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1. Introduction

Let G be a finite group, p a prime number. In his study on the modular
representation, J. A. Green defined G-algebras and defect groups for G-
algebras [6]. After his ideas, M. Brou\’e and L. Puig defined the Brauer
homomorphism for G-algebras and obtained the “First Fundamental TheO-
rem” for G-algebras. The classical “First Fundamental Theorem” for blocks
and the Green correspondence was shown as corollaries of this theorem.
They also gave the definitions of interior G-algebras and the “corestriction”
of interior G-algebras as ring theoretical version of the induction of modules
and showed the extention of Higman’s criterion for relative projectivity and
Green’s theorem on the induction of absolutely indecomposable modules.
See [1], [2] and [6].

On the other hand, in his paper [3], D. W. Burry showed the relation
between blocks and induced modules from p-subgroups. Our purpose in
this paper is to extend the Burry’s result to interior G-algebras. We shall
prove Theorem 1, 2, and Corollary 3.

THEOREM 1. Let P be a p-subgroup of G, (B, \sigma) a local interior
P-algebra with with defect group P and (Cor_{p}^{G}B, \sigma^{G}) the corestriction of
(B, \sigma) . Let Br_{P} be the Brauer homomorphism of (CorPG\sigma^{G}) with respect
to P. If b is a block of RG whose defect group contains P up to G-
conjugacy, then the element Br_{P}\circ\sigma^{G}(b) is non-zero.

THEOREM 2. Let b be a block of RG and P a subgroup of a defect
group of b. Then for a local interior P-algebra (B, \sigma) with defect group
P there exists a local interior G-algebra (A, \rho) satisfying the following
conditions :

(1) The element \rho(b) is non-zero.
(2) A defect group of (A, \rho) equals P up to G-conjugacy.
(3) The interior P-algebra (B, \sigma) is a source of the interior G-algebra

(A, \rho) .
COROLLARY 3. (Burry) Let b be a block of RG and P a subgroup
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of a defect group of b. Then for an indecomposable RP-module W with
vertex P there exists an indecomposable RG-module V lying in b satisfying
the following conditions :

(1) A vertex V equals P up to G-conjugacy.
(2) The RP-module W is a source of V.

In section 2, we shall present the definitions of interior G-algebras and
the “corestriction” of interior G-algebras according to Brou\’e’s note [2]. Also
other definitions on interior G-algebras will be stated and several facts will
be proven in section 2. In section 3, we shall prove Theorem 1, 2, and some
corollaries.

Notation. Maps are usually on the left with the corresponding conven-
sion for writing composition. Let A and B be sets and f a map of A to B.
For a subset C of A we denote by f|_{C} the restriction of f to C. If H and
K are groups, then the notation H\leq K means that H is a subgroup of
K and the notation H<K means that H is a proper subgroup of K. Let
H and K be subgroups of G. The notation H\leq_{G}K means that H is con-
tained in K up to G-conjugacy. We denote by (G/H) a set of representatives
of the left coset gH in G, containing the identity element. We denote by
(H\backslash G/K) a set of representatives of the (H, K) -double coset HgK in G,
containing the identity element.

Let 0 denote the complete valuation ring with a unique maxmal ideal
(\pi) , and k=0/(\pi) the residue class field of characteristic p. In this paper let
R equal 0 or k. Let RG be the group algebra of G over R and Z(RG) the
center of RG. We define a block of RG by a primitive idempotent of
Z(RG) . All RG-modules considered in this paper are finitely generated R-
free left RG modules All R-algebras assume to have the identity element
1 and to be R-free modules of finite ranks.

2. Corestriction of interior algebras

First we note some properties of R-algebras. Let A be an R-algebra.
Then by Krull-Schmidt theorem, the identity element 1 has at least a primi-
tive decomposition in A, namely 1=e_{1}+\cdots+e_{m} where e_{1} , \cdots , e_{m} are mutualy
orthogonal primitive idempotent of A. If 1=f_{1}+\cdots+f_{n} is another primitive
decomposition of 1, then m=n and there exists an invertible element a of A
such that a^{-1}e_{1}a=f_{1} , \cdots , a^{-1}e_{m}a=f_{m} after a suitable rearrangement. MoreO-
ver every idempotent of A can be expressed as the sum of a set of mutualy
orthogonal primitive idempotents of A.

Following [6], a G-algebra over R is an R-algebra on which G acts as



Corestriction and p-subgroups 287

a group of R-algebra automorphisms. Let A be a G-algebra and H a sub-
group of G. We denote by A^{H} the subalgebra consisting of fixed points of
A under the action of H. Let K be a subgroup of G containing H. The
trace map Tr_{H}^{K} of A^{H} to A^{K} is defined by

Tr_{H}^{K}(a)=\sum_{u\epsilon(K/H)}u(a)

for a\in A^{H}. We set A_{H^{K}}=Tr_{H}^{K}(A^{H}) .

