Lifting modules, extending modules and their applications to QF-rings

By Kiyoichi Oshiro
(Received June 21, 1983 ; Revised April 19, 1984)

A right R-module M is said to be an extending module if, for any submodule A of M, there exists a direct summand A^{*} of M such that A^{*} is an essential extention of A. Dually, M is said to be a lifting module provided that, for any submodule A of M, there exists a direct summand A^{*} of M which is a co-essential submodule of A in M, i. e., $A^{*} \subseteq A$ and A / A^{*} is small in M / A^{*}.

In this paper we study the following two conditions:
(\#) Every injective R-module is a lifting module.
(\#) ${ }^{\#}$ Every projective R-module is an extending module.
A major reason why we are interested in these ($\#$) and ($\#)^{\#}$ comes from the fact that these conditions are closely related to the following conditions due to Harada [13] ~[15] :
(*) Every non-small R-module contains a non-zero injective submodule.
(*)* Every non-cosmall R-module contains a non-zero projective direct summand.
Indeed, we show the following theorems which are main results of this paper.
Theorem I. The following conditions are equivalent for a given ring R :

1) R satisfies (\#).
2) R is a right artinian ring with (*).
3) R is a right perfect ring and the family of all injective R-modules is closed under taking small covers.
4) Every R-module is expressed as a direct sum of an injective module and a small module.

ThEOREM II. The following conditions are equivalent for a given ring R :

1) R satisfies (\#) ${ }^{\#}$.
2) R is a ring with the ACC on right annihilator ideals and satisfies (*)*.
3) The family of all projective R-modules is closed under taking essential extensions.
4) Every R-module is expressed as a direct sum of a projective module and a singular module.

It should be noted that rings satisfying the conditions in Theorem I or Theorem II are completely characterized in terms of ideals by Harada [13]~ [15]. To be specific, let R be a semi-perfect ring and let $\left\{e_{i}\right\} \cup\left\{f_{i}\right\}$ be a complete set of orthogonal primitive idempotents of R, where $e_{i} R$ is a nonsmall module and $f_{i} R$ is a small module. It is shown in [13, Theorem 5] that R satisfies the condition 2) in Theorem I iff, for each e_{i}, there exists n_{i} such that $e_{i} R / e_{i} S_{t}$ is injective for $0 \leq t \leq n_{i}$ and $e_{i} R / e_{i} S_{n_{i}+1}$ is a small module, where $\left\{S_{i}\right\}$ is the ascending Loewy chain of R as a right R-module. Dually, it is shown in [15, Theorem 3.6] that R satisfies the condition $(*) *$ iff 1) each $e_{i} R$ is injective, 2) each $f_{j} R$ can be enbedded in some $e_{i} R$ and 3) for each e_{i}, there exists n_{i} such that $e_{i} J_{t}$ is projective for $t \leq n_{i}$ and $e_{i} J_{n_{i}+1}$ is a singular module, where $\left\{J_{i}\right\}$ is the descending Loewy chain of R.

We call, in this paper, that R is a right H-ring if it satisfies one of equivalent conditions in Theorem I; while R is a right co- H-ring if it satisfies one of the equivalent conditions in Theorem II. Left H-rings and left co- H rings are symmetrically defined and both right and left H-rings (resp. both right and left co- H-rings) are simply called H-rings (resp. co- H-rings). It is shown in Theorem 4.3 that a ring R is a $Q F$-ring iff it is a right H-rings with $\mathrm{J}(R)=\mathrm{Z}(R)$, and iff it is a right co-H-ring with $\mathrm{J}(R)=\mathrm{Z}(R)$, where $\mathrm{J}(R)$ and $Z(R)$ are the Jacobson radical and the singular right ideal of R, respectively. Generalized uniserial rings are also H-rings and co- H-rings (cf. [23]). For an algebra R over a field of finite dimension, R is a right H-ring iff it is a left co- H-ring Theorem 5. 1). Combining Theorems I and II with the Colby-Rutter's theorem [4, Theorem 1.3], we see that right H-rings and right co- H-rings are semiprimary $Q F-3$ rings. For a right non-singular ring R, it is shown in Theorem 4.6 that R is a right H-ring iff it is a right co- H-ring, and iff it is Morita equivalent to a finite direct sum of upper triangular matrix rings over division rings. We can give two typical examples of right H-rings and right co- H-rings which are constructed by local $Q F$-rings. Using one of these examples, we show that right H-rings (resp. right co- H-rings) are not always left H-rings (resp. left co- H-rings).

I. Preliminaries

Throughout this paper we assume that R is an associative ring with identity and all R-modules considered are unitary right R-modules. Let M
be an R-module. We use $\mathrm{E}(M), \mathrm{J}(M)$, Soc (M) and $Z(M)$ to denote the injective hull, the Jacobson radical, the socle and the singular submodule of M, respectively. Furthermore, by $\left\{\mathrm{J}_{i}(M)\right\}_{I}$ and $\left\{\mathrm{S}_{i}(M)\right\}_{I}$, we denote the descending Loewy chain and the ascending Loewy chain of M, respectively;

$$
\begin{array}{ll}
\mathrm{J}_{0}(M)=M & \mathrm{~S}_{0}(M)=0 \\
\mathrm{~J}_{1}(M)=\mathrm{J}(M) & \mathrm{S}_{1}(M)=\operatorname{Soc}(M)
\end{array}
$$

For submodules A, B of M with $A \subseteq B$, we write $A \subseteq{ }_{e} B$ to denote that A is an essential submodule of B; while we use $A \subseteq_{c} B$ in M to denote that A is co-essential in B, i. e., B / A is a small submodule of M / A. For a subset X of $M, \operatorname{Ann}_{r}(X)$ (resp. $\left.\operatorname{Ann}_{l}(X)\right)$ means its right (resp. left) annihilator ideal $\{r \in R \mid X r=0\}$ (resp. $\{r \in R \mid r X=0\}$).

For two R-modules M and N, we use the symbol $M \subseteq N$ to stand for ' M is isomorphic to a submodule of N '. For given set $S,|S|$ denotes its cardinal number. The term 'ACC' means the ascending chain condition. For a cardinal $\tau, \tau M$ means the direct sum of τ-copies of an R-module M.

Definition. We say that an R-module M is an extending module if, for any submodule A of M, there exists a direct summand A^{*} of M such that $A \subseteq_{e} A^{*}$. Dually, we say that M is a lifting module if, for any submodule A of M, there exists a direct summand A^{*} of M such that $A^{*} \subseteq_{。} A$ in M.

Definition ([17]). An R-module M is said to have the extending property of uniform modules if, for any uniform submodule A of M, there exists a direct summand A^{*} of M with $A \subseteq_{e} A^{*}$. In the case when M has a decomposition $M=\sum_{I} \oplus M_{a}, M$ is said to have the extending property of finite contained uniform modules with respect to $M=\sum_{I} \oplus M_{\alpha}$ if, for any uniform submodule A of M with $A \subseteq \sum_{F} \oplus M_{\beta}$ for some finite subset F of I, there exists a direct summand A^{*} of M such that $A \subseteq_{e} A^{*}$.

Definition ([18], [21]). An R-module M is said to be continuous if M is an extending module and satisfies the condition: For any direct summand A of M, every monomorphic image of A to M is a direct summand of M. M is said to be quasi-continuous if M is an extending module and satisfies the condition: For any direct summands A_{1}, A_{2} of M, the condition $M_{e} \supseteq A_{1}$ $\oplus A_{2}$ implies $M=A_{1} \oplus A_{2}$.

Definition ([22], cf [20]). An R-module M is said to be semiperfect if
M is a lifting module and satisfies the condition: For any direct summand A of M and any epimorphism φ from M to M / A, $\operatorname{ker} \varphi$ is a direct summand of $M . \quad M$ is said to be quasi-semiperfect if M is a lifting module and satisfies the condition: For any direct summands A_{1}, A_{2} of M, if $M=A_{1}+A_{2}$ and $A_{1} \cap A_{2}$ is small in M then $M=A_{1} \oplus A_{2}$.

We note that quasi-injective \Rightarrow continuous \Rightarrow quasi-continuous; while semiperfect \Rightarrow quasi-semiperfect, and that, when R is a right perfect ring, quasiprojective \Rightarrow semiperfect.

Definition ([13] ~[15], cf [24]). An R-module M is said to be a small module if it is small in its injective hull, and is said to be a non-small module if it is not a small module. Dually, M is said to be a cosmall module if, for any projective module P and any epimorphism $f: P \rightarrow M$, $\operatorname{ker} f$ is an essential submodule of P, and M is said to be a non-cosmall module if it is not a cosmall module.

The following results are used in this paper.
Theorem A ([6, 20.3 A, 20.6 A], cf [23]). For a given quasi-injective R-module M, the following conditions are equivalent:

1) M is Σ-quasi-injective.
2) $\chi_{0} M$ is quasi-injective.
3) $E(M)$ is Σ-injective.
4) $\chi_{0} E(M)$ is injective
5) The ACC holds on $\left\{\operatorname{Ann}_{r}(X) \mid X \subseteq E(M)\right\}$.

Further, when this is so, M is expressed as a direct sum of completely indecomposable modules.

Theorem B ([7], [26]). Quasi-injective R-modules satisfy the exchange property.

Theorem C. If M is a Σ-quasi-injective R-module, then M satisfies the following condition :
(K) For any independent family $\left\{A_{\alpha}\right\}_{I}$ of submodules of M, if $\sum_{I} \oplus A_{\alpha}$ is a locally direct summand of M, i.e., $\sum_{F} \oplus A_{\beta}<\oplus M$ for any finite subset F of I, then $\sum_{I} \oplus A_{\alpha}$ is just a direct summand of M.

Proof. This is clear from Theorems A, B and [12, Theorem 3.2.5].
We quote the Colby-Rutter's characterizations of semiprimary $Q F-3$ rings ([4, Theorem 1.3]) as follows :

ThEOREM D. The following conditions are equivalent for a given ring R :

1) R is ring perfect and contains a faithful Σ-injective right ideal.
2) R is right perfect and the injective hull of every projective R-module is projective.
3) $\because R$ is right perfect and the projective cover of every injective R module is injective.
4) R is right and left perfect and contains faithful injective right and left ideals, respectively.
When this is so, then R satisfies ACC on right, and also left, annihilator ideals. The conditions 1)~4) are right-left symmetric, and a ring R satisfying one of these conditions is just a semiprimary QF-3 ring.

2. H-ring

In this section, we shall prove Theorem I mentioned in introduction. Therefore, we are concerned with the following:
(\#) Every injective R-module is a lifting module.
(*) Every non-small R-module contains a non-zero injective submodule.
(ICC) The family of all injective R-modules is closed under taking small covers, i. e., for any exact sequence $P \rightarrow E \rightarrow 0$ where E is injective and ker ϕ is small in P, P is injective.
(ISD) Every R-module is expressed as a direct sum of an injective module and a small module.

