Lifting modules, extending modules and their applications to QF-rings

By Kiyoichi Oshiro

(Received June 21, 1983; Revised April 19, 1984)

A right R-module M is said to be an extending module if, for any submodule A of M, there exists a direct summand A^* of M such that A^* is an essential extention of A. Dually, M is said to be a lifting module provided that, for any submodule A of M, there exists a direct summand A^* of M which is a co-essential submodule of A in M, i.e., $A^* \subseteq A$ and A/A^* is small in M/A^* .

In this paper we study the following two conditions:

(#) Every injective R-module is a lifting module.

(#)* Every projective R-module is an extending module.

A major reason why we are interested in these (#) and $(\#)^*$ comes from the fact that these conditions are closely related to the following conditions due to Harada [13] ~[15]:

(*) Every non-small R-module contains a non-zero injective submodule.

(*)* Every non-cosmall R-module contains a non-zero projective direct summand.

Indeed, we show the following theorems which are main results of this paper.

THEOREM I. The following conditions are equivalent for a given ring R:

1) R satisfies (#).

2) R is a right artinian ring with (*).

3) R is a right perfect ring and the family of all injective R-modules is closed under taking small covers.

4) Every R-module is expressed as a direct sum of an injective module and a small module.

THEOREM II. The following conditions are equivalent for a given ring R:

1) R satisfies $(\ddagger)^{\ddagger}$.

2) R is a ring with the ACC on right annihilator ideals and satisfies (*)*.

Lifting modules, extending modules and their applications to QF-rings

3) The family of all projective R-modules is closed under taking essential extensions.

4) Every R-module is expressed as a direct sum of a projective module and a singular module.

It should be noted that rings satisfying the conditions in Theorem I or Theorem II are completely characterized in terms of ideals by Harada [13] ~ [15]. To be specific, let R be a semi-perfect ring and let $\{e_i\} \cup \{f_i\}$ be a complete set of orthogonal primitive idempotents of R, where $e_i R$ is a nonsmall module and $f_i R$ is a small module. It is shown in [13, Theorem 5] that R satisfies the condition 2) in Theorem I iff, for each e_i , there exists n_i such that $e_i R/e_i S_t$ is injective for $0 \le t \le n_i$ and $e_i R/e_i S_{n_i+1}$ is a small module, where $\{S_i\}$ is the ascending Loewy chain of R as a right R-module. Dually, it is shown in [15, Theorem 3.6] that R satisfies the condition (*)* iff 1) each $e_i R$ is injective, 2) each $f_j R$ can be enbedded in some $e_i R$ and 3) for each e_i , there exists n_i such that $e_i J_i$ is projective for $t \le n_i$ and $e_i J_{n_i+1}$ is a singular module, where $\{J_i\}$ is the descending Loewy chain of R.

We call, in this paper, that R is a right H-ring if it satisfies one of equivalent conditions in Theorem I; while R is a right co-H-ring if it satisfies one of the equivalent conditions in Theorem II. Left H-rings and left co-Hrings are symmetrically defined and both right and left H-rings (resp. both right and left co-*H*-rings) are simply called *H*-rings (resp. *co-H*-rings). It is shown in Theorem 4.3 that a ring R is a QF-ring iff it is a right H-rings with J(R) = Z(R), and iff it is a right co-H-ring with J(R) = Z(R), where J(R) and Z(R) are the Jacobson radical and the singular right ideal of R, respectively. Generalized uniserial rings are also H-rings and co-H-rings (cf. [23]). For an algebra R over a field of finite dimension, R is a right H-ring iff it is a left co-H-ring (Theorem 5.1). Combining Theorems I and II with the Colby-Rutter's theorem [4, Theorem 1.3], we see that right H-rings and right co-H-rings are semiprimary QF-3 rings. For a right non-singular ring R, it is shown in Theorem 4.6 that R is a right H-ring iff it is a right co-H-ring, and iff it is Morita equivalent to a finite direct sum of upper triangular matrix rings over division rings. We can give two typical examples of right H-rings and right co-H-rings which are constructed by local QF-rings. Using one of these examples, we show that right H-rings (resp. right co-H-rings) are not always left H-rings (resp. left co-H-rings).

I. Preliminaries

Throughout this paper we assume that R is an associative ring with identity and all R-modules considered are unitary right R-modules. Let M

be an *R*-module. We use E(M), J(M), Soc(M) and Z(M) to denote the injective hull, the Jacobson radical, the socle and the singular submodule of M, respectively. Furthermore, by $\{J_i(M)\}_I$ and $\{S_i(M)\}_I$, we denote the descending Loewy chain and the ascending Loewy chain of M, respectively;

$\mathbf{J}_{0}(\boldsymbol{M}) = \boldsymbol{M}$	$S_0(M) = 0$
$\mathbf{J}_1(\boldsymbol{M}) = \mathbf{J}(\boldsymbol{M})$	$S_1(M) = Soc(M)$

For submodules A, B of M with $A \subseteq B$, we write $A \subseteq_e B$ to denote that A is an essential submodule of B; while we use $A \subseteq_e B$ in M to denote that A is co-essential in B, i. e., B/A is a small submodule of M/A. For a subset X of M, $\operatorname{Ann}_r(X)$ (resp. $\operatorname{Ann}_t(X)$) means its right (resp. left) annihilator ideal $\{r \in R | Xr = 0\}$ (resp. $\{r \in R | rX = 0\}$).

For two R-modules M and N, we use the symbol $M \subseteq N$ to stand for 'M is isomorphic to a submodule of N'. For given set S, |S| denotes its cardinal number. The term 'ACC' means the ascending chain condition. For a cardinal τ , τM means the direct sum of τ -copies of an R-module M.

DEFINITION. We say that an *R*-module *M* is an *extending* module if, for any submodule *A* of *M*, there exists a direct summand A^* of *M* such that $A \subseteq_e A^*$. Dually, we say that *M* is a *lifting* module if, for any submodule *A* of *M*, there exists a direct summand A^* of *M* such that $A^* \subseteq_e A$ in *M*.

DEFINITION ([17]). An R-module M is said to have the extending property of uniform modules if, for any uniform submodule A of M, there exists a direct summand A^* of M with $A \subseteq_e A^*$. In the case when M has a decomposition $M = \sum_{I} \bigoplus M_{\alpha}$, M is said to have the extending property of finite contained uniform modules with respect to $M = \sum_{I} \bigoplus M_{\alpha}$ if, for any uniform submodule A of M with $A \subseteq \sum_{F} \bigoplus M_{\beta}$ for some finite subset F of I, there exists a direct summand A^* of M such that $A \subseteq_e A^*$.

DEFINITION ([18], [21]). An *R*-module *M* is said to be *continuous* if *M* is an extending module and satisfies the condition: For any direct summand *A* of *M*, every monomorphic image of *A* to *M* is a direct summand of *M*. *M* is said to be *quasi-continuous* if *M* is an extending module and satisfies the condition: For any direct summands A_1 , A_2 of *M*, the condition $M_e \supseteq A_1 \bigoplus A_2$ implies $M = A_1 \bigoplus A_2$.

DEFINITION ([22], cf [20]). An R-module M is said to be semiperfect if

M is a lifting module and satisfies the condition: For any direct summand *A* of *M* and any epimorphism φ from *M* to M/A, ker φ is a direct summand of *M*. *M* is said to be *quasi-semiperfect* if *M* is a lifting module and satisfies the condition: For any direct summands A_1 , A_2 of *M*, if $M=A_1+A_2$ and $A_1 \cap A_2$ is small in *M* then $M=A_1 \oplus A_2$.

We note that quasi-injective \Rightarrow continuous \Rightarrow quasi-continuous; while semiperfect \Rightarrow quasi-semiperfect, and that, when R is a right perfect ring, quasiprojective \Rightarrow semiperfect.

DEFINITION ([13] ~ [15], cf [24]). An *R*-module *M* is said to be a small module if it is small in its injective hull, and is said to be a non-small module if it is not a small module. Dually, *M* is said to be a cosmall module if, for any projective module *P* and any epimorphism $f: P \rightarrow M$, ker *f* is an essential submodule of *P*, and *M* is said to be a non-cosmall module if it is not a cosmall module.

The following results are used in this paper.

THEOREM A ([6, 20.3 A, 20.6 A], cf [23]). For a given quasi-injective R-module M, the following conditions are equivalent:

- 1) M is Σ -quasi-injective.
- 2) $\chi_0 M$ is quasi-injective.
- 3) E(M) is Σ -injective.
- 4) $\chi_0 E(M)$ is injective
- 5) The ACC holds on $\{\operatorname{Ann}_r(X) \mid X \subseteq E(M)\}$.

Further, when this is so, M is expressed as a direct sum of completely indecomposable modules.

THEOREM B ([7], [26]). Quasi-injective R-modules satisfy the exchange property.

THEOREM C. If M is a Σ -quasi-injective R-module, then M satisfies the following condition:

(K) For any independent family $\{A_{\alpha}\}_{I}$ of submodules of M, if $\sum_{I} \bigoplus A_{\alpha}$ is a locally direct summand of M, i.e., $\sum_{F} \bigoplus A_{\beta} \langle \bigoplus M$ for any finite subset F of I, then $\sum_{I} \bigoplus A_{\alpha}$ is just a direct summand of M.

PROOF. This is clear from Theorems A, B and [12, Theorem 3.2.5].

We quote the Colby-Rutter's characterizations of semiprimary QF-3 rings ([4, Theorem 1.3]) as follows:

THEOREM D. The following conditions are equivalent for a given ring R:

1) R is ring perfect and contains a faithful Σ -injective right ideal.

2) R is right perfect and the injective hull of every projective R-module is projective.

3) R is right perfect and the projective cover of every injective R-module is injective.

4) R is right and left perfect and contains faithful injective right and left ideals, respectively.

When this is so, then R satisfies ACC on right, and also left, annihilator ideals. The conditions 1 > 4 are right-left symmetric, and a ring R satisfying one of these conditions is just a semiprimary QF-3 ring.

2. H-ring

In this section, we shall prove Theorem I mentioned in introduction. Therefore, we are concerned with the following:

(#) Every injective R-module is a lifting module.

(*) Every non-small R-module contains a non-zero injective submodule.

