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Abstract

The classical result of D. V. Widder characterizing those complex-valued
functions on (0, \infty) which are the Stieltjes transform of a complex measure
on [0, \infty) , is generalized to functions with values in a quasi-complete locally
convex space. This result is then used to establish a criterion for operators
with spectrum in [0, \infty) to be scalar-type spectral operators.

Introduction

Let M and D respectively denote the formal operators of multiplication
M:f(t)\mapsto tf(t) and differentiation D:farrow f’ . The (formal) Widder differential
operators L_{k} are given by

L_{k}=c_{k}M^{k-1}D^{2k-1}M^{k} , k=1,2, \cdots , ( 1)

where c_{1}=1 and c_{k}=(-1)^{k}[k ! (k -- 2) !]^{-1} for k\geq 2 .
It is known that a complex-valued function f on (0, \infty) can be char-

acterized as a Stieltjes transform in terms of the maps L_{k}(f) , k=1,2, \cdots .
Namely, there exists a (unique) regular complex Borel measure m on [0, \infty)

such that

f(t)= \hat{m}(t)=\int_{0}^{\infty}(s+t)^{-1}dm(s) , t\in(0, \infty) , (2)

if and only if f has derivatives of all orders in (0, \infty) and there exists a
constant K such that

\int_{0}^{\infty}|L_{k}(f)(t)|dt\leq K . k=1,2, \cdots,\cdot (3)

(see [8], VIII Theorem 16 or [4], p. 165).
Let C_{0} denote the space of all continuous complex-valued functions on

[0, \infty) which vanish at infinity, equipped with the uniform norm. Then
condition (3) means that the maps \Phi_{k}(f) , k=1,2, \cdots : defined by
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\Phi_{k}(f)(\psi)=\int_{0}^{\infty}\psi(t)L_{k}(f)(t)dt,\cdot \psi\in C_{0} , (4)

are equibounded linear functionals on C_{0} , that is, they map the closed unit
ball of C_{0} into a bounded set not depending on k.

In this note the above characterization of Stieltjes transforms is extended
to functions f on (0, \infty) with values in a quasi-complete locally convex space
X. Defining L_{k}(f) and \Phi_{k}(f) as in (1) and (4) respectively, but with values
now in X, it is shown that f is the Stieltjes transform of a vector measure
on [0, \infty) , if and only if, f has weak derivatives of all orders in (0, \infty) , in
the sense of [3; Definition 3. 2. 3], and the maps \Phi_{k}(f) take the closed unit
ball of C_{0} into a weakly compact subset of X, not depending on k.

A problem of fundamental importance in Spectral Theory consists of
finding criteria for an operator to be of scalar-type in the sense of N. Dunford
[2]. In the final section of this note, the result characterizing the Stieltjes
transforms of vector measures is used to establish a criterion for an operator
on X with spectrum in [0, \infty) to be a scalar-type spectral operator. This
is an extension to locally convex spaces of a result proved by S. Kantorovitz
[3] in the case where X is a reflexive Banach space.

Preliminaries

Let X be a quasi-complete locally convex Hausdorff space. The space
of continuous linear functionals on X is denoted by X . Let C denote the
complex number field and \mathscr{B} the \sigma-algebra of all Borel subsets of [0, \infty) .

By a vector measure m:\mathscr{B}arrow X is meant a function on \mathscr{B} which is
\sigma-additive. For each x’\in X’ , the C-valued measure E\mapsto\langle m(E), x’\rangle , E\in \mathscr{B} ,

is denoted by \langle m, x’\rangle . The measure m is said to be regular if, for every
x’\in X’,, the complex measure \langle m, x’\rangle is regular (i . e. , its variation is regular).