The condition (*) is due to Harada ([13], [15]). It is easy to see that ${ }^{(*)}$ is equivalent to the following condition: Let E be an injective R-module and A a submodule of E such that A is not small in E. Then, A contains a non-zero direct summand of E. On the other hand, we know that an R-module M is a lifting module iff, for any submodule A of M, there exists a decomposition $M=A * \oplus A^{* *}$ such that $A^{*} \subseteq A$ and $A \cap A^{* *}$ is small in $A^{* *}$. As a result, we have

Proposition 2.1. (\#) implies (*).
Proposition 2.2. (\#) implies (ICC).
Proof. Let $P \xrightarrow{\phi} E \rightarrow 0$ be an exact sequence such that E is injective and ker ϕ is small in P. Then we can take an epimorphism $\phi^{\prime}: E(P) \rightarrow E$ with $\phi^{\prime} \mid P=\phi . \quad$ By ($\#$), we have a decomposition $P=X \oplus Y$ such that X is injective and Y is small in $E(P)$. Then $\phi^{\prime}(Y)=\phi(Y)$ is small in E. So we get from $E=\phi(X)+\phi(Y)$ that $E=\phi(Y)$. Therefore, $P=X+\operatorname{ker} \phi$ and hence $P=X$ since $\operatorname{ker} \phi$ is small in P. Thus, P is injective

Proposition 2.3. (\#) is equivalent to (ISD).
Proof. Obviuos.
Lemma 2.4. If an R-module M satisfies the condition (K) in Theorem C, then M is expressed as a direct sum of indecomposable modules.

Proof. Assume that M does not contain a non-zero indecomposable direct summand. Then, using (K), we can see that every non-zero direct summand of M is expressed as a direct sum of countably infinite non-zero submodules. In particular, we express $M=N_{1} \oplus N_{2}$ with each $N_{i} \neq 0$. We pick a non-zero element x in N_{1}. By Zorn's lemma, we can take a maximal independent family $\left\{M_{a}\right\}_{I}$ of submodules of M such that $x \notin M^{\prime}=\sum_{I} \oplus M_{\alpha}$ and $M^{\prime}=\sum_{I} \oplus M_{\alpha}$ is a locally direct summand of M. Then, by (K), $M=$ $M \oplus M^{\prime \prime}$ for some submodule $M^{\prime \prime}$. Since $x \notin M^{\prime}$, we see $M^{\prime \prime} \neq 0$. Therefore, $M^{\prime \prime}$ is written as a direct sum of countably infinite non-zero submodules; say $M^{\prime \prime}=\sum_{J} \oplus T_{\beta}$. Since $x \in M=M^{\prime} \oplus \sum_{J} \oplus T_{\beta}$, there exists a finite subset F of J with $x \in M \oplus \sum_{F} \oplus T_{r}$. Then, if $x \in M^{\prime} \oplus \sum_{J=F} \oplus T_{\beta}, M^{\prime}$ must contain x, a contradiction. So, $x \notin M^{\prime} \oplus \sum_{J=F} \oplus T_{\beta}$. However, this contradicts the maximality of M^{\prime}. Thus, we conclude that M and every non-zero direct summand of M contain non-zero indecomposable direct summands. From this fact and $(\mathrm{K}), M$ is clearly expressed as a direct sum of indecomposable modules.

Lemma 2.5. If M is a continuous lifting R-module, then it satisfies the condition (K) in Theorem C.

Proof. Let $\left\{A_{\alpha}\right\}_{I}$ be an independent family of submodules of M such that $A=\sum_{I} \oplus A_{\alpha}$ is a locally direct summand of M. Since M is a lifting R-module, we have a decomposition $M=A^{*} \oplus A^{* *}$ such that $A=A^{*} \oplus(A \cap$ $A^{* *}$) and $A \cap A^{* *}$ is small in $A^{* *}$. We want to show $A=A^{*}$. Assume that $A \cap A^{* *} \neq 0$ and take a non-zero element x in $A \cap A^{* *}$. Then $x R \subseteq$ $A_{\alpha_{1}} \oplus \cdots \oplus A_{\alpha_{n}}$ for some $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\} \subseteq I$. Since $B=A_{\alpha_{1}} \oplus \cdots \oplus A_{\alpha_{n}}$ is an extending module (cf. [21, Proposition 1.4]), there exists a direct summand $X<\oplus B$ with $x R \subseteq_{e} X$. Then, we see that $X \cap A^{*}=0$; whence there exists a submodule $Y \subseteq A \cap A^{* *}$ with $X \simeq Y$. However, the continuity of M shows that $Y<\oplus M$, which contradicts that Y is small in M. Accordingly, $A \cap A^{* *}$ $=0$.

By Proposition 2. 1, Lemmas 2.4 and 2.5 and [15, Lemma 2.1], we have

Proposition 2.6. Assume that (\#) holds. Then, every injective R -
module is expressed as a direct sum of cyclic hollow modules. Therefore, R is a right artinian ring, by Faith-Walker's theorem ([5], [6, 20.17]).

Proposition 2.7. If R is a right noetherian ring with (*) then it satisfies (\#).

Proof. Let E be an injective R-module and A a non-small submodule of E. We can take a maximal independent family $\left\{A_{\alpha}\right\}_{I}$ of non-zero injective submodules of A. Put $A^{\prime}=\sum_{I} \oplus A_{a}$. Since R is right noetherian, A^{\prime} is also injective (cf. [5, 20.1]) ; whence we have $E=A^{\prime} \oplus A^{\prime \prime}$ for some submodule $A^{\prime \prime}$. So, we may show that $A \cap A^{\prime \prime}$ is small in $A^{\prime \prime}$. If not, then we can take a non-zero injective submodule of $A \cap A^{\prime \prime}$ since $A^{\prime \prime}$ also satisfies (*). But this contradicts the maximality of $\left\{A_{\alpha}\right\}_{I}$.

Lemma 2.8. Consider an exact sequence: $H=\sum_{I} \oplus H_{a} \xrightarrow{\phi} E \rightarrow 0$, where each H_{a} is a cyclic hollow injective R-module with non-zero socle and E is an indecomposable injective R-module but not cyclic hollow. Then, ker ϕ contains $\operatorname{Soc}(H)$.

Proof. Put $K=\operatorname{ker} \phi$ and $S_{\alpha}=\operatorname{Soc}\left(H_{\alpha}\right)$ for each $\alpha \in I$. If K does not contain $\operatorname{Soc}(H)$ then there exists $\alpha \in I$ such that $S_{\alpha} \nsubseteq K$. In this case, $\left(S_{\alpha}+K\right) / K \simeq S_{\alpha}$ and hence $S_{\alpha} \subseteq E$. This implies that $E\left(S_{\alpha}\right)=H_{\alpha} \simeq E$; whence E is cyclic hollow, a contradiction.

Notation. For convenience's sake of the statement of the lemma below, we say that an R-module M satisfies (F) if M satisfies the ACC on $\left\{\mathrm{Ann}_{r}(X) \mid X \subseteq M\right\}$.

Lemma 2.9. Let e be an idempotent of R. If $e R$ satisfies (F) then $e R / e \mathrm{Ann}_{l}\left(J^{k}\right)$ satisfies (F) for all integer $k \geq 1$, where $J=J(R)$.

Proof. We put $\overline{e R}=e R / e \operatorname{Ann}_{l}\left(J^{k}\right)$ and $\overline{e \bar{R}}=e R / e \operatorname{Ann}_{l}\left(J^{K+1}\right)$. Assuming that $\overline{e R}$ satisfies (F), we want to show that $\overline{\overline{e R}}$ satisfies (F). For any subset X of $e R$, we note that

$$
\begin{aligned}
\operatorname{Ann}_{r}(\bar{X}) & =\left\{r \in R \mid X r \subseteq e \operatorname{Ann}_{l}\left(J^{k}\right)\right\} \\
& =\left\{r \in R \mid X r J^{k}=0\right\}, \\
\operatorname{Ann}_{r}(\bar{X}) & =\left\{r \in R \mid X r \subseteq e \operatorname{Ann}_{l}\left(J^{k+1}\right)\right\} \\
& =\left\{r \in R \mid X r J^{k+1}=0\right\} .
\end{aligned}
$$

Now, assume that $\overline{\bar{R}}$ does not satisfy (F). Then we can take subsets $\left\{X_{i}\right\}$ of $e R$ such that $X_{1} \supseteq X_{2} \supseteq \cdots$ and

$$
\operatorname{Ann}_{r}\left(\overline{\bar{X}}_{1}\right) \varsubsetneqq \operatorname{Ann}_{r}\left(\overline{\bar{X}}_{2}\right) \varsubsetneqq \cdots .
$$

Then, there exist r_{2}, r_{3}, \cdots in R such that $X_{i} r_{i} J^{k+1}=0$ but $X_{i-1} r_{i} J^{k+1}=0$ for $i=2,3, \cdots$. Hence we can take $t_{i} \in J$ such that $X_{i} r_{i} t_{i} J^{k}=0$ but $X_{i-1} r_{i} t_{i} J^{k} \neq 0$ for $i=2,3, \cdots$. This shows that $\operatorname{Ann}_{r}\left(\bar{X}_{1}\right) \subsetneq \operatorname{Ann}_{r}\left(\bar{X}_{2}\right) \subsetneq \cdots$, a contradiction. Thus $\overline{\bar{e}} \overline{\text { must satisfy (}} \mathrm{F}$).

Proposition 2.10. If R is a right perfect ring with (ICC), then the following hold:

1) R is a semiprimary $Q F-3$ ring.
2) Every indecomposable injective R-module is a cyclic hollow module. More precisely, if E is an indecomposable injective R-module, then there exists a primitive idempotent e in R and an integer $k \geq 0$ such that E is isomorphic to eR/eAnn ${ }_{l}\left(J^{k}\right)$, where $J=J(R)$.
3) Every cyclic hollow non-small R-module is injective.

Proof. 1) This follows from Theorem D.
2) Let E be an indecomposable injective R-module. Consider a projective cover : $P \stackrel{\phi}{\rightarrow} E \rightarrow 0$, and express P as $P=\sum_{I} \oplus e_{\alpha} R$, where each e_{α} is a primitive idempotent of R. Now, (ICC) says that P is injective; so is each $e_{\alpha} R$. Assume that E is not cyclic hollow. Then, $\operatorname{ker} \phi$ contains $S_{1}(P)=$ $\sum_{I} \oplus e_{\alpha} S_{1}(R)$ by Lemma 2.8. So, ϕ induces an epimorphism $\phi_{1}: P / S_{1}(P)=$ $\sum_{I} \oplus e_{\alpha} R / e_{\alpha} S_{1}(R) \rightarrow E$. Then, ker ϕ_{1} is small in $P / S_{1}(P)$. Therefore, again (ICC) shows that $P / S_{1}(P)$ and each $e_{\alpha} R / e_{\alpha} S_{1}(R)$ are injective. Then, again, by Lemma 2.8, $\operatorname{ker} \phi_{1}$ contains $S_{2}(P) / S_{1}(P)$ or, equivalently, $\operatorname{ker} \phi$ contains $S_{2}(P)$. Hence ϕ induces an epimorphism $\phi_{2}: \quad P / S_{2}(P)=\sum_{I} \oplus e_{\alpha} R / e_{\alpha} S_{2}(R) \rightarrow E$. Thus, the same argument inductively works and we see that ker ϕ contains $S_{\tau}(P)$ for all ordinal τ. However, as R is a left perfect ring, this implies that $\operatorname{ker} \phi=P$, a contradiction. Therefore E must be a cyclic hollow module. Hence we can take $e \in\left\{e_{\alpha}\right\}_{I}$ such that $\phi(e R)=E$. Put $\psi=\phi \mid e R$. Since R is a semiprimary ring by 1), we can take an integer t such that $S_{t}(R)=R$; so there must exist k such that $\operatorname{ker} \psi \supseteq e S_{k}(R)$ but $\operatorname{ker} \psi \nsupseteq e S_{k+1}(R)$. Then, ψ induces an isomorphism : $e R / S_{k}(R) \simeq E$. Since $S_{k}(R)=\operatorname{Ann}_{l}\left(J^{k}\right)$, the proof of 2) is completed.
3) Let M be a cyclic hollow non-small R-module, and put $E=E(M)$. Since R is a left perfect ring, $\operatorname{Soc}(E) \subseteq_{e} E$. Let us express $\operatorname{Soc}(E)$ as $\operatorname{Soc}(E)$ $=\sum_{I} \oplus S_{a}$, where each S_{a} is a simple module. Then, by Theorem A, Lemma 2.9 and 2), we see that $\mathrm{E}\left(S_{\alpha}\right)$ is a cyclic hollow Σ-injective module. Hence, $E=\sum_{I} \oplus \mathrm{E}\left(S_{a}\right)$ and I is a finite set. Put $I=\{1, \cdots, n\}$, and let $\pi_{i}: E=\mathrm{E}\left(S_{1}\right)$
$\oplus \cdots \oplus \mathrm{E}\left(S_{n}\right) \rightarrow \mathrm{E}\left(S_{i}\right)$ be the projection. Since M is a non-small module, there must exist i such that $\pi_{i}(M)=\mathrm{E}\left(S_{i}\right)$. Thus M is injective by (ICC).