(ICC) The family of all injective R-modules is closed under taking small covers, i. e., for any exact sequence $P \xrightarrow{\phi} E \rightarrow 0$ where E is injective and ker ϕ is small in P, P is injective.

(ISD) Every R-module is expressed as a direct sum of an injective module and a small module.

The condition (*) is due to Harada ([13], [15]). It is easy to see that (*) is equivalent to the following condition: Let E be an injective R-module and A a submodule of E such that A is not small in E. Then, A contains a non-zero direct summand of E. On the other hand, we know that an R-module M is a lifting module iff, for any submodule A of M, there exists a decomposition $M=A^* \oplus A^{**}$ such that $A^* \subseteq A$ and $A \cap A^{**}$ is small in A^{**} . As a result, we have

Proposition 2.1. (\ddagger) *implies* (*).

PROPOSITION 2.2. (#) implies (ICC).

PROOF. Let $P \xrightarrow{\phi} E \rightarrow 0$ be an exact sequence such that E is injective and ker ϕ is small in P. Then we can take an epimorphism $\phi' : E(P) \rightarrow E$ with $\phi' | P = \phi$. By (\sharp), we have a decomposition $P = X \oplus Y$ such that X is injective and Y is small in E(P). Then $\phi'(Y) = \phi(Y)$ is small in E. So we get from $E = \phi(X) + \phi(Y)$ that $E = \phi(Y)$. Therefore, $P = X + \ker \phi$ and hence P = Xsince ker ϕ is small in P. Thus, P is injective **PROPOSITION** 2.3. (#) is equivalent to (ISD).

PROOF. Obviuos.

LEMMA 2.4. If an R-module M satisfies the condition (K) in Theorem C, then M is expressed as a direct sum of indecomposable modules.

PROOF. Assume that M does not contain a non-zero indecomposable direct summand. Then, using (K), we can see that every non-zero direct summand of M is expressed as a direct sum of countably infinite non-zero submodules. In particular, we express $M=N_1\oplus N_2$ with each $N_i \neq 0$. We pick a non-zero element x in N_1 . By Zorn's lemma, we can take a maximal independent family $\{M_{\alpha}\}_I$ of submodules of M such that $x \notin M' = \sum_I \oplus M_{\alpha}$ and $M' = \sum_I \oplus M_{\alpha}$ is a locally direct summand of M. Then, by (K), M= $M \oplus M''$ for some submodule M''. Since $x \notin M'$, we see $M'' \neq 0$. Therefore, M'' is written as a direct sum of countably infinite non-zero submodules; say $M'' = \sum_J \oplus T_{\beta}$. Since $x \in M = M' \oplus \sum_J \oplus T_{\beta}$, there exists a finite subset Fof J with $x \in M \oplus \sum_{F'} \oplus T_{r}$. Then, if $x \in M' \oplus \sum_{J=F'} T_{\beta}$, M' must contain x, a contradiction. So, $x \notin M' \oplus \sum_{J=F'} T_{\beta}$. However, this contradicts the maximality of M'. Thus, we conclude that M and every non-zero direct summand of M contain non-zero indecomposable direct summands. From this fact and (K), M is clearly expressed as a direct sum of indecomposable modules.

LEMMA 2.5. If M is a continuous lifting R-module, then it satisfies the condition (K) in Theorem C.

PROOF. Let $\{A_{\alpha}\}_{I}$ be an independent family of submodules of M such that $A = \sum_{I} \bigoplus A_{\alpha}$ is a locally direct summand of M. Since M is a lifting R-module, we have a decomposition $M = A^* \bigoplus A^{**}$ such that $A = A^* \bigoplus (A \cap A^{**})$ and $A \cap A^{**}$ is small in A^{**} . We want to show $A = A^*$. Assume that $A \cap A^{**} \neq 0$ and take a non-zero element x in $A \cap A^{**}$. Then $xR \subseteq A_{\alpha_1} \bigoplus \cdots \bigoplus A_{\alpha_n}$ for some $\{\alpha_1, \dots, \alpha_n\} \subseteq I$. Since $B = A_{\alpha_1} \bigoplus \cdots \bigoplus A_{\alpha_n}$ is an extending module (cf. [21, Proposition 1.4]), there exists a direct summand $X \langle \bigoplus B$ with $xR \subseteq_e X$. Then, we see that $X \cap A^* = 0$; whence there exists a submodule $Y \subseteq A \cap A^{**}$ with $X \simeq Y$. However, the continuity of M shows that $Y \langle \bigoplus M$, which contradicts that Y is small in M. Accordingly, $A \cap A^{**} = 0$.

By Proposition 2.1, Lemmas 2.4 and 2.5 and [15, Lemma 2.1], we have

PROPOSITION 2.6. Assume that (\ddagger) holds. Then, every injective R-

module is expressed as a direct sum of cyclic hollow modules. Therefore, R is a right artinian ring, by Faith-Walker's theorem ([5], [6, 20.17]).

PROPOSITION 2.7. If R is a right noetherian ring with (*) then it satisfies (#).

PROOF. Let E be an injective R-module and A a non-small submodule of E. We can take a maximal independent family $\{A_{\alpha}\}_{I}$ of non-zero injective submodules of A. Put $A' = \sum_{I} \bigoplus A_{\alpha}$. Since R is right noetherian, A' is also injective (cf. [5, 20. 1]); whence we have $E = A' \bigoplus A''$ for some submodule A''. So, we may show that $A \cap A''$ is small in A''. If not, then we can take a non-zero injective submodule of $A \cap A''$ since A'' also satisfies (*). But this contradicts the maximality of $\{A_{\alpha}\}_{I}$.

LEMMA 2.8. Consider an exact sequence: $H = \sum_{I} \bigoplus H_{\alpha} \xrightarrow{\phi} E \longrightarrow 0$, where each H_{α} is a cyclic hollow injective R-module with non-zero socle and E is an indecomposable injective R-module but not cyclic hollow. Then, ker ϕ contains Soc (H).

PROOF. Put $K = \ker \phi$ and $S_{\alpha} = \operatorname{Soc}(H_{\alpha})$ for each $\alpha \in I$. If K does not contain $\operatorname{Soc}(H)$ then there exists $\alpha \in I$ such that $S_{\alpha} \nsubseteq K$. In this case, $(S_{\alpha} + K)/K \simeq S_{\alpha}$ and hence $S_{\alpha} \subseteq E$. This implies that $E(S_{\alpha}) = H_{\alpha} \simeq E$; whence E is cyclic hollow, a contradiction.

NOTATION. For convenience's sake of the statement of the lemma below, we say that an *R*-module *M* satisfies (F) if *M* satisfies the ACC on $\{\operatorname{Ann}_r(X) \mid X \subseteq M\}$.

LEMMA 2.9. Let e be an idempotent of R. If eR satisfies (F) then $eR/eAnn_{l}(J^{k})$ satisfies (F) for all integer $k \ge 1$, where J = J(R).

PROOF. We put $e\overline{R} = eR/e\operatorname{Ann}_{l}(J^{k})$ and $e\overline{R} = eR/e\operatorname{Ann}_{l}(J^{k+1})$. Assuming that $e\overline{R}$ satisfies (F), we want to show that \overline{eR} satisfies (F). For any subset X of eR, we note that

$$\operatorname{Ann}_{r}(\overline{X}) = \left\{ r \in R \mid Xr \subseteq e \operatorname{Ann}_{l}(J^{k}) \right\}$$
$$= \left\{ r \in R \mid XrJ^{k} = 0 \right\},$$
$$\operatorname{Ann}_{r}(\overline{X}) = \left\{ r \in R \mid Xr \subseteq e \operatorname{Ann}_{l}(J^{k+1}) \right\}$$
$$= \left\{ r \in R \mid XrJ^{k+1} = 0 \right\}.$$

Now, assume that $e\overline{R}$ does not satisfy (F). Then we can take subsets $\{X_i\}$ of eR such that $X_1 \supseteq X_2 \supseteq \cdots$ and

 $\operatorname{Ann}_r(\overline{X}_1) \subsetneqq \operatorname{Ann}_r(\overline{X}_2) \subsetneqq \cdots$.

Then, there exist r_2, r_3, \cdots in R such that $X_i r_i J^{k+1} = 0$ but $X_{i-1} r_i J^{k+1} = 0$ for $i=2, 3, \cdots$. Hence we can take $t_i \in J$ such that $X_i r_i t_i J^k = 0$ but $X_{i-1} r_i t_i J^k \neq 0$ for $i=2, 3, \cdots$. This shows that $\operatorname{Ann}_r(\bar{X}_1) \subsetneq \operatorname{Ann}_r(\bar{X}_2) \subsetneqq \cdots$, a contradiction. Thus \overline{eR} must satisfy (F).

PROPOSITION 2.10. If R is a right perfect ring with (ICC), then the following hold:

1) R is a semiprimary QF-3 ring.

2) Every indecomposable injective R-module is a cyclic hollow module. More precisely, if E is an indecomposable injective R-module, then there exists a primitive idempotent e in R and an integer $k \ge 0$ such that E is isomorphic to $eR/eAnn_{l}(J^{k})$, where J=J(R).

3) Every cyclic hollow non-small R-module is injective.

PROOF. 1) This follows from Theorem D.

2) Let E be an indecomposable injective R-module. Consider a projective cover: $P \xrightarrow{\varphi} E \rightarrow 0$, and express P as $P = \sum_{I} \bigoplus e_{\alpha} R$, where each e_{α} is a primitive idempotent of R. Now, (ICC) says that P is injective; so is each $e_{\alpha}R$. Assume that E is not cyclic hollow. Then, ker ϕ contains $S_1(P) =$ $\sum_{I} \bigoplus e_{\alpha} S_{1}(R)$ by Lemma 2.8. So, ϕ induces an epimorphism $\phi_{1}: P/S_{1}(P) =$ $\sum_{r} \bigoplus e_{\alpha} R/e_{\alpha} S_{1}(R) \rightarrow E.$ Then, ker ϕ_{1} is small in $P/S_{1}(P)$. Therefore, again (ICC) shows that $P/S_1(P)$ and each $e_{\alpha}R/e_{\alpha}S_1(R)$ are injective. Then, again, by Lemma 2.8, ker ϕ_1 contains $S_2(P)/S_1(P)$ or, equivalently, ker ϕ contains $S_2(P)$. Hence ϕ induces an epimorphism $\phi_2: P/S_2(P) = \sum_r \bigoplus e_{\alpha} R/e_{\alpha} S_2(R) \rightarrow E$. Thus, the same argument inductively works and we see that ker ϕ contains $S_{\tau}(P)$ for all ordinal τ . However, as R is a left perfect ring, this implies that ker $\phi = P$, a contradiction. Therefore E must be a cyclic hollow module. Hence we can take $e \in \{e_a\}_I$ such that $\phi(eR) = E$. Put $\phi = \phi | eR$. Since R is a semiprimary ring by 1), we can take an integer t such that $S_t(R) = R$; so there must exist k such that ker $\psi \supseteq eS_k(R)$ but ker $\psi \supseteq eS_{k+1}(R)$. Then, ψ induces an isomorphism : $eR/S_k(R) \simeq E$. Since $S_k(R) = \operatorname{Ann}_l(J^k)$, the proof of 2) is completed.

