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0. Introduction

We have studied actions of non-compact classical Lie groups SL(n, R)
and SL(n, C) , in the previous papers [4], [5]. It seems to be important
to consider the restricted actions of maximal compact groups. In this paper,
we shall study smooth actions of complex symplectic group Sp(n, C) and its
maximal compact group Sp(n) on rational cohomology quaternion projective
spaces. We shall show the following result.

THEOREM. Suppose n\geqq 5 and m\leqq 2n-2 . Then Sp(n, C) does not act
smoothly and non-trivially on any rational cohomology quaternion projective
m-space.

By a rational cohomology quaternion projective m-space we mean a
closed orientable smooth manifold whose cohomology ring with rational
coefficients is isomorphic to that of the quaternion projective m-space.

1. Certain subgroups of Sp(n, C)

Let GL(m, C) and U(m) denote the group of regular matrices of degree
m with complex coefficients and the group of unitary matrices of degree
m, respectively. Let I_{n} denote the unit matrix of degree n, and we put

J_{n}=(\begin{array}{ll}0 I_{n}-I_{n} 0\end{array})

Define Sp(n, C)=\{A\in GL(2n, C):{}^{t}AJ_{n}A=J_{n}\} and Sp(n) Sp(n,C) \cap U(2n) .
Then Sp(n, C) and Sp(n) are connected closed subgroups of GL(2nf C) .

As usual, we regard M_{m}(C) with the bracket operation [A, B]=AB-
BA as the Lie algebra of GL(m, C) . Let \mathfrak{s}\mathfrak{p}(n, C) and \mathfrak{s}\mathfrak{p}(n) denote the
Lie subalgebras of M_{2n}(C) , considered as a real Lie algebra, corresponding
to the subgroups Sp(n, C) and Sp(n) , respectively. Then
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\mathfrak{s}\mathfrak{p}(n, C)=\{X\in M_{2n}(C) : {}^{t}XJ_{n}=-J_{n}X\} ,

\mathfrak{s}\mathfrak{p}(n)=\{X\in M_{2n}(C) : {}^{t}XJ_{n}=-J_{n}X,{}^{t}X+\overline{X}=0\}

We can describe more explicitly as follows.

\mathfrak{s}\mathfrak{p}(n, C)=\{ (\begin{array}{ll}X ZY -{}^{t}X\end{array}) : {}^{t}Y=Y,{}^{t}Z=Z;X, Y, Z\in M_{n}(C)_{(}^{1} ,

\mathfrak{s}\mathfrak{p}(n)=\{ (\begin{array}{ll}X -YY \overline{X}\end{array}) : {}^{t}Y=Y,{}^{t}X+\overline{X}=0;X, Y\in M_{n}(C)\}

Put

\mathfrak{h}(n)=\{ (\begin{array}{ll}X YY -\overline{X}\end{array}) : {}^{t}Y=Y,{}^{t}X=\overline{X};X, Y\in M_{n}(C)\}

Let Ad:Sp\{n ,C) arrow GL(\mathfrak{s}\mathfrak{p}(n, C)) be the adjoint representation defined
by Ad(A)X=AXA^{-1} for Sp\{n ,C), x\in \mathfrak{s}\mathfrak{p}(n, C) . Then \mathfrak{s}\mathfrak{p}(n) and \mathfrak{h}(n)

are Ad(Sp(n)) -invariant real vector subspaces of \mathfrak{s}\mathfrak{p}(n, C) , the correspondence
of M\in@\mathfrak{p}(n) into \sqrt{-1}M\in \mathfrak{h}(n) is an Ad(Sp(n)) -equivariant isomorphism, and

\mathfrak{s}\mathfrak{p}(n, C)=\mathfrak{s}\mathfrak{p}(n)\oplus \mathfrak{h}(n)

as a direct sum of Ad(Sp(n)) -vector spaces. Define certain real vector sub-
spaces of \mathfrak{s}\mathfrak{p}(n, C) as follows :

\mathfrak{s}\mathfrak{p}(n-1, C)=|[\frac{00ox_{11}10ox_{12}0}{0010X_{21}000X_{22}}):X_{ij}\in M_{n-1}(C)\}^{1} ,