A complex-valued, \mathscr{B} -measurable function f on [0, \infty) is said to be m-
integrable if it is integrable with respect to every measure \langle m, d\rangle , x’\in X’ .

and if, for every E\in \mathscr{B} , there exists an e1ement\downarrow_{E}.fdm of X such that

\langle\int_{E}fdm , x^{\prime\backslash }/= \int_{E}fd\langle m, x’\rangle j

for each x’\in X’ . Bounded measurable functions are always m-integrable
([6], Lemma II 3. 1). Hence, the Stieltjes transform, \hat{m} , of any vector measure
m:\mathscr{B}arrow X can be defined by (2).

Let dt denote Lebesgue measure on (0, \infty) . A function F:(0, \infty)arrow X

is said to be (Pettis) integrable if for every Borel subset E of (0, \infty) , there
exists an e1ement\downarrow_{E}.F(t)dt of X such that
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\backslash /\int_{E}F(t)dt , x’ \rangle=\int_{E}\langle F(t) , x^{\prime\backslash }/dt , x’\in X’

Let L(X) denote the space of all continuous linear operators on X,

equipped with the topology of pointwise convergence. The identity operator
on X is denoted by I.

A map P:\mathscr{B}arrow L(X) is called a spectral measure if it is a-additive,

multiplicative and P([0, \infty))=I. Of course, the multiplicativity of P means
that P(E\cap F)=P(E)P(F) , for every E\in \mathscr{B} and F\in \mathscr{B} . Since L(X) is itself
a locally convex space it is clear that spectral measures are vector measures.

A spectral measure P:\mathscr{B}arrow L(X) is said to be equicontinuous if its
range, \{P(E);E\in \mathscr{B}\} , is an equicontinuous part of L(X) . For such spectral
measures every P-essentially bounded, measurable function is P-integrable
(see \S 1 of [7] for example). If the space X barrelled, then P is necessarily

equicontinuous.
Let T\in L(X) . If \lambda\in C is such that R(\lambda;T)=(\lambda I-T)^{-1} exists in L(X) ,

then R(\lambda;T) is called the resolvent operator of T at \lambda . Define R(\infty ; ^{T})

to be the zero operator. If it is clear which operator T is being considered,

then R(\lambda;T) is denoted simply by R(\lambda) . The resolvent set of T, which is
denoted by \rho(T) , consists of those points \lambda in the extended complex plane,
C^{*} , for which the resolvent map R(\circ)=R(\cdot ; T) is defined and holomorphic

in a neighbourhood of \lambda . The complement of \rho(T) in C^{*} is denoted by
\sigma(T) and is called the spectrum of T

The resolvent equations,

R(\lambda)-R(\mu)=(\mu-\lambda)R(\lambda)R(\mu)=(\mu-\lambda)R(\mu)R(\lambda) ,

are valid for all points \lambda\in\rho(T) and \mu\in\rho(T) . Also, for each x\in X, the
X-valued function R( . ; T)(x) has weak derivatives of all orders in \rho(T) .

A characterization of Stieltjes transforms
of vector measures

In the following two lemmas, f is a complex-valued function with deri-
vatives of all orders in (0, \infty) .

1. Lemma. Let f satisfy (3). Then the limit

A= \lim_{tarrow 0+}tf(t)

exists, and

f(t)= \lim_{karrow\infty}\int_{0}^{\infty}(s+t)^{-1}L_{k}(f)(s)ds+At^{-1} , t\in(0, \infty) (5)
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PROOF : See [8], VIII 15.

2. Lemma. If there exists a constant K such that (3) holds, then
\lim_{karrow\infty}\Phi_{k}(f)(\psi) exists, for every \psi\in C_{0} .