3) Let M be a cyclic hollow non-small R-module, and put E=E(M). Since R is a left perfect ring, $\operatorname{Soc}(E)\subseteq_e E$. Let us express $\operatorname{Soc}(E)$ as $\operatorname{Soc}(E) = \sum_I \bigoplus S_{\alpha}$, where each S_{α} is a simple module. Then, by Theorem A, Lemma 2.9 and 2), we see that $\operatorname{E}(S_{\alpha})$ is a cyclic hollow Σ -injective module. Hence, $E=\sum_I \bigoplus \operatorname{E}(S_{\alpha})$ and I is a finite set. Put $I=\{1, \dots, n\}$, and let $\pi_i: E=\operatorname{E}(S_1)$

 $\oplus \cdots \oplus E(S_n) \rightarrow E(S_i)$ be the projection. Since *M* is a non-small module, there must exist *i* such that $\pi_i(M) = E(S_i)$. Thus *M* is injective by (ICC).

We have now our first main theorem.

THEOREM 2.11. The following conditions are equivalent for a given ring R:

1) R satisfies (#).

2) R is a right artinian ring with (*).

3) R is a right perfect ring with (ICC).

4) R satisfies (ISD).

5) R is a right and left perfect ring with the condition: For any primitive idempotent e in R with eR non-small, there exists an integer t satisfying

a) $eR/eS_k(R)$ is injective for all $0 \le k \le t$, and

b) $eR/eS_{t+1}(R)$ is a small module.

When this is so, R is then a semiprimary QF-3 ring.

PROOF. For a ring with (*), we know from Harada [13] and [15] that the following conditions are equivalent:

i) R is right artinian.

- ii) R is right noetherian.
- iii) R is right and left perfect.

Now, $2\rangle \Leftrightarrow 5\rangle$ is due to Harada [15, Theorem 2.3]. $1\rangle \Leftrightarrow 2\rangle$ follows from Propositions 2.1 and 2.6. $2\rangle \Rightarrow 1\rangle$ follows from Proposition 2.7. $1\rangle \Leftrightarrow 4\rangle$ is just Proposition 2.3. $1\rangle \Rightarrow 3\rangle$ follows from Propositions 2.1 and 2.2. The proof is completed if we prove $3\rangle \Rightarrow 5\rangle$. Assume that 3) holds. By 1) of Proposition 2.10, *R* is right and left perfect. Using 3) of Proposition 2.10, we can easily show that a) and b) in 5) hold.

DEFINITION. In honor of Harada [13] and [15], we call that a ring R is a right *H*-ring if it satisfies one of the equivalent conditions in Theorem 2.11. Left *H*-rings are symmetrically defined and right and left *H*-rings are simply called *H*-rings.

REMARK. Let R be a right artinian ring whose indecomposable injective R-modules are finitely generated modules. Then, in view of the proofs of all results in this section, we see that the following conditions are equivalent:

1) R is a right H-ring.

2) Every finitely generated injective R-module is a lifting module.

3) Every finitely generated non-small R-module contains a non-zero injective submodule.

4) The family of all finitely generated injective R-modules is closed under taking small covers.

5) Every finitely generated R-module is expressed as a direct sum of an injective module and a small module.

3. Co-H-ring

This section is concerned with Theorem II mentioned in introduction. Therefore, the following conditions are studied:

 $(\#)^{*}$ Every projective R-module is an extending module.

(*)* Every non-cosmall R-module contains non-zero projective direct summand.

(PEC) The family of all projective R-modules is closed under taking essential extensions.

(PSD) Every R-module is expressed as a direct sum of a projective module and a singular module.

The condition(*)* is due to Harada and semiperfect rings with this condition has been settled in terms of ideal theoretic properties ([14], [15]).

PROPOSITION 3.1. $(\ddagger)^{\ddagger}$ implies (PSD).

PROOF. Let M be an R-module. Consider an exact sequence: $P \xrightarrow{\phi} M \rightarrow 0$, where P is a free R-module. By $(\#)^{\sharp}$, there exists a decomposition $P = P_1 \bigoplus P_2$ with ker $\phi \subseteq_e P_1$. Then $M = \phi(P_1) \bigoplus \phi(P_2)$, $P_2 \simeq \phi(P_2)$ and $P_1/\text{ker} \phi \simeq \phi(P_1)$. As a result, $\phi(P_2)$ is projective and $\phi(P_1)$ is a singular module.

LEMMA 3.2. ([15], [24]). The following statements hold about noncosmall modules:

1) An R-module M is non-cosmall iff it does not coincide with its singular module,

2) If an R-module M contains a non-zero projective submodule, then it is non-cosmall.

PROPOSITION 3.3. (PSD) implies (PEC).

PROOF. Let P be a non-zero projective R-module, and consider an Rmodule M with $P \subseteq_e M$. By (PSD), M is written as $M = Q \oplus Z$, where Q is projective and Z singular. Let $\pi \colon M = Q \oplus Z \rightarrow Q$ be the projection. By (PSD), $\pi(P)$ is expressed as $\pi(P) = T \oplus V$, where T is projective and V singular. Let $\omega \colon \pi(P) = T \oplus V \rightarrow T$ be the projection. Since T is projective, we have a decomposition $P = P_1 \oplus P_2$ such that $P_1 \simeq T$ by $\omega \pi$ and $\omega \pi(P_2) = 0$. Then $P_2 \subseteq V \oplus Z$. Since $V \oplus Z$ is a singular module, we see $P_2 = 0$ by Lemma 3.2. Thus $P \simeq T$ by $\omega \pi$. Since $P \subseteq_e M$, this easily shows that Z=0 and hence M=Q; so M is projective.

LEMMA 3.4. Assume that R satisfies (PEC). Then, every projective injective R-module contains an indecomposable cyclic Σ -injective module. So, in particular, every indecomposable projective injective R-module is cyclic Σ -injective.

PROOF. Let P be a projective and injective R-module. We take a cardinal number τ such that $\tau > \max \{\chi_0, |R|\}$, and consider the injective hull $E = E(\tau P)$. Then, we see from Theorem B that E is written as a direct sum cyclic submodules, say $E = \sum_{I} \bigoplus x_{\alpha} R$. Then, clearly, $|I| \ge \tau$. As a result, there must exist a subset J of I such that $|J| \ge \chi_0$ and $x_{\alpha} R \simeq x_{\beta} R$ for any α , $\beta \in J$. So, according to Theorem A, $x_{\alpha} R$ is Σ -injective for every $\alpha \in J$ and is expressed as a direct sum of indecomposable cyclic modules. Thus, at any rate, we can take a uniform submodule X of E such that E(X) is indecomposable cyclic Σ -injective. Clearly, $E(X) \subseteq \tau P$ and hence we see that $E(X) \subseteq P$ by Theorem B.

LEMMA 3.5. Assume that R satisfies (PEC), and let $\{P_{\alpha}\}_{K}$ be a family of indecomposable projective injective R-modules. Then, $P = \sum_{K} \bigoplus P_{\alpha}$ is Σ -injective.

PROOF. We can assume that $P_{\alpha} \not\cong P_{\beta}$ for any $\alpha \neq \beta$. We take a cardinal τ with $\tau > \max \{\chi_0, |R|\}$, and consider $E = E(\tau P)$. Then, as in the proof of Lemma 3.4, E is written as

$$E=\sum_{I} \bigoplus x_{\alpha} R$$

where $|I| \ge \tau$ and we see that there exists an infinite subset J of I such that $x_{\alpha}R \simeq x_{\beta}R$ for any α , $\beta \in J$. We note that each $x_{\alpha}R$ contains an indecomposable injective module isomorphic to some P_{β} in $\{P_{\beta}\}_{K}$ by Lemma 3.4 and Theorem B.

Here, we consider the partitions $I = \bigcup_{\Gamma} I_{\tau}$ and $\Gamma = \Gamma_1 \cup \Gamma_2$ such that, for any $\alpha \in I_{\tau}$ and $\beta \in I_{\sigma}$,

$$egin{array}{lll} x_{lpha}R\simeq x_{eta}R & ext{if} & \gamma=\sigma\,, \ x_{lpha}R
ot=x_{eta}R & ext{if} & \gamma
ot=\sigma\,, \ |I_{r}|\geq\chi_{0} & ext{if} & \gamma\in\Gamma_{1} \ |I_{r}|<\infty & ext{if} & \gamma\in\Gamma_{2}\,. \end{array}$$

Then, we see that $|\Gamma_2| \leq |R|$. Put $I_i = \bigcup_{\alpha \in \Gamma_i} I_{\alpha}$, i=1, 2. By Theorem A, for any $\alpha \in I_1$, $x_{\alpha}R$ is expressed as a direct sum of indecomposable Σ -injective modules. Therefore, we can assume that, for any $\alpha \in I_1$, $x_{\alpha}R$ is an indecomposable Σ -injective module isomorphic to some member in $\{P_{\beta}\}_K$.