\alpha=\{[\frac{0-{}^{t}Vxo10{}^{t}UU0}{0{}^{t}Y1Y00-{}^{t}XV0}):X, Y, U, V\in C^{n-1}| ,

\int=\{[\frac{\alpha 0oo1\gamma oo0}{\beta 0100-\alpha 000}):\alpha , \beta , \gamma\in C| ,

\mathfrak{s}\mathfrak{p}(n-1)=\mathfrak{s}\mathfrak{p}(n-1, C)\cap \mathfrak{s}\mathfrak{p}(n) , \mathfrak{h}(n-1)=\mathfrak{s}\mathfrak{p}(n-1, C)\cap \mathfrak{h}(n) .
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Let Sp(n-1, C) and Sp(n-1) denote the connected subgroups of
Sp(n, C) corresponding to the Lie subalgebras \mathfrak{s}\mathfrak{p}(n-1, C) and ep (n-1),
respectively. Then

\mathfrak{s}\mathfrak{p}(n, C)=@P(n-1)\oplus \mathfrak{h}(n-1)\oplus\alpha\oplus\int

as a direct sum of Ad(Sp(n-1))-invariant vector spaces.
Denote by \alpha(a+jb, c+jd) , the real vector subspace of \alpha consisting of

all matrices of the form

( \frac{Xa-\overline{Y}b010*Xc-\overline{Y}d00*}{Ya+\overline{X}b00*1Yc+0*\overline{X}d0}):X, Y\in C^{n-1} .

Here a, b, c, d are complex numbers and j is a quaternion such that j^{2}=-1

and ju=\overline{u}j for each complex number u. It is easy to see that \alpha(a+jb,
c+jd) is Ad(Sp(n-1)) -invariant and each Ad(Sp(n-1)) -invariant proper
subspace of \alpha is of the form \alpha(a+jb, c+jd) . By definition, there is a relation

(1) \alpha(q_{0}q_{1}, q_{0}q_{2})=tI(q_{1}, q_{2}) for q_{r}=a_{r}+jb_{r} and q_{0}\neq 0

By the relation (1), we obtain the following relations:
\alpha(a+jb, c+jd)+\alpha (a-jb, c-jd) =\alpha if ad\neq bc ,

(2)
\alpha(a+jb, c+jd)=\alpha (a-jb, c-jd) if ad=bct

Moreover we obtain the following relations by a routine work.
[ \alpha, \alpha]=\mathfrak{s}\mathfrak{p}(n-1, C)\oplus\int ,

(3) [\mathfrak{h}(n-1), \alpha(a+jb, c+jd)]=\alpha (a-jb, c-jd):

[\alpha(a+jb, c+jd) , \alpha(a+jb, c+jd)]=(ad-bc) \S p (n-1) \oplus\int’ ,

where \delta’ is a real vector subspace of \int .
Lemma 1. 1. Suppose n\geqq 2 . Let \mathfrak{g} be a proper real Lie subalgebra

of Sp(n C) which contains \mathfrak{s}\mathfrak{p}(n-1) . Then \mathfrak{g} is one of the following up to
conjugation :

\mathfrak{s}\mathfrak{p}(n-1, C)\oplus\alpha(0,1)\oplus\int’ , \mathfrak{s}\mathfrak{p}(n-1, C)\oplus\int’ ,
\mathfrak{s}\mathfrak{p}(n-1)\oplus\alpha(0,1)\oplus\int’ , \mathfrak{s}\mathfrak{p}(n-1)\oplus\alpha(1,j)\oplus_{8’:}

\mathfrak{s}\mathfrak{p}(n-1)\oplus\int’ ,

where \int’ is a real vector subspace of \int . In fact, there is an element M of
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the centralizer of Sp(n 1, C) in Sp(n, C) such that Ad(M)\mathfrak{g} coincides
with one of the above.