We have now our first main theorem.
Theorem 2.11. The following conditions are equivalent for a given ring R :

1) R satisfies (\#).
2) R is a right artinian ring with (*).
3) R is a right perfect ring with (ICC).
4) R satisfies (ISD).
5) R is a right and left perfect ring with the condition: For any primitive idempotent e in R with $e R$ non-small, there exists an integer t satisfying
a) $e R / e S_{k}(R)$ is injective for all $0 \leq k \leq t$, and
b) $e R / e S_{t+1}(R)$ is a small module.

When this is so, R is then a semiprimary $Q F-3$ ring.
Proof. For a ring with (*), we know from Harada [13] and [15] that the following conditions are equivalent :
i) $\quad R$ is right artinian.
ii) $\quad R$ is right noetherian.
iii) $\quad R$ is right and left perfect.

Now, 2) $\Leftrightarrow 5$) is due to Harada [15, Theorem 2.3]. 1) $\Leftrightarrow 2$) follows from Propositions 2.1 and 2.6. 2) $\Rightarrow 1$) follows from Proposition 2.7. 1) $\Leftrightarrow 4$) is just Proposition 2.3. 1) $\Rightarrow 3$) follows from Propositions 2.1 and 2.2. The proof is completed if we prove 3$) \Rightarrow 5$). Assume that 3) holds. By 1) of Proposition 2. 10, R is right and left perfect. Using 3) of Proposition 2. 10, we can easily show that a) and b) in 5) hold.

Definition. In honor of Harada [13] and [15], we call that a ring R is a right H-ring if it satisfies one of the equivalent conditions in Theorem 2.11. Left H-rings are symmetrically defined and right and left H-rings are simply called H-rings.

REmARK. Let R be a right artinian ring whose indecomposable injective R-modules are finitely generated modules. Then, in view of the proofs of all results in this section, we see that the following conditions are equivalent :

1) R is a right H-ring.
2) Every finitely generated injective R-module is a lifting module.

3) Every finitely generated non-small R-module contains a non-zero injective submodule.
4) The family of all finitely generated injective R-modules is closed under taking small covers.
5) Every finitely generated R-module is expressed as a direct sum of an injective module and a small module.

3. $\mathbf{C o}-\mathbf{H}$-ring

This section is concerned with Theorem II mentioned in introduction. Therefore, the following conditions are studied:
(\#) Every projective R-module is an extending module.
(*)* Every non-cosmall R-module contains non-zero projective direct summand.
(PEC) The family of all projective R-modules is closed under taking essential extensions.
(PSD) Every R-module is expressed as a direct sum of a projective module and a singular module.

The condition $(*)^{*}$ is due to Harada and semiperfect rings with this condition has been setteled in terms of ideal theoretic properties ([14], [15]).

Proposition 3.1. (\#) ${ }^{\text { }}$ implies (PSD).
Proof. Let M be an R-module. Consider an exact sequence : $P \xrightarrow{\phi}$ $M \rightarrow 0$, where P is a free R-module. By $(\#)^{*}$, there exists a decomposition $P=P_{1} \oplus P_{2}$ with ker $\phi \subseteq_{e} P_{1}$. Then $M=\phi\left(P_{1}\right) \oplus \phi\left(P_{2}\right), P_{2} \simeq \phi\left(P_{2}\right)$ and $P_{1} /$ ker $\phi \simeq \phi\left(P_{1}\right)$. As a result, $\phi\left(P_{2}\right)$ is projective and $\phi\left(P_{1}\right)$ is a singular module.

Lemma 3.2. ([15], [24]). The following statements hold about noncosmall modules:

1) An R-module M is non-cosmall iff it does not coincide with its singular module,
2) If an R-module M contains a non-zero projective submodule, then it is non-cosmall.

Proposition 3.3. (PSD) implies (PEC).
Proof. Let P be a non-zero projective R-module, and consider an R module M with $P \subseteq_{e} M$. By (PSD), M is written as $M=Q \oplus Z$, where Q is projective and Z singular. Let $\pi: M=Q \oplus Z \rightarrow Q$ be the projection. By (PSD), $\pi(P)$ is expressed as $\pi(P)=T \oplus V$, where T is projective and V singular. Let $\omega: \pi(P)=T \oplus V \rightarrow T$ be the projection. Since T is projective, we have a decomposition $P=P_{1} \oplus P_{2}$ such that $P_{1} \simeq T$ by $\omega \pi$ and $\omega \pi\left(P_{2}\right)=0$. Then $P_{2} \subseteq V \oplus Z$. Since $V \oplus Z$ is a singular module, we see $P_{2}=0$ by Lemma
3.2. Thus $P \simeq T$ by $\omega \pi$. Since $P \subseteq_{e} M$, this easily shows that $Z=0$ and hence $M=Q$; so M is projective.

Lemma 3.4. Assume that R satisfies (PEC). Then, every projective injective R-module contains an indecomposable cyclic Σ-injective module. So, in particular, every indecomposable projective injective R-module is cyclic Σ-injective.

Proof. Let P be a projective and injective R-module. We take a cardinal number τ such that $\tau>\max \left\{\chi_{0},|R|\right\}$, and consider the injective hull $E=\mathrm{E}(\tau P)$. Then, we see from Theorem B that E is written as a direct sum cyclic submodules, say $E=\sum_{I} \oplus x_{\alpha} R$. Then, clearly, $|I| \geq \tau$. As a result, there must exist a subset J of I such that $|J| \geq \chi_{0}$ and $x_{\alpha} R \simeq x_{\beta} R$ for any α, $\beta \in J$. So, according to Theorem $A, x_{\alpha} R$ is Σ-injective for every $\alpha \in J$ and is expressed as a direct sum of indecomposable cyclic modules. Thus, at any rate, we can take a uniform submodule X of E such that $\mathrm{E}(X)$ is indecomposable cyclic Σ-injective. Clearly, $\mathrm{E}(X) \cong \tau P$ and hence we see that $\mathrm{E}(X) \cong P$ by Theorem B.

Lemma 3.5. Assume that R satisfies (PEC), and let $\left\{P_{\alpha}\right\}_{K}$ be a family of indecomposable projective injective R-modules. Then, $P=\sum_{K} \oplus P_{\alpha}$ is Σ injective.

Proof. We can assume that $P_{\alpha} \nsim P_{\beta}$ for any $\alpha \neq \beta$. We take a cardinal τ with $\tau>\max \left\{\chi_{0},|R|\right\}$, and consider $E=\mathrm{E}(\tau P)$. Then, as in the proof of Lemma 3.4, E is written as

$$
E=\sum_{I} \oplus x_{\alpha} R
$$

where $|I| \geq \tau$ and we see that there exists an infinite subset J of I such that $x_{\alpha} R \simeq x_{\beta} R$ for any $\alpha, \beta \in J$. We note that each $x_{\alpha} R$ contains an indecomposable injective module isomorphic to some P_{β} in $\left\{P_{\beta}\right\}_{K}$ by Lemma 3.4 and Theorem B.

Here, we consider the partitions $I=\bigcup_{\Gamma} I_{r}$ and $\Gamma=\Gamma_{1} \cup I_{2}$ such that, for any $\alpha \in I_{r}$ and $\beta \in I_{\sigma}$,

$$
\begin{array}{rll}
x_{\alpha} R \simeq x_{\beta} R & \text { if } & \gamma=\sigma, \\
x_{\alpha} R \not \approx x_{\beta} R & \text { if } & \gamma \neq \sigma, \\
\left|I_{r}\right| \geq \chi_{0} & \text { if } & \gamma \in \Gamma_{1} \\
\left|I_{\gamma}\right|<\infty & \text { if } & \gamma \in \Gamma_{2} .
\end{array}
$$

Then, we see that $\left|\Gamma_{2}\right| \leq|R|$. Put $I_{i}=\underset{\alpha \in r_{i}}{\cup} I_{\alpha}, i=1,2$. By Theorem A, for any $\alpha \in I_{1}, x_{\alpha} R$ is expressed as a direct sum of indecomposable Σ-injective modules. Therefore, we can assume that, for any $\alpha \in I_{1}, x_{\alpha} R$ is an indecomposable Σ-injective module isomorphic to some member in $\left\{P_{\beta}\right\}_{K}$.

We put $E_{i}=\sum_{I_{i}} \oplus x_{\alpha} R, i=1,2$. Then,

$$
\chi_{0} E_{1}=\sum_{\Gamma_{1}} \chi_{0}\left(\sum_{I_{r}} \oplus x_{\alpha} R\right) \simeq \sum_{\Gamma_{1}}\left(\sum_{I_{r}} \oplus x_{\alpha} R\right)=E_{1}
$$

Hence, E_{1} is Σ-injective by Theorem A. From this fact, we can assume that, for any $\beta \in I_{2}, x_{\beta} R$ does not contain any direct summand isomorphic to some member in $\left\{x_{\alpha} R\right\}_{I_{1}}$. Here, consider

$$
K_{1}=\left\{\beta \in K \mid P_{\beta} \text { is isomorphic to some member in }\left\{x_{\alpha} R\right\}_{I_{1}}\right\} .
$$

We claim that $K=K_{1}$. Assume $K_{2}=K-K_{1} \neq \phi$ and put $Q=\sum_{K_{2}} \oplus P_{\delta}$. By Theorem B , we see that any indecomposable direct summand of E_{i} is isomorphic to some member in $\left\{P_{\beta}\right\}_{K_{i}}$ for $i=1,2$. From this fact we conclude that $\tau Q \cap E_{1}=0$; whence $\tau Q \subseteq E_{2}=\sum_{r_{2}} \sum_{I_{Y}} \oplus x_{\beta} R$. However, this shows that $\left|\Gamma_{2}\right| \geq \tau$, a contradiction. Consequently $K=K_{1}$ and hence P is isomorphic to a direct summand of E_{1}. Thus, P is Σ-injective.

By Lemmas 3.4 and 3.5, we have
Proposition 3.6. Assume that R satisfies (PEC). Then, for any projective R-module $P, E(P)$ is projective Σ-injective and, moreover, P is expressed as a direct sum of indecomposable cyclic modules.

