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1. Introduction

The equations for 2-dimensional stationary boundary layer theory of
incompressible fluid past a rigid wall are

uu_{x}+vu_{y}=\nu u_{yy}-p_{x} ,
(1. 1)

u_{x}+v_{y}=0

in the domain D_{A}=\{(x, y);0<x<A, 0<y<\infty\} (see [1], [8], [9], [10] and
[11] ) . Here the subscripts x and y denote the partial differentiation with
respect to the corresponding variable, (x, y) are orthogonal coordinates in the
boundary layer with x representing the length along the wall and y the
perpendicular distance from the wall, u=u(x, y) and v=v(x, y) are the cor-
responding unknown velocity components. The constant \nu is a viscous
coefficient. Finally p=p(x) is a pressure function. Let U=U(x) be an
exterior streaming speed; we assume that p(x) and U(x) satisfy the Bernoulli
law and the origin (0, 0) is not a stagnation point, i . e. ,

U(x)U_{x}(x)+p_{x}(x)=0 ,
(1. 2)

U(0)>0

The appropriate boundary conditions are

u=v=0 for y=0 and u(x, y)arrow U(x) as yarrow\infty ,
(1. 3)

uniformly in x on any compact subset of [0, A)

In order to obtain a well-set problem, we suppose that at an initial position,
say x=0, an initial datum u_{0}(y) is assigned to the velocity component u, i . e. ,

(1. 4) u(0, y)=u_{0}(y) (0\leq y<\infty)

In this paper we study the existence of the separation point of the flow
deterministically.

Hereafter, unless otherwise provided, we assume that the datum u_{0}(y)

belongs to I^{2+\alpha}=I^{2+\alpha}(\nu, U) (for notations see Section 2) and that the speed
U(x) and the pressure gradient p_{x}(x) have following properties:
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(1. 5) U(X_{0})=0 for some point X_{0}(0<X_{0}<\infty) and U(x)>0 for
0\leq x<X_{0} ,

(1. 6) The pressure p(x) is sufficiently smooth, and if p_{x}(c)=0

at a point x=c, then a certain N-th derivative does not
vanish at this point.

Now we mention our theorems.

THEOREM 1. For the problem (1. 1), (1. 3) and (1. 4) there exists a solu-
tion (u, v)\in P^{2}([0, s)) such that the point (s, 0) is its separation point and the
inequality 0<s<X_{0} holds.

If we put S(u_{0})=s in Theorem 1, then we obtain the mapping S(u_{0})

from I^{2\dagger\alpha} to (0, X_{0}) .

THEOREM 2. ( i) For the fixed viscosity, no separation point exists
near the point (X_{0},0) :

(1. 7) sup \{S(u_{0});u_{0}\in I^{2+\alpha}\}<X_{0}

(see [6]).
(ii) For the viscosity \nu tending to zero, if the pressure gradient p_{x} is

monotone non increasing, there exist u_{0}^{(\nu)}\in I^{2+\alpha}(\nu, U) and u_{0}\in I^{2+\alpha} (without
the compatibility condition) such that

u^{(\nu)}arrow u_{0} in B^{1}([0, \infty)) and
(1. 8)

S(u_{0}^{(\nu)})arrow 0 as \nuarrow 0

In physical or numerical experiments ([2], [4], [6], [12] and [13]) it is
always assumed that the initial datum u_{0}(y) is the constant U(0) which does
not belong to the class P^{+\alpha} and so that the separation point is independent
of the viscosity \nu .

On the other hand, O. A. Oleinik [9] proved the local existence and the
uniqueness of a solution (u, v) in some domain D_{A_{0}} to the problem (1. 1), (1. 3)
and (1. 4) with a certain initial datum. Theorem 1 means that this local solu-
tion can be continued to the separation point. Recently Liu-Lee have tried to
prove such a result. Their arguments do not appear plausible (their inequality
(18. C) . [7] ) . To prove Theorem 1, we use essentially Lemma 1, 4 and 5 de-
scribed below and to obtain (1. 7) we compare our solution with the Blasius’.

In Section 2 we give a suitable definition of a separation point, notations
mentioned above and the results on Oleinik’s local solution with remarks
about it. In Section 3 we prepare some lemmas and in Section 4 we prove
Theorem 1 and 2.
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2. Preliminaries

For an interval [a, A] let B^{0}([a, A]\cross[0, \infty)) be the Banach space of
uniformly bounded continuous functions defined over [a, A]\cross[0, \infty) with
supermum norm. For \alpha(0<\alpha\leq 2/3) and y_{0}>0 let C^{\alpha}([a, A]\cross[y_{0}, \infty)) be the
set of continuous functions u(x, y)\in C^{0}([a, A]\cross[y_{0}, \infty)) which satisfy

|u(x_{1}, y_{1})-u(x_{2}, y_{2})|\leq M\{|x_{1}-x_{2}|^{1/2}+|y_{1}-y_{2}|\}^{\alpha}

for (x_{i}, y_{i})\in[a, A]\cross[y_{0}, \infty)(i=1,2) and M=M(y_{0}, u) , and let C^{\alpha}([a, A]\cross

(0, \infty))=\cap C^{\alpha}([a, A]\cross[y_{0}, \infty)) . Furthermore let B^{\alpha}([a, A]\cross(0, \infty))=B^{0}([a, A]

y_{0}>0

\cross[0, \infty))\cap C^{\alpha}([a, A]\cross(0, \infty)) . We also define C^{\alpha}((0, \infty)) , B^{0}((0, \infty)) and
B^{2+\alpha}((0, \infty)) by the analogous way.
Then we define the space of the initial data:

P^{+\alpha}(\nu, U)=\{u(y)\in C^{2}([0, \infty))\cap B^{2\dagger a}((0, \infty)) ; u(0)=0,\cdot

u_{y}(0)>0 , u_{y}(y)\geq 0 for y\geq 0 , uarrow U(0) as yarrow\infty and
\nu u_{yy}(y)-p_{x}(0)=O(y^{2}) as yarrow 0\}