PROOF. Since \mathfrak{g} contains \mathfrak{s}\mathfrak{p} (n-1) , \mathfrak{g} is an Ad(Sp(n-1)) -invariant
vector subspace of \mathfrak{s}\mathfrak{p}(n, C) . Hence we have

\mathfrak{g}=\mathfrak{s}\mathfrak{p}(n-1)\oplus(\mathfrak{g}\cap \mathfrak{h}(n-1))\oplus(\mathfrak{g}\cap Q)\oplus(\mathfrak{g}\cap\int)

as a direct sum of Ad(Sp(n-1)) -invariant vector subspaces. Since \mathfrak{h}(n-1)

is irreducible, we have \mathfrak{g}\cap \mathfrak{h}(n-1)=0 or \mathfrak{h}(n-1) . Since \mathfrak{g} is a proper Lie
subalgebra of \mathfrak{s}\mathfrak{p}(n, C) , \mathfrak{g} does not contain \alpha by (3), and hence \mathfrak{g}\cap Q is of
the form \alpha(a+jb, c+jd) . By a routine work from (1), (2) and (3), we see
that \mathfrak{g} is one of the following:

\mathfrak{s}\mathfrak{p}(n-1, C)\oplus\alpha(a, c)\oplus\int’ (a, c : complex , \mathfrak{s}\mathfrak{p}(n-1, C)\oplus_{\delta’} :

\mathfrak{s}\mathfrak{p}(n-1)\oplus\alpha(a, c)\oplus\int’(a, c : complex : \mathfrak{s}\mathfrak{p}(n-1)\oplus\int’ ,

\mathfrak{s}\mathfrak{p}(n-1)\oplus\alpha(a+jb, c+jd)\oplus\int’ (ad-bc =1) t

Let a, b, c, d be complex numbers with ad-bc=1. Put

M (\begin{array}{ll}a bc d\end{array})=(\frac{0I_{n-1}a01o0b0}{c01000d0I_{n-1}}]

.

Then M(\begin{array}{ll}a bc d\end{array}) is an element of the centralizer of Sp(n-1, C) in Sp(n, C), and

Ad(M(_{C}^{a}db))Q(1,j)=\alpha(d-jc, ^{-b+ja)}’.

Ad( M(\begin{array}{ll}a bc d\end{array}) ) \alpha(0,1)=\alpha(-c, a)r

Thus we have the desired result. q. e. d .
Put

L=\{

11 01| 0
\backslash

0 | I_{n-2}

.

K=(\begin{array}{ll}L 00 {}^{t}L^{-1}\end{array})

Then K is an element of Sp(n, C) .

LEMMA 1. 2. Assume that \mathfrak{g} is contained in one of the following:
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\mathfrak{s}\mathfrak{p}(n-1, C)\oplus\int , \mathfrak{s}\mathfrak{p}(n-1)\oplus\alpha(0,1)\oplus\int , \mathfrak{s}\mathfrak{p}(n-1)\oplus\alpha(1,j)\oplus\int

Then \mathfrak{s}\mathfrak{p}(n)\cap Ad(K)\mathfrak{g} is contained in \mathfrak{s}\mathfrak{p}(2)\oplus \mathfrak{s}\mathfrak{p}(n-2) .
PROOF. Each element of 8p(ri) is of the form

A=(\begin{array}{ll}X -\overline{Y}Y \overline{X}\end{array}) , {}^{t}X+\overline{X}=0 , {}^{t}Y=Y

Then

K^{-1}AK=(\begin{array}{ll}L^{-1}XL -L^{-1}\overline{Y}^{t}L^{-1}{}^{t}LYL -{}^{t}(L^{-1}XL)\end{array})

Since $p (n)\cap Ad\{K ) \mathfrak{g}=\{A\in \mathfrak{s}\mathfrak{p}(n) : K^{-1}AK\in \mathfrak{g}\} , we have the desired result
by a routine work. q. e . d .

Let L(n) , N(n) denote the subgroups of Sp(n, C) consisting of all
matrices of the form

[ \frac{0X_{11}1*1*X_{12}**}{0010X_{21}10*X_{22}}]

,

[ \frac{0X_{11}**1*X_{12}**}{0X_{21}001**0X_{22}}]

for X_{ij}\in M_{n-1}(C) , respectively.

REMARK. The standard Sp(n, C) action on C^{2n}-\{0\} is transitive and
L(n) is an isotropy group. The standard Sp(n, C) action on the complex
projective (2n-1) -space is transitive and N(n) is an isotropy group. N(n)
is the normalizer of L(n) in Sp(n, C) .