Remark. From the above proposition, we see that if R satisfies (PEC) then the identity of R is written as a sum of primitive orthogonal idempotents.

Lemma 3.7. Assume that R satisfies (PEC) and let $\left\{f_{j}\right\}$ a complete set of primitive idempotents. Then, each $f_{j} R$ is Σ-quasi-injective and $Z\left(f_{j} R\right)$ $=Z\left(E\left(f_{j} R\right)\right)$. More precisely, there exist a subset $\left\{e_{i}\right\} \subseteq\left\{f_{j}\right\}$ and integers $\left\{n_{i}\right\}$ such that

1) each $e_{i} R$ is injective,
2) $e_{i} J^{t}$ is cyclic projective for $t \leq n_{i}$ and $e_{i} J^{n_{i}+1}=Z\left(e_{i} R\right)$,
3) for any $f \in\left\{f_{j}\right\}$, there exists $e \in\left\{e_{i}\right\}$ such that $E(f R) \simeq e R$, where $J=J(R)$.

Proof. Let $f \in\left\{f_{j}\right\}$. By Proposition 3. 6, $\mathrm{E}(f R)$ is written as a direct sum of indecomposable Σ-injective cyclic projective modules, say $\mathrm{E}(f R)=$ $p_{1} R \oplus \cdots \oplus p_{m} R$. We show $m=1$. Consider the projection $\pi_{i}: \mathrm{E}(f R)=\sum_{i=1}^{n} \oplus$
$p_{i} R \rightarrow p_{i} R, i=1, \cdots, n$ Then $f R \subseteq_{e} \sum_{i=1}^{n} \oplus \pi_{i}(f R)$. Hence, by (PEC), each $\pi_{i}(f R)$ is projective. Therefore, $f R \simeq \pi_{1}(f R)$, whence we see that $f R \cap \sum_{i=2}^{n} \oplus p_{i} R=0$. Thus, $\mathrm{E}(f R)$ is indecomposable Σ-injective and cyclic projective. So, in particular, $f R$ is uniform. Moreover, using Theorem B, we see that there exist $e \in\left\{f_{j}\right\}$ and an isomorphism : $\mathrm{E}(f R) \stackrel{\phi}{\stackrel{ }{\sim} e R \text {. } \quad \text {. } \quad \text {. }}$

Now, assume that $\phi(f R) \subsetneq e R$. Then $\phi(f R) \subseteq_{e} e J^{*}$; whence $e J$ is indecomposable Σ-quasi-injective projective by (PEC) and Lemma 3.4. Again, by Theoren B, eJ is isomorphic to some $f_{i} R$. Then $e J^{2}$ is a unique maximal submodule of $e J$ and hence it is Σ-quasi-injective (cf. Theorem A). If $e J \neq \phi(f R)$ then $\phi(f R) \subseteq_{e} e J^{2}$ and we see, as above, that $e J^{2}$ is Σ-quasiinjective cyclic projective and is isomorphic to some $f_{j} R$. This procedure terminates. For, if otherwise then $e J^{t}$ is Σ-quasi-injective projective and isomorphic to some $f_{j} R$ for $t=0,1, \cdots$. Then there must exist distinct t_{1}, t_{2} such that $e J^{t_{1}} \simeq e J^{t_{2}}$. However, then, by the fully invarientness of $e J^{t_{1}}$ and $e J^{t_{2}}$ we see $e J^{t_{1}}=e J^{t_{2}}$, a contradiction. Thus there exists an integer n such that $e J^{t}$ is indecomposable Σ-quasi-injective and isomorphic to some $f_{j} R$ for $t \leq n$ and $e J^{n}=\phi(f R)$; so $f R$ is Σ-quasi-injective.

We further observe $e J^{n+i}$. Since $e J^{n}$ is Σ-quasi-injective and is isomorphic to some $f_{j} R$, we also see that $e J^{n+1}$ is also Σ-quasi-injective. If $e J^{n+1}$ is projective then $e J^{n+1}$ is Σ-quasi-injective and isomorphic to some $f_{j} R$ by the same arqument above. If $e J^{n+2}$ is projective, similarly $e J^{n+2}$ is Σ-quasi-injective and isomorphic to some $f_{j} R$. This procedure also terminates by the same reason above. Hence there must exists s such that $e J^{n+i}$ is Σ-quasiinjective cyclic projective for $1 \leq i \leq s$ and $e J^{n+s+1}$ is not projective.

Put $k=n+s$. In view above, we see $Z(e R)=Z\left(e J^{n}\right)=Z\left(e J^{k}\right) \subseteq e J^{k+1}$. It remains only to prove $Z(e R)=e J^{k+1}$. Assuming $Z(e R) \neq e J^{k+1}$ we take $x \in e J^{k+1}$ such that $x R$ is not singular, i. e., $\operatorname{Ann}_{r}(x)$ is not essential in R. Then, noting that each $f_{j} R$ is uniform, there exists $f_{j} R$ such that $\operatorname{Ann}_{r}(x) \cap f_{j} R=0$. But this implies $f_{j} R \cong x R \subseteq e J^{k+1}$ and hence $e J^{k+1}$ is projective by (PEC), a contradiction. Thus $Z(e R)=e J^{k+1}$.

Theorem 3.8. If R satisfies (PEC) then R is a semiprimary ring satisfying (*)* and the ACC on right annihilator ideals.

Proof. Note that uniform quasi-injective R-modules are completely indecomposable. From this fact, Lemma 3. 7, [15, Theorem 3. 6], Proposition

[^0]3.6 and Theorem A we conclude that R is a semiperfect ring satisfying $(*)^{*}$ and the ACC on right annihilator ideals. Now, to prove the remainder, it suffices to show that R is right perfect (cf. [1, Proposition 29.1]). By Lemma 3.7, every projective R-module is written as a finite direct sum of quasi-injective modules. Therefore, every projective R-module satisfies the exchange property (Theorem B). So, R is a right perfect ring by [16] or [28].

Proposition 3.9. The condition $\left({ }^{*}\right)^{*}$ is equivalent to the condition: For any projective R-module P and any submodule A of P, if A is not essential in P then there exists a proper direct summand $B\langle\oplus P$ with $A \subseteq B$.

Proof. Assume that $\left(^{*}\right)^{*}$ holds and let P be a projective R-module and A a submodule of P which is not essential in P. Then, P / A is noncosmall and hence P / A is written as $P / A=X \oplus Y$, where X is non-zero projective. Since the canonical epimorphism $\phi: P \rightarrow X \rightarrow 0$ splits, we get $P=\operatorname{ker} \phi \oplus Q$ for some submodule Q. Then $\operatorname{ker} \phi \supseteq A$ and $Q \neq 0$.

Conversely, let M be a non-cosmall R-module and consider a sequence $F \stackrel{\phi}{\rightarrow} M \rightarrow 0$ where F is a free R-module. Then $\operatorname{ker} \phi$ is not essential in F and hence we have a decomposition $F=F_{1} \oplus F_{2}$ such that $\operatorname{ker} \phi \subseteq F_{1}$ and $F_{2} \neq 0$. Then we see that $M=\phi\left(F_{1}\right) \oplus \phi\left(F_{2}\right)$ and $F_{2} \simeq \phi\left(F_{2}\right)$ by ϕ.

Corollary 3.10. If (*)* holds then every indecomposable projective R-module is uniform.

Proposition 3.11. Assume that R satisfies (*)* and the identity of R is a sum of primitive orthogonal idempotents $\left\{f_{j}\right\}$. Then each $f_{j} R$ is quasiinjective and moreover there exist a subset $\left\{e_{i}\right\} \subseteq\left\{f_{j}\right\}$ and integers $\left\{n_{i}\right\}$ satisfying

1) each $e_{i} R$ is injective,
2) $e_{i} J^{t}$ is cyclic projective for $t \leq n_{i}$ and $e_{i} J^{n_{i}+1}=Z\left(e_{i} R\right)$,
3) for any $f \in\left\{f_{j}\right\}$ there exists $e \in\left\{e_{i}\right\}$ such that $E(f R) \simeq e R$; so $Z(f R)$ $=Z(E(f R))$, where $J=J(R)$.

Proof. By Corollary 3.10 each $f_{j} R$ is uniform. Let $f \in\left\{f_{j}\right\}$. Then $\mathrm{E}(f R)$ is indecomposable projective by Lemma 3.2. Hence using the exchange property of $E(f R)$ (Theorem B) we see that there exists $e \in\left\{f_{j}\right\}$ and an isomorphism $\mathrm{E}(f R) \simeq e R$.

Assume $\phi(f R) \varsubsetneqq e R$. Then $Z(e R)=Z(e J) \subseteq e J$ and hence, again, by Lemma 3.2 and Theorem B , we see that $e J$ is quasi-injective and projective, and is isomorphic to some $f_{j} R$. Similarly if $\phi(f R) \varsubsetneqq e J$ then $e J^{2}$ is quasiinjective and projective, and is isomorphic to some $f_{j} R$. This procedure
terminates as in the proof of Lemma 3.7. Therefore there exists n such that $e J^{t}$ is projective and quasi-injective for any $t \leq n, e J^{n}=\phi(f R) \simeq f R$ and $e J^{n+1}=\mathrm{Z}(e R)=\mathrm{Z}(\phi(f R))$.

ThEOREM 3.12. If R satisfies (*)* and the ACC on right annihilator ideals then R is a semiprimary ring with Σ-quasi-injective singular submodule $Z(R)$; so $Z(P)$ is quasi-injective for every projective R-module P.

Proof. Since R satisfies the ACC on right annihilator ideals, the identity of R is written as a sum of orthogonal primitive idempotents $\left\{f_{j}\right\}$. According to Proposition 3.11 each $f_{j} R$ is uniform and quasi-injective; so is completely indecomposable. Thus R is a semi-perfect ring. Furthermore, each $f_{j} R$ is Σ-quasi-injective by Theorem A. Hence, by the same proof as in the proof of Theorem 3.8 we see that R is a semiprimary ring. The remainder is clear from Proposition 3.11 and Theorem A.

Lemma 3.13. Assume that R satisfies (*)* and the ACC on right annihilator ideals. Let P be a projective R-module and let $P=\sum_{I} \oplus P_{\alpha}$ be an indecomposable decomposition. (Such a decomposition exists by Theorem 3.12.) Then any uniform submodule of P is finitely contained with respect to $P=\sum_{I} \oplus P_{\alpha}$, i.e., for any uniform submodule A of P there exists a finite subset F of I with $A \subseteq \sum_{F} \oplus P_{\alpha}$.