PROOF: By Lemma 1, it follows that (5) holds. Therefore, if \mathscr{A}

denotes the linear subspace of C_{0} consisting of all functions of the form

\psi:s-\neq\sum_{i=1}^{n}\alpha_{i}(s+t_{i})^{-1} : s \geq 0j

where \alpha_{i}\in C and t_{i}>0 are arbitrary, then it is clear that \lim_{karrow\infty}\Phi_{k}(f)(\psi) exists,

for all \psi\in \mathscr{A} .
Let \epsilon>0 and \psi\in C_{0} be given. Since \mathscr{A} is dense in C_{0} , there exists an

element \varphi in \mathscr{A} such that ||\varphi-\psi||_{\infty}<\epsilon/3K. Then

|\Phi_{k}(f)(\psi)-\Phi_{j}(f)(\psi)|\leq|\Phi_{k}(f)(\psi-\varphi)|+|\Phi_{k}(f)(\varphi)-\Phi_{j}(f)(\varphi)|+

+|\Phi_{j}(f)(\varphi-\psi)|<||\varphi-\psi||_{\infty}K+\epsilon/3+||\psi-\varphi||_{\infty}K<\epsilon ,

for k, j sufficiently large.
Let f:(0,\infty)arrow X have weak derivatives of all orders. Then it is clear

that the Widder differential operators (1) can be applied to f giving a family
of X-valued functions

t\mapsto L_{k}(f)(t) , t\in(0, \infty) , k=1,2, \cdots (6)

The collection of linear maps (4) is said to be weakly equicompact if
the subset,

\{\Phi_{k}(f)(\psi);\psi\in C_{0}, ||\psi||_{\infty}\leq 1 , k=1,2, \cdots\}- (7)

of X, is relatively weakly compact; (see [4]).
Let C_{00}((0, \infty)) denote the space of continuous functions on (0, \infty) having

compact support, equipped with the uniform norm. The symbol B(\cdot, \cdot)

denotes the Beta function.

1. THEOREM. A function f:(0, \infty)arrow X is the Stieltjes transform of a
{unique) regular, X-valued measure on \mathscr{B} , if and only if it has weak
derivatives of all orders, each of the functions (6) is integrable and the
collection of maps (4) is weakly equicompact.

PROOF : Let m : \mathscr{B}arrow X be a regular vector measure. It is a con-
sequence of the Dominated Convergence Theorem ([6], Theorem II . 2) that
\hat{m} has derivatives of all orders (in the given topology of X) and that
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D^{k}( \hat{m})(t)=(-1)^{k}k!\int_{0}^{\infty}(s+t)^{-k-1}dm(s) , t\in(0, \infty) , (8)

for every k=1,2, \cdots . The Leibnitz formula and (8) imply that

L_{k}( \hat{m})(t)=c_{k}’\int_{0}^{\infty}t^{k-1}s^{k}(s+t)^{-2k}dm(s),\cdot t\in(0, \infty) ,\cdot (9)

for each k=1,2, \cdots , where c_{1}’=1 and c_{k}’=B(k-1, k+1)^{-1} for k\geq 2 . It is
clear from (9) that the functions t\mapsto L_{k}(\hat{m})(t) , t\in(0, \infty) , are continuous for
each k=1,2, \cdots .

Fix k\geq 1 . Let \psi\in C_{00}((0, \infty)) . For every \varphi\in C_{00}((0, \infty)) there exists
x_{\varphi}\in X such that

\langle x_{\varphi}, x’\rangle=\int_{0}^{\infty}\varphi(t)\psi(t)\sqrt L_{k}(\backslash \hat{m})(t) , x’\rangle dt,\cdot d \in X’
-

(see [1] III Proposition 3. 2); moreover if ||\varphi||_{\infty}\leq 1 , then x_{\varphi} belongs to the
closed convex hull of the range of \psi L_{k}(\hat{m}) which is a compact set. Accord-
imply \psi L_{k}(\hat{m}) is integrable ([5], Lemma 3).