DEFINITION 2. 1. A G-algebra A is called a local G-algebra if A^{G} is
a local ring.

Lemma 2. 2 (Green) Let A be a G-algebra and let H and K be sub-
groups of G. Then the following assertions hold:

(1) If H\leq K, then Tr_{H}^{G}(a)=Tr_{K}^{G}Tr_{H}^{K}(a) for a\in A^{H}.
(2) Tr_{H}^{G}(a)=\sum_{uC-(K\backslash G/H)}Tr_{uHu^{-1_{\cap K^{K}}}}(u(a)) for a\in A^{H}.
(3) Tr_{H}^{G}(a)Tr_{K}^{G}(a’)=\sum_{u\epsilon(K\backslash G/H)}Tr_{uHu^{-1}\cap K^{G}}(u(a)a’) for a\in A^{H} and a’\in A^{K} .

(4) A_{H}^{G} is a twO-sided ideal of A^{G} .

DEFINITION 2. 3 Let P be a p subgroup of G. We denote by I^{P}(A)

the ideal of A^{P} defifined by

I^{P}(A)= \sum_{Q<P}A_{Q^{P}}+\pi A^{P}

We set A(P)=A^{P}/I^{P}(A) . The Brauer homomorphism Br_{P}(A) of G-algebra
A with respect to P is the canonical homomorphism of A^{P} onto A(P) .

By Lemma 2. 2 and Definition 2. 3 it is easy to see the following lemma,
which is a characterization of defect groups.

Lemma 2. 4 (Green, Brou\’e-Puig) If e is a primitive idempotent of
A^{G} , then there exists a unique p subgroup D of G up to G-conjugacy satisfy-
ing the following conditions:

(1) e\in A_{D^{G}} .
(2) If H\leq G and e\in A_{H}^{G}, then D\leq {}_{G}H.
(3) Br_{D}(A)(e) is non-zero.
(4) If Br_{P}(A)(e) is non-zero for a p-subgroup for P, then P\leq_{G}D.
Any such p subgroup D is called a defect group of a primitive idempot-

ent e of A^{G} in the G-algebra A. If A is a local G-algebra, then a defect
group of A is a defect group of a unique primitive idempotent 1 of A^{G} in
the G-algebra A.

Now we shall describe interior G-algebras and the “corestriction” of
interior G-algebras.
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DEFINITION 2. 5 An interior G-algebra (A, \rho) over R is an R-algebra
A with an R-algebra homomorphism of the group algebra RG to A.

Let (A, \rho) be an interior G-algebra. Define the G-action on A by g(a)=
\rho(g)a\rho(g^{-1}) where a\in A and g\in G . Then the interior G-algebra (A, \rho) is
a G-algebra.

DEFINITION 2. 6 Let (A, \rho) and (A’, \rho)’ be interior G-algebras. Then
a morphism \phi:(\dot{A}, \rho)arrow(A’, \rho)’ is a R-algebra homomorphism \phi of A to A’

satisfying \phi\circ\rho=\rho’ . A morphism \phi of (A, \rho) to (A’, \rho) is an isomorph^{1}ism

if the homomorphism \phi of A to A’ is an isomorphism. We say (A, \rho) is
isomorphic to (A’, \rho) if there exists an isomorphism of (A, \rho) to (A’, \rho) .

DEFINITION 2. 7 Let (A, \rho) and (A’, \rho)’ be interior G-algebras and e’

an idempotent of A^{\prime_{G}} . Defifine an R-algebra homomorphism \rho_{\acute{e}’} of RG to
e’A’e’ by \rho_{\acute{e}’}(x)=e’\rho’(x) for x\in RG . Then we have an interior G-algebra
(dA’e’, \rho_{e’}’) . A direct embedding of (A, \rho) into (A’, \rho) is an isomorphism

of (A, \rho) to (e’A’e’, \rho_{e’}’) for an idempotent d of A^{\prime_{G}} . We call (A, \rho) is
directly embedded into (A’,\cdot\rho)’ if there exists a direct embedding of (A, \rho)

into (A’, \rho)’ .
An interior G-algebra (A, \rho) is naturally an interior H-algebra for a

subgroup H of G. This interior H-algebra is called the restriction of (A, \rho)

and denoted by ({\rm Res}_{H}^{G}A, \rho_{H}) .
DEFINITION 2. 8 Let H be a subgroup of G and (B, \sigma) an interior

H-algebra. Then B is naturally considered to be {RH,RH) -bimodule. So
we can defifine an R-module

RG\otimes_{RH}B\otimes_{RH}RG .