The condition in I^{2+\alpha}

(2. 1) \nu u_{yy}(y)-p_{x}(0)=O(y^{2}) as yarrow 0

is a strong compatibility condition.
The space of the solutions to the problem (1. 1), (1. 3) and (1. 4) is given

as follows :
Let P^{2}([a, A]) be a set of all functions (u, v) such that

(i) u, u_{x}, u_{y} , u_{yy} , v and v_{y}\in C^{0}([a, A]\cross[0, \infty)) ,
(ii) u(x, y)>0 in [a, A]\cross[0, \infty) ,
(ii) u_{y}(x, 0)>0 for x\in[a, A] ,
(iv) u, u_{y} , u_{yy}\in B^{0}([a, A]\cross[0, \infty)) .

Then we define the space by

P^{2}([0, A))= \bigcap_{0<A<A},P^{2}([0, A’])

Now we define the separation point of a solution to the problem (1. 1),
(1. 3) and (1. 4) :

DEFINITION. A point (s, 0) is a separation one of a solution (u, v) to
our problem in the domain D_{s}, if the solution (u, v) belongs to P^{2}([0, s)) and
for some sequence (x_{n}, y_{n}) in [0, s)\cross[0, \infty)

(x_{n}, y_{n})– (s, 0) and u_{y}(x_{n}, y_{n}) -arrow 0 as narrow\infty
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Here we note that physicists call (s, 0) a separation point if u_{y}(s, 0)=0

for a solution (u, v) (see [4], [12]). Our definition of the separation point is
the same one as the above for a solution (u, v)\in P^{2}([0, s)) with u, u_{y}\in

C^{0}([0, s]\cross[0, \infty)) . But to our knowledge, the extstence of such an exact
solution is not yet proved under our assumptions.

We consider the transformation of the independ variables in the system
(1. 1) of the form
(2. 2) x=x , \psi=\psi(x, y) ,

where
u=\psi_{y}(x, y) , v=-\psi_{x}(x, y) , \psi(x, 0)=0 .

If we put w(x, \psi)=u^{2}(x, y) , then the transformation (2. 2) reduces the problem
(1. 1), (1. 3) and (1. 4) to the Von Mises’ form :

(2. 3) L(w)=\nu\sqrt{w}w_{\psi\psi}-w_{x}=2p_{x} in G_{A}

with the conditions
(2. 4) w(x, 0)=0, w(x, \psi)-arrow U^{2}(x) as \psiarrow\infty

uniformly in x on [0, A) ,\cdot

(2. 5) w(0, \psi)=w_{0}(\psi)

where
G_{A}=\{(x, \psi) ; 0<x<A , 0<\psi<\infty\} ,

w_{0}( \int_{0}^{y}u_{0}(t)dt)=u_{0}^{2}(y)

Let I_{M^{2+\alpha}}= \{w(\psi);w(\int_{0}^{y}u(t)dt)=u^{2}(y) , u\in P^{+\alpha}\}

Then w(\psi)\in I_{M}^{2\dagger a} if and only if

w, w_{\psi} , \sqrt{w}w_{\psi\psi}\in B^{0}([0, \infty))\cap C^{\alpha}((0, \infty)) ,

w(0)=0, w_{\psi}(0)>0 , w_{\psi}(\psi)\geq 0 for \psi\geq 0 ,
w(\psi)arrow U^{2}(0) as \psiarrow\infty and

(2. 6) \mu(\psi)=\nu\sqrt{w(\psi)}w_{\psi\psi}(\psi)-2p_{x}(0)=0(\psi) as \psiarrow 01

Let P_{M^{2+\alpha}}([0, A])=\{w(x, \psi) ;

w, w_{x}w_{\psi}, \sqrt{w}w_{\psi\psi}\in B^{0}(\overline{G}_{A})\cap C^{\alpha}([0, A]\cross(0, \infty)) ,

|w_{x}|\leq K\psi^{1-\beta} and w_{\psi}\geq m in [0, A]\cross[0, \psi_{1}] and

w(x, \psi)>l for \psi>\psi_{1}\} ,
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where positive constants \psi_{1} , m, l depend on w. Furthermore for any \beta

(0<\beta<1/2) the positive constant K depends on \psi_{1} , \beta and w.

Let P_{M^{2+a}}([0, A))= \bigcap_{0<A<A},P_{M}^{2+\alpha}([0, A’]) .

Here we summarize the results and remarks on Oleinik’s local solutions
(see [9] or [10]) :

(I) A solution (u, v)\in P^{2}([0, A]) of the problem (1. 1), (1. 3) and with the
initial datum u_{0}\in I^{2+a} (without u_{0_{y}}(y)\geq 0 for y>0) exists, if a solution w\in

P_{M^{2+\alpha}}([0, A]) of the problem (1. 3), (2. 4) and (2. 5) exists.
(II) Oleinik assumes that the initial datum u_{0} belongs to B^{2+\alpha}([0, \infty)) ,

but our initial datum u_{0} belongs to C^{2}([0, \infty))\cap B^{2+a}((0, \infty)) and this assump-
tion of regularity is enough for the existence of Oleinik’s local solution.

Here we note that I_{M^{2+\alpha}} contains a sufficiently large number of elements.
In fact let w_{0}(\psi) be \{m_{0}\psi+B_{1}\psi^{3/2}-B_{2}\psi^{2}\}\chi(\psi)+(1-\chi(\psi))U^{2}(0) , where m_{0}>0 ,
B_{1}=8p_{x}(0)/3\nu\sqrt{m_{0}}, B_{2}=4p_{x}^{2}(0)/3\nu^{2}m_{0}^{2} and \chi(\psi) is a function\in C^{\infty}([0, \infty)) such
that \chi_{\psi}\leq 0,0\leq\chi\leq 1 , \chi=1 for \psi\ll 1 , and sup (supp \chi) \ll 1 . Then it is easy
to see that w_{0} belongs to I_{M^{2+\alpha}} .