It follows from (9) and the Fubini theorem that

\int_{0}^{\infty}\psi(t)L_{k}(\hat{m})(t)dt=\int_{0}^{\infty}(c_{k}’\int_{0}^{\infty}\psi(t)t^{k-1}s^{k}(s+t)^{-2k}dt)dm(s) (10)

Since

| \int_{0}^{\infty}\psi(t)t^{k-1}s^{k}(s+t)^{-2k}dt|\leq||\psi||_{\infty}\int_{0}^{\infty}s^{k}t^{k-1}(s+t)^{-2k}dt=||\psi||_{\infty}B(k, k)9

for each s\geq 0 , and c_{k}’B(k, k)\leq 1 for k\geq 2 , it follows from (10) that

\int_{0}^{\infty}\psi(t)L_{k}(\hat{m})(t)dt\in||\psi||_{\infty}\overline{coR}(m) , \psi\in C_{00}((0, \infty)) ,

where \overline{coR}(m) denotes the closed balanced convex hull of the range of m.
Hence, the set

\{\int_{0}^{\infty}\psi(t)L_{k}(\hat{m})(t)dt;\psi\in C_{00}((0, \infty)) , ||\psi||_{\infty}\leq 1\} .

being a subset of \overline{coR}(m) , is relatively weakly compact ([5], Lemma 1).
Lemma 3 of [5] implies that L_{k}(\hat{m}) is integrable,

If \psi\in C_{0} , then the restriction of \psi L_{k}(\hat{m}) to (0, \infty) is continuous. A
similar argument as that used for L_{k}(\hat{m}) , applied to the function \psi L_{k}(\hat{m}) ,

k=1,2, \cdots , shows that \psi L_{k}(\hat{m}) is integrable and that (7) is contained in
\overline{coR}(m) . Hence, the maps ( 4^{\backslash }, are weakly equicompact.

Conversely, suppose that f:(0, \infty) -arrow X is a function having weak deri-
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vatives of all orders such that the functions (6) are integrable and such that
the maps (4) are weakly equicompact.

If x’\in X_{j}’ define the function g_{x’} : (0, \infty)arrow C by

g_{x’}(t)=\langle f(t) , x’\rangle . t\in(0,.\infty)

Then g_{x’} has derivatives of all orders and

L_{k}(g_{x’})(t)=\langle L_{k}(f)(t) , x’\rangle , t\in(0, \infty)-
, k=1,2, \cdots (11)

Fix x’\in X’ . Since the set (7) is weakly bounded there is a constant
K_{x’} such that

|\langle\Phi_{k}(f)(\psi) , x’\rangle|\leq K_{x’} , \psi\in C_{0}, ||\psi||_{\infty}\leq 1 , k=1,2, \cdots

Accordingly for each k=1,2, \cdots , it follows that

\int_{0}^{\infty}|L_{k}(g_{x’})(t)|dt\leq\sup\{|\int_{0}^{\infty}\psi(t)L_{k}(g_{x’})(t)dt|;\psi\in C_{0} , ||\psi||_{\infty}\leq 1\}

= \sup\{|\langle\Phi_{k}(f)(\psi) , x’\rangle|;\psi\in C_{0} , ||\psi||_{\infty}\leq 1\}\leq K_{x’}

Hence, Lemma 2 implies the existence of

\lim_{karrow\infty}\Phi_{k}(g_{x’})(\psi)=\lim_{karrow\infty}\langle\Phi_{k}(f)(\psi) , x’\rangle , \psi\in C_{0} .

Since x\acute{\in}X’ was arbitrary, it follows that for fixed \psi\in C_{0} the sequence
(\Phi_{k}(f)(\psi))_{k=1}^{\infty} is weakly Cauchy. The relative weak compactness of (7)

implies that this sequence is weakly convergent. Thus, for each \psi\in C_{0} ,
there is a unique \Phi(f)(\psi)\in X such that the weak limit,

\Phi(f)(\psi)=\lim_{karrow\infty}\Phi_{k}(f)(\psi)j (12)

exists. This defines a weakly compact linear map \Phi(f):C_{0}arrow X. Accord-
ingly, there exists a regular measure m:\mathscr{B}arrow X such that

\Phi(f)(\psi)=\int_{0}^{\infty}\psi(t)dm(t) , \psi\in C_{0} ; (13)

(see [5], Proposition 1).