This R-module is denote by Cor_{H}^{G} B. Defifine the product in Cor_{H}^{G}B and the
homomorphism \sigma_{G} of RG to Cor_{H}^{G}B as the fallowings:

(product) (g \otimes z\otimes h^{-1})(\oint\otimes z’\otimes h^{\prime-1})

=/_{\downarrow g\otimes z\sigma(h^{-1}g’)z\acute{\otimes}h^{\prime-1}}^{o}

if hH=g’H
if hH\neq g’H

(homomorphism) \sigma^{G}(x)=\sum_{u\in(G/H)}xu\otimes l\otimes u^{-1}

where g, h, g’ , and h’\in G, z and z’\in B, and x\in RG . Then we have an
interior G-algebra (Cor_{H}^{G}B, \sigma^{G}) . This interior G-algebra is called the cores-
triction of the interior H-algebra (B, \sigma) .

EXAMPLE 2. 9 Let V be an RG-module and End_{R}(V) an R-endomor-
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phism ring of V. Let \rho be the representation of RG to End_{R}(V) afforded
by the RG-module V. Then we have an interiorG-algebra (End_{R}(V), \rho) .
This interior G-algebra is called the interior G-algebra induced by an RG-
module V. Let (End_{R}(V’), \rho’) be the interior G-algebra induced by an RG-
module V’ . Then V is isomorphic to a direct summand of V’ if and only
if (End_{R} ( V), \rho) is directly embedded into (End_{R} (V’), \rho’) . Moreover the RG-
module V is indecomposable if and only if (End_{R} (V), \rho) is a local interior G-
algebra. Then a vertex of V is equals to a defect group of (End_{R}(V), \rho) .

Let H be a subgroup of G and U an RH-module, (End_{R}(U), \sigma) the
interior H-algebra induced by U. Then the interior G-algebra (Cor_{H}^{GEnd}_{R}

(U) , \sigma^{G}) is isomorphic to the interior G-algebra induced by the RG-module
U^{G} . See [2].

Let (B, \sigma) be an interior H-algebra for a subgroup H of G. In this
section let e_{gg’} equal the element g\otimes l\otimes g^{\prime-1} in the R-algebra CorHGB where
g and g’\in G . The following lemmas are due to Brou\’e.

Lemma 2. 10 If g, g’ , h , and h’ are elements of G, then the followings
hold:

(1) ge_{11}g^{\prime-1}=e_{gg’} .
(2) e_{gg’}e_{hh’}=\delta_{g’h}e_{gh’}

where \delta is the Kronecker s delta. In particular the R-algebra Cor_{H}^{G}B is
to the matrix ring of degree |G:H| over the R-algebra B with the natural
basis \{e_{gg’} : g, g’\in(G/H)\} .

LEMMA 2. 11 (Higman) If (A, \rho) is an interior G-algebra and H is
a subgroup of G, then the following conditions are equivalent:

(1) A_{H}^{G}=A^{G} .
(2) (A, \rho) is directly embedded into (Cor_{H}^{G}({\rm Res}_{H}^{G}A), (\rho_{H})^{G}) .
(3) There exists an interior H-algebra (B, \sigma) such that (A, \rho) is directly

embedded into (Cor_{H}^{G}B, \sigma^{G}) .
Let \mu be an automorphism of G, H a subgroup of G, and (B, \sigma) an

interior H-algebra. Then we have the interior \mu^{-1}(H) -algebra (B^{\mu}, \sigma^{\mu}) whose
underlying R-algebra B^{\mu} equals B and the homomorphism \sigma^{\mu} is defined by
\sigma^{\mu}(x)=\sigma(\mu^{-1}(x)) for xEERH. If the automorphism \mu is the interior aut0-
morphism by the element g of G, namely \mu:h\mapsto ghg^{-1} for h\in G, then we
denote by (B^{g}, \sigma^{g}) the interior g^{-1}Hg-algebra (B^{\mu}, \sigma^{\mu}) . The following lemma
is easily verified by Lemma 2. 1, Lemma 2. 8, and [4] p. 112 Lemma 4. 2.

LEMMA 2. 12 Let (A, \rho) be a local interior G-algebra. Assume that
the following :

(1) A defect group of (A, \rho) equals P up to G-conjugacy.
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(2) (A, \rho) is directly embedded into (Cor_{P}^{G}B, \rho^{G}) for an interior P-
algebra (B, \sigma\rangle .