(III) For small \epsilon>0 , let G_{A}^{l}=\{(x, \psi) ; 0<x<A, 0<\psi<1/\epsilon\} . Then for
some positive constant A_{0} and any sufficiently small \epsilon , there exists the appr0-
ximate positive solution w_{e}(x, \psi) defined on G_{A_{0}}^{1} , which satisfies (2. 3) with
boundary conditions:

w_{\epsilon}(0, \psi)=w_{0}(\epsilon+\psi) , w_{e}(x, 0)=w_{0}(\epsilon) exp \{\mu(\epsilon)x/w_{0}(\epsilon)\} ,
(2. 7)

w_{\epsilon}(x, 1/\epsilon)=w_{0}(\epsilon+1/\epsilon) exp \{\mu(\epsilon+1/\epsilon)x/w_{0}(\epsilon+1/\epsilon)\}t

Then the solution w\’e(x, \psi) belongs to P_{M^{2+\alpha}}\overline{(G_{A_{0}}^{\epsilon}}), where the last functional
space is defined as in P_{M}^{2+\alpha}([0, A]) , but we must replace B^{0}(\overline{G}_{A}J and C^{\alpha}([0, A_{0}]

\cross(0, \infty)) by B_{0}\overline{(G_{A_{0}}^{\epsilon}}) and C^{\alpha}([0, A_{0}]\cross(0,1/\epsilon]) respectively.
Here we must mention that the solution w_{\epsilon}(x, \psi) has the following

properties :

(2. 8) All constants in P_{M^{2+\alpha}}(i. e., \alpha, m, \psi_{1}, K, l) and supremum
norms over \overline{G_{A_{0}}^{}} of the functions w\’e’ w_{\epsilon x} , w_{\epsilon_{\acute{\varphi}}}\sqrt{w_{\epsilon}}w_{\text{\’{e}}_{\psi\psi}} ,
w_{*}^{\beta-1}w_{\epsilon x} do not depend on \epsilon .

Finally the unique local solution w\in P_{M^{2+\alpha}}([0, A_{0}]) is obtained as follows :
For a subsequence \{w_{\epsilon’}\} and any N>,\searrow 1

w‘’arrow w as \epsilon’arrow 0 in C^{0}([0, A_{0}]\cross[0, N])

and w_{\epsilon’x} , w_{e_{\psi}’}, \sqrt{w_{\epsilon}}\prime w_{\epsilon_{\psi\psi}’} converge the corresponding functions with respect
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to w as \epsilon’arrow 0 in C^{0}([0, A_{0}]\cross[1/N, N]) , provided \alpha\leq 2/3 . Here we note that
w(x, \psi)- U^{2}(x) as \psiarrow\infty uniformly in x on [0, A_{0}] .

Now by the transformation (2. 2), we have u_{y}= \frac{1}{2}w_{\psi} . Therefore we

may define the separation point of the solution w to the problem (2. 3), (2. 4)

and (2. 5) by the same way as above, i . e. , a point (s, 0) is the separation
one of a solution w(x, \psi) to our problem, if the solution w(x, \psi) belongs to
P_{M^{2+a}}([0, s)) and for some sequence (x_{n}, \psi_{n}) in [0, s)\cross[0, \infty)

(x_{n}, \psi_{n})arrow(s, 0) and w_{\psi}(x_{n}, \psi_{n})arrow 0 as narrow\infty 1

We also denote this separation point by S(w_{0}) . Then, in fact, we obtain that
S(u_{0})=S(w_{0}) for u_{0} corresponding to w_{0}\in I_{M^{2\dagger\alpha}} by (2. 2).

3. Lemmas

Lemma 1. Let w(x, \psi) be Oleinik’s local solution. Then there exist
positive constants M_{1} and \lambda such that

(3. 1) |w_{x}|\leq M_{1}\psi for 0\leq x\leq A_{0} and 0\leq\psi\leq\lambda .

PROOF. Let w_{\epsilon}(x, \psi) be the approximate solution given in Section 2.
We put E=\{(x, \varphi f) ; 0\leq x\leq A_{0},0\leq\psi\leq\lambda\} , where the small positive con-

fact \lambda will be determined latter. From the fact (III), if we show

|w_{\epsilon}^{-1}w_{\epsilon x}|\leq M_{1} in E

for some M_{1} , \lambda and sufficiently small \epsilon>0 , then we obtain (3. 1). Hence it is
sufficient to show the above inequality.

Since w_{\epsilon}>0 (see (III)), we may put g_{\text{\’{e}}}(x, \psi)=\ln(w_{\epsilon}(x, \psi)) , then from (2. 3)
g_{\epsilon} satisfies the following equation :

(3. 2) \nu g_{\epsilon_{\psi\psi}}e^{3g_{\epsilon}/2}+\nu(g_{\text{\’{e}}}j^{2}e^{3g_{*}/2}-e^{g_{*}}g_{\epsilon}x=2p_{x} .