Fix \alpha>0 and x’\in X’ . Let t\in(0, \alpha) . It follows from (11) and the defini-
tion of L_{1}(g_{x’}) that

\langle\int_{t}^{\alpha}L_{1}(f)(s)ds, x’\rangle=\alpha g_{x’}(\alpha)-tg_{x’}(t)

This identity and Lemma 1 imply that \lim_{tarrow 0+}\langle\downarrow_{t}^{\alpha}.L_{1}(f)(s)dS_{ },.d\rangle exists, for
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each x’\in X’ . Since \langle
.\backslash _{f;}\cdot\lrcorner’ L_{1} ( f) (s)ds;E\underline{\subset}(0, \infty) , E Borel) is contained in the

closure of the relatively weakly compact set (7), it follows that the weak
limit,

A= \lim_{tarrow 0+}tf(t) ,\cdot
(14)

exists.
For each t>0 the function s\mapsto(s+t)^{-1}, s\geq 0 , belongs to C_{0} . It follows

from (12) and (13) that

\lim_{karrow\infty}\int_{0}^{\infty}(s+t)^{-1}L_{k}(f)(s)ds=\int_{0}^{\infty}(s+t)^{-1}dm(s) - t>0,\cdot (15)

weakly in X. If A_{x’}= \lim_{tarrow 0+}tg_{x’}(t) for each d \in X’ (cf. Lemma 1), then it
is clear from (14) that A_{x’}=\langle A, x’\rangle , x’\in X’ . Since Lemma 1 implies that

\lim_{karrow\infty}\int_{0}^{\infty}(s+t)^{-1}L_{k}(g_{x’})(s)ds=g_{x’}(t)-A_{x’}t^{-1}=\langle f(t)-At^{-1}, d\rangle ,

for each x’\in X,\cdot it follows from (11) and (15) that

f(t)-At^{-1}=\acute{7}l(t) , t\in(0, \infty)

Replacing m throughout by m-m_{0} , where m_{0} : \mathscr{B}arrow X is the measure taking
the value A on sets containing {0} and zero elsewhere, we obtain (2).

Scalar-type operators with spectrum in [0, \infty)

It is assumed throughout this section, that in addition to being quasi-
complete, the space X is barrelled.

An operator T\in L(X) with spectrum in [0, \infty) is said to be a scalartype
spectral operator if there exists a regular spectral measure P:\mathscr{B}arrow L(X)

such that

T= \int_{0}^{\infty}sdP(s) (16)

Let T be a continuous linear operator on X with spectrum in [0, \infty) .
Then the resolvent operator R(t)=(t+T)^{-1} of (-T) is defined for each
t\in(0, \infty) .

Let \mathscr{M} denote the linear space of all complex Borel measures on (0, \infty)

which have finite support. If t>0 , then \epsilon_{t} will denote the Dirac point mass

at t . Let \mu=\sum_{i=1}^{n}\alpha_{i}\epsilon_{t_{i}} , \alpha_{i}\in C, t_{i}>0 , be a member of \mathscr{M} . Then \hat{\mu}:[0, \infty)arrow C

denotes the function

\hat{\mu}(s)=\sum_{i=1}^{n}\alpha_{i}(s+t_{i})^{-1} , s\geq 0t (17)
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The symbol \hat{\mathscr{M}} denotes the subspace \{\acute{\mu};\mu\in \mathscr{M}\} of C_{0} .

2. THEOREM. Let T\in L(X) have spectrum in [0, \infty) . The operator
T is a scalar-type spectral operator, if and only if, for each x\in X,

(i) the functions t\mapsto L_{k} (R( -) (x)) (t), t\in(0, \infty) , k=1,2, \cdots , are inte-
grable and,

(ii) the maps \Phi_{k} (R ( \theta ) (x)) : C_{0}arrow X, k=1,2, \cdots , given by

\Phi_{k}(.R( . ) (x))(\psi)=\int_{0}^{\infty}\psi(t)L_{k}(R(\circ) (x))(t)dt , \psi\in C_{0} , (18)

are weakly equicompact.

