, \boldsymbol{C})=N(n) \cdot \boldsymbol{S p}(n)=\{g h: g \in N(n), h \in \boldsymbol{S p}(n)\}
$$

We shall prove now the main theorem stated in Introduction. Suppose $n \geqq 5$ and $m \leqq 2 n-2$. Let $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$ act smoothly and non-trivially on a rational cohomology quaternion projective m-space M. Then the maximal compact group $\boldsymbol{S p}(n)$ acts non-trivially on M. Suppose first $m<n$. Then we see that $m=n-1$ and $\boldsymbol{\operatorname { S p }}(n)$ acts transitively on M with the isotropy group $\boldsymbol{S p}(1) \times \boldsymbol{S p}(n-1)$ by Lemma 2.1. Hence the $\boldsymbol{S} \boldsymbol{p}(n, \boldsymbol{C})$ action must be transitive. Since $\operatorname{dim} \boldsymbol{S p}(n, \boldsymbol{C}) / N(n)=4 n-2$, we get a contradiction by Theorem 1. 3. Suppose next $n \leqq m \leqq 2 n-2$. From Theorem 2.6 and Lemma 3.1, we see that the difference $F(\boldsymbol{U}(1) \times \boldsymbol{S p}(n-1), M)=F(\boldsymbol{S p}(n), M)$ consists of just one point x and $\boldsymbol{S p}\left(n_{x}=K \times \boldsymbol{S} \boldsymbol{p}(n-1)\right.$, where $K=N(\boldsymbol{U}(1))$ or $\boldsymbol{S p}(1)$. Put $G=\boldsymbol{S p}(n, \boldsymbol{C})_{x}$. Then G satisfies the condition of Theorem 1. 3, because $\boldsymbol{S p}(n-1)$ is a principal isotropy group of the $\boldsymbol{S} \boldsymbol{p}(n)$ action on M. Hence $L(n) \subset h G h^{-1} \subset N(n)$ for some $h \in \boldsymbol{S p}(n)$. Then

$$
\begin{aligned}
& N(\boldsymbol{U}(1)) \times \boldsymbol{S p}(n-1) \subset \boldsymbol{S p}(n) \cap G \subset \boldsymbol{S p}(n) \cap h^{-1} N(n) h \\
& \boldsymbol{S p}(n) \cap h^{-1} N(n) h=h^{-1}(\boldsymbol{U}(1) \times \boldsymbol{S p}(n-1)) h
\end{aligned}
$$

Therefore $h \in N(\boldsymbol{U}(1)) \times \boldsymbol{S p}(n-1)$ and $N(\boldsymbol{U}(1)) \times \boldsymbol{S p}(n-1)=\boldsymbol{U}(1) \times \boldsymbol{S p}(n-1)$. This is a contradiction. Consequently, $\boldsymbol{S p}(n, \boldsymbol{C})$ does not act smoothly and non-trivially on any rational cohomology quaternion projective m-space, for $n \geqq 5$ and $m \leqq 2 n-2$.

Remark. The group $\boldsymbol{G} \boldsymbol{L}(n, \boldsymbol{H})$ of all regular matrices of degree n with quaternion coefficients acts naturally on the quaternion projective ($n-1$)space $P_{n-1}(\boldsymbol{H})$. Since $\boldsymbol{S p}(n, \boldsymbol{C})$ can be regard as a subgroup of $\boldsymbol{G l}(2 n, \boldsymbol{H})$, there is a smooth $\boldsymbol{S p}(n, \boldsymbol{C})$ action on $P_{2 n-1}(\boldsymbol{H})$.

References

[1] W.C. Hsiang and W. Y. Hsiang: Differentiable actions of compact connected classical groups I, Amer. J. Math. 89 (1967), 705-786.
[2] K. Iwata: Classification of compact transformation groups on cohomology quaternion projective spaces with codimension on orbits, Osaka J. Math. 15 (1978), 475-508.
[3] F. UchidA: Classification of compact transformation groups on cohomology complex projective spaces with codimension one orbits, Japan. J. Math. 3 (1977), 141-189.
[4] F. Uchida: Real analytic $\boldsymbol{S L}(\boldsymbol{n}, \boldsymbol{C})$ actions, Bull. Yamagata Univ. Nat. Sci. 10-1 (1980), 1-14.
[5] F. UchidA: Real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on spheres, Tohoku Math. J. 33 (1981), 145-175.
[6] T. WADA: Smooth $\boldsymbol{S p}(n)$ actions on cohomology quaternion projective spaces, Tohoku Math. J. 29 (1977), 375-384.

Department of Mathematics
Faculty of Science
Yamagata University