THEOREM 1. 3. Suppose n\geqq 4 . Let G be a closed proper subgroup of
Sp(n, C) which contains Sp(n-1) . Assume that each isotropy group of
the restricted Sp(n) action on the homogeneous space Sp(n, C)/G contains
a subgroup conjugate to Sp(n-1) . Then L(n)\subset hGh^{-1}\subset N(n) for an ele-
ment h of the centralizer of Sp(n-1, C) in Sp(n, C) .

PROOF. Let \mathfrak{g}=LieG be the Lie algebra of G. By the assumption that
G contains Sp(n-1), \mathfrak{g} contains \mathfrak{s}\mathfrak{p}(n-1) , and hence there is an element
h of the centralizer of Sp(n-1, C) in Sp(n, C) such that Ad(h)\mathfrak{g} coincides
with one of the Lie algebras listed in Lemma 1. 1. By the second assump-
tion on G, \mathfrak{s}\mathfrak{p}(n)\cap Ad(K)Ad(h)\mathfrak{g} contains a subalgebra Ad(h’)\S \mathfrak{p}(n-1) for
some h’\in Sp(n) , and hence Ad(h) \mathfrak{g}=@\mathfrak{p}(n-1, C)\oplus\alpha(0,1)\oplus\int’ for certain real
vector subspace \int’ of \int , by Lemma 1. 2. Let 80’ \int_{1} denote the subspaces of
\int consisting of all matrices of the form
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[ \frac{00100*o00}{000010000}]

,

[ \frac{001*0*000}{00?01*000}]

respectively. We see that if 8 p(n 1, C)\oplus\alpha(0,1)\oplus\int’ is a Lie algebra, then
80 \subset\int’\subset\int_{1} . On the other hand, it is easy to see that

Lie L(n)= \mathfrak{s}\mathfrak{p}(n-1, C)\oplus\alpha(0,1)\oplus\int_{0} ,

Lie N(n)= \mathfrak{s}\mathfrak{p}(n-1, C)\oplus\alpha(0,1)\oplus\int_{1}\iota

Hence we obtain L(n)\subset hG^{0}h^{-1}\subset N(n) , where G^{0} is the identity component
of G. Since N(n)/L(n) is isomorphic to the multiplicative group of non-
zero complex numbers, we see that hG^{0}h^{-1}=L(n) , N(n) or hG^{0}h^{-1}/L(n) is
isomorphic to the multiplicative group of positive real numbers or the circle
group. For each case the normalizer of hG^{0}h^{-1} in Sp(n, C) coincides with
N(n) , and hence L(n)\subset hGh^{-1}\subset N(n) . q. e . d .

2. Smooth Sp(n) actions

First we prepare the following two lemmas which are proved by a
standard method (cf. [1], [5]).

Lemma 2. 1. Suppose n\geqq 5 . Let G be a closed connected proper sub-
group of Sp(n) such that dim Sp(n)/G\leqq 8n-8 . Then G coincides with
Sp(n-i)\cross K(i=1,2) up to an inner automorphism of Sp(n) , or n=5 and
G is isomorphic to U(5) or SU(5) . Here K is a closed connected subgroup
of Sp(i) .

Lemma 2. 2. Suppose r\geqq 4 and k\leqq 8r-6 . Then an orthogonal non-
trivial representation of Sp(r) of degree k is equivalent to (\nu_{r})_{R}\oplus\theta^{k-4r} by an
inner automorphism of O(k) . Here (\nu_{r})_{R} : Sp(r)arrow O(4r) is the canonical
inclusion, and \theta^{t} is the trivial representation of degree t.

REMARK. dim Sp(n)/Sp(n-k)\cross Sp(k)=4k(n-k) , dim Sp(5)/U(5)=30,

\chi(Sp(n)/Sp(n-k)\cross Sp(k))=(\begin{array}{l}nk\end{array}) , \chi(Sp(5)/U(5))=32 , where \chi ( ) denotes the

Euler characteristic. The normalizer N(U(5)) of U(5) in Sp(5) has just two
connected components and its identity component coincides with U(5) .