PROOF: Suppose that there exists a regular spectral measure P:\mathscr{B}arrow

L(X) such that (16) holds. Since for each t>0 , the function s\mapsto(s+t)^{-1},
s\geq 0 , is bounded and measurable, it follows from the functional calculus for
P that

R(t)=(t+T)^{-1}= \int_{0}^{\infty}(s+t)^{-1}dP(s),\cdot t\in(0, \infty)

Hence, if x\in X, then the identity

R(t)(x)= \int_{0}^{\infty}(t+s)^{-1}dP(s)(x)j t\in(0, \infty) ,

shows that R(\cdot)(x) is the Steltjes transform of the vector measure P(\cdot)(x) .
Theorem 1 implies that (i) and (ii) hold.

Conversely, suppose that for each x\in X the conditions (i) and (ii) are
satisfied. It follows from Theorem 1 that for each x\in X, there exists a
(unique) regular Borel measure m_{x} : \mathscr{B}arrow X such that

R(t)(x)= \int_{0}^{\infty}(s+t)^{-1}dm_{x}(s) , t\in(0, \infty)t (19)

For E\in \mathscr{B} , define a linear operator P(E):Xarrow X by

P(E)(x)=m_{x}(E) . E\in \mathscr{B}

Firstly it is shown that P(E) is continuous. For \hat{\mu}\in\hat{\mathscr{M}} define a linear
operator T_{fi} : Xarrow X by

T_{\acute{\mu}}(x)= \int_{0}^{\infty}\hat{\mu}(s)dm_{x}(s) , x\in X (20)

If \mu=\sum_{i=1}^{n}\alpha_{i}\epsilon_{t_{i}} , \alpha_{i}\in C, t_{i}>0 , then it follows from (17) and (19) that

T_{p}(x)= \sum_{i=1}^{n}\alpha_{i}R(t_{i})(x),\cdot x\in X
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Hence, it is clear that T_{\beta}\in L(X) for each \hat{\mu}\in\hat{\mathscr{M}} .
Let \mathscr{A}=\{T_{\hat{\mu}} ; \mu\in \mathscr{M}, ||\hat{\mu}||_{\infty}\leq 1\} . If x\in X, then it follows from (20) that

T_{\rho}(x)\in\overline{coR}(m_{x}) , for each \mu\in \mathscr{M} with ||\hat{\mu}||_{\infty}\leq 1 . Since \overline{coR}(m_{x}) is bounded
for each x\in X and X is barrelled, it follows that \mathscr{A} is equicontinuous.

Hence, given a continuous semi-norm p on X, there exist continuous
semi-norms q_{1} , \cdots , q_{l} and \alpha>0 such that

p( \int_{0}^{\infty}\hat{\mu}(s)dm_{x}(s))=p(\prime T_{\beta}(x))\leq\alpha||\hat{\mu}||_{\infty}\max_{1\leq i\leq l}q_{i}(x) ,

for each x\in X and \mu\in \mathscr{M} . Since \hat{\mathscr{M}} is dense in C_{0}, it follows that

p(P(E)(x))=p(m_{x}(E)) \leq\alpha\max_{1\leq i\leq l}q_{i}(x) , x\in X, E\in \mathscr{B} ,

from which the continuity of P(E) , E\in \mathscr{B} , is clear. Hence, P:\mathscr{B}arrow L(X)

is a \sigma-additive, operator-valued measure.
Since X is barrelled, the inclusion

tR(t)(x)= \int_{0}^{\infty}t(s+t)^{-1}dm_{x}(s)\in\overline{coR}(m_{x}) , t\in(0, \infty)j

for each x\in X, shows that \{tR(t);t>0\} is an equicontinuous part of L(X) .
Let t>u>0 . The resolvent equations imply that