Differentiating (3. 2) with respect to x, we obtain an equation for g_{\iota_{x}}=h . :

\nu h_{\epsilon_{\psi\psi}}e^{a\sigma_{\epsilon}/2}+\frac{3}{2}\nu e^{3g_{\epsilon}/2}g_{\epsilon_{\psi\psi}}h_{\text{\’{e}}}+\frac{3}{2}\nu e^{3g_{\epsilon}/2}(g_{\epsilon_{\psi}})^{2}h_{\text{\’{e}}}+

2\nu e^{3g_{5}/2}g_{e_{\varphi}}, h_{\epsilon}-\psi e^{g_{\text{\’{e}}}}(h_{\epsilon})^{2}-e^{g_{\epsilon}}h_{\epsilon x}=2p’

Replacing \nu g_{e_{\psi\psi}} exp 3g_{\epsilon}/2 by its value from (3. 2), we can write the equation
for h_{\epsilon} in the form :

(3. 3) \nu e^{3g_{6}/2}h_{\epsilon}‘"+C_{\text{\’{e}}}h_{e}+2\nu e^{\S g_{\epsilon}/2}g_{\epsilon}h_{\text{\’{e}}_{\acute{\varphi}}}-e^{g_{\epsilon}}h_{\text{\’{e}}}\psi\psi x=2p^{\acute{\prime}} :

where
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C_{\epsilon}= \frac{1}{2}h_{\epsilon}e^{g_{\epsilon}}+3p’=\frac{1}{2}w_{\epsilon x}+3p’

From (2. 8), there exists a positive constant M_{2} independent of \epsilon such that
(3. 4) |C_{\epsilon}|\leq M_{2} in \overline{G_{\dot{A}_{0}}}

Therefore (3. 3) implies that j_{\text{\’{e}}}=h_{\epsilon} exp \{-(M_{2}+1)x\} satisfies
(3. 5) \nu e^{3g_{6}/2}j_{\epsilon}+(C_{\epsilon}-M_{2}-\psi 1)j_{\epsilon}+2\nu e^{3g_{\epsilon}/2}g‘ j_{e}-\acute{\varphi}\psi\psi e^{q_{\text{\’{e}}}}j_{\epsilon}x=2p’e^{-(M_{\delta}+1^{)}x} .

Now if j_{\epsilon} attains its maximum in E without the lines x=0, \psi=0 and \psi=\lambda ,
then at this point we have

\nu e^{ g_{*}/2}j_{\epsilon_{\psi\psi}}-e^{g}\cdot j_{\epsilon}x\leq 0 and j_{e_{\acute{\varphi}}}=01

Hence from (3. 4) and (3. 5) we deduce

(3. 6) j_{\epsilon} \leq\frac{2p’\exp\{-(M_{2}+1)x\}}{C_{e}-M_{2}-1}\leq M_{3} at the maximum point,

where the positive constant M_{3} does not depend on \epsilon>0 .
By the same argument, at the minimum point of j. in the same domain

of E we have

(3. 7) j_{\text{\’{e}}}>-M_{3} .
If \epsilon and \lambda are sufficiently small, from (2. 6) it follows that h_{*}(0, \psi)=

w_{0}(\epsilon\dagger\psi)^{-1}\mu(\epsilon+\psi)=O(1) and h_{\epsilon}(x, 0)=w_{0}(\epsilon)^{-1}u(\epsilon)=O(1) . Furthermore the
fact (III) in Section 2 implies h_{\epsilon}(x, \psi)=O(1) .

Thus from (3. 6) and (3. 7) we conclude that
|h_{e}|\leq M_{4} in E ,

where the positive constant M_{4} does not depend on \epsilon . This proves Lemma
1. q. e . d .

It is easy to see that (2. 3) and (3. 1) imply the following Corollary.
COROLLARY. Let w(x, \psi) be as in Lemma 1. Then the section w(X^{ },\cdot)

satisfies the compatibility condition (2. 6) for any x(0\leq x\leq A_{0}) .
Lemma 2. ([8]). Let w(x, \psi) be a solution to the problem (2. 3), (2. 4)

and (2. 5) belonging to P_{M}^{2+a}([0, A]) . Then w(x, \psi) is monotone nondecreas-
ing with respect to \psi in \overline{G}_{A} .

PROOF. We use the methods of the proof in [5] here.
Since w(x, \psi) belongs to P_{M^{2+\alpha}} , for sufficiently small \delta>0 there exist

positive constants m and M such that

(3. 8) m\leq w\leq M in \overline{G}_{A}\cap\{\psi\geq\delta\} ,
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(3. 9) |w_{\psi}|\leq M in \overline{G}_{A} and
(3. 10) w_{\psi}\geq m in \overline{G}_{A}\cap\{0\leq\psi\leq\delta\}

Differentiating the equation (2. 3) with respect to \psi , we obtain an equation
for z=w_{\psi} :

(3. 11) P(z)= \nu\sqrt{w}z_{\psi\psi}+\frac{\nu}{2}w^{-1/2}w_{\psi}z_{\psi}-z_{x}=0 .

We put g(x, \psi)=R^{-2}M(\psi^{2}+Kx)e^{Kx}+z(x, \psi) and E_{r,R}=\{(x, \psi) ; 0\leq x\leq A , r\leq

\psi\leq R\} for R^{\backslash \backslash },\nearrow r>0 , where a positive constant K will be determined latter.
From (3. 11) we obtain an equation for g :

P(g)=R^{-2}Me^{Kx}(2\nu\sqrt{w}+\nu w^{-1/2}w_{\psi}\psi-K-K\psi^{2}-K^{2}x)(

If K>\nu(2M^{1/2}+m^{-1/2}M) , taking account of (3. 8), (3. 9) and (3. 10), we have

P(g)\leq R^{-2}Me^{Kx}(2\nu M^{1/2}\psi^{2}+\nu m^{-1/2}M\psi^{2}-K\psi^{2})<0 in E_{1,R}

and

P(g)\leq R^{-2}Me^{Kx}(2\nu M^{1/2}+\nu m^{-1/2}M-K)<0 in E_{\delta,1}

Hence we see P(g)<0 in E_{\delta,R} . Furthermore on the lines x=0, \psi=\delta and
\psi=R we have the following: Since w_{0}\in I_{M}^{2+a} and w_{\psi}=2u_{y} , g(0, \psi)=

R^{-2}M\psi^{2}+z(0, \psi)=R^{-2}M\psi^{2}+w_{0_{\psi}}(\psi)\geq 0 and (3. 10) implies that g(x, \delta)\geq z(x, \delta)

=w_{\psi}(x, \delta)\geq 0 . Finally g(x, R)\geq M+z(x, R)=M+w_{\psi}(x, R)\geq 0 by (3. 9).