Proof. By Proposition 3.11 and Theorem A we see that each P_{α} is uniform, each $\mathrm{E}\left(P_{\alpha}\right)$ is cyclic and $\mathrm{E}(P)=\sum_{I} \oplus \mathrm{E}\left(P_{\alpha}\right)$. Let A be a uniform submodule of P. Then we can take $\alpha \in I$ such that $A \oplus \sum_{I-(\alpha)} \oplus P_{\beta} \subseteq_{e} P$. Put $Q=\sum_{I-\{\alpha \mid} \oplus P_{\beta}$, and denote, by π_{α} and π_{Q}, the projections : $P=P_{\alpha} \oplus Q \rightarrow P_{\alpha}$ and $P=P_{\alpha}^{I-(\alpha)} \oplus Q \rightarrow Q$, respectively. Then the mapping $\psi: \pi_{\alpha}(A) \rightarrow Q$ given by $\psi\left(\pi_{\alpha}(a)\right)=\pi_{Q}(a)$ is a homomorphism and $A=\left\{x+\phi(x) \mid x \in \pi_{\alpha}(A)\right\} . \quad \psi$ is then extended to a homomorphism $\phi: \mathrm{E}\left(P_{\alpha}\right) \rightarrow \mathrm{E}\left(\sum_{I-|\alpha|} \oplus P_{\beta}\right)=\sum_{I-\{\alpha \mid} \oplus \mathrm{E}\left(P_{s}\right)$. Since $\mathrm{E}\left(P_{\alpha}\right)$ is cyclic there exists a finite subset $F \subseteq I$ satisfying $\psi\left(\mathrm{E}\left(P_{\alpha}\right)\right) \subseteq \sum_{F} \oplus \mathrm{E}\left(P_{\beta}\right)$. This shows $\psi(A) \subseteq \sum_{F} \oplus P_{\alpha}$ and hence $A \subseteq P_{\alpha} \oplus \sum_{F^{\prime}} \oplus P_{\beta}$.

Lemma 3.14. Assume that R satisfies (*)* and the identity of R is a sum of orthogonal primitive idempotents. Then every projective R-module has the extending property of finitely contained uniform modules with respect to any indecomposable decomposition of P.

Proof. By Proposition 3. 11 we see that R is a semiperfect ring. Let P be a projective module. Since R is semiperfect, P has an indecomposable
decomposition $P=\sum_{I} \oplus P_{\alpha}$ (cf. [1, 27.1]). Our statement is the following : For any uniform submodule A of P such that $A \subseteq \sum_{F} \oplus P_{\alpha}$ for some finite subset $F \subseteq I$, there exists a direct summand A^{*} of P with $A \subseteq{ }_{e} A^{*}$. However, in view of [17, Theorem 10], it suffices to show the following condition: Let f and g be primitive idempotents of R, and let A a submodule of $f R$ and $\phi: A \rightarrow g R$ a homomorphism. Then, if ϕ is a monomorphism then there exists either $\phi: f R \rightarrow g R$ or $g R \rightarrow f R$ with $\phi \mid A=\phi$ or $\phi \mid \phi(A)=\phi^{-1}$. If ϕ is a non-monomorphism, then ϕ is extended to a homomorphism : $f R \rightarrow g R$.

This condition is verified by Proposition 3.11. Actually, ϕ is extended to a homomorphism $\psi: \mathrm{E}(f R) \rightarrow \mathrm{E}(g R)$. If ϕ is a monomorphism then ϕ is an isomorphism and, by Proposition 3.11, $\psi(f R) \subseteq g R$ or $\psi^{-1}(g R) \subseteq f R$. On the other hand, if ϕ is a non-monomorphism then, so is ψ and, again by Proposition 3.11, $\psi(\mathrm{E}(f R) \subseteq Z(\mathrm{E}(g R))=\mathrm{Z}(g R) \subseteq g R$; whence $\psi(f R) \subseteq g R$. Thus the proof is completed.

By Lemmas 3.13 and 3.14, we have the following result.
Theorem 3.15. Assume that R satisfies (*)* and the ACC on right annihilator ideals. Then every projective R-module has the extending property of uniform modules.

Lemma 3.16. We assume that R is a right perfect ring with (*)*. Let P be a projective R-module and A a submodule of P. Then there exist decompositions $P=P^{*} \oplus Q$ and $A=A * \oplus Z$ such that A^{*} is projective with $A^{*} \subseteq{ }_{e} P^{*}$ and Z a singular module with $Z \subseteq Q$.

Proof. Let $\left\{f_{1}, \cdots, f_{m}\right\}$ be a complete set of orthogonal primitive idempotents of R. By Proposition 3.11 or [15, Theorem 3.1], there exists a subset $\left\{e_{1}, \cdots, e_{s}\right\} \subseteq\left\{f_{i}\right\}$ and integers $\left\{n_{1}, \cdots, n_{s}\right\}$ such that

1) each $e_{i} R$ is injective,
2) $e_{i} J^{t}$ is cyclic uniform projective for all $t \leq n_{i}$ and $e_{i} J^{n_{i}+1}=\mathrm{Z}\left(e_{i} R\right)$,
3) every indecomposable projective R-module is isomorphic to some $e_{i} J^{t}$, where $J=\mathrm{J}(R)$.

We can assume that $\left\{e_{1}, \cdots, e_{s}\right\}$ is the representative set of indecomposable projective injective R-modules, i. e., $e_{i} R \not \not \neq e_{j} R$ for any $i \neq j$. Then $\left\{e_{i} J^{t} \mid t \leq n_{i}\right.$, $i \leq s\}$ is the representative set of indecomposable projective R-modules. For convinience's sake of the proof, we say that an indecomposable projective R -module is type (e_{i}, t) if it is isomorphic to $e_{i} J^{t}$.

Now, let A be a submodule of P. If $A=\mathrm{Z}(A)$, then there is nothing to prove; so assume $A \neq Z(A)$. Then, by [15, Proposition 3.2], A contains
a non-zero projective direct summand. In particular, A contains a non-zero indecomposable projective summand.

We can take $e_{i_{1}} \in\left\{e_{i}\right\}$ and $t_{1}^{i_{1}} \leq n_{i_{1}}$ such that

1) A contains a direct summand of type $\left(e_{i_{1}}, t_{1}^{i_{1}}\right)$, but
2) A does not contain any direct summand of type $\left(e_{k}, t\right)$ for $k<i_{1}$ and $t \leq n_{k}$ and any direct summand of type (e_{i}, t) for $t<t_{1}^{i_{1}}$.
Using Zorn's lemma and Theorem 3.15, we can take a maximal independent family $\left\{P_{\alpha}\right\}_{I\left(e_{i_{1}}, t_{1}^{i}\right)}$ of indecomposable direct summands of P such that
3) $\sum_{I\left(e_{i_{1}}, t_{1}^{i_{1}}\right)} \oplus P_{\alpha}$ is a locally direct summand of P, and
4) $A_{\alpha}=P_{\alpha} \cap A$ is a projective direct summand of A of type $\left(e_{i_{1}}, t_{1}^{i_{1}}\right)$ such that $A_{\alpha} \subseteq_{e} P_{\alpha}$ for all $\alpha \in I\left(e_{i_{1}}, t_{1}^{i_{1}}\right)$.

We put $I=I\left(e_{i_{1}}, t_{1}^{i_{1}}\right), \quad P^{\left(e_{i_{1}}, t_{1}^{i_{1}}\right)}=\sum_{I} \oplus P_{\alpha}$ and $A^{\left(e_{1}, t t_{1}^{1}\right)}=\sum_{I} \oplus A_{\alpha} . \quad$ Then, $P^{\left(i_{1}, t i_{1}\right)}\langle\oplus P$ by Theorem 3.12 and [22, Proposition 3.2]. We also show $A^{\left(e i_{1}, t i_{1}\right)}\langle\oplus A$. For this purpose, let Q be a submodule of P such that

$$
P=P^{\left(e_{i_{1}}, t_{1}^{t}\right)} \oplus Q
$$

By π_{α}, we denote the projection : $P=P^{\left(e_{i}, t t_{1}\right)} \oplus Q \rightarrow P_{\alpha}$ for all $\alpha \in I$. Since $P_{\alpha} \cap A=A_{\alpha}$ and A does not contain any direct summand of type ($\left.e_{i_{1}}, t\right)$ for $t<t_{1}^{i_{1}}$, we can verify $\pi_{\alpha}(A)=A_{\alpha}$ for all $\alpha \in I$ (cf. Proposition 3.11). As a result, we get

$$
A=\left(\sum_{I} \oplus A_{a}\right) \oplus(Q \cap A)
$$

as desired.
We put $B=Q \cap A$. Then B has no direct summand of type $\left(e_{i_{1}}, t_{1}^{i_{1}}\right)$ by the maximality of $\left\{P_{\alpha}\right\}_{I}$ and Theorem 3.15. If $Z(B)=B$ the proof is completed. If $Z(B) \neq B$, then the same argument above works on $B \subseteq Q$ instead of $A \subseteq P$. In this case, the following two cases are considered.

The first case is that there exist $t_{2}^{i_{1}}>t_{1}^{i_{1}}$ and B has a direct summand of type $\left(e_{i_{1}}, t_{2}^{i_{1}}\right)$ but does not contain any direct summand of type ($e_{i_{1}}, t$) for $t<t_{2}^{i_{1}}$. Then we can obtain decompositions

$$
\begin{aligned}
& Q=\sum_{I\left(e_{i_{1}}, t_{2}^{\left.i_{1}\right)}\right.} \oplus P_{\alpha} \oplus S, \\
& B=\sum_{I\left(e_{i_{1}}, t_{2}^{\left.i_{1} 1\right)}\right.} \oplus\left(P_{\alpha} \cap B\right) \oplus C
\end{aligned}
$$

such that $C \subseteq S$, each P_{α} is indecomposable with $A_{\alpha}=P_{\alpha} \cap B \subseteq{ }_{e} P_{\alpha}$, each A_{α} is projective and C does not contain a direct summand of type $\left(e_{i}, t\right)$ for any $t<t_{2}^{i_{1}}$. Then we put $P^{\left(e_{i_{1}}, t_{2}^{i_{1}}\right)}=\sum_{I\left(e_{i_{1}}, t_{2}^{i_{1}}\right)} \oplus P_{\alpha}$ and $A^{\left(e_{i_{1}}, t t_{2}^{1}\right)}=\sum_{I\left(e_{i_{1}}, t_{2}^{i_{1}}\right)} \oplus A_{\alpha}$.

The secound case is that B does not contain any direct summand of type ($\left.e_{i}, t\right)$. In this case we have $i_{2}>i_{1}$ and $t_{1}^{i_{2}}<n_{i_{2}}$ such that B contains a direct summand of type $\left(e_{i_{2}}, t_{1}^{i_{2}}\right)$ but not contain a direct summand of type $\left(e_{k}, t\right)$ for $k<i_{2}$ and of type $\left(e_{i_{2}}, t\right)$ for $t<t_{1}^{i_{2}}$. Then we also obtain decompositions

$$
\begin{aligned}
& \left.\left.Q=\sum_{I\left(e_{2},\right.}, t_{1}^{\prime}\right)^{2}\right) \\
& B=\sum_{I\left(e_{i_{2}}, t_{1}^{2}\right)} \oplus\left(P_{\alpha} \oplus S,\right.
\end{aligned}
$$

such that $S \supseteq C$, each P_{α} is indecomposable with $P_{\alpha e} \supseteq A_{\alpha}=P_{\alpha} \cap B$, each A_{α} is projective and C has no direct summand of type $\left(e_{i_{2}}, t_{1}^{i}\right)$. Then we put $P^{\left(e_{2}, t i_{i}\right)}=\sum_{I\left(e_{2}, t_{1}^{2}\right)} \oplus P_{\alpha}$ and $A^{\left(e_{2}, t i_{1}^{2}\right)}=\sum_{I\left(e_{2}, i_{1}^{2}\right)} \oplus A_{\alpha}$.