In the following, let M be a closed connected smooth manifold with
a non-trivial smooth Sp(n) action, and suppose n\geqq 5 and dim M\leqq 8n-8 . Put

F_{(i)}=\{x\in M:Sp(n-i)\subset Sp(n)_{x}\subset Sp(n-i)\cross Sp(i)\} ,
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M_{(i)}=Sp(n)F_{(i)}=\{gx:g\in Sp(n) , x\in F_{(i)}\}

Here Sp(n)_{x} denotes the isotropy group at x.

PROPOSITION 2. 3. Suppose M=M_{(0)}\cup M_{(1)}\cup M_{(2)} . Then (a) the fixed
point set F(Sp(n-k), M_{(i)}) of the restricted Sp(n-k) action on M_{(i)} is empty
for k<i\leqq n-i, (b) if M_{(0)} is non-empty, then M_{(2)} is empty.

PROOF. To prove (a), suppose that F(Sp(n-k), M_{(i)}) is non-empty. Then
there are x\in F_{(i)} and g\in Sp(n) such that gx\in F(Sp(n-k), M_{(i)}) , and hence

Sp(n-k)\subset Sp(n)_{gx}=gSp(n)_{x}g^{-1}\subset g(Sp(n-i)\cross Sp(i))g^{-1} .

Since Sp(n-k) is a simple Lie group, we obtain n-k \leqq\max(n-i, i) , and
hence k \geqq\min(i, n-i) . Therefore, if k<i\leqq n-i, then F(Sp(n-k), M_{(i)}) is
empty. Next we show (b). Notice that M_{(0)} is the fixed point set of the
Sp(n) action on M. Let \sigma be the isotropy representation at x\in M_{(0)} . By
Lemma 2. 2, \sigma is equivalent to (\nu_{n})_{R}\oplus trivial . Then Sp(n-1) is a principal
isotropy group, and hence M_{(2)} is empty by (a). q. e . d .

PROPOSITION 2. 4. Suppose M=M_{(1)}\cup M_{(2)} . If M_{(1)} and M_{(2)} are non-
empty then F_{(1)} is a finite set and dim M=8n-8.

PROOF. Fix x\in F_{(1)} . Let \sigma and \rho denote the slice representation at x
and the isotropy representation of the orbit Sp(n)x, respectively. Then the
restriction \sigma|Sp(n-1) is equivalent to (\nu_{n-1})_{R}\oplus trivial by Lemma 2. 2 and the
assumption that M_{(2)} is non-empty. On the other hand, we see that the
restriction \rho|Sp(n-1) is equivalent to (\nu_{n-}i)_{R}\oplus trivial by considering adjoint
representations. Hence (\sigma\oplus\rho)|Sp(n-1) is equivalent to 2 (\nu_{n-1})_{R}\oplus trivial .
The desired result follows immediately. q. e . d .

PROPOSITION 2. 5. Suppose M=M_{(0)}\cup M_{(1)} . Then there is a compact
connected Sp(1) manifold X such that the Sp(1) action is free on the
boundary \partial X and the Sp(n) manifold M is equivariantly diffeomorphic to
\partial(D^{4n}\cross X)/Sp(1) . Here Sp(n) acts naturally on D^{4n} and trivially on X,
and Sp(1) acts on D^{4n} as right scalar multiplication.

PROOF. Let U be a closed Sp(n) invariant tubular neighborhood of M_{(0)}

in M. Then U is regarded as a 4n-disk bundle over M_{(0)} with a smooth
Sp(n) action as bundle isomorphisms. It follows from Lemma 2. 2 that there
is an equivariant decomposition :

U=(D^{4n}\cross F (Sp(n-1), \partial U)) \int Sp(1) ,

where we regard Sp(1)=N(Sp(n-1))/Sp(n-1) . Put E=M- int U. Then
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there is an equivariant decomposition:

E=(Sp(n)/Sp(n-1)\cross F(Sp(n-1), E))/Sp(1)(

Notice that F(Sp(n-1), \partial U)=\partial F(Sp(n-1), E) . Then we see that there is
an equivariant decomposition :

M=\partial (D^{4n}\cross F (Sp(n-1), E))/Sp(1)1

Here X=F(Sp(n-1), E) is a compact connected Sp(1) manifold. If M_{(0)}

is non-empty, then X has non-empty boundary on which Sp(1) acts freely.
q . e . d .