We put $E_i = \sum_{L_i} \bigoplus x_{\alpha} R$, i = 1, 2. Then,

$$\chi_0 E_1 = \sum_{\Gamma_1} \chi_0(\sum_{\Gamma_{\gamma}} \bigoplus x_{\alpha} R) \simeq \sum_{\Gamma_1} (\sum_{\Gamma_{\gamma}} \bigoplus x_{\alpha} R) = E_1$$

Hence, E_1 is Σ -injective by Theorem A. From this fact, we can assume that, for any $\beta \in I_2$, $x_{\beta}R$ does not contain any direct summand isomorphic to some member in $\{x_{\alpha}R\}_{I_1}$. Here, consider

$$K_1 = \left\{ \beta \in K | P_\beta \text{ is isomorphic to some member in } \{x_\alpha R\}_{I_1} \right\}.$$

We claim that $K = K_1$. Assume $K_2 = K - K_1 \neq \phi$ and put $Q = \sum_{K_2} \bigoplus P_{\delta}$. By Theorem B, we see that any indecomposable direct summand of E_i is isomorphic to some member in $\{P_{\beta}\}_{K_i}$ for i=1, 2. From this fact we conclude that $\tau Q \cap E_1 = 0$; whence $\tau Q \subseteq E_2 = \sum_{\Gamma_2} \sum_{\Gamma_7} \bigoplus x_{\beta} R$. However, this shows that $|\Gamma_2| \geq \tau$, a contradiction. Consequently $K = K_1$ and hence P is isomorphic to a direct summand of E_1 . Thus, P is Σ -injective.

By Lemmas 3.4 and 3.5, we have

PROPOSITION 3.6. Assume that R satisfies (PEC). Then, for any projective R-module P, E(P) is projective Σ -injective and, moreover, P is expressed as a direct sum of indecomposable cyclic modules.

REMARK. From the above proposition, we see that if R satisfies (PEC) then the identity of R is written as a sum of primitive orthogonal idempotents.

LEMMA 3.7. Assume that R satisfies (PEC) and let $\{f_j\}$ a complete set of primitive idempotents. Then, each $f_j R$ is Σ -quasi-injective and $Z(f_j R)$ $= Z(E(f_j R))$. More precisely, there exist a subset $\{e_i\} \subseteq \{f_j\}$ and integers $\{n_i\}$ such that

1) each $e_i R$ is injective,

2) $e_i J^t$ is cyclic projective for $t \leq n_i$ and $e_i J^{n_i+1} = Z(e_i R)$,

3) for any $f \in \{f_j\}$, there exists $e \in \{e_i\}$ such that $E(fR) \simeq eR$, where J = J(R).

PROOF. Let $f \in \{f_j\}$. By Proposition 3.6, E(fR) is written as a direct sum of indecomposable Σ -injective cyclic projective modules, say $E(fR) = p_1 R \oplus \cdots \oplus p_m R$. We show m=1. Consider the projection $\pi_i : E(fR) = \sum_{i=1}^n \oplus p_i R \oplus \cdots \oplus p_m R$.

 $p_i R \rightarrow p_i R$, $i=1, \dots, n$ Then $fR \subseteq_e \sum_{i=1}^n \bigoplus \pi_i(fR)$. Hence, by (PEC), each $\pi_i(fR)$ is projective. Therefore, $fR \simeq \pi_1(fR)$, whence we see that $fR \cap \sum_{i=2}^n \bigoplus p_i R = 0$. Thus, E(fR) is indecomposable Σ -injective and cyclic projective. So, in particular, fR is uniform. Moreover, using Theorem B, we see that there exist $e \in \{f_i\}$ and an isomorphism : $E(fR) \cong eR$.

Now, assume that $\phi(fR) \subseteq eR$. Then $\phi(fR) \subseteq eJ^*$; whence eJ is indecomposable Σ -quasi-injective projective by (PEC) and Lemma 3.4. Again, by Theoren B, eJ is isomorphic to some f_iR . Then eJ^2 is a unique maximal submodule of eJ and hence it is Σ -quasi-injective (cf. Theorem A). If $eJ \neq \phi(fR)$ then $\phi(fR) \subseteq eJ^2$ and we see, as above, that eJ^2 is Σ -quasiinjective cyclic projective and is isomorphic to some f_jR . This procedure terminates. For, if otherwise then eJ^t is Σ -quasi-injective projective and isomorphic to some f_jR for $t=0, 1, \cdots$. Then there must exist distinct t_1 , t_2 such that $eJ^{t_1} \simeq eJ^{t_2}$. However, then, by the fully invarientness of eJ^{t_1} and eJ^{t_2} we see $eJ^{t_1} = eJ^{t_2}$, a contradiction. Thus there exists an integer n such that eJ^t is indecomposable Σ -quasi-injective and isomorphic to some f_jR for $t \leq n$ and $eJ^n = \phi(fR)$; so fR is Σ -quasi-injective.

We further observe eJ^{n+i} . Since eJ^n is Σ -quasi-injective and is isomorphic to some f_jR , we also see that eJ^{n+1} is also Σ -quasi-injective. If eJ^{n+1} is projective then eJ^{n+1} is Σ -quasi-injective and isomorphic to some f_jR by the same arqument above. If eJ^{n+2} is projective, similarly eJ^{n+2} is Σ -quasi-injective and isomorphic to some f_jR . This procedure also terminates by the same reason above. Hence there must exists s such that eJ^{n+i} is Σ -quasi-injective cyclic projective for $1 \leq i \leq s$ and eJ^{n+s+1} is not projective.

Put k=n+s. In view above, we see $Z(eR)=Z(eJ^n)=Z(eJ^k)\subseteq eJ^{k+1}$. It remains only to prove $Z(eR)=eJ^{k+1}$. Assuming $Z(eR)\neq eJ^{k+1}$ we take $x\in eJ^{k+1}$ such that xR is not singular, i. e., $\operatorname{Ann}_r(x)$ is not essential in R. Then, noting that each f_jR is uniform, there exists f_jR such that $\operatorname{Ann}_r(x)\cap f_jR=0$. But this implies $f_jR \subseteq xR \subseteq eJ^{k+1}$ and hence eJ^{k+1} is projective by (PEC), a contradiction. Thus $Z(eR)=eJ^{k+1}$.

THEOREM 3.8. If R satisfies (PEC) then R is a semiprimary ring satisfying $(*)^*$ and the ACC on right annihilator ideals.

PROOF. Note that uniform quasi-injective *R*-modules are completely indecomposable. From this fact, Lemma 3. 7, [15, Theorem 3. 6], Proposition

^{*)} For a primitive idempotent e, eR is completely indecomposable iff eJ(R) is a unique maximal submodule of eR ([27]).

3.6 and Theorem A we conclude that R is a semiperfect ring satisfying $(*)^*$ and the ACC on right annihilator ideals. Now, to prove the remainder, it suffices to show that R is right perfect (cf. [1, Proposition 29.1]). By Lemma 3.7, every projective R-module is written as a finite direct sum of quasi-injective modules. Therefore, every projective R-module satisfies the exchange property (Theorem B). So, R is a right perfect ring by [16] or [28].

PROPOSITION 3.9. The condition (*)* is equivalent to the condition: For any projective R-module P and any submodule A of P, if A is not essential in P then there exists a proper direct summand $B \langle \bigoplus P \text{ with } A \subseteq B$.

PROOF. Assume that (*)* holds and let P be a projective R-module and A a submodule of P which is not essential in P. Then, P/A is noncosmall and hence P/A is written as $P/A = X \oplus Y$, where X is non-zero projective. Since the canonical epimorphism $\phi: P \to X \to 0$ splits, we get $P = \ker \phi \oplus Q$ for some submodule Q. Then $\ker \phi \supseteq A$ and $Q \neq 0$.

Conversely, let M be a non-cosmall R-module and consider a sequence $F \xrightarrow{\phi} M \rightarrow 0$ where F is a free R-module. Then ker ϕ is not essential in F and hence we have a decomposition $F = F_1 \bigoplus F_2$ such that ker $\phi \subseteq F_1$ and $F_2 \neq 0$. Then we see that $M = \phi(F_1) \bigoplus \phi(F_2)$ and $F_2 \simeq \phi(F_2)$ by ϕ .

COROLLARY 3.10. If $(*)^*$ holds then every indecomposable projective R-module is uniform.

PROPOSITION 3.11. Assume that R satisfies $(*)^*$ and the identity of R is a sum of primitive orthogonal idempotents $\{f_j\}$. Then each f_jR is quasiinjective and moreover there exist a subset $\{e_i\} \subseteq \{f_j\}$ and integers $\{n_i\}$ satisfying

1) each $e_i R$ is injective,

2) $e_i J^t$ is cyclic projective for $t \leq n_i$ and $e_i J^{n_i+1} = Z(e_i R)$,

3) for any $f \in \{f_j\}$ there exists $e \in \{e_i\}$ such that $E(fR) \simeq eR$; so Z(fR) = Z(E(fR)), where J = J(R).

PROOF. By Corollary 3.10 each $f_j R$ is uniform. Let $f \in \{f_j\}$. Then E(fR) is indecomposable projective by Lemma 3.2. Hence using the exchange property of E(fR) (Theorem B) we see that there exists $e \in \{f_j\}$ and an isomorphism $E(fR) \simeq eR$.

Assume $\phi(fR) \subsetneq eR$. Then $Z(eR) = Z(eJ) \subseteq eJ$ and hence, again, by Lemma 3.2 and Theorem B, we see that eJ is quasi-injective and projective, and is isomorphic to some f_jR . Similarly if $\phi(fR) \subsetneq eJ$ then eJ^2 is quasiinjective and projective, and is isomorphic to some f_jR . This procedure

terminates as in the proof of Lemma 3.7. Therefore there exists n such that eJ^t is projective and quasi-injective for any $t \le n$, $eJ^n = \phi(fR) \simeq fR$ and $eJ^{n+1} = Z(eR) = Z(\phi(fR))$.

THEOREM 3.12. If R satisfies $(*)^*$ and the ACC on right annihilator ideals then R is a semiprimary ring with Σ -quasi-injective singular submodule Z(R); so Z(P) is quasi-injective for every projective R-module P.

PROOF. Since R satisfies the ACC on right annihilator ideals, the identity of R is written as a sum of orthogonal primitive idempotents $\{f_j\}$. According to Proposition 3. 11 each f_jR is uniform and quasi-injective; so is completely indecomposable. Thus R is a semi-perfect ring. Furthermore, each f_jR is Σ -quasi-injective by Theorem A. Hence, by the same proof as in the proof of Theorem 3.8 we see that R is a semiprimary ring. The remainder is clear from Proposition 3. 11 and Theorem A.