tR(t)R(u)=t(t-u)^{-1}R(u)-(tR(t))(t-u)^{-1}

Since \{tR(t);t>0\} is equicontinuous, fixing u and letting tarrow\infty it follows
that tR(t)R(u)arrow R(u) , in L(X) , as tarrow\infty . Fix x\in X. Since \lim_{tarrow\infty}t(t+s)^{-1}=1

for each s\geq 0 , it follows from the Dominated Convergence Theorem that

R(u)(x)= \lim_{tarrow\infty}tR(t)R(u)(x)=\lim_{tarrow\infty}\int_{0}^{\infty}t(t+s)^{-1}dm_{R(u)(x)}(s)=

= \int_{0}^{\infty}1dm_{R(u)(x)}(s)=m_{R(u)(x)}([0, \infty))1

That is, R(u)(x)=P([0, \infty))R(u)(x) , u>0 , x\in X. Applying (u+T) to both
sides of this identity (on the right), we conclude that P([0, \infty))=I. The
multiplicitivity of P can be shown as in [4], pp. 169-170. Hence, P is a
(regular) spectral measure.

It remains to verify that T is given by (16). It follows easily from
R(t)=\downarrow_{0}^{\infty}.(t+s)^{-1}dP(s) , t\in(0, \infty) , that

\int_{0}^{\infty}s(s+t)^{-1}dP(s)=TR(t) , t\in(0, \infty) (21)



308 W. Richer

Furthermore for all n>0 , y\in X and t>0 , it can be shown as in [4], pp.

170, that

\int_{0}^{\infty}s\chi_{[0,n]}(s)dP(s)(R(t)(y))=\int_{0}^{\infty}s(t+s)^{-1}\chi_{[0,n]}(s)dP(s)(y) (22)

It follows from (21), (22) and the Dominated Convergence Theorem that

\lim_{narrow\infty}\int_{0}^{\infty}s\chi_{[0,n]}(s)dP(s)(R(t)(y))=TR(t)(y) , t>0 , y\in X

If x\in X, then y=(t+T)(x) satisfies R(t)(y)=x. Accordingly,

1 \overline{1}mnarrow\infty\int_{0}^{\infty}s\chi_{[0,n]}(s)dP(s)(x)=T(x) ,

for every x\in X.
Since [o, n]\uparrow[0, \infty) and f_{n}(s)=sX_{[0,n]}(s) , s\geq 0 , is P-essentially bounded

for each n=1,2, \cdots , with the limit

\lim_{narrow\infty}\int_{0}^{\infty}f_{n}(s)dP(s)=T

existing in L(X) , it follows from the multiplicativity and equicontinuity of

P that the identity function on [0, \infty) is P-integrable and that (16) is valid.
This completes the proof of the theorem.

Let X be a reflexive Banach space. A subset of X is relatively weakly

compact if and only if it is bounded. Define a map S:(0, \infty) - L(X) by

S(t)=TR(t)(I-R(t)) , t\in(0, \infty) ;

(see [4]). For any weakly measurable function F:(0^{ },\infty)arrow L(X) define

|||F|||= \sup\{||\langle F(\cdot)(x) , x’\rangle||_{1} ; x\in X, x’\in X’ , ||x||\leq 1 , ||x’||\leq 1\} ,

where ||\circ||_{1} denotes the L^{1}((0, \infty) , dt/t) -norm; (see [4]).

It follows from the Uniform Boundedness Principle that the weak equi-

compactness of the maps (18), for each x\in X, is equivalent to the existence
of a constant \alpha>0 such that

|||S^{k}|||\leq\alpha B(k, k) , k=1,2, \cdots (23)

Furthermore, if (23) holds, then it is a consequence of the reflexivity of X

that the functions (i) in the statement of Theorem 2 are integrable for each
x\in X.

Hence, for X a reflexive Banach space, the conditions of Theorem 2

are equivalent to the existence of \alpha>0 such that (23) is satisfied. This

result was proved by S. Kantorovitz [4].
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