Therefore by the maximum principle we obtain g\geq 0 in E_{\delta,R} . Then if
Rarrow\infty , we have w_{\psi}(x, \psi)\geq 0 for \psi\geq\delta . Taking account of (3. 10) we con-
clude that our assertion for \psi<\delta is valid. q . e . d .

Lemma 3. There exists a point x_{0}>0 such that the pressure gradient
p_{x}(x) is monotone decreasing in [x_{0}, X_{0}] .

PROOF. From (1. 5) and the Bernoulli law (1. 2) we have p_{x}(X_{0})=0 .
Taking account of (1. 6), we have that for some constant a\neq 0 and x near X_{0}

(3.12) p_{x}(x)=a(X_{0}-x)^{N}+O((X_{0}-x)^{N\dagger 1})

Now if the constant a is negative, then p_{x}(x)<0 near X_{0} . Therefore an
inequality U^{2}(x)=2(p(X_{0})-p(x))<0 holds for such x, since (1. 2) and (1.5) are
assumed. This contradiction means that the pressure gradient p_{x} is non
negative and monotone decreasing on some interval [x_{0}, X_{0}] . q . e . d .

Lemma 4. Suppose that the pressure gradient p_{x} is monotone non
increasing on [0, 1] and the point X_{0} in (1. 5) equlas to 1. Then for any
positive constant k there exist positive constants \gamma and A<1 such that if
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w(x, \psi) is a solution to the problem (2. 3), (2. 4) al?d (2.5) belonging to
P_{IYI}^{2+\alpha}([0, A))\cap C^{0}([0, A]\cross[0, \infty)) and if
(3. 13) w_{0}( \psi)\leq k\psi\int_{0}^{1}p_{x}(t)dt for 0\leq\psi\leq 2/k ,

then

(3. 14) w(x, \psi)\leq F(x, \psi)

\equiv k\psi\{2\int_{x/A}^{1}p_{x}(t)dt(1-\gamma\psi)+2\gamma\psi\int_{x}^{1}p_{x}(t)dt\}

for 0\leq x\leq A , 0\leq\psi\leq 1/\gamma .
PROOF. Since the initial datum w_{0}\in I_{M^{2+\alpha}} , we may find a positive con-

stant k such that (3. 13) is valid.
Now the above inequality implies that

(3. 15) w_{0}( \psi)\leq 2(k\psi-k^{2}\psi^{2}/4)\int_{0}^{1}p_{x}(t)dt for 0\leq\psi\leq 2/k\epsilon

Furthermore for an arbitrary constant A<1 we have

(3. 16) w(x, \psi)\leq 2\int_{x}^{1}p_{x}(t)dt in [0, A]\cross[0, \infty) ,,

if a solution w is well defined in [0, A]\cross[0, \infty) as above. In fact, (1. 2) and
(1. 5) imply that w(0, \psi)=w_{0}(\psi)\leq U^{2}(0)=U^{2}(1)+2p(1)-2p(0)=2\int_{0}^{1}p_{x}(t)dt and

w(x, 0)=0 \leq 2\int_{x}^{1}p_{x}(t)dt and L(w)-L(2 \int_{x}^{1}P_{x}dt)=0 . Hence by the maximum
principle (3. 16) holds (see the proof of Theorem 3 in [9]).

Moreover we define H(x, \psi) as follows :

H(x, \psi)=2(k\psi-k^{2}\psi^{2}/4)\int_{x}^{1}p_{x}(t)dt for 0\leq\psi\leq 2/k1

Then it follows from (3. 13) and (3. 16) that an inequality w(x, \psi)\leq H(x, \psi)

holds on the lines x=0, \psi=0 and \psi=2/k . Furthermore by simple calculation
we obtain

L(H)-L(w)\leq 0 in [0, A)\cross[0,2/k]

for any A<1 .
Hence by the maximum principle we have

(3. 17) w(x, \psi)\leq H(x, \psi) in [0, A]\cross[0,2/k]

Now we prove the inequality (3. 14) for some \gamma and A<1 . From (3. 13)
and (3. 17), the inequality (3. 14) holds on the lines x=0, \psi=0 and \psi=1/\gamma
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for 2\gamma>k . Furthermore, from the inequalities A<1 , k<2\gamma , the monotoneity
of p_{x} and (1. 5), we deduce the following:

(3. 18) L(F)=\nu\sqrt{F}F_{\psi\psi}-F_{x}

\leq 4\nu k\gamma p_{x}(x)(x/A-x)(2k\gamma^{-1}\int_{0}^{1}p_{x}(t)dt)^{1/2}+p_{x}(x)\frac{2k}{A}\psi

\leq 2ck^{3/2}\gamma^{1/2}(1-A)p_{x}(x)+2kp_{x}/\gamma A ,

for 0\leq\psi\leq 1/\gamma , 0\leq x\leq A ,

where c^{2}=8 \nu^{2}\int_{0}^{1}p_{x}(t)dt .
Hence an inequality L(F)\leq 2p_{x}(x) holds for 0\leq x\leq A and 0\leq\psi\leq 1/\gamma

if an inequality

ck^{3/2}\gamma^{1/2}(1-A)A+k/\gamma\leq A

holds.
Therefore considering the quadratic inequality in A, we may find A<1

for \gamma>k . Then from (3. 18) it follows that L(F)-L(w)\leq 0 for 0\leq x<A

and 0\leq\psi\leq 1/\gamma . Thus by the maximum principle we have the inequality
(3. 14) q. e . d .

We note that the above quadtatic inequality is valid for

(3. 19) \gamma=(1+D^{1/2})^{2}/c_{1}k^{3} and A=1-2/(1+D^{1/2}) ,

where D=1+c_{2}k^{4} , provided c_{1}=3^{2}c^{2} and c_{2}=3^{3}c^{2} . Furtheremore the argu-
ment described below and (3. 19) imply that for the separation point (s, 0)

(3.20) 0<s\leq A=1-2/(1+D^{1/2}) .