LEMMA 3.13. Assume that R satisfies (*)* and the ACC on right annihilator ideals. Let P be a projective R-module and let $P = \sum_{I} \bigoplus P_{\alpha}$ be an indecomposable decomposition. (Such a decomposition exists by Theorem 3.12.) Then any uniform submodule of P is finitely contained with respect to $P = \sum_{I} \bigoplus P_{\alpha}$, i. e., for any uniform submodule A of P there exists a finite subset F of I with $A \subseteq \sum_{F} \bigoplus P_{\alpha}$.

PROOF. By Proposition 3.11 and Theorem A we see that each P_{α} is uniform, each $E(P_{\alpha})$ is cyclic and $E(P) = \sum_{I} \bigoplus E(P_{\alpha})$. Let A be a uniform submodule of P. Then we can take $\alpha \in I$ such that $A \bigoplus_{I=(\alpha)} \bigoplus P_{\beta} \subseteq_{e} P$. Put $Q = \sum_{I=(\alpha)} \bigoplus P_{\beta}$, and denote, by π_{α} and π_{Q} , the projections : $P = P_{\alpha} \bigoplus Q \rightarrow P_{\alpha}$ and $P = P_{\alpha} \bigoplus Q \rightarrow Q$, respectively. Then the mapping $\psi : \pi_{\alpha}(A) \rightarrow Q$ given by $\psi(\pi_{\alpha}(a)) = \pi_{Q}(a)$ is a homomorphism and $A = \{x + \psi(x) \mid x \in \pi_{\alpha}(A)\}$. ψ is then extended to a homomorphism $\psi : E(P_{\alpha}) \rightarrow E(\sum_{I=(\alpha)} \bigoplus P_{\beta}) = \sum_{I=(\alpha)} \bigoplus E(P_{\beta})$. Since $E(P_{\alpha})$ is cyclic there exists a finite subset $F \subseteq I$ satisfying $\psi(E(P_{\alpha})) \subseteq \sum_{F} \bigoplus E(P_{\beta})$. This shows $\psi(A) \subseteq \sum_{F} \bigoplus P_{\alpha}$ and hence $A \subseteq P_{\alpha} \bigoplus \sum_{F'} \bigoplus P_{\beta}$.

LEMMA 3.14. Assume that R satisfies $(*)^*$ and the identity of R is a sum of orthogonal primitive idempotents. Then every projective R-module has the extending property of finitely contained uniform modules with respect to any indecomposable decomposition of P.

PROOF. By Proposition 3.11 we see that R is a semiperfect ring. Let P be a projective module. Since R is semiperfect, P has an indecomposable

decomposition $P = \sum_{I} \bigoplus P_{\alpha}$ (cf. [1, 27.1]). Our statement is the following: For any uniform submodule A of P such that $A \subseteq \sum_{F} \bigoplus P_{\alpha}$ for some finite subset $F \subseteq I$, there exists a direct summand A^* of P with $A \subseteq_e A^*$. However, in view of [17, Theorem 10], it suffices to show the following condition: Let f and g be primitive idempotents of R, and let A a submodule of fR and $\phi: A \rightarrow gR$ a homomorphism. Then, if ϕ is a monomorphism then there exists either $\psi: fR \rightarrow gR$ or $gR \rightarrow fR$ with $\psi|A = \phi$ or $\psi|\phi(A) = \phi^{-1}$. If ϕ is a non-monomorphism, then ϕ is extended to a homomorphism : $fR \rightarrow gR$.

This condition is verified by Proposition 3.11. Actually, ϕ is extended to a homomorphism $\phi: E(fR) \rightarrow E(gR)$. If ϕ is a monomorphism then ϕ is an isomorphism and, by Proposition 3.11, $\phi(fR) \subseteq gR$ or $\phi^{-1}(gR) \subseteq fR$. On the other hand, if ϕ is a non-monomorphism then, so is ϕ and, again by Proposition 3.11, $\phi(E(fR) \subseteq Z(E(gR)) = Z(gR) \subseteq gR$; whence $\phi(fR) \subseteq gR$. Thus the proof is completed.

By Lemmas 3.13 and 3.14, we have the following result.

THEOREM 3.15. Assume that R satisfies $(*)^*$ and the ACC on right annihilator ideals. Then every projective R-module has the extending property of uniform modules.

LEMMA 3.16. We assume that R is a right perfect ring with (*)*. Let P be a projective R-module and A a submodule of P. Then there exist decompositions $P=P^*\oplus Q$ and $A=A^*\oplus Z$ such that A^* is projective with $A^*\subseteq_e P^*$ and Z a singular module with $Z\subseteq Q$.

PROOF. Let $\{f_1, \dots, f_m\}$ be a complete set of orthogonal primitive idempotents of R. By Proposition 3.11 or [15, Theorem 3.1], there exists a subset $\{e_1, \dots, e_s\} \subseteq \{f_i\}$ and integers $\{n_1, \dots, n_s\}$ such that

1) each $e_i R$ is injective,

2) $e_i J^t$ is cyclic uniform projective for all $t \le n_i$ and $e_i J^{n_i+1} = \mathbb{Z}(e_i R)$,

3) every indecomposable projective R-module is isomorphic to some $e_i J^t$, where J = J(R).

We can assume that $\{e_1, \dots, e_s\}$ is the representative set of indecomposable projective injective *R*-modules, i. e., $e_i R \not= e_j R$ for any $i \neq j$. Then $\{e_i J^t | t \leq n_i, i \leq s\}$ is the representative set of indecomposable projective *R*-modules. For convinience's sake of the proof, we say that an indecomposable projective *R*-module is type (e_i, t) if it is isomorphic to $e_i J^t$.

Now, let A be a submodule of P. If A = Z(A), then there is nothing to prove; so assume $A \neq Z(A)$. Then, by [15, Proposition 3.2], A contains

a non-zero projective direct summand. In particular, A contains a non-zero indecomposable projective summand.

We can take $e_{i_1} \in \{e_i\}$ and $t_{1^i}^{i_1} \leq n_{i_1}$ such that

1) A contains a direct summand of type $(e_{i_1}, t_1^{i_1})$, but

2) A does not contain any direct summand of type (e_k, t) for $k < i_1$ and $t \le n_k$ and any direct summand of type (e_{i_1}, t) for $t < t_1^{i_1}$.

Using Zorn's lemma and Theorem 3.15, we can take a maximal independent family $\{P_{\alpha}\}_{I(e_{i_1},t_1^{i_1})}$ of indecomposable direct summands of P such that

3) $\sum_{I(e_{i_1}, i_1^{i_1})} \bigoplus P_{\alpha}$ is a locally direct summand of P, and

4) $A_{\alpha} = P_{\alpha} \cap A$ is a projective direct summand of A of type $(e_{i_1}, t_1^{i_1})$ such that $A_{\alpha} \subseteq {}_{e}P_{\alpha}$ for all $\alpha \in I(e_{i_1}, t_1^{i_1})$.

We put $I = I(e_{i_1}, t_1^{i_1})$, $P^{(e_{i_1}, t_1^{i_1})} = \sum_{I} \bigoplus P_{\alpha}$ and $A^{(e_{i_1}, t_1^{i_1})} = \sum_{I} \bigoplus A_{\alpha}$. Then, $P^{(e_{i_1}, t_1^{i_1})} \langle \bigoplus P$ by Theorem 3.12 and [22, Proposition 3.2]. We also show $A^{(e_{i_1}, t_1^{i_1})} \langle \bigoplus A$. For this purpose, let Q be a submodule of P such that

$$P = P^{(e_{i_1}, t_1^{i_1})} \oplus Q.$$

By π_{α} , we denote the projection : $P = P^{(e_{i_1}, t_1^i)} \bigoplus Q \rightarrow P_{\alpha}$ for all $\alpha \in I$. Since $P_{\alpha} \cap A = A_{\alpha}$ and A does not contain any direct summand of type (e_{i_1}, t) for $t < t_1^{i_1}$, we can verify $\pi_{\alpha}(A) = A_{\alpha}$ for all $\alpha \in I$ (cf. Proposition 3.11). As a result, we get

$$A = (\sum_{r} \bigoplus A_{\alpha}) \bigoplus (Q \cap A)$$

as desired.

We put $B=Q\cap A$. Then B has no direct summand of type $(e_{i_1}, t_1^{i_1})$ by the maximality of $\{P_{\alpha}\}_I$ and Theorem 3.15. If Z(B)=B the proof is completed. If $Z(B)\neq B$, then the same argument above works on $B\subseteq Q$ instead of $A\subseteq P$. In this case, the following two cases are considered.

The first case is that there exist $t_{2^1}^{i_1} > t_{1^1}^{i_1}$ and *B* has a direct summand of type $(e_{i_1}, t_{2^1}^{i_1})$ but does not contain any direct summand of type (e_{i_1}, t) for $t < t_{2^1}^{i_1}$. Then we can obtain decompositions

$$Q = \sum_{I(e_{i_1}, t_2^{i_1})} \bigoplus P_{\alpha} \bigoplus S,$$
$$B = \sum_{I(e_{i_1}, t_2^{i_1})} \bigoplus (P_{\alpha} \cap B) \bigoplus C$$

such that $C \subseteq S$, each P_{α} is indecomposable with $A_{\alpha} = P_{\alpha} \cap B \subseteq {}_{e}P_{\alpha}$, each A_{α} is projective and C does not contain a direct summand of type (e_{i_1}, t) for any $t < t_2^{i_1}$. Then we put $P^{(e_{i_1}, t_2^{i_1})} = \sum_{I(e_{i_1}, t_2^{i_1})} \bigoplus P_{\alpha}$ and $A^{(e_{i_1}, t_2^{i_2})} = \sum_{I(e_{i_1}, t_2^{i_1})} \bigoplus A_{\alpha}$.

The second case is that B does not contain any direct summand of type (e_{i_1}, t) . In this case we have $i_2 > i_1$ and $t_{1^2}^{i_2} < n_{i_2}$ such that B contains a direct summand of type $(e_{i_2}, t_{1^2}^{i_2})$ but not contain a direct summand of type (e_k, t) for $k < i_2$ and of type (e_{i_2}, t) for $t < t_{1^2}^{i_2}$. Then we also obtain decompositions

$$Q = \sum_{I(e_{i_2}, t_1^{i_2})} \bigoplus P_{\alpha} \bigoplus S,$$
$$B = \sum_{I(e_{i_2}, t_1^{i_2})} \bigoplus (P_{\alpha} \cap B) \bigoplus C$$

such that $S \supseteq C$, each P_{α} is indecomposable with $P_{\alpha e} \supseteq A_{\alpha} = P_{\alpha} \cap B$, each A_{α} is projective and C has no direct summand of type $(e_{i_2}, t_1^{i_2})$. Then we put $P^{(e_{i_2}, t_1^{i_2})} = \sum_{I(e_{i_2}, t_1^{i_2})} \bigoplus P_{\alpha}$ and $A^{(e_{i_2}, t_1^{i_2})} = \sum_{I(e_{i_2}, t_1^{i_2})} \bigoplus A_{\alpha}$.