(3) H is a subgroup of G satisfying A_{H}^{G}=A^{G} .
Then there exists a local interior H-algebra (C, \tau) such that (C, \tau) is directly
embedded into ({\rm Res}_{H}^{G}A, \rho_{H}) and (A, \rho) is directly embedded into (Cor_{H}^{G}C, \tau^{G}) .
Moreover for any such interior H-algebra (C, \tau) there exists an element g

of G such that gPg^{-1}\leq H and (C, \tau) is directly embedded into (Cor_{gPg^{-l}}^{H}(B^{g}) ,
(\sigma^{g})^{H}) .

Let (A, \rho) be a local interior G-algebra with defect group P. By Lemma
2. 12 we have an interior P-algebra (B, \sigma) satisfying (B, \sigma) is directly embedded
into ({\rm Res}_{P}^{G}A, \rho_{P}) and (A, \rho) is directly embedded into (Cor_{P}^{G}B, \sigma^{G}) . This
interior P-algebra is called a source of (A, \rho) . If (B, \sigma) is a source of (A, \rho) ,
then the interior P-algebra (B^{g}, \sigma^{g}) for g\in N_{G}(P) is also a source of (A, \rho) .
On the contrary, if (B’, \rho) is another source of (A, \rho) , then there exists an
element g\in N_{G}(P) such that (B^{g}, \sigma^{g}) is isomorphic to (B’, 0J) .

Lemma 2. 13 Let P be a normal p-subgroup of G and (R, \sigma_{0}) the
interior P-algebra induced by the trivial RP module R_{P} . If (Cor_{P}^{G}R, (\sigma_{0})^{G})

is the corestriction of (R, \sigma_{0}) and b is a block of RG, then (\sigma_{0})^{G}(b) is non-
zero.

PROOF. By Example 2. 9 (Cor_{P}^{G}R, (\sigma_{0})^{G}) is isomorphic to the interior
G-algebra induced by the induced module R_{P^{G}} . Let \nu be the R-homomor-
phism of RG onto RG/P induced by the natural homomorphism of G onto
G/P. Since P is normal there exists an R-algebra isomorphism \phi of (Cor_{P}^{G}R)^{G}

to RG/P satisfying \phi\circ\sigma_{0}^{G}(x)=\nu(x) for x\in Z(RG) . Therefore the kernel of the
homomorphism \nu|_{z(RG)} is contained in the Jacobson radical of Z(RG) . See
[8] p. 144. This implies that (\sigma_{0})^{G}(b) is non-zero.

Lemma 2. 14 Let H be a subgroup of G and (B, \sigma) and (B”, 0) interior
H-algebras. If the kernel of \sigma is contained in the kernel of \sigma’ , the kernel
of of \sigma^{G} is contained in the kernel of \sigma^{\prime G} . If furthermore \sigma is injective,
then so is \sigma^{G} .

PROOF. Any element g of G can be written uniquely as

g =\overline{g}\underline{g} where \overline{g}\in(G/H) and g\in H_{t}-

Let x= \sum_{g\in G}a_{g}g(a_{g}\in R) be an element of the kernel of \sigma^{G} . Then we have

\sigma^{G}(x)=0\tau

By the definition of the homomorphism \sigma^{G}, we have the followings:
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\sigma^{G}(x)=\sum_{u\epsilon(G/H)}\sum_{v\in(G/H)}(\sum_{h\in H}a_{uvhu^{-1}}\sigma\underline{(uv}h))e_{\underline{uv}u}\backslash

= \sum_{u\in(G/H)}\sum_{v\in(G/H)}(\sigma(\sum_{h\in H}a_{uvhu^{-1}}\underline{uv}h)_{)}^{\backslash }e_{\underline{uv}u}

=0r

Since the element e_{\underline{uv}u}(u, v\in(G/H)) are distinct, Lemma 2. 10 implies

\sigma(\sum_{h\in H}a_{uvhu^{-1}}\underline{uv}h)=0

for all u and v\in(G/H) . Because the kernel of \sigma is contained in the kernel
of d , we obtain

d ( \sum_{h\in H}a_{uvhu^{-1}}\underline{uv}h)=0

for all u and v\in(G/H) . Therefore we have

d^{g}(x)=o^{JG}( \sum_{g\in G}a_{g}g)=0

by the same calculation of \sigma^{\prime_{G}} . Thus x is contained in the kernel of \sigma^{\prime_{G}},
we have proved the first statement. The second statement of Lemma follows
from the first statement.

3. Corestriction and blocks

In this section, we shall prove Theorem 1, 2, and some corollaries. We
assume that P is a p-subgroup of G, (B, \sigma) is a local interior P-algebra with
defect group P, and (A, \rho) equals the interior G-algebra (Cor_{P}^{G}B, \sigma^{G}) .