COROLLARY. There exists no solution w(x, \psi) to the problem (2. 3), (2. 4)

and (2. 5) in G_{X_{0}} , which belongs to the class P_{M}^{2+a}([0, X_{0})) and whose section
w(X^{ \cdot)}, belongs to I_{M}^{2+a} for any x(0\leq x<X_{0}) .

PROOF. Assume that the above corollary is not valid. Let x_{0} be the
point in Lemma 3. Then, from our assumption, we may consider the line
x=x_{0} as the initial position and the section w(X_{0}^{ \cdot)}, as the initial datum.
Therefore by a coordinates transformation, setting x_{0}=0 and X_{0}-x_{0}=1 , we
may consider that the solution w(x, \psi) satisfies the assumptions in Lemma 4.
Then from w(x, 0)=0 and Lemma 4, we have

\frac{w(x,\psi)-w(x,0)}{\psi}\leq 2k\int_{x/A}^{1}p_{x}(t)dt(1-\gamma\psi)+2\gamma k\psi\int_{x}^{1}p_{x}(t)dt

for 0\leq x\leq A and 0\leq\psi\ll 1 .
Therefore if \psi\forall|0 and x\uparrow A, then we obtain



102 S. Matsui and T. Shirota

w_{\psi}(A, 0)\leq 0

This proves the corollary. q . e . d .
For a point X_{1}(0<X_{1}<X_{0}) , let k_{1} and k_{2} be min U^{2}(x) and max |^{1}2p_{x}(x)|

respectively. Furthermore let W be the subset ofI_{M^{2+a}}0\leq x\leq X_{1} such thatfo^{1r}0\leq x\leq xw_{0}(\psi)

\in W

inf \{w_{0_{\psi}}(\psi) ; 0\leq\psi\leq\psi_{0}\}\geq k

where \psi_{0} and k are, a priori, sufficiently small positive numbers.
Then we have

Lemma 5. For any w_{0}\in W, the constant A_{0} in Section 2-(III) may be
chosen depending only on \psi_{0}, k, k_{1} and k_{2} , but independent of w_{0} .

PROOF. Let w_{\epsilon}(x, \psi) be the approximate solution mentioned in (III) with
respect to the initial datum w_{0} . Then by the Oleinik’s theory [9] it is suffi-
cient to prove the following: For the constants a, \delta , A_{0} , \cdots and A_{5} which
depend only on \psi_{0}, k, k_{1} and k_{2} , there exists a sequence \{\epsilon_{n}\} depending on
w_{0}(\psi) and tending to zero as narrow\infty such that for any n

(3. 21) w_{\epsilon n}(x, \psi)\geq V(x, \psi)

\equiv w_{\epsilon_{n}}(x, 0)+f(\psi)(1+e^{-ax}) in G_{A}.n_{0}

Here f(\psi)=A_{1}\psi^{4/3}+A_{2}\psi for \psi\leq\delta , A_{3}\geq f(\psi)\geq f(\delta) , |f_{\psi}(\psi)|\leq A_{4} and |f_{\psi\psi}(\psi)|\leq

A_{b} for \psi\geq\delta .

To show this, let B_{0}, B_{1} and B_{2} be sufficiently small constants such that
B_{2}>B_{0} ,

(3. 22) \frac{1}{2}k_{1} exp \{-3k_{2}X_{1}/k_{1}\}\geq B_{2} .

Moreover we take sufficiently small constants \delta , A_{1} , A_{2} and A3 as follows:
\delta<\psi_{0} ,

(3. 23) min (B_{2}-B_{0}, k\delta)\geq 2A_{3}>4(A_{1}\delta^{1/3}+A_{2})\delta>0,\cdot

(3. 24) \nu\frac{4}{9}\sqrt{A_{2}}A_{1}\geq\delta^{1/6}(k_{2}+B_{1})(

Then from (3. 23) we may determine the desired monotone nondecreas-
ing function f\in C^{2}([0, \infty)) , constants A_{4} and A_{5} .

Now let w_{0}\in W. From the condition

w_{0}(\psi)\uparrow U^{2}(0) as \psi\uparrow\infty’\wedge
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we find a sequence \{\psi_{n}\} such that w_{0_{\psi\psi}}(\psi_{n})arrow 0 as narrow\infty . Therefore we have

\mu(\psi_{n})x\geq-3k_{2}X_{1}

for any sufficiently large n and for x\in[0, X_{1}] . Accordingly by (3. 22) we can
find a sequence \{\epsilon_{n}\} as follows :

\epsilon_{n}+\delta<\psi_{0} ,

for x\in[0, X_{1}]

( w_{0} exp \{\mu x/w_{0}\} ) (\epsilon_{n})\leq B_{0} ,

(3. 25) (\mu exp \{\mu x/w_{0}\})(\epsilon_{n})\leq B_{1} ,

( w_{0} exp \{\mu x/w_{0}\} ) ( \epsilon_{n}+\frac{1}{\epsilon_{n}})\geq B_{2} .