Continuing this procedure we get

$$1 \le i_1 < i_2 < \cdots < i_k \le s$$

 $0 \le t_1^{i_j} < t_2^{i_j} < \cdots < t_{l_{i_s}}^{i_j}, \quad j = 1, \cdots, k,$

and

$$P = \sum_{j=1}^{l_{i_1}} \bigoplus P^{(i_1,t_j^{i_1})} \bigoplus \sum_{j=1}^{l_{i_2}} \bigoplus P^{(i_2,t_j^{i_2})} \bigoplus \cdots \bigoplus \sum_{j=1}^{l_{i_k}} \bigoplus P^{(i_k,t_j^{i_k})} \bigoplus W,$$

$$A = \sum_{j=1}^{l_{i_1}} \bigoplus A^{(i_1,t_j^{i_1})} \bigoplus \sum_{j=1}^{l_{i_2}} \bigoplus P^{(i_2,t_j^{i_2})} \bigoplus \cdots \bigoplus \sum_{j=1}^{l_{i_k}} \bigoplus P^{(i_k,t_j^{i_k})} \bigoplus V$$

such that each $A^{(i_u,t_j^{i_u})}$ is projective and of type $(e_{i_u}, t_j^{i_u})$, $P^{(i_u,t_j^{i_u})} \ge A^{(i_u,t_j^{i_u})}$ for each $(i_u, t_j^{i_u})$ and $V = Z(V) \subseteq W$. This completes the proof.

THEOREM 3.17. If R satisfies $(*)^*$ and the ACC on right annihilator ideals then R satisfies $(\#)^*$.

PROOF. Let P be a projective R-module and A a submodule of P. For our assertion we can assume $A \subseteq Z(P)$ by Lemma 3.16. Theorem 3.12 says that Z(P) is quasi-injective. This fact enable us to further assume that $A \triangleleft \bigoplus Z(P)$. By Proposition 3.11 and Theorem 3.12 we infer that Z(P) is written as a direct sum of completely indecomposable uniform modules. As a result, any non-zero direct summand of A has a non-zero completely indecomposable uniform direct summand (cf. Theorem B).

By Zorn's lemma we can take maximal independent families $\{P_{\alpha}\}_{I}$ of indecomposable direct summands of P and $\{A_{\alpha}\}_{I}$ of indecomposable direct summands of A such that $P_{\alpha e} \supseteq A_{\alpha}$ for all $\alpha \in I$ and both $\sum_{I} \bigoplus P_{\alpha}$ and $\sum_{I} \bigoplus A_{\alpha}$ are locally direct summands of P and A, respectively. Then we conclude $\sum_{I} \bigoplus P_{\alpha} \langle \bigoplus P \rangle$ by Theorem 3.12 and [22, Proposition 3.2] and $\sum_{I} \bigoplus A_{\alpha} \langle \bigoplus A \rangle$ by Theorem C; put

$$P = \sum_{I} \bigoplus P_{\alpha} \bigoplus Q,$$
$$A = \sum_{I} \bigoplus A_{\alpha} \bigoplus B.$$

Our proof is established by showing B=0. Assume $B\neq 0$ and take a nonzero uniform direct summand $C\langle \bigoplus B$. Let us consider an indecomposable decomposition $Q = \sum_{J} \bigoplus P_{\beta}$ and let $\pi_{r}: P = \sum_{K} \bigoplus P_{r} \to P_{r}$ be the projection for all $\gamma \in K = I \cup J$. According to Lemma 3.13 we can take a finite subset $F = \{\gamma_{1}, \dots, \gamma_{n}\} \subseteq K$ such that $C \subseteq P_{r_{1}} \bigoplus \dots \bigoplus P_{r_{n}}$. Put $J^{*} = F \cap J$.Since C is uniform and $C \cap \sum_{I} \bigoplus P_{\alpha} = 0$ we see that there exists $\beta_{0} \in J^{*}$ such that $\pi_{\beta_{0}}|C$ is monomorphic. Here consider the mapping $\psi: \pi_{\beta_{0}}(C) \to \sum_{J = [\beta_{0}]} \bigoplus \pi_{\beta}(C)$ given by $\pi_{\beta_{0}}(c) \to \sum_{J = [\beta_{0}]} \pi_{\beta}(c)$ and put $X = \{x + \psi(x) \mid x \in \pi_{\beta_{0}}(C)\}$. Then X is uniform and $\sum_{I} \bigoplus A_{\beta} \bigoplus C \subseteq_{e} \sum_{I} \bigoplus P_{\beta} \oplus C = \sum_{I} \bigoplus P_{\beta} \oplus X$. Now using Theorem 3.15 we get a uniform direct summand $Y \langle \bigoplus \sum_{J} \bigoplus P_{\beta}$ with $X \subseteq_{e} Y$. Thus we have a situation that

$$\sum_{I} \bigoplus A_{\alpha} \bigoplus C \langle \bigoplus A \rangle,$$
$$\sum_{I} \bigoplus A_{\alpha} \bigoplus C \subseteq_{e} \sum_{I} \bigoplus P_{\alpha} \bigoplus Y \langle \bigoplus P \rangle.$$

This contradicts the maximality of $\{P_{\alpha}\}_{I}$ and $\{A_{\alpha}\}_{I}$. Thus we have B=0 as desired.

We are now in a position to state our secound main theorem of this paper, which is mentioned in introduction.

THEOREM 3.18. The following conditions are equivalent for a given ring R:

1) R satisfies $(\#)^*$.

2) R satisfies (PSD).

3) R satisfies (PEC).

4) R satisfies $(*)^*$ and the ACC on right annihilator ideals.

When this is so, then R is a semiprimary QF-3 ring.

PROOF. $1)\Rightarrow 2)\Rightarrow 3$ follows from Propositions 3.1 and 3.3. $3)\Rightarrow 4)\Rightarrow 1$ follows from Theorems 3.8 and 3.17. In view of Theorem *D*, the condition 3) implies that *R* is a semiprimary *QF*-3 ring.

REMARK. Let R be a semiperfect ring with a complete set $\{e_i\} \cup \{q_i\}$

of primitive orthogonal idempotents such that each $e_i R$ is non-small and each $g_i R$ is small. As used in Lemma 3.16, Harada has shown in [15, Theorem 3.6] that R satisfies (*)* iff it satisfies the following conditions:

1) each $e_i R$ is injective,

2) for any g_j , there exists e_i such that $g_j R \subseteq e_i R$.

3) for each e_i , there exists n_i such that $e_i J^t$ is projective for $0 \le t \le n_i$ and $e_i J^{n_i+1}$ is a singular module, where J = J(R).

Further, in this case, it is shown that every submodule $e_i B$ in $e_i R$ either is contained in $e_i J^{n_i+1}$ or equal to some $e_i J^t$, $0 \le t \le n_i+1$.

It should be noted that we used the idea of this result in our Lemma 3.7 and Proposition 3.11.

As a dual of a right *H*-ring, we give

DEFINITION. We say that a ring R is a right co-H-ring if it satisfies one of the equivalent conditions in Theorem 3.18. Left co-H-rings are symmetrically defined and right and left co-H-rings are simply called co-Hrings.

REMARK. Let R be a right noetherian ring whose indecomposable injective R-modules are finitely generated modules. Then, in view of the proof of the results in this section, we see that the following conditions are equivalent:

1) R is a right co-H-ring.

2) Every finitely generated projective R-module is an extending module.

3) Every finitely generated non-cosmall R-module contains a non-zero projective direct summand.

4) The family of all finitely generated projective R-modules is closed under taking essential extensions (cf. [19]).

5) Every finitely generated R-module is expressed as a direct sum of a projective module and a singular module.

4. Application

As a first application of H-rings and co-H-rings, we study quasi-Frobenius rings (abbreviated QF-rings).

A ring R is said to be QF if it satisfies one of the following equivalent conditions :

1) R is a right self-injective ring and satisfies the ACC on right annihilator ideals.

2) Every injective *R*-module is projective.

3) Every projective *R*-module is injective.

As is well known, these conditions 1 > 3 are right-left symmetric.

LEMMA 4.1. ([22, Theorem 4.11]). Let M be a quasi-semiperfect Rmodule, and let $\{A_{\alpha}\}_{I}$ be a faimly of indecomposable direct summands of M with $M = \sum_{I} A_{\alpha}$. If $M = \sum_{I} A_{\alpha}$ is an irredundant sum, then $M = \sum_{I} \bigoplus A_{\alpha}$.

THEOREM 4.2. The following conditions are equivalent for a given ring R:

1) R is QF.

2) Every injective R-module is semiperfect.

3) Every injective R-module is quasi-semiperfect.

4) Every projective R-module is continuous.

5) Every projective R-module is quasi-continuous.

PROOF. The implications $1) \Rightarrow 2 \Rightarrow 3$ and $1 \Rightarrow 4 \Rightarrow 5$ are clear.

 $3 \Rightarrow 1$) By Proposition 2.6, R is right artinian. Hence, combining Lemma 4.1 to [14, Proposition 3], we see that R is QF.

 $5 \Rightarrow 1$ By [21, Proposition 1.9], it follows from 5) that every projective *R*-module is quasi-injective and hence injective. As a result, *R* is *QF*.

The theorem above suggests the following characterizations of QF-rings.

THEOREM 4.3. The following conditions are equivalent for a given ring R:

1) R is QF.

2) R is a right H-ring with Z(R) = J(R).

3) R is a right co-H-ring with Z(R) = J(R).

So, the conditions 2) and 3) are right-left symmetric.

PROOF. If R is QF, then the injectivity of R implies that Z(R) = J(R) ([35]). Clearly QF-rings satisfies (#) and (#)* (cf. [22, Theorem 2.1]). Hence $1) \Rightarrow 2$) and $1) \Rightarrow 3$) follow.

