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1. Introduction

If a nonsingular ring R happens to be a countable-dimensional algebra
over some field, then, as shown in [5] and [4], the structure of the maximal
right quotient ring Q_{\max}(R) is surprisingly restricted. No extensions of these
results seem to be known if R is countable-dimensional over just a sub-
division ring or even over a non-central subfield. Here we consider an even
weaker condition, namely that some nonzero left annihilator ideal J of R
has a countable-dimensional annihilator base (CDAB). This is satisfied, for
example, if for some division ring K\subseteq R there is a countable-dimensional
vector space KV\subseteq_{K}J such that V intersects non-trivially with all left anni-
hilator ideals J’\subseteq J (\S 2 contains the precise definition of a CDAB). Our
principal result (Theorem 2) states that then either Q_{\max}(R) has a nonzero
Type I part or R cannot be a right Utumi ring. Right Utumi rings share
(by definition) an important property of right self-injective rings – their
complement right ideals are right annihilator ideals.

The other main theorem, and on which the principal result hinges, is
that if f is an idempotent of a regular, right self-injective ring Q, and Qf
has a CDAB, then fQ must be of Type I_{f} (Theorem 1).

One surprising corollary of these theorems is that if R is a prime,
right Utumi ring with a nonzero right ideal which is of countable dimension
as a left vector space over some division ring K\subseteq R , then R must be right
Goldie (Corollary 4). This ties in with J. Lawrence’s result [6] that a counta-
ble-dimensional self-injective algebra is Artinian. It is also consistent with
a more general theme that a nonsingular irreducible ring R which satisfies
a countability condition either satisfies a finiteness condition or is, in some
sense, a long way from being self-injective.

2. Definitions, Notation, and Background

Rings are associative with identity. The left annihilator of a set X in
a ring R is denoted as l_{R}(X) or l(X) depending on the context. Similarly
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r_{R}(X) or r(X) denotes the right annihilator.
For a module A (over a general ring), E(A) denotes its injective hull.

For a natural number n , nA denotes a direct sum of n copies of A. We
write A<_{\sim}B\vee\backslash to indicate a module A is subisomorphic to a module B, and
A\leq_{e}B to indicate the submodule A is essential in the module B.

For the general background on nonsingular rings and maximal right
quotient rings of such rings, as well as uniform modules and the uniform
dimension of a finite-dimensional module, see Goodearl [2]. We denote the
maximal right quotient ring of a right nonsingular ring R by Q_{\max}(R) . For
the theory of regular, right self-injective rings Q, and the associated theory
of types, see Goodearl [3]. We remind the reader that Q has a nonzero
Type I part exactly when it contains a nonzero abelian idempotent e (all

idempotents in eQe are central in eQe). Also a nonsingular injective module
M_{R} is of Type I_{f} exactly when M is directly finite and each nonzero sub-
module of M contains a nonzero abelian submodule.

A right Utumi ring is a right nonsingular ring in which each complement
right ideal is a right annihilator ideal, equivalently, every right ideal of R

with zero left annihilator is essential in R. These rings were introduced by
Utumi in [7]. In terms of Q=Q_{\max}(R) , a right nonsingular ring R is right
Utumi if and only if Q is left intrinsic over R, that is nonzero left ideals
of Q intersect nontrivially with R [7 , Theorem 2. 2]. In particular, regular
right self-injective rings, semi-prime right and left Goldie rings, commutative
semi-prime rings, and the nonsingular right CS-rings of [1] are all right
Utumi rings.

Let us say that a module KV has countable uniform dimension if V

contains an essential submodule which is a countable direct sum of uniform
K-modules, equivalently V contains only countable direct sums of nonzero
submodules and each nonzero submodule contains a uniform submodule. For
example this is true if KV is a countable-dimensional vector space over a

division ring K, or if KV is a countably generated unitary module over
a semisimple Artinian ring K, or even if KV is a countably generated non-
singular module over a left nonsingular ring K whose maximal left quotient
ring has a countably generated essential left socle.

Finally we introduce a new concept :

DEFINITION. A left annihilator ideal J of a r!.ngR has a countable
dimensional annihilator base (CDAB) if there is a subring K of R and a
K module KV\underline{\subset}_{K}J such that KV has countable uniform dimension and for
all left annihilator ideals 0\neq J’\subseteq J,

J’\cap V\neq 0
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Note that there is no loss in generality in assuming that KV is actually a
(countable) direct sum of uniforms.

3. The Main Theorems

THEOREM 1. Let Q be a regular, right self-injective ring and suppose
f is an idempotent such that Qf has a countable-dimensional annihilator
base. Then fQ is of Type I_{f}.

PROOF. Let KV be a CDAB for Qf, for some subring K of Q. Let
V_{1}\subset V_{2}\subset\cdots\subset V_{n}\subset\cdots

be a chain of K-submodules of V such that each V_{n} has uniform dimension
n and \bigcup_{1}V_{i} is an essential submodule of KV.

Firstly we observe that fQ must be directly finite, otherwise by [3,
Theorem 10. 19 and Proposition 10. 21] Qf contains an uncountable direct
sum \bigoplus_{\alpha}Qa_{\alpha} of nonzero left ideals and then \sum_{\alpha}Qa_{\alpha}\cap V is an uncountable
direct sum of nonzero K-submodules of V, contrary to the assumption that
KV has countable uniform dimension.

Let f_{1}Q and f_{2}Q be respectively the Type I_{f} and Type II_{f} parts of fQ,
where f_{1} , f_{2} are idempotents in fQf Then fQ f Q\oplus f_{2}Q , and Qf_{2} inherits
a CDAB from Qf, namely V\cap Qf_{2} . Thus in order to show fQ is of Type
I_{f} it will suffice to assume fQ is of Type II_{f} and then deduce that fQ=0.

So we assume fQ is of Type II_{f} and has KV as a CDAB. Since the
Type I part of fQ is zero, by [3, Proposition 10. 28\dot{i} each submodule of fQ
can be written as a direct sum of 3 pairwise isomorphic submodules. (The

choice of a 3-part splitting is inspired by the observation \sum_{1}^{\infty}1/3^{n}=1/2.) We

use this property