Because w_{0}(\epsilon_{n}) , \mu(\epsilon_{n})\vee|0 as \epsilon_{n}|0\vee and \mu(\epsilon_{n})/w_{0}(\epsilon_{n}) is bounded by (2. 6).
Now we can show the validity of (3. 21) on the boundary of G_{x_{1}^{n}}^{*} except

the line x=X_{1} . On the line x=0, (3. 23) implies that for \psi\leq\delta

w_{0}( \epsilon_{n}+\psi)-w_{0}(\epsilon_{n})=\int_{0}^{1}w_{0}’(\epsilon_{n}+\theta\psi)d\theta\cdot\psi\geq k\psi

\geq 2(A_{1}\delta^{1/3}+A_{2})\psi\geq 2(A_{1}\psi^{4/3}+A_{2}\psi)

For \psi\geq\delta , w_{0}( \epsilon_{n}+\psi)-w_{0}(\epsilon_{n})\geq w_{0}(\epsilon_{n}+\delta)-w_{0}(\epsilon_{n})=\delta\int_{0}^{1}w_{0}’(\epsilon_{n}+\theta\delta)d\theta\geq 2A_{3}\geq

2f(\epsilon_{n}+\psi) by the definition of f and also by (2. 23).
Furthermore on the line \psi=1/\epsilon_{n} , (3. 23) and (3. 25) imply that

(w_{0} exp \{\mu x/w_{0}\} ) ( \epsilon_{n}+\frac{1}{\epsilon_{n}})-(w_{0} exp \{\mu x/w_{0}\})(\epsilon_{n})

\geq B_{2}-B_{0}\geq 2A_{3} for x\in[0, X_{1}]

Since (3. 21) is trivial on the line \psi=0 , we obtain the assertion above men-
tioned.

Finally we consider

L(V)=\nu\sqrt{V}f’(\psi)(1+e^{-ax})- w\’e (x, 0)_{x}+af(\psi)e^{-ax} .
For \psi\leq\delta , from (3. 24) and (3. 25) it follows that

L(V)_{1} \geq\nu\frac{4}{9}\sqrt{A}2A1\delta^{-1/6}-\sup_{0\leq x\leq X_{1}}(\mu exp \{\mu x/w_{0}\})(\epsilon_{n})

\geq k_{2}\geq 2p_{x}(x)t

By the monotoneity of f we can find a constant d such that f(\psi)\geq d>0

for \psi\geq\delta . Thus there exist constants A_{0} and a which satisfy
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0<A_{0}<X_{1} , aA_{0}=1 ,

ade^{-aA_{0}}\geq k_{2}+\nu\sqrt{k_{1}}A_{b}(1+e^{-aA_{0}})+B_{1} .

Then we obtain that L(V)\geq 2p_{x}(x) for x\in[0, A_{0}] and for \psi\geq\delta .
Thus we conclude that L(w_{\text{\’{e}} n})-L(V)\leq 0 in G_{A_{0}}^{;_{n}} and by the maximum

principle (3. 21) is valid. q. e . d .

4. Proofs of Theorems

(I) First, we shall prove Theorem 1. Let w(x, \psi) be Oleinik’s local
solution in G_{A_{0}} . From Corollary of Lemma 1 and Lemma 2 the section
w(A_{0}, \cdot) belongs to I_{M^{2+\alpha}} . Hence, from the facts (II) and (III) in Section 2,
there exists a continued solution of Oleinik’s local solution (By w(x, \psi) we
also denote this continuation). Furthermore by the same arguments as
Lemma 1 this continuation belongs the class P_{M}^{2+a}([0, A]) for some A>A_{0} ,
and its section w(X^{ },\cdot) belongs to I_{M^{2\dagger a}} for any x(0\leq x\leq A) .

Let s= \sup {A ; the above continuation exists in G_{A}}. Then we obtain
the continued solution w(x, \psi) belonging to P_{M}^{2+\alpha}([0, s)) . Furthermore, from
Colorllary of Lemma 4, an inequality s<X_{0} holds.

Assume that the point (s, 0) is not the separation point. That is, for
a sequence A_{n}<s with A_{n}arrow s (as narrow\infty ) there exist positive constants m_{0} ,
\psi_{0} and a natural number n_{0} which do not depend on n and satisfy the
following:

(4. 1) inf \{w_{\psi}(A_{n}, \psi);0\leq\psi\leq\psi_{0}\}\geq m_{0} for n\geq n_{0} .

For an arbitrary but fixed n\geq n_{0} , if we consider the line x=A_{n} as an
initial position and the section w(A_{n^{ }}, \cdot ) as an initial datum, then there exists
the solution of the problem (2. 3), (2. 4) and (2. 5) in the domain G_{A_{n}+B} for
some constant B, which belongs to the class P_{M^{2+\alpha}}([A_{n}, A_{n}+B]) . On the
other hand from (4. 1) and Lemma 5 the constant B does not depend on
n\geq n_{0} . Hence, for sufficiently large n_{1} an inequality B>s-A_{n_{1}} holds. Thus
we get a solution of the problem (2. 3), (2. 4) and (2. 5) in G_{A_{n}+B}

‘
as a con-

tinuation of the solution w(x, \psi)\in P_{M^{2+\alpha}}([0, s)) , which is contrary to the
definition of s . This proves Theorem 1.

We note that, by the same way as above, if U(x) does not vanish and
if there exists no separation point, then Oleinik’s local solution can be con-
tinued to the infinity.

(II) To prove Theorem 2, we show a relation between the solution
obtained in Theorem 1 and the Blasius solution, which is given as follows
(see [3]).
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Let f=f(\eta) be the solution of the problem:

f’+ff’=0 in [0, \infty) ,

with conditions

f(0)=f’(0)=0 and f’(\eta)arrow 1 as \etaarrow\infty

If we put

\eta=(\frac{U(x_{0})+c}{2\nu x})^{1/2}y ,

(4. 2) u(x, y)=(U(x_{0})+c)f’(\eta) ,

v(x, y)= \nu^{1/2}(\frac{U(x_{0})+c}{2x})^{1/2}(\eta f’(\eta)-f(\eta))

for an arbitrary but fixed positive constant c and the point x_{0} given in Lemma
3, then the function (u, v) satisfies

uu_{x}+vu_{y}=\nu u_{yy} and u_{x}+v_{y}=0 in (0, \infty)\cross(0, \infty)

with conditions
u=v=0 for y=0 and x>0

Using the transformation (2. 2) and putting w_{B}(x, \psi)=u^{2}(x, y) , by defini-
tions we obtain