REMARK. T. Wada [6] has described explicitly about the equivariant
decomposition of U. Proposition 2. 5 is proved in his paper.

THEOREM 2. 6. Suppose 5\leqq n\leqq m\leqq’2n-2 . Let M be a rational cohO-
mology quaternion projective m-space on which Sp(n) acts smoothly and
non-trivially. Then there is a compact connected orien t smooth Sp(1)

manifold X such that the Sp(1) action is free on the boundary \partial X and the
Sp(n) manifold M is equivariantly diffeomorphic to \partial(D^{4n}\cross X)/Sp(1) . More-
over X is rationally acyclic.

PROOF. Suppose first M=M_{(i)}(i=1,2) . Then there is a fibration :
F_{(i)}arrow Marrow Sp(n)/Sp(n-i)\cross Sp(i) , and hence

m+1=\chi(M)=\chi(F_{(i)})\cdot\chi(Sp(n)/Sp(n-i)\cross Sp(i))\equiv 0 mod (\begin{array}{l}ni\end{array})

This contradicts the assumption : 5\leqq n<m+1<2n . Suppose next M=
M_{(1)}\cup M_{(2)} . Then we see from Proposition 2. 4 that m=2n-2 and the
isotropy group at each point of F_{(1)} coincides with Sp(n-1)\cross Sp(1) . Let \sigma

denote the slice representation at a point of F_{(1)} . Then \sigma is a non-trivial
representation of degree 4n-4, because M_{(2)} is non-empty. We see that
\sigma|Sp(n-1)=(\nu_{n-1})_{R} by Lemma 2. 2. Therefore the principal isotropy group
is isomorphic to Sp(n-2)\cross Sp(1) , and hence M has a codimension one
orbit. Then M has a non-principal isotropy group Sp(n-i)\cross K where K
is a closed subgroup of Sp(i) , and

2n-1=\chi(M)=\chi(Sp(n)/Sp(n-1)\cross Sp(1))+\chi(Sp(n)/Sp(n-i)\cross K)

This follows from the fact that if M has a codimension one orbit, then M
is a union of closed tubular neighborhoods of just two non-principal orbits
(cf. [2], [3]). But there is not such a closed subgroup K. This is a con-
tradiction. Suppose that n=5 and M has an isotropy group whose identity
component is isomorphic to SU(5) or U(5) . We see that m=8 and M
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has an orbit of codimension 1 or 2. Then we have a contradiction by
computing Euler characteristics. Hence we obtain M=M_{(0)}\cup M_{(1)}=\partial(D^{4n}\cross

X)/Sp(1) by Proposition 2. 5. Since M is orientable, we see that X is
orientable. It remains to show that X is rationally acyclic. In the following,
we consider the cohomology theory with rational coefficients. Since (D^{4n}\cross

\partial X)/Sp(1)arrow\partial X/Sp(1) is an orientable 4n-disk bundle, there is an isomorphism

H^{i}(M,(S^{4n-1}\cross X)/Sp(1))\cong H^{i-4n}(\partial X/Sp(1))

Then we have

(*) H^{i}(M)\cong H^{i}((S^{4n-1}\cross X)/Sp(1)) for i\leqq 4n-2

Now we show that the Euler class e(p) of the principal Sp(1) bundle p :
\partial(D^{4n}\cross X)arrow M is non-zero in H^{4}(M) . Assume e(p)=0. Then the Euler
class of the bundle S^{4n-1}\cross Xarrow(S^{4n-1}\cross X)/Sp(1) is zero, and hence there is
an isomorphism

H^{*}(S^{4n-1})\otimes H^{*}(X)\cong H^{*}(\theta)\otimes H^{*}((S^{4n-1}\cross X)/Sp(1))

as graded modules by a Gysin sequence. Therefore, rank H^{4i}(X)=1 for
0\leqq i<n\leqq m by (^{*}) and the assumption that M is a rational cohomology
quaternion projective m-space. Since X is a compact connected manifold
with non-empty boundary, we see that dim X>4n-4 . On the other hand,
dim X=4(m-n+1)\leqq 4n-4 . This is a contradiction. Therefore e(p)\neq 0

and hence \partial(D^{4n}\cross X) is a rational homology (4m+3) -sphere by a Gysin
sequence. By the Poincar\’e-Lefschetz duality for the compact orientable
manifold D^{4n}\cross X and the homology exact sequence for the pair (D^{4n}\cross X,
\partial(D\prime^{4n}\cross X)) , we obtain H^{i}(X)=0 for 0<i\leqq 4n . Hence X is rationally
acyclic. q . e . d .