Lemma 3. 1 If P is a normal p-subgroup of G and e is a primitive
idempotent of A^{G}, then a defect group of e equals P. In particular we have
Br_{P}(e) is non-zero where Br_{P} is the Brauer homomorphism of (A, \rho) with
respect to P.

PROOF. Let D be a defect group of e. By Lemma 2. 4 and Lemma 2. 12
we obtain D\leq P. Suppose that D<P. Then for the interior G-algebra
(eAe, \rho_{e}) we have (eAe)_{D}^{G}=(eAe)^{G} . Therefore there exists a local interior
D-algebra (B’, \sigma)’ with defect group D such that (eAe, \rho_{e}) is directly embedded
into (Cor_{D}^{G}B^{\prime\prime_{G}}, \sigma) , and so ({\rm Res}_{P}^{G}eAe, (\rho_{e})_{P}) is directly embedded into ({\rm Res}_{P}^{G}

Cor_{D}^{G}B’ , (\sigma^{\prime_{G}})_{P}) . Let e_{11}’ equal the element 1\otimes 1\otimes 1 in Cor_{D}^{G}B’ . By Lemma
2. 2 and Lemma 2. 11 we have

Tr_{D}^{G}(e_{11}’)=\sum_{u\in P\backslash G/D}Tr_{uDu^{-1}\cap P^{P(g(e_{11}’))}}

=1
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This implies a defect group of the primitive idempotent e_{11}’ of (Cor_{D}^{G}B’)^{P}

in ({\rm Res}_{P}^{G}Cor_{D}^{G}B’, (d^{G})_{P}) is contained in D up to G-conjugacy. Therefore
a defect group of a primitive idempotent of (eAe)^{P} in ({\rm Res}_{P}^{G}eAe, (\rho_{e})_{P}) is

contained in D up to G-conjugacy.
On the other hand, since (eAe, \rho_{e}) is directly embedded into (A, \rho) ,

({\rm Res}_{P}^{G}eAe, (\rho_{e})_{P}) is directly embedded into ({\rm Res}_{P}^{G}A, \rho_{P}) . Let e_{11} be the element
1\otimes 1\otimes 1 in Cor_{P}^{G}B. Because P is normal, Lemma 2. 2 implies

Tr_{P}^{G}(e_{11})=\sum_{v\in(G/P)}v(e_{11})

=1

Since P is normal in G and v(e_{11}) is a primitive idempotent of (Cor_{p}^{G}B)^{P}

a defect group of v(e_{11}) in ({\rm Res}_{P}^{G}A, \rho_{P}) equals P. Therefore a defect group

of a primitive idempotent of (eAe)^{P} in ({\rm Res}_{P}^{G}eAe, (\rho_{e})_{P}) is P. This is a con-
tradiction.

Lemma 3. 2 Let N equals the normalizer N_{G}(P) and (A,\tilde{\rho}) be the

G-algebra (Cor_{P}^{N}B, \sigma^{N}) . Then the N-algebras A(P) and A(P) are isomor-

phic, namely there exists an R-algebra isomorphism of A(P) to A(P) , which
is compatible with the N-action. In particular the R-algebras A(P)^{N} and
A(P)^{N} are isomorphic.

PROOF. Let 1=e_{1}+\cdots+e_{r}+e_{r+1}+\cdots+e_{n} be a primitive decomposition

of the identity element 1 in A^{G} satisfying; if i=1 , \cdots , r, then a defect group

of e_{i} equals P up to G-conjugacy; otherwise a defect group of e_{i} equals a

proper subgroup of P up to G-conjugacy. Since A^{G}\subset A^{N} we have a prim-

itive decomposition of the idempotent e_{i}(1\leq i\leq r) in A^{n} :

e_{i}=f_{i1}+\cdots+f_{in_{i}}

By the same argument of [5] Lemma 2, for the primitive idempotent e_{i} of
A^{G} there exists a unique idempotent f_{i1} of A^{N} such that a defect group of
f_{i1} in ({\rm Res}_{N}^{G}A, \sigma_{N}) equals P up to G-conjufacy. Let f be an idempotent of
A^{N} defined by

f=f_{11}+\cdots+f_{r1}

Then we have

1-f= \sum_{2\leq j}f_{ij}+\sum_{r1\leq i\leq r+1\leq i}e_{i}

For f_{ij} ( 1\leq i\leq r and 2\leq j) let D_{ij} be a defect group of f_{ij} in ({\rm Res}_{N}^{G}A, \rho_{N})

and let
f_{ij}=h_{1}+\cdots+h_{s}
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be a primitive decomposition of f_{ij} in A^{P} . By Lemma 2. 2 a defect group
of h_{t}(1\leq t\leq s) is a subgroup of D_{ij} uo to N-conjugacy. Hence a defect
group of h_{t} is a proper subgroup of P. This implies

h_{t} \in\sum_{Q<P}A_{Q^{P}}+\pi A^{P}=I^{P}(A) .