(4. 3) L(w_{B})=0 in (0, \infty)\cross(0, \infty) -,

w_{B}(x, 0)=0 for x>0 ,

(4. 4) w_{B}(x, \psi)arrow(U(x_{0})+c)^{2} as \psiarrow\infty pointwise in x>0 ,

w_{B}(x, \psi)arrow(U(x_{0})+c)^{2} as xarrow 0 pointwise in \psi>01

Now let w(x, \psi) be the solution in Theorem 1 with S(w_{0})>x_{0} . Then
we obtain

(4. 5) w(x, \psi)\leq w_{B}(x-x_{0}, \psi) in [x_{0}, S(w_{0}))\cross[0, \infty) ,

where the point x_{0} is given in Lemma 3.
In fact from (1. 5) and Lemma 3 we have

(4. 6) p_{x}(x)\geq 0 for x_{0}\leq x\leq X_{0l}

Furthermore from Theorem 8. 1 in [3] it follows that
(4. 7) f’(\eta)>0 for \eta>01

Hence, from (2. 2), (4. 2) and (4. 7), we have
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(4. 8) w_{B_{\psi}}(x, \psi)=\frac{2(U(x_{0})+c)^{\epsilon/2}}{(2\nu x)^{1/2}}f’(\eta)>0 ,

since \frac{\partial}{\partial\psi}=2\frac{\partial}{\partial y} is valid.

Therefore from (4. 4) and (4. 8) we see that for a fixed positive number
\delta there exists a positive constant \epsilon_{0} such that

w_{B}(\epsilon, \psi)-w(x_{0}, \psi)\geq 0 for \delta\leq\psi<\infty and 0<\epsilon<\epsilon_{0} .
Furthermore from (4. 8) it follows that

w_{B}(\epsilon, \psi)-w(x_{0}, \psi)

= \psi\int_{0}^{1}(\frac{\partial w_{B}}{\partial\psi}(\epsilon, t\psi)-\frac{\partial w}{\partial\psi}(x_{0}, t\psi))dt\geq 0 for 0<\psi\leq\delta ,

provided \epsilon\ll 1 .
Hence we have

w_{B}(\epsilon, \psi)-w(x_{0}, \psi)\geq 0 for 0\leq\psi<\infty

Moreover from (4. 3), (4. 4) and (4. 6) we deduce that

w_{B}(x-x_{0}+\epsilon, O)-w(x, 0)=0 for x_{0}\leq x<S(w_{0}),\cdot

L(w_{B}(x-x_{0}+\epsilon, \psi))-L(w)\leq 0 in [x_{0}, S(w_{0}))\cross[0, \infty)

Thus by the maximum principle we conclude that for any sufficiently small
\epsilon>0

w(x, \psi)\leq w_{B}(x-x_{0}+\epsilon, \psi) in [x_{0}, S(w_{0}))\cross[0, \infty) ,

which implies (4. 5).
(Ill) We shall prove Theorem 2. Let x=x_{0} be given in Lemma 3.

As in the proof of Corollary of Lemma 4, we may consider the line x=x_{0}+\epsilon

as an initial position for sufficiently small \epsilon>0 . Furthermore from (4. 5)
we obtain

w(x_{0}+ \epsilon, \psi)\leq w_{B}(\epsilon, \psi)\leq k\psi\int_{0}^{1}p_{x}(t)dt

for 0\leq\psi\leq 2/k , if the constant k is sufficiently large. Then the constant k

in (3. 13) can be chosen independently of the section w(x_{0}+\epsilon, \cdot) for any
solution with S(w_{0})>x_{0} . Hence after a certain coordinates transformation
the constant A in (3. 19) can be also chosen independently of w(x_{0}+\epsilon, \cdot) .
Then from (3. 20) the inequality (1. 7) holds. The first part of Theorem 2
is proved.
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Finally we shall prove the second assertion of Theorem 2. We define
w_{0}^{(\nu)}\in I_{M^{2+a}}(\nu, U) as follows:

w_{0}^{(\nu)}=m\psi\chi(\psi)+B_{1}\psi^{3/2}\chi(\nu^{-5/2}\psi)-B_{2}\psi^{2}\chi(\nu^{-5/2}\psi)+(1-\chi(\psi))U^{2}(0) ,

where B_{1} , B_{2} and \chi are defined in Section 2-(II).
By simple calculations, we have

w_{0}^{(\nu)}arrow m\psi\chi(\psi)+(1-\chi(\psi))U^{2}(0) in B^{1}([0, \infty)) ,

\nu\sqrt{w_{0}^{(\nu)}}\frac{d^{2}w_{0}^{(\nu)}}{d\psi^{2}}arrow 0 in B^{0}([\psi_{0}, \infty)) for any \psi_{0}>0 as \nuarrow 0 , \{\nu\sqrt{w_{0}^{(\nu)}}\frac{d^{2}w_{0}^{(v)}}{d\psi^{2}}\} is
contained in a bounded subset of B^{0}([0, \infty)) .

Let u_{0}^{(\nu)}(y) be the function \in I^{2+\alpha}(\nu, U) which corresponds to w_{0}^{(\nu)}(\psi) by
the Von Mises’ transformation restricted on x=0. i . e. ,

u_{0}( \int_{0}^{\psi}\frac{dt}{\frac{wt}{0()}})=\sqrt{w_{0}(\psi)}

Then we obtain u_{0}^{(\nu)}arrow u_{0} in B^{1}([0, \infty)) as \nuarrow 0 for some u_{0} . On the other
hand, since \{w_{0}^{(\nu)}\} is convergent in B^{1}([0, \infty)) , the constant k in (3. 13) with
respect to w_{0}^{(\nu)} is bounded and the sequence of the numbers D in (3. 19)
tends to 1 as \nuarrow 0 . Hence we have S(w_{0}^{(v)})arrow 0 as \nuarrow 0 by (3. 20). This
proves the second assertion of Theorem 2.
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