REMARK. This result is essentially due to T. Wada [6]. In particular,
the second haH of the above proof is the same as the proof of Theorem
2. 1 [6].

3. Proof of main theorem

First we prepare the following result.

LEMMA 3. 1. Let X be a rationally acyclic compact orientable mani-
fold. Suppose that Sp(1) acts smoothly on X and the Sp(1) action on the
non-empty boundary \partial X is free. Then the fixed point set F(U(1), X) of
the restricted U(1) action consists of just one point x, and the isotropy
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group Sp(1)_{x} coincides with Sp(1) or the normalizer N(U(1)) of U(1) in
Sp(1) .

PROOF. Since Sp(1) acts freely on \partial X, each connected component of
F(U(1), X) is a closed orientable manifold. On the other hand, F(U(1), X)
is rationally acyclic by the Smith theorem. Therefore, F(U(1), X) consists
of just one point x. The isotropy group Sp(1)_{x} coincides with U(1) ,
N(U(1)) or Sp(1) . Suppose Sp(1)_{x}=U(1) . Then the subset F(U(1), Sp(1)x)
of F(U(1), X) consists of two points. This is a contradiction. q. e . d .

REMARK. N(U(1))/U(1) is a cyclic group of order two. The standard
Sp(n, C) action on the complex projective (2n-1) -space is transitive and
N(n) is an isotropy group. The restricted Sp(n) action is transitive and
Sp(n)\cap N(n)=U(1)\cross Sp(n-1) . In particular,

Sp(n, C)=N(n)\cdot Sp(n)=\{gh:g\in N(n) , h\in Sp(n)\}(

We shall prove now the main theorem stated in Introduction. Suppose
n\geqq 5 and m\leqq 2n-2 . Let Sp(n, C) act smoothly and non-trivially on a
rational cohomology quaternion projective m-space M. Then the maximal
compact group Sp(n) acts non-trivially on M. Suppose first m<n . Then
we see that m=n-1 and Sp(n) acts transitively on M with the isotropy
group Sp(1)\cross Sp(n-1) by Lemma 2. 1. Hence the Sp(n, C) action must
be transitive. Since dim Sp(n, C)/N(n)=4n-2, we get a contradiction by
Theorem 1. 3. Suppose next n\leqq m\leqq 2n-2 . From Theorem 2. 6 and Lemma
3. 1, we see that the difference F(U(1)\cross Sp(n-1), M)=F(Sp(n), M) consists
of just one point x and Sp(n)_{x}=K\cross Sp(n-1) , where K=N(U(1)) or Sp(1) .
Put G=Sp(n, C)_{x} . Then G satisfies the condition of Theorem 1. 3, because
Sp(n-1) is a principal isotropy group of the Sp(n) action on M. Hence
L(n)\subset hGh^{-1}\subset N(n) for some h\in Sp(n) . Then

N(U(1))\cross Sp(n-1)\subset Sp(n)\cap G\subset Sp(n)\cap h^{-1}N(n)h ,\cdot

Sp(n)\cap h^{-1}N(n)h=h^{-1}(U(1)\cross Sp(n-1))h .

Therefore h\in N(U(1))\cross Sp(n-1) and N(U(1))\cross Sp(n-1)=U(1)\cross Sp(n-1) .
This is a contradiction. Consequently, Sp(n, C) does not act smoothly and
non-trivially on any rational cohomology quaternion projective m-space, for
n\geqq 5 and m\leqq 2n-2 .

REMARK. The group GL(n, H) of all regular matrices of degree n

with quaternion coefficients acts naturally on the quaternion projective (n-1)-
space P_{n-1}(H) . Since Sp(n, C) can be regard as a subgroup of Gl(2n, H),
there is a smooth Sp(n, C) action on P_{2n-1}(H) .
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