Therefore we obtain
f_{ij}\in I^{P}(A)

Because a defect group of e_{i} in (A, \rho) is a proper subgroup of P up to
G-conjugacy for r+1\leq i, it is easy to see that

e_{i}\in I^{P}(A)

for r+1\leq i . Therefore the idempotent 1-f is contained in the ideal I^{P}(A) .
Thus the inclusion of (f{\rm Res}_{N}^{G}Af, (\rho_{N})_{f}) into ({\rm Res}_{N}^{G}A, \rho_{N}) induces an N-
algebra isomorphism of fAf(P) to A(P) .

Let 1=\tilde{f_{1}}+\cdots+\tilde{f}_{\overline{s}}+\tilde{f}_{\tilde{s}+1}+\cdots+\tilde{f}_{\tilde{n}} be a primitive decomposition of the
identity element 1 in A^{N} satisfying; if i=1 , \cdots,\tilde{s}, then a defect group of \tilde{f_{i}}

equals P up to N-conjugacy; otherwise a defect group of \tilde{f}_{i} equals a proper
subgroup of P up to N-conjugacy. Let \tilde{f} be an idempotent of A^{N} defined
by

\tilde{f}=\tilde{f_{1}}+\cdots+\tilde{f}_{\overline{s}} .
By the same argument on (A, \rho) , the inclusion of (\tilde{f}A\tilde{f,}\tilde{\rho}_{\overline{f}}) into (A,\tilde{\rho}) induces
an N-algebra isomorphism of \tilde{f}A\tilde{f}(P) to A(P) .

Finally we shall define an isomorphism of the interior N-algebra (f{\rm Res}_{N}^{G}

Af, (\rho_{N})_{f}) to the interior N-algebra (\tilde{f}A\tilde{f,}\tilde{\rho}_{\overline{f}}) . Then it is easy to see that
this isomorphism induces an isomorphism of the N-algebra A(P) to the N-
algebra A(P) . Let e_{11} be the element 1\otimes 1\otimes 1 in A and e’ the element
Tr_{P}^{N}(e_{11}) of A^{N} . Let e_{uu’} be the element u\otimes 1\otimes u^{\prime-1} of A for u and u’\in

(G/P) and e_{vv’} the element v\otimes 1\otimes v^{\prime-1} of \tilde{A} for v and v’\in(N/P) . Let \beta be
an R-linear map of \tilde{A} into A defined by

\beta:\tilde{e}_{vv’}|arrow e_{vv’}

for v and v’\in(N/P) . Then \beta is a direct embedding of (\tilde{A},\tilde{\rho}) into ({\rm Res}_{N}^{G}A ,
\rho_{N}) . Furthermore

\beta(1)=Tr_{P}^{N}(e_{11})=e’

Since \tilde{f_{1}} , \cdots,\tilde{f}_{\tilde{s}} are mutualy orthogonal primitive idempotents of A^{N} whose
defect groups equal P up to N-conjugacy the element \beta(\tilde{f_{1}}) , \cdots , \beta(\tilde{f}_{\overline{s}}) are
mutualy orthogonal primitive idempotents of (e’Ae’)^{N} whose defect groups
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equal P up to N-conjugacy. By Lemma 2. 2 we have

l-e’ =Tr_{P}^{G}(e_{11})-Tr_{P}^{N}(e_{11})

=
u \not\in N\sum_{u\epsilon_{-}(N\backslash G/P)},Tr_{uPu^{-1}\cap N^{1v(u(e_{11}))}}

It follows that
f\cdot\acute{e}=(f_{1}+\cdots+f_{r})\cdot e’=f

So we obtain
\beta(\tilde{f})=f

‘

Therefore the direct embeddeing \beta induces an isomorphism of (\tilde{f}\tilde{A}\tilde{f}, \rho_{\overline{f}}) to
(f{\rm Res}_{N}^{G}Af, (\rho_{N})_{f}) , completing the proof of Lemma.

THEOREM 1. Let Br_{P}(A) be the Brauer homomorphism of (A, \rho) with
respect to P. If b is a block of RG whose defect group contains P up to

G-conjugacy, then the element Br_{P}(A)\circ\rho(b) is non-zero.