2) \Rightarrow 1). By Proposition 2.6, R is right artinian. Let e be a primitive idempotent of R. It is enough to show that eR is small in E(eR) by (ISD). By Proposition 2.6, E=E(eR) is expressed as $E=E_1\oplus\cdots\oplus E_n$ with each E_i cyclic hollow. By π_i , we denote the projection : $E=E_1\oplus\cdots\oplus E_n\to E_i$, $i=1, \dots, n$. Since eR is small in E, clearly, $\pi_i(eR)\neq E_i$ for all i. Noting that each E_i is cyclic hollow, we see that there exists a primitive idempotent f_i such that E_i is a homomorphic image of f_iR , $i=1, \dots, n$. Therefore, it follows from $Z(f_iR)=J(f_iR)$ that $Z(E_i)\supseteq J(E_i)$, $i=1, \dots, n$. Hence $eR\subseteq \pi_1$ $(eR)\oplus\cdots\oplus\pi_n(eR)\subseteq Z(E_1)\oplus\cdots\oplus Z(E_n)$; so eR is a singular module, a contradiction. Thus, eR must be an injective module.

 $3 \Rightarrow 1$). By Theorem 3.18, R satisfies the ACC on right annihilator

ideals. Hence we may show that eR is an injective module for every primitive idempotent e. Indeed, this fact is easily seen by Z(R)=J(R) and [15, Theorem 3.6] or 3) of Lemma 3.7.

THEOREM 4.4. If R is a commutative ring, then the following conditions are equivalent:

- 1) R is QF.
- 2) R is a H-ring.
- 3) R is a co-H-ring.

PROOF. 1) \Rightarrow 2) and 1) \Rightarrow 3) follow from Theorem 4.3. 2) \Rightarrow 1) follows from Proposition 2.6 and [6, 25.4.18A]. 3) \Rightarrow 1) is clear from the proof of Theorem 4.3 and the fact that, for any primitive idempotent e and f, $fR \equiv eR$ implies fR = eR.

REMARK. As we saw above, QF-rings are H-rings and co-H-rings. In order to state more information about connection among right H-rings, right co-H-rings and classical artinian rings, we consider the following implications :

From this remark, we have immediately

THEOREM 4.5. If R is a generalized uniserial rings, then it is a H-ring and also a co-H-ring.

In the rest of this section, we study right non-singular right H-rings and right non-singular right co-H-rings.

Now, if R is a right co-H-ring, we see from (PSD) that every nonsingular R-module is projective. We first note that the converse also holds

.

when R is a right non-singular right co-H-ring. For, in this case, a submodule A of a projective R-module P is a closed submodule of P iff P/Ais non-singular. Therefore, by the Goodearl's work [11, Chapter 5] or [14, Corollary 1] and Theorem 3.18, a right non-singular right co-H-ring is completely determined as it is Morita equivalent to a finite direct sum of upper triangular matrix rings over division rings.

Right non-singular right H-rings also have the same structure as the following shows.

THEOREM 4.6. If R is a right non-singular ring, then the following conditions are equivalent:

1) R is a right H-ring.

2) R is a right co-H-ring.

3) R is Morita equivalent to a finite direct sum of upper triangular matrix rings over division rings.

PROOF. 2) \Leftrightarrow 3) holds as noted above. 3) \Rightarrow 1), 2) hollows from Theorem 4.5. We shall show 1) \Rightarrow 3). Assume 1). By [4, Theorem 3.2] together with Theorem 2.11, to show 3), we may show that R is a right hereditary ring. Further, by [15, Propositions 2.5 and 2.8] and Proposition 2.10, it suffices to show that, for a primitive idempotent e such that eR is injective, every non-zero homomorphic image of eR is non-small. To prove this, let A be a right ideal of R with $eR/eA \neq 0$ and assume that eR/eA is small in E=E(eR/eA). As in the proof of Proposition 2.10, E is written as

$$E = e_1 R/e_1 A_1 \oplus \cdots \oplus e_n R/e_n A_n$$

where all e_i are primitive idempotents and all A_i are right ideals. Put $E_i = e_i R/e_i A_i$, $i=1, \dots, n$. Here, consider the diagram :

where η and ψ are the canonical homomorphisms. Since eR is projective, we get a homomorphism $\phi: eR \rightarrow P$ with $\eta \phi = \psi$. We can assume that $\pi_1 \phi \neq 0$, where π_1 is the projection : $P \rightarrow e_1 R$. Since both eR and $e_1 R$ are non-singular and eR is injective we see that π_1 is an isomorphism. As a result, we obtain

$$E = eR/eA + (E_2 \oplus \cdots \oplus E_n)$$

from which we conclude $E = E_2 \bigoplus \cdots \bigoplus E_n$, a contradiction. Thus eR/eA must be a non-small module. The proof is completed.

5. Examples

The purpose of this section is to give two typical examples of H- and co-H-rings.

As we saw in Theorems 4. 4 and 4. 5, QF-rings and generaliged uniserial rings are H- and co-H-rings. From these facts and Figure mentioned in section 4, the following problems arise:

1) Are right *H*-rings left *H*-rings?

2) Are right co-*H*-rings left co-*H*-rings?

3) Are right *H*-rings right co-*H*-rings?

4) Are right co-*H*-rings left *H*-rings?

In the case when R is an algebra over a field of finite dimension, these problems are equivalent, as the following shows.

THEOREM 5.1. Let R be an algebra over a field K of finite dimension. Then R is a right co-H-ring iff it is a left H-ring.

PROOF. For an R-module M, we denote its dual by M^* , that is,

 $M^* = \operatorname{Hom}_{K}(M, K).$

For a homomorphism f from an R-module M to an R-module N, f^* denotes the correponding homomorphism : $N^* \rightarrow M^*$. The following facts are well known :

1) Every indecomposable injective *R*-module is finitely generated.

2) A finitely generated R-module P is projective iff P^* is injective.

3) Let $0 \rightarrow N \rightarrow M$ be an exact sequence of finitely generated *R*-modules. Then, Im *F* is essential in *M* iff Ker f^* is small in M^* .

Using these facts, we can easily see that the family of all finitely generated right R-modules is closed under taking essential extensions iff the family of all finitely generated injective left R-modules is taking small covers. Therefore, our proof is established by the remarks after Theorems 2.11 and 3.18.

We use the following two lemmas.

LEMMA 5.2 ([9]). Let R be a one sided artinian ring, and let e and f be primitive idempotents of R. If (eR, Rf) is an injective pair, that is.

Soc $(eR_R) \simeq fR/fJ$ and Soc $(_RRf) \simeq Re/Je$

where J = J(R), then both eR_R and $_RRf$ are injective.

LEMMA 5.3 ([24]). Let R be a right artinian ring, and let M be a right R-module. Then, M is a small module iff $M \operatorname{Soc}(_{\mathbb{R}}R) = 0$.

From now on, in order to construct two examples of right H- and right co-H-rings, we consider a local QF-ring Q ($\neq 0$). For the sake of convenience, we put J=J(Q), $S=Soc(Q_Q)(=Soc(_QQ))$, $\bar{Q}=Q/S$ and $\bar{a}=a+S$ for any a in Q. Note that J canonically becomes a two-sided Q-module, since SJ=SJ=0. Here, we define V(Q), W(Q) and T(Q) as follows:

$$V(Q) = \begin{pmatrix} Q & Q \\ J & Q \end{pmatrix} = \left\{ \begin{pmatrix} a & b \\ d & c \end{pmatrix} \middle| a, b, c \in Q, \ d \in J \right\}$$
$$W(Q) = \begin{pmatrix} Q & \bar{Q} \\ J & \bar{Q} \end{pmatrix} = \left\{ \begin{pmatrix} a & \bar{b} \\ d & \bar{c} \end{pmatrix} \middle| a, b, c \in Q, \ d \in J \right\}$$
$$T(Q) = \begin{pmatrix} Q & \bar{Q} \\ J & Q \end{pmatrix} = \left\{ \begin{pmatrix} a & \bar{b} \\ d & c \end{pmatrix} \middle| a, b, c \in Q, \ d \in J \right\}$$

Then, these become rings by usual addition and multiplication of matrices. We put

$$1_{V} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad e_{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad f_{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{ in } V(Q)$$
$$1_{W} = \begin{pmatrix} 1 & \overline{0} \\ 0 & \overline{1} \end{pmatrix}, \quad e_{W} = \begin{pmatrix} 1 & \overline{0} \\ 0 & \overline{0} \end{pmatrix}, \quad f_{W} = \begin{pmatrix} 0 & \overline{0} \\ 0 & \overline{1} \end{pmatrix} \text{ in } W(Q)$$
$$1_{T} = \begin{pmatrix} 1 & \overline{0} \\ 0 & 1 \end{pmatrix}, \quad e_{T} = \begin{pmatrix} 1 & \overline{0} \\ 0 & 0 \end{pmatrix}, \quad f_{T} = \begin{pmatrix} 0 & \overline{0} \\ 0 & 1 \end{pmatrix} \text{ in } T(Q)$$

Then, 1_V , 1_W and 1_T are identity elements of V(Q), W(Q) and T(Q), respectively, and $\{e_V, f_V\}$, $\{e_W, f_W\}$ and $\{e_T, f_T\}$ are sets of orthogonal primitive idempotents and $1_V = e_V + f_V$, $1_W = e_W + f_W$ and $1_T = e_T + f_T$.

REMARK. Let R be a ring, and let $\{e_1, \dots, e_n\}$ be a set of orthogonal idempotents of R with $1=e_1+\dots+e_n$. Then, as is easily seen, R is left artinian iff $e_iRe_ie_iRe_j$ is artinian for all e_i and e_j . By this result, we see that V(Q), W(Q) and T(Q) are right and left artinian.

THEOREM 5.4. T(Q) is a QF-ring.

PROOF. Put T = T(Q), $e = e_T$ and $f = f_T$. Note that

Soc
$$(eT_T) = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix} = \operatorname{Soc}(_TTe) \text{ and } \operatorname{Soc}(fT_T) = \begin{pmatrix} 0 & 0 \\ 0 & S \end{pmatrix} = \operatorname{Soc}(_TTf).$$

So, it is easy to see that both (eT, Te) and (fT, Tf) are injective pairs.