Continuing this procedure we get

$$
\begin{aligned}
& 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq s \\
& 0 \leq t_{1}^{i_{1}}<t_{2}^{i j}<\cdots<t_{i_{i_{j}}}^{i_{j}}, \quad j=1, \cdots, k
\end{aligned}
$$

and

$$
\begin{aligned}
& P=\sum_{j=1}^{i_{i_{1}}} \oplus P^{\left(i_{1}, t_{j} i_{j}\right)} \oplus \sum_{j=1}^{i_{i_{2}}} \oplus P^{\left(i_{2}, t_{j}\right)} \oplus \cdots \oplus \sum_{j=1}^{i_{i_{k}}} \oplus P^{\left(i_{k}, t_{j}^{k_{k}}\right)} \oplus W, \\
& A=\sum_{j=1}^{i_{i_{1}}} \oplus A^{\left(i_{1}, t_{j}, t_{j}\right)} \oplus \sum_{j=1}^{i_{i_{2}}} \oplus P^{\left(i_{2}, t_{j} i_{j}\right)} \oplus \cdots \oplus \sum_{j=1}^{i_{i_{k}}} \oplus P^{\left(i_{k}, t_{k} t_{k}\right)} \oplus V
\end{aligned}
$$

such that each $A^{\left(i_{u}, t_{j}^{i} u\right)}$ is projective and of type $\left(e_{i_{u}}, t_{j}^{i_{u}}\right), P^{\left(i_{u}, t_{j}^{i}\right)_{e}} \supseteq A^{\left(i_{u}, t_{j}^{i} u_{u}\right.}$ for each $\left(i_{u}, t_{j}^{i_{u}}\right)$ and $V=Z(V) \subseteq W$. This completes the proof.

Theorem 3.17. If R satisfies (*)* and the ACC on right annihilator ideals then R satisfies (\#).

Proof. Let P be a projective R-module and A a submodule of P. For our assertion we can assume $A \subseteq Z(P)$ by Lemma 3.16. Theorem 3.12 says that $Z(P)$ is quasi-injective. This fact enable us to further assume that $A\langle\oplus Z(P)$. By Proposition 3.11 and Theorem 3.12 we infer that $Z(P)$ is written as a direct sum of completely indecomposable uniform modules. As a result, any non-zero direct summand of A has a non-zero completely indecomposable uniform direct summand (cf. Theorem B).

By Zorn's lemma we can take maximal independent families $\left\{P_{a}\right\}_{I}$ of indecomposable direct summands of P and $\left\{A_{a}\right\}_{I}$ of indecomposable direct summands of A such that $P_{\alpha e} \supseteq A_{\alpha}$ for all $\alpha \in I$ and both $\sum_{I} \oplus P_{\alpha}$ and $\sum_{I} \oplus A_{\alpha}$ are locally direct summands of P and A, respectively. Then we conclude
$\sum_{I} \oplus P_{\alpha}<\oplus P$ by Theorem 3.12 and [22, Proposition 3.2] and $\sum_{I} \oplus A_{\alpha}<\oplus A$ by Theorem C; put

$$
\begin{aligned}
P & =\sum_{I} \oplus P_{\alpha} \oplus Q \\
A & =\sum_{I} \oplus A_{\alpha} \oplus B
\end{aligned}
$$

Our proof is established by showing $B=0$. Assume $B \neq 0$ and take a nonzero uniform direct summand $C\langle\oplus B$. Let us consider an indecomposable decomposition $Q=\sum_{J} \oplus P_{\beta}$ and let $\pi_{r}: P=\sum_{K} \oplus P_{r} \rightarrow P_{r}$ be the projection for all $\gamma \in K=I \cup J$. According to Lemma 3.13 we can take a finite subset $F=\left\{\gamma_{1}, \cdots, \gamma_{n}\right\} \subseteq K$ such that $C \subseteq P_{r_{1}} \oplus \cdots \oplus P_{r_{n}}$. Put $J^{*}=F \cap J$.Since C is uniform and $C \cap \sum_{I} \oplus P_{\alpha}=0$ we see that there exists $\beta_{0} \in J *$ such that $\pi_{\beta_{0}} \mid C$ is monomorphic. Here consider the mapping $\psi: \pi_{\beta_{0}}(C) \rightarrow \sum_{\left.J-\mid \beta_{0}\right\}} \oplus \pi_{\beta}(C)$ given by $\pi_{\beta_{0}}(c) \rightarrow \sum_{J-\left|\beta_{0}\right|} \pi_{\beta}(c)$ and put $X=\left\{x+\psi(x) \mid x \in \pi_{\beta_{0}}(C)\right\}$. Then X is uniform and $\sum_{I} \oplus A_{\beta} \oplus C \subseteq e \sum_{I} \oplus P_{\beta} \oplus C=\sum_{I} \oplus P_{\beta} \oplus X$. Now using Theorem 3. 15 we get a uniform direct summand $Y\left\langle\oplus \sum_{J} \oplus P_{\beta}\right.$ with $X \subseteq_{e} Y$. Thus we have a situation that

$$
\begin{aligned}
& \sum_{I} \oplus A_{\alpha} \oplus C<\oplus A, \\
& \sum_{T} \oplus A_{\alpha} \oplus C \subseteq_{e} \sum_{I} \oplus P_{\alpha} \oplus Y<\oplus P .
\end{aligned}
$$

This contradicts the maximality of $\left\{P_{\alpha}\right\}_{I}$ and $\left\{A_{\alpha}\right\}_{I}$. Thus we have $B=0$ as desired.

We are now in a position to state our secound main theorem of this paper, which is mentioned in introduction.

ThEOREM 3.18. The following conditions are equivalent for a given ring R :

1) R satisfies (\#) ${ }^{\#}$.
2) R satisfies (PSD).
3) R satisfies ($P E C$).
4) R satisfies (*)* * and the ACC on right annihilator ideals.

When this is so, then R is a semiprimary $Q F-3$ ring.
Proof. 1) $\Rightarrow 2) \Rightarrow 3$) follows from Propositions 3.1 and 3.3. 3) $\Rightarrow 4) \Rightarrow 1$) follows from Theorems 3.8 and 3.17. In view of Theorem D, the condition 3) implies that R is a semiprimary $Q F-3$ ring.

REMARK. Let R be a semiperfect ring with a complete set $\left\{e_{i}\right\} \cup\left\{q_{i}\right\}$
of primitive orthogonal idempotents such that each $e_{i} R$ is non-small and each $g_{i} R$ is small. As used in Lemma 3.16, Harada has shown in [15, Theorem 3.6] that R satisfies $(*)^{*}$ iff it satisfies the following conditions:

1) each $e_{i} R$ is injective,
2) for any g_{j}, there exists e_{i} such that $g_{j} R \subseteq e_{i} R$.
3) for each e_{i}, there exists n_{i} such that $e_{i} J^{t}$ is projective for $0 \leq t \leq n_{i}$ and $e_{i} J^{n_{i}+1}$ is a singular module, where $J=\mathrm{J}(R)$.
Further, in this case, it is shown that every submodule $e_{i} B$ in $e_{i} R$ either is contained in $e_{i} J^{n_{i}+1}$ or equal to some $e_{i} J^{t}, 0 \leq t \leq n_{i}+1$.

It should be noted that we used the idea of this result in our Lemma 3.7 and Proposition 3. 11.

As a dual of a right H-ring, we give
Definition. We say that a ring R is a right co- H-ring if it satisfies one of the equivalent conditions in Theorem 3.18. Left co- H-rings are symmetrically defined and right and left co- H-rings are simply called co- H rings.

Remark. Let R be a right noetherian ring whose indecomposable injective R-modules are finitely generated modules. Then, in view of the proof of the results in this section, we see that the following conditions are equivalent:

1) R is a right co- H-ring.
2) Every finitely generated projective R-module is an extending module.

3) Every finitely generated non-cosmall R-module contains a non-zero projective direct summand.
4) The family of all finitely generated projective R-modules is closed under taking essential extensions (cf. [19]).

5) Every finitely generated R-module is expressed as a direct sum of a projective module and a singular module.

4. Application

As a first application of H-rings and co- H-rings, we study quasi-Frobenius rings (abbreviated $Q F$-rings).

A ring R is said to be $Q F$ if it satisfies one of the following equivalent conditions:

1) R is a right self-injective ring and satisfies the ACC on right annihilator ideals.
2) Every injective R-module is projective.

3) Every projective R-module is injective.

As is well known, these conditions 1) ~ 3) are right-left symmetric.
Lemma 4.1. ([22, Theorem 4.11]). Let M be a quasi-semiperfect R module, and let $\left\{A_{\alpha}\right\}_{I}$ be a faimly of indecomposable direct summands of M with $M=\sum_{I} A_{\alpha}$. If $M=\sum_{I} A_{\alpha}$ is an irredundant sum, then $M=\sum_{I} \oplus A_{\alpha}$.

Theorem 4.2. The following conditions are equivalent for a given ring R :

1) R is $Q F$.
2) Every injective R-module is semiperfect.
3) Every injective R-module is quasi-semiperfect.
4) Every projective R-module is continuous.
5) Every projective R-module is quasi-continuous.

Proof. The implications 1$) \Rightarrow 2) \Rightarrow 3$) and 1$) \Rightarrow 4) \Rightarrow 5$) are clear.
$3) \Rightarrow 1)$ By Proposition 2.6, R is right artinian. Hence, combining Lemma 4.1 to [14, Proposition 3], we see that R is $Q F$.
$5) \Rightarrow 1$) By [21, Proposition 1.9], it follows from 5) that every projective R-module is quasi-injective and hence injective. As a result, R is $Q F$.

The theorem above suggests the following characterizations of $Q F$-rings.
Theorem 4.3. The following conditions are equivalent for a given ring R :

1) R is $Q F$.
2) R is a right H-ring with $Z(R)=J(R)$.
3) R is a right co- H-ring with $Z(R)=J(R)$.

So, the conditions 2) and 3) are right-left symmetric.
Proof. If R is $Q F$, then the injectivity of R implies that $Z(R)=\mathrm{J}(R)$ ([35]). Clearly $Q F$-rings satisfies (\#) and (\#) (cf. [22, Theorem 2.1]). Hence $1) \Rightarrow 2$) and 1$) \Rightarrow 3$) follow.
$2) \Rightarrow 1)$. By Proposition 2.6, R is right artinian. Let e be a primitive idempotent of R. It is enough to show that $e R$ is small in $\mathrm{E}(e R)$ by (ISD). By Proposition 2.6, $E=\mathrm{E}(e R)$ is expressed as $E=E_{1} \oplus \cdots \oplus E_{n}$ with each E_{i} cyclic hollow. By π_{i}, we denote the projection : $E=E_{1} \oplus \cdots \oplus E_{n} \rightarrow E_{i}$, $i=1, \cdots, n$. Since $e R$ is small in E, clearly, $\pi_{i}(e R) \neq E_{i}$ for all i. Noting that each E_{i} is cyclic hollow, we see that there exists a primitive idempotent f_{i} such that E_{i} is a homomorphic image of $f_{i} R, i=1, \cdots, n$. Therefore, it follows from $Z\left(f_{i} R\right)=\mathrm{J}\left(f_{i} R\right)$ that $Z\left(E_{i}\right) \supseteq \mathrm{J}\left(E_{i}\right), i=1, \cdots, n$. Hence $e R \subseteq \pi_{1}$ $(e R) \oplus \cdots \oplus \pi_{n}(e R) \subseteq Z\left(E_{1}\right) \oplus \cdots \oplus Z\left(E_{n}\right)$; so $e R$ is a singular module, a contradiction. Thus, $e R$ must be an injective module.
$3) \Rightarrow 1)$. By Theorem 3.18, R satisfies the ACC on right annihilator
ideals. Hence we may show that $e R$ is an injective module for every primitive idempotent e. Indeed, this fact is easily seen by $Z(R)=\mathrm{J}(R)$ and [15, Theorem 3.6] or 3) of Lemma 3.7.