PROOF. We shall prove Theorem in case that P is a normal subgroup
of G. In order to prove Br_{P}(A)\circ\rho(b) , By Lemma 3. 1 it is sufficiant to see
that \rho(b) is non-zero. Let (R, \sigma_{0}) be the interior P-algebra defined in Lemma
2. 13. Since the kernel of \sigma_{0} is the augmentation ideal of RP it is a unique
maxmal ideal of RP. Therefore the kernel of \sigma is contained in the kernel
of \sigma_{0} . By Lemma 2. 14 the kernel of \rho(=\sigma^{G}) is contained in the kernel
of (\sigma_{0})^{G} . Therefore Lemma 2. 13 implies (\sigma_{0})^{G}(b) is non-zero, and so \rho(b) is
non-zero.

Now we shall prove in general case. Let (RG, id_{RG}) be a interior G-
algebra where id_{RG} is the identity map of RG and C equal the centralizer
C_{G}(P) . Since \rho(I^{P}(RG)) is contained in I^{P}(A) we have an R-algebra hom0-
morphism \rho(P) of RC^{N} to A(P)^{N} satisfying the following diagram is com-
mutative :

RG^{G}A^{G}\underline{\rho}

Br_{P}(RG) \downarrow

\rho(P)

\downarrow Br_{P}(A)

RC^{N}-\succ A(P)^{N}

Similarly for (\tilde{A},\tilde{\rho}) we have R-algebra homomorphism \tilde{\rho}(P) of RC^{N} to \tilde{A}(P)^{N}

satisfying the following diagram is commutative :
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RN^{N}\tilde{A}^{N}\underline{\tilde{\rho}}

Br_{P}(RG)\downarrow\downarrow Br_{P}(\tilde{A})RC^{N}\tilde{A}(P)^{N}\underline{\tilde{\rho}(P)}

Let \alpha be the R-algebra isomorphism of \tilde{A}(P)^{N} to A(P)^{N} induced by the
isomorphism \beta of (\tilde{f}\tilde{A}\tilde{f},\tilde{\rho}-) to (f{\rm Res}_{N}^{G}Af, (\rho_{N})_{f}) in Lemma 3. 2. Then the
following diagram is commutative:

Br_{P}(RG)\downarrow RG^{G}A^{G}\underline{\rho}

RC^{1Y}A(P)^{N}\underline{\rho(P)}\downarrow Br_{P}(A)

RC^{N}\tilde{A}(P)^{N}||\underline{\tilde{\rho}(P)}\uparrow\alpha

r*)

Br_{P}(RN)\uparrow\underline{\tilde{\rho}}\uparrow RN^{N}\tilde{A}^{N}

Br_{P}(\tilde{A})

Let \iota be the inclusion of RC^{N} into RN^{N} . Then for the Brauer homomor-
phism Br_{P}(RN) of RC^{N} to RN^{N} with respect to P we have

BrP(RN) =id_{RC^{N}}

where id_{RC^{N}} is the identity map of RC^{N} . let b’ be the primitive idempotent
\iota\circ Br_{P}(A)(b) of RN^{N} . By the first part of Theorem the element Br_{P}(\tilde{\Lambda-})\circ

\tilde{\rho}(b’) is non-zero. The commutativity of the diagram (*) implies

\tilde{\rho}(P)\circ Br_{P}(RG)(b)=\tilde{\rho}(P)\circ Br_{P}(RN)\circ\iota\circ Br_{P}(RG)(b)

=\tilde{\rho}(P)\circ Br_{P}(RN)(b’)

=Br_{P}(\tilde{A})\circ\tilde{\rho}(b’)

Therefore the element \tilde{\rho}(P)\circ Br_{P}(RG)(b) is non-zero. Similarly by the com-
mutativity of the diagram (*) , we have

Br_{P}(A)\circ\rho(b)=\rho(P)\circ Br_{P}(RG)(b)

=\alpha\circ\tilde{\rho}(P)\circ Br_{P}(RG)(b)

Since \alpha is an isomorphism the element Br_{P}(A)\circ\rho(b) is non-zero. Thus
complete the proof of Theorem.

THEOREM 2. Let b be a block of RG and P a subgroup of a defect
group of b. Then for a local interior P-algebra (B, \sigma) with defect group
P, there exists a local interior G-algebra (A_{1}, \rho_{1}) satisfying the following
properties :
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(1) \rho_{1}(b) is non-zero.
(2) A defect group of (A_{1}, \rho_{1}) equals P up to G-conjugacy.
(3) (B, \sigma) is a source of (A_{1}, \rho_{1}) .

PROOF. By Theorem 1 the idempotent Br_{P}\circ\rho(b) is non-zero, where
Br_{P} is the Brauer homomorphism of (A, \rho) with respect to P. Let \rho(b)=

f_{1}+\cdots+f_{s} be a primitive decomposition of \rho(b) in A^{G} . Then there exists
an idempotent f_{i} such that Br_{P}(b) is non-zero. We define a local interior
G-algebra (A_{1}, \rho_{1}) by the interior G-algebra ( f_{i} A f_{i} , \rho_{f_{i}}). Then (A_{1}, \rho_{1}) is
directly embedded into (A, \rho) . The statement of (1) is immediately from the
definition of (A_{1}, \rho_{1}) .