Hence eT_T and fT_T are injective by Lemma 5.2. Hence T is QF.

THEOREM 5.5. V(Q) is a H- and co-H-ring.

PROOF. Put V = V(Q), $e = e_V$ and $f = f_V$. Since V is left-right symmetric, we may show that V is left H and right co-H. Note that

Soc
$$(V_{\nu}) = \begin{pmatrix} 0 & S \\ 0 & S \end{pmatrix}$$
 and Soc $({}_{\nu}V) = \begin{pmatrix} S & S \\ 0 & 0 \end{pmatrix}$.

We put $X=\operatorname{Soc}(V_V)$ and $Y=\operatorname{Soc}(_VV)$. Since fVY=0 and XVe=0, fV is a small right V-module and Ve is a small left V-module by Lemma 5.3. Moreover, we see that (eV, Vf) is an injective pair; whence eV_V and $_VVf$ are injective. We can also easily see that

$$J_1(eV_v) \simeq fV$$
 and $J_2(eV_v) = Z(eV_v)$

Therefore, V is a right co-H-ring by Theorem 3.18 and its remark. Next, in order to show that V is a left H-ring, note that

$$S_1(vVf) = \begin{pmatrix} 0 & S \\ 0 & 0 \end{pmatrix}$$
 and $S_2(vVf) = \begin{pmatrix} 0 & S \\ 0 & S \end{pmatrix}$

and

$$X(Vf/S_1(vVf)) \neq 0$$
 and $X(Vf/S_2(vVf)) = 0$.

Hence, by Lemma 5.3, $Vf/S_1(vVf)$ is a non-small left V-module and $Vf/S_2(vVf)$ is a small left V-module. Therefore we may show that $M=VF/S_1(vVf)$ is an injective left V-module (cf. Theorem 2.11). Since $S_1(vVf) = S_1(fV_v)$, $S_1(vVf)$ is a two sided ideal of V. Let us consider the factor ring

 $\bar{V} = V/S_1(_V V f) \, .$

As \overline{V} is canonically isomorphic to the ring

$$T = T(Q) = \begin{pmatrix} Q & Q/S \\ J & Q \end{pmatrix}$$

we can identify \overline{V} with T. Put $f^* = f_T$. By Theorem 5.4, Tf^* is injective as a left T-module. We want to see that Tf^* is injective as a left Vmodule. (note $Tf^* = M$). Let I be a left ideal of V with $I \subseteq_e V$, and let ϕ be a homomorphism from $_V I$ to $_V Tf^*$. Consider the diagram:

$$\begin{array}{ccc} 0 & & I & \stackrel{i}{\longrightarrow} V \\ \phi & & \\ & & Tf^* \end{array}$$

where i is the inclusion map. Note that

$$S_1(_V V f) = \begin{pmatrix} 0 & S \\ 0 & 0 \end{pmatrix}$$
 and $\phi \left(S_1(_V V f) \right) \subseteq \begin{pmatrix} 0 & Q/S \\ 0 & 0 \end{pmatrix}$

On the other hand, the socle of Tf^* is

$$\begin{pmatrix} 0 & 0 \\ 0 & S \end{pmatrix}$$

As a result, we see $\phi(S_1(_VVf))=0$ and hence ϕ induces the canonical homomorphism $\bar{\phi}: \bar{I}=I/S_1(_VVf)) \rightarrow \bar{V}=T$. Since Tf^* is injective as a left Tmodule, we obtain a homomorphism $\eta: \bar{V}=T \rightarrow Tf^*$ satisfying $\eta \bar{\imath}=\bar{\phi}$, where $\bar{\imath}$ is the inclusion map: $\bar{I}\rightarrow\bar{V}=T$. If we denote the canonical V-homomorphism: $V\rightarrow\bar{V}=T$ by δ , then the diagram

is commutative. Thus $M = Tf^*$ is injective as a left V-module.

THEOREM 5.6. W(Q) is a left H- and right co-H-ring.

PROOF. Put W = W(Q), $e = e_W$ and $f = f_W$. Noting Soc $(eW_W) = \text{Soc}(_WWe) = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}$, we see that (eW, We) is an injective pair; whence eW_W and $_WWe$ are injective. Further, we see $eJ_1(W) \simeq fW$ and $eJ_2(W) = Z(eW_W)$. Hence W is a right co-H-ring by Theorem 3.18 and its remark.

Next, we put

$$X = \operatorname{Soc} (W_{W}) = \begin{pmatrix} S & 0 \\ S & 0 \end{pmatrix}$$

Since XWf=0 and $X(We/Soc(_WWe))=0$, by Lemma 5.3, Wf and $We/Soc(_WWe)$ are small left W-module. Thus W is a left H-ring by Theorem 2.11.

REMARK. In general, W(Q) is neither a right H-ring nor a left co-Hring. Therefore, the concepts of right H-rings and right co-H-rings are not right-left symmetric; in particular, the conditions (*) and (*)* are not right-left symmetric (cf. [15]). Actually, assume that W(Q) is a left co-Hring, and put W=W(Q), $e=e_W$ and $f=f_W$. Then, W is an artinian QF-3 ring but not QF. As we saw in the proof of Theorem 5.6, wWe is injective. Hence, by the assumption there must exist an isomorphism ϕ from Wf to $J(_WWe)$. Then

$$\phi\left(\begin{pmatrix}0&0\\0&Q\end{pmatrix}\right) = \begin{pmatrix}0&0\\J&0\end{pmatrix}$$

This shows that J is a cyclic left ideal of Q. However, in general, J need not be a cyclic left ideal. For example, consider the ring

$$Q = K[x, y]/(x^2, y^2)$$

where K is a field. As is well known, Q is a local QF-algebra over K of dimension 4. Put $I=(x^2, y^2)$, $\alpha=x+I$, $\beta=y+I$ and $\gamma=xy+I$. Clearly $J(Q)=Q\alpha+Q\beta$ and Soc $(Q)=Q\gamma$. Now, we can easily see that J(Q) is not a cyclic ideal. Accordingly, W(Q) for this Q is not a left co-H-ring, and at the same time, it is not a right H-ring by Theorem 5.1.

REMARK. Let Q be as in the above remark. Again, we put W = W(Q), $e = e_W$ and $f = f_W$. Assume that $Soc(_W W f)$ is a simple socle. Then, since W is QF-3, $_W W f$ must be embedded in $_W W e$. However, this implies that J(Q) is a cyclic left ideal of Q, which is impossible as we noted above. Thus $Soc(_W W f)$ is not a simple socle. As a result, this W also gives a counter example of a ring which solves a problem raised by Fuller [8].

References

- [1] F. W. ANDERSON and K. R. FULLER: Rings and Categories of modules, Graduate Text in Mathematics. Berlin-Heiderberg-New York, Springer 1974.
- [2] K. A. BYRD: Some characterizations of uniserial rings, Math. Ann. 186 (1970), 163-170.
- [3] A. CAILLEAU and G. RENAULT: Etude der modules Σ-injective, C. A. Acad. Sci. Paris 270 (1970), 1391–1394.
- [4] R. R. COLBY and E. A. RUTTER, Jr.: Generalizations of QF-3 algebra, Trans. Amer. Math. Soc. 153 (1971), 371-386.
- [5] C. G. FAITH and E. A. WALKER: Direct sum representations of injective modules, J. Algebra 59 (1967), 203-221.
- [6] C. G. FAITH: Algebra II Ring Theory, New York: Springer-Verlag, 1976.
- [7] L. FUCHS: On quasi-injective modules, Ann. Ac. Norm. Sup. Pisa 23 (1969), 541-546.
- [8] K. R. FULLER: Structure of *QF*-3 rings, Trans. Amer. Math. Soc. 134 (1968), 343-354.
- [9] K. R. FULLER: On indecomposable injective over Artinian rings, Pacific J. Math. 29 (1969), 115-135.
- [10] K. R. FULLER: On representations of quasi-injectives and quasi-projectives, Arch. Math. 20 (1969), 495-502.
- [11] K. R. GOODEARL: Ring Theory; Nonsingular Rings and Modules, Pure and Applied Mathematics Series 33. Marcal Dekker, 1976.

- [12] M. HARADA: Applications of factor categories to completely indecomposable modules, Publ. Dep. Math. Lyon 11 (1974), 19-109.
- [13] M. HARADA: On one sided QF-3 rings I, Osaka J. Math. 17 (1980), 421-431.
- [14] M. HARADA: On one sided QF-3 rings II, Osaka J. Math. 17 (1980), 433-438.
- [15] M. HARADA: Non-small modules and non-cosmall modules, In Ring Theory: Proceedings of the 1978 Antwerp Conference, F. Van Oystaeyen, ed. New York: Marcal Dekker.
- [16] M. HARADA and T. ISHII: On perfect rings and the exchange property, Osaka J. Math. 12 (1975), 483-491.
- [17] M. HARADA and K. OSHIRO: On extending property on direct sums of uniform modules, Osaka J. Math. 18 (1981), 767-765.
- [18] L. JEREMY: Sur les modules et anneaux quasi-contnus, C. R. Acad. Sci. Paris, 273 (1971), 80-83.
- [19] E. MATLIS: Injective modules over noetherian rings, Pacific J. Math. 8 (1958) 511-528.
- [20] S. MOHAMED and B. J. MÜLLER: Decomposition of dual-continuous modules, Module Theory, Lecture notes in Mathemasics, 700 (1979), 87-94.
- [21] K. OSHIRO: Continuous modules and quasi-continuous modules, Osaka J. Math. 20 (1983), 681-694.
- [22] K. OSHIRO: Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 337-372.
- [23] K. OSHIRO: Lifting modules, extending modules and their applications to generalized uniserial rings, to appear.
- [24] M. RAYAR: Small and cosmall modules, Ph. D. Dissertation, Indiana Univ., 1971.
- [25] Y. UTUMI: On quotient rings, Osaka J. Math. 8 (1956), 1-18.
- [26] R. B. WARFIELD, Jr.: Decompositions of injective modules, Pacific J. Math. 31 (1969), 263-276.
- [27] R. WARE: Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1971), 233-256.
- [28] K. YAMAGATA: On projective modules with exchange property, Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A 12 (1974), 149-158.

Department of Mathematics Yamaguchi University Oaza, Yoshida, Yamaguchi 753 Japan