ThEOREM 4.4. If R is a commutative ring, then the following conditions are equivalent:

1) R is $Q F$.
2) R is a H-ring.
3) R is a co-H-ring.

Proof. 1) $\Rightarrow 2$) and 1$) \Rightarrow 3$) follow from Theorem 4.3. 2) $\Rightarrow 1$) follows from Proposition 2.6 and $[6,25.4 .18 \mathrm{~A}] .3) \Rightarrow 1$) is clear from the proof of Theorem 4.3 and the fact that, for any primitive idempotent e and f, $f R \subseteq e R$ implies $f R=e R$.

Remark. As we saw above, $Q F$-rings are H-rings and co- H-rings. In order to state more information about connection among right H-rings, right co- H-rings and classical artinian rings, we consider the following implications :

As is well known, R is $\left.Q F \Leftrightarrow a) \Leftrightarrow a^{*}\right) ; R$ is uniserial $\left.\Leftrightarrow b\right) \Leftrightarrow b^{*}$) ([2], [10]). It is shown in [23] that R is generalized uniserial $\Leftrightarrow c) \Leftrightarrow R$ is a right perfect ring with $\left.\left.\left.c^{*}\right) \Leftrightarrow e\right) \Leftrightarrow e^{*}\right)$. Rings with \#) are just right H-rings; while rings with \#) ${ }^{\text {F }}$ are just co- H-rings.

From this remark, we have immediately
TheOrem 4.5. If R is a generalized uniserial rings, then it is a H ring and also a co-H-ring.

In the rest of this section, we study right non-singular right H-rings and right non-singular right co- H-rings.

Now, if R is a right co- H-ring, we see from (PSD) that every nonsingular R-module is projective. We first note that the converse also holds
when R is a right non-singular right co- H-ring. For, in this case, a submodule A of a projective R-module P is a closed submodule of P iff P / A is non-singular. Therefore, by the Goodearl's work [11, Chapter 5] or [14, Corollary 1] and Theorem 3.18, a right non-singular right co- H -ring is completely determined as it is Morita equivalent to a finite direct sum of upper triangular matrix rings over division rings.

Right non-singular right H-rings also have the same structure as the following shows.

Theorem 4.6. If R is a right non-singular ring, then the following conditions are equivalent:

1) R is a right H-ring.
2) R is a right co-H-ring.
3) R is Morita equivalent to a finite direct sum of upper triangular matrix rings over division rings.

Proof. 2) $\Leftrightarrow 3$) holds as noted above. 3) $\Rightarrow 1), 2$) hollows from Theorem 4.5. We shall show 1$) \Rightarrow 3$). Assume 1). By [4, Theorem 3.2] together with Theorem 2.11, to show 3), we may show that R is a right hereditary ring. Further, by [15, Propositions 2.5 and 2.8] and Proposition 2.10, it suffices to show that, for a primitive idempotent e such that $e R$ is injective, every non-zero homomorphic image of $e R$ is non-small. To prove this, let A be a right ideal of R with $e R / e A \neq 0$ and assume that $e R / e A$ is small in $E=\mathrm{E}(e R / e A)$. As in the proof of Proposition 2.10, E is written as

$$
E=e_{1} R / e_{1} A_{1} \oplus \cdots \oplus e_{n} R / e_{n} A_{n}
$$

where all e_{i} are primitive idempotents and all A_{i} are right ideals. Put $E_{i}=$ $e_{i} R / e_{i} A_{i}, i=1, \cdots, n$. Here, consider the diagram :

where η and ψ are the canonical homomorphisms. Since $e R$ is projective, we get a homomorphism $\phi: e R \rightarrow P$ with $\eta \phi=\phi$. We can assume that $\pi_{1} \phi \neq 0$, where π_{1} is the projection: $P \rightarrow e_{1} R$. Since both $e R$ and $e_{1} R$ are non-singular and $e R$ is injective we see that π_{1} is an isomorphism. As a result, we obtain

$$
E=e R / e A+\left(E_{2} \oplus \cdots \oplus E_{n}\right)
$$

from which we conclude $E=E_{2} \oplus \cdots \oplus E_{n}$, a contradiction. Thus $e R / e A$ must be a non-small module. The proof is completed.

5. Examples

The purpose of this section is to give two typical examples of H - and co- H-rings.

As we saw in Theorems 4.4 and $4.5, Q F$-rings and generaliged uniserial rings are H - and co- H-rings. From these facts and Figure mentioned in section 4, the following problems arise:

1) Are right H-rings left H-rings?
2) Are right co- H-rings left co- H-rings?
3) Are right H-rings right co- H-rings?
4) Are right co- H-rings left H-rings?

In the case when R is an algebra over a field of finite dimension, these problems are equivalent, as the following shows.

Theorem 5.1. Let R be an algebra over a field K of finite dimension. Then R is a right co-H-ring iff it is a left H-ring.

Proof. For an R-module M, we denote its dual by M^{*}, that is,

$$
M^{*}=\operatorname{Hom}_{K}(M, K)
$$

For a homomorphism f from an R-module M to an R-module N, f^{*} denotes the correponding homomorphism : $N^{*} \rightarrow M^{*}$. The following facts are well known :

1) Every indecomposable injective R-module is finitely generated.
2) A finitely generated R-module P is projective iff P^{*} is injective.
3) Let $0 \rightarrow N \rightarrow M$ be an exact sequence of finitely generated R-modules. Then, $\operatorname{Im} F$ is essential in M iff $\operatorname{Ker} f^{*}$ is small in M^{*}.

Using these facts, we can easily see that the family of all finitely generated right R-modules is closed under taking essential extensions iff the family of all finitely generated injective left R-modules is taking small covers. Therefore, our proof is established by the remarks after Theorems 2.11 and 3. 18.

We use the following two lemmas.
Lemma 5.2 ([9]). Let R be a one sided artinian ring, and let e and f be primitive idempotents of R. If $(e R, R f)$ is an injective pair, that is.

$$
\operatorname{Soc}\left(e R_{R}\right) \simeq f R / f J \quad \text { and } \quad \operatorname{Soc}\left({ }_{R} R f\right) \simeq R e / J e
$$

where $J=J(R)$, then both $e R_{R}$ and ${ }_{R} R f$ are injective.

Lemma 5.3 ([24]). Let R be a right artinian ring, and let M be a right R-module. Then, M is a small module iff $M \operatorname{Soc}\left({ }_{R} R\right)=0$.

From now on, in order to construct two examples of right H - and right co- H-rings, we consider a local $Q F$-ring $Q(\neq 0)$. For the sake of convenience, we put $J=\mathrm{J}(Q), S=\operatorname{Soc}\left(Q_{Q}\right)\left(=\operatorname{Soc}\left({ }_{Q} Q\right)\right), \bar{Q}=Q / S$ and $\bar{a}=a+S$ for any a in Q. Note that J canonically becomes a two-sided Q-module, since $S J=S J=0$. Here, we define $V(Q), W(Q)$ and $T(Q)$ as follows :

$$
\begin{aligned}
& V(Q)=\left(\begin{array}{ll}
Q & Q \\
J & Q
\end{array}\right)=\left\{\left.\left(\begin{array}{ll}
a & b \\
d & c
\end{array}\right) \right\rvert\, a, b, c \in Q, d \in J\right\} \\
& W(Q)=\left(\begin{array}{ll}
Q & \bar{Q} \\
J & \bar{Q}
\end{array}\right)=\left\{\left.\left(\begin{array}{ll}
a & \bar{b} \\
d & \bar{c}
\end{array}\right) \right\rvert\, a, b, c \in Q, d \in J\right\} \\
& T(Q)=\left(\begin{array}{ll}
Q & \bar{Q} \\
J & Q
\end{array}\right)=\left\{\left.\left(\begin{array}{ll}
a & \bar{b} \\
d & c
\end{array}\right) \right\rvert\, a, b, c \in Q, d \in J\right\}
\end{aligned}
$$

Then, these become rings by usual addition and multiplication of matrices. We put

$$
\begin{array}{ll}
1_{V}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad e_{V}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad f_{V}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { in } V(Q) \\
1_{W}=\left(\begin{array}{ll}
1 & \overline{0} \\
0 & \overline{1}
\end{array}\right), \quad e_{W}=\left(\begin{array}{ll}
1 & \overline{0} \\
0 & \overline{0}
\end{array}\right), \quad f_{W}=\left(\begin{array}{ll}
0 & \overline{0} \\
0 & \overline{1}
\end{array}\right) \text { in } W(Q) \\
1_{T}=\left(\begin{array}{ll}
1 & \overline{0} \\
0 & 1
\end{array}\right), \quad e_{T}=\left(\begin{array}{ll}
1 & \overline{0} \\
0 & 0
\end{array}\right), \quad f_{T}=\left(\begin{array}{ll}
0 & \overline{0} \\
0 & 1
\end{array}\right) \text { in } T(Q)
\end{array}
$$

Then, $1_{V}, 1_{W}$ and 1_{T} are identity elements of $V(Q), W(Q)$ and $T(Q)$, respectively, and $\left\{e_{V}, f_{V}\right\},\left\{e_{W}, f_{W}\right\}$ and $\left\{e_{T}, f_{T}\right\}$ are sets of orthogonal primitive idempotents and $1_{V}=e_{V}+f_{V}, 1_{W}=e_{W}+f_{W}$ and $1_{T}=e_{T}+f_{T}$.

Remark. Let R be a ring, and let $\left\{e_{1}, \cdots, \mathrm{e}_{n}\right\}$ be a set of orthogonal idempotents of R with $1=e_{1}+\cdots+e_{n}$. Then, as is easily seen, R is left artinian iff $e_{i} R e_{i} e_{i} R e_{j}$ is artinian for all e_{i} and e_{j}. By this result, we see that $V(Q), W(Q)$ and $T(Q)$ are right and left artinian.

Theorem 5.4. $T(Q)$ is a $Q F$-ring.
Proof. Put $T=T(Q), e=e_{T}$ and $f=f_{T}$. Note that

$$
\operatorname{Soc}\left(e T_{T}\right)=\left(\begin{array}{ll}
S & 0 \\
0 & 0
\end{array}\right)=\operatorname{Soc}\left({ }_{T} T e\right) \text { and } \operatorname{Soc}\left(f T_{T}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & S
\end{array}\right)=\operatorname{Soc}\left(_{T} T f\right)
$$

So, it is easy to see that both $(e T, T e)$ and $(f T, T f)$ are injective pairs.

Hence $e T_{T}$ and $f T_{T}$ are injective by Lemma 5.2. Hence T is $Q F$.
Theorem 5.5. $V(Q)$ is a H - and co- H-ring.
Proof. Put $V=V(Q), e=e_{V}$ and $f=f_{V}$. Since V is left-right symmetric, we may show that V is left H and right co- H. Note that

$$
\operatorname{Soc}\left(V_{V}\right)=\left(\begin{array}{ll}
0 & S \\
0 & \mathrm{~S}
\end{array}\right) \quad \text { and } \quad \operatorname{Soc}\left({ }_{V} V\right)=\left(\begin{array}{ll}
S & S \\
0 & 0
\end{array}\right) .
$$

We put $X=\operatorname{Soc}\left(V_{V}\right)$ and $Y=\operatorname{Soc}\left({ }_{V} V\right)$. Since $f V Y=0$ and $X V e=0, f V$ is a small right V-module and $V e$ is a small left V-module by Lemma 5.3. Moreover, we see that ($e V, V f$) is an injective pair; whence $e V_{V}$ and ${ }_{V} V f$ are injective,. We can also easily see that

$$
\mathrm{J}_{1}\left(e V_{V}\right) \simeq f V \quad \text { and } \quad \mathrm{J}_{2}\left(e V_{V}\right)=\mathrm{Z}\left(e V_{V}\right)
$$

Therefore, V is a right co- H-ring by Theorem 3.18 and its remark. Next, in order to show that V is a left H-ring, note that

$$
\mathrm{S}_{1}\left({ }_{V} V f\right)=\left(\begin{array}{ll}
0 & S \\
0 & 0
\end{array}\right) \quad \text { and } \quad \mathrm{S}_{2}\left({ }_{V} V f\right)=\left(\begin{array}{ll}
0 & S \\
0 & S
\end{array}\right)
$$

and

$$
X\left(V f / \mathrm{S}_{1}\left({ }_{V} V f\right)\right) \neq 0 \quad \text { and } \quad X\left(V f / \mathrm{S}_{2}\left({ }_{V} V f\right)\right)=0 .
$$

Hence, by Lemma 5.3, $V f / \mathrm{S}_{1}\left({ }_{V} V f\right)$) is a non-small left V-module and $V f / \mathrm{S}_{2}$ $\left.{ }_{(} V f\right)$) is a small left V-module. Therefore we may show that $M=V F / \mathrm{S}_{1}$ $\left({ }_{V} V f\right)$ is an injective left V-module (cf. Theorem 2.11). Since $\mathrm{S}_{1}\left({ }_{V} V f\right)=$ $\mathrm{S}_{1}\left(f V_{V}\right), \mathrm{S}_{1}\left({ }_{V} V f\right)$ is a two sided ideal of V. Let us consider the factor ring

$$
\bar{V}=V / \mathrm{S}_{1}(V f) .
$$

As \bar{V} is canonically isomorphic to the ring

$$
T=T(Q)=\left(\begin{array}{cc}
Q & Q / S \\
J & Q
\end{array}\right)
$$

we can identify \bar{V} with T. Put $f^{*}=f_{r}$. By Theorem 5. 4, Tf* is injective as a left T-module. We want to see that $T f^{*}$ is injective as a left V. module. (note $T f^{*}=M$). Let I be a left ideal of V with $I \subseteq_{e} V$, and let ϕ be a homomorphism from ${ }_{V} I$ to ${ }_{V} T f^{*}$. Consider the diagram:

where i is the inclusion map. Note that

$$
S_{1}\left({ }_{V} V f\right)=\left(\begin{array}{cc}
0 & S \\
0 & 0
\end{array}\right) \quad \text { and } \quad \phi\left(\mathrm{S}_{1}\left({ }_{V} V f\right)\right) \subseteq\left(\begin{array}{cc}
0 & Q / S \\
0 & 0
\end{array}\right)
$$

On the other hand, the socle of $T f^{*}$ is

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & S
\end{array}\right)
$$

As a result, we see $\phi\left(\mathrm{S}_{1}\left({ }_{V} V f\right)\right)=0$ and hence ϕ induces the canonical homomorphism $\left.\bar{\phi}: \bar{I}=I / S_{1}\left({ }_{V} V f\right)\right) \rightarrow \bar{V}=T$. Since $T f^{*}$ is injective as a left T module, we obtain a homomorphism $\eta: \bar{V}=T \rightarrow T f^{*}$ satisfying $\eta \bar{i}=\bar{\phi}$, where $\bar{\imath}$ is the inclusion map: $\bar{I} \rightarrow \bar{V}=T$. If we denote the canonical V-homomorphism : $V \rightarrow \bar{V}=T$ by δ, then the diagram

is commutative. Thus $M=T f^{*}$ is injective as a left V-module.
Theorem 5.6. $W(Q)$ is a left H - and right co-H-ring.
Proof. Put $W=W(Q), e=e_{W}$ and $f=f_{W}$. Noting $\operatorname{Soc}\left(e W_{W}\right)=\operatorname{Soc}\left({ }_{W} W e\right)$ $=\left(\begin{array}{ll}S & 0 \\ 0 & 0\end{array}\right)$, we see that $(e W, W e)$ is an injective pair ; whence $e W_{W}$ and ${ }_{W} W e$ are injective. Further, we see $e \mathrm{~J}_{1}(W) \simeq f W$ and $e \mathrm{~J}_{2}(W)=\mathrm{Z}\left(e W_{W}\right)$. Hence W is a right co-H-ring by Theorem 3.18 and its remark.

Next, we put

$$
X=\operatorname{Soc}\left(W_{W}\right)=\left(\begin{array}{ll}
S & 0 \\
S & 0
\end{array}\right)
$$

Since $X W f=0$ and $X\left(W e / \operatorname{Soc}\left({ }_{W} W e\right)\right)=0$, by Lemma 5.3, Wf and $W e /$ Soc $\left({ }_{W} W e\right)$ are small left W-module. Thus W is a left H-ring by Theorem 2.11.

Remark. In general, $W(Q)$ is neither a right H-ring nor a left co- H ring. Therefore, the concepts of right H-rings and right co- H-rings are not right-left symmetric ; in particular, the conditions $\left(^{*}\right)$ and $(*)^{*}$ are not right-left symmetric (cf. [15]). Actually, assume that $W(Q)$ is a left co- H ring, and put $W=W(Q), e=e_{W}$ and $f=f_{W}$. Then, W is an artinian $Q F-3$ ring but not $Q F$. As we saw in the proof of Theorem 5.6, ${ }_{W} W e$ is injective. Hence, by the assumption there must exist an isomorphism ϕ from $W f$ to $\mathrm{J}\left({ }_{W} W e\right)$. Then

$$
\phi\left(\left(\begin{array}{ll}
0 & 0 \\
0 & Q
\end{array}\right)\right)=\left(\begin{array}{ll}
0 & 0 \\
J & 0
\end{array}\right)
$$

This shows that J is a cyclic left ideal of Q. However, in general, J need not be a cyclic left ideal. For example, consider the ring

$$
Q=K[x, y] /\left(x^{2}, y^{2}\right)
$$

where K is a field. As is well known, Q is a local $Q F$-algebra over K of dimension 4. Put $I=\left(x^{2}, y^{2}\right), \alpha=x+I, \beta=y+I$ and $\gamma=x y+I$. Clearly $\mathrm{J}(Q)=$ $Q \alpha+Q \beta$ and $\operatorname{Soc}(Q)=Q \gamma$. Now, we can easily see that $\mathrm{J}(Q)$ is not a cyclic ideal. Accordingly, $W(Q)$ for this Q is not a left co- H-ring, and at the same time, it is not a right H-ring by Theorem 5.1.

Remark. Let Q be as in the above remark. Again, we put $W=W(Q)$, $e=e_{W}$ and $f=f_{W}$. Assume that $\operatorname{Soc}\left({ }_{W} W f\right)$ is a simple socle. Then, since W is $Q F-3,{ }_{W} W f$ must be embedded in ${ }_{W} W e$. However, this implies that $\mathrm{J}(Q)$ is a cyclic left ideal of Q, which is impossible as we noted above. Thus Soc $\left({ }_{W} W f\right)$ is not a simple socle. As a result, this W also gives a counter example of a ring which solves a problem raised by Fuller [8].

References

[1] F. W. Anderson and K. R. Fuller: Rings and Categories of modules, Graduate Text in Mathematics. Berlin-Heiderberg-New York, Springer 1974.
[2] K. A. Byrd: Some characterizations of uniserial rings, Math. Ann. 186 (1970), 163-170.
[3] A. Cailleau and G. Renault: Etude der modules Σ-injective, C. A. Acad. Sci. Paris 270 (1970), 1391-1394.
[4] R. R. Colby and E. A. Rutter, Jr.: Generalizations of $Q F-3$ algebra, Trans. Amer. Math. Soc. 153 (1971), 371-386.
[5] C. G. FAith and E. A. Walker: Direct sum representations of injective modules, J. Algebra 59 (1967), 203-221.
[6] C. G. Faith: Algebra II Ring Theory, New York: Springer-Verlag, 1976.
[7] L. Fuchs: On quasi-injective modules, Ann. Ac. Norm. Sup. Pisa 23 (1969), 541-546.
[8] K. R. FUller: Structure of $Q F-3$ rings, Trans. Amer. Math. Soc. 134 (1968), 343-354.
[9] K. R. Fuller: On indecomposable injective over Artinian rings, Pacific J. Math. 29 (1969), 115-135.
[10] K. R. Fuller: On representations of quasi-injectives and quasi-projectives, Arch. Math. 20 (1969), 495-502.
[11] K. R. Goodearl: Ring Theory; Nonsingular Rings and Modules, Pure and Applied Mathematics Series 33. Marcal Dekker, 1976.
[12] M. HARADA: Applications of factor categories to completely inciecumposable modules, Publ. Dep. Math. Lyon 11 (1974), 19-109.
[13] M. Harada: On one sided $Q F-3$ rings I, Osaka J. Math. 17 (1980), 421-431.
[14] M. Harada: On one sided QF-3 rings II, Osaka J. Math. 17 (1980), 433-438.
[15] M. Harada: Non-small modules and non-cosmall modules, In Ring Theory: Proceedings of the 1978 Antwerp Conference, F. Van Oystaeyen, ed. New York: Marcal Dekker.
[16] M. HARADA and T. ISHII: On perfect rings and the exchange property, Osaka J. Math. 12 (1975), 483-491.
[17] M. Harada and K. Oshiro: On extending property on direct sums of uniform modules, Osaka J. Math. 18 (1981), 767-765.
[18] L. Jeremy : Sur les modules et anneaux quasi-contnus, C. R. Acad. Sci. Paris, 273 (1971), 80-83.
[19] E. MATLIS: Injective modules over noetherian rings, Pacific J. Math. 8 (1958) 511-528.
[20] S. Mohamed and B. J. Müller : Decomposition of dual-continuous modules, Module Theory, Lecture notes in Mathemasics, 700 (1979), 87-94.
[21] K. Oshiro: Continuous modules and quasi-continuous modules, Osaka J. Math. 20 (1983), 681-694.
[22] K. Oshiro: Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 337-372.
[23] K. Oshiro: Lifting modules, extending modules and their applications to generalized uniserial rings, to appear.
[24] M. Rayar: Small and cosmall modules, Ph. D. Dissertation, Indiana Univ., 1971.
[25] Y. Utumi : On quotient rings, Osaka J. Math. 8 (1956), 1-18.
[26] R. B. Warfield, Jr.: Decompositions of injective modules, Pacific J. Math. 31 (1969), 263-276.
[27] R. Ware: Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1971), 233-256.
[28] K. Yamagata: On projective modules with exchange property, Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A 12 (1974), 149-158.

> Department of Mathematics Yamaguchi University Oaza, Yoshida, Yamaguchi 753 Japan

[^0]: *) For a primitive idempotent $e, e R$ is completely indecomposable iff $e J(R)$ is a unique maximal submodule of $e R$ ([27]).