We shall prove the statement of (2). Because Br_{P}(f_{i}) is non-zero,
Lemma 2. 4 implies that a defect group of f_{i} in (A, \rho) contains P up to
G-conjugacy. Therefore by Lemma 2. 1 a defect group of f_{i} equals P up
to G-conjugacy. So a defect group of f_{i} equals a defect group of (A_{1}, \rho_{1}) ,
and the statement of (2) holds.

Let (B_{1}, \sigma_{1}) be a source of (A_{1}, \rho_{1}) . Then (B_{1}, \sigma_{1}) is a local interior P-
algebra with defect group P. By the definition of sources, (B_{1}, \sigma_{1}) is directly
embedded into ({\rm Res}_{P}^{G}A_{1}, (\rho_{1})_{P}) . So (B_{1}, \sigma_{1}) is directly embedded into ({\rm Res}_{P}^{G}

Cor_{p^{G}}B, (\sigma^{G})^{P}) . Let \phi be this direct embedding. Let e_{11} be the element
1\otimes 1\otimes 1 in A. Then by Lemma 2. 2 we have an orthogonal decomposition
of the identity element 1 in A^{P} :

1= Tr_{P}^{G}(e_{11})=\sum_{u\in(\wedge G/P)}Tr_{uPu}-1_{\cap P^{P(u(e_{11}))}}

Let N be the normalizer N_{G}(P) . For u\in N the idempotent u(e_{11})=Tr_{uPu^{-l_{\cap P^{P}}}}

(e_{11}) is a primitive idempotent of A^{P} . Since \phi is a direct embedding there
exists an element u of G such that the following hold:

\phi(1)\circ Tr_{uPu^{-1_{\cap P^{P}}}}(u(e_{11}))=\phi(1)

where 1 is the identity element of B_{1} . This implies that a defect group of
(B_{1}, \sigma_{1}) is contained in uPu^{-1} up to G-conjugacy. Therefore we have u\in N.
This implies \phi(1)=u(e_{11}) . Hence by Lemma 2. 12, (B, \sigma) is a source of
(A_{1}, \rho_{1}) , completing the proof of Theorem.

COROLLARY 3. Let b be a block of RG and P a subgroup of a defect
group of b. Then for an indecomposable RP-module W with vertex P
there exists an indecomposable RG-module V lying in b satisfying the follow-
ing properties :

(1\backslash ) A vertex of V equals P up to G-conjugacy.
(2) W is a source of V.
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PROOF. By Example 2. 9, this follows immediately from Theorem 2.
We recall that k=0/(\pi) is a residue class field of characteristic p.

COROLLARY 4. Suppose that k is an algebraically closed fifield. Let b

be a block of RG and P a subgroup of a defect group of b. Then for
a local interior P-algebra (B, \sigma) with defect group Q(\leq P) and a source
(C, \tau) there exists a local interior G-algebra (A_{1}, \rho_{1}) satisfying the follow-
ing conditions :

(1) \rho_{1}(b) is non-zero.
(2) A defect group of (A_{1}, \rho_{1}) equals Q up to G-conjugacy.
(3) (C, \tau) is a source of (A_{1}, \rho_{1}) .
PROOF. Since the field k is algebraicaly closed the k-algebra C^{Q}/J(C^{Q})

is isomorphic to k, where J(C^{Q}) is the Jacobson radical of C^{Q} . By the
Puig’s extention of the Green’s theorem on absolutely indecomposable modules
to the version of interior algebras, the interior P-algebra (Cor_{Q^{P}}C, \tau^{P}) is a
local interior P-algebra. See [1] and [2]. So Lemma 2. 11 implies that the
P-algebra (B, \sigma) is isomorphic to (Cor_{Q^{P}}C, \tau^{P}) . Therefore the interior G-
algebra (A, \rho) is isomorphic to the G-algebra (Cor_{Q^{G}}C, \tau^{G}) , and we can applies
Theorem 2 to Corollary.

COROLLARY 5. Suppose that k is an algebraically closed fifield. Let b

be a block of RG and P a subgroup of a defect group of b. Then for an
indecomposable RP-module with vertex Q(\leq P) and a source W there exists
an indecomposable RG-module V lying in b satisfying the following prO-

perties:
(1) A vertex of V equals Q up to G-conjugacy.
(2) W is a source of V.
PROOF. Immediately from Corollary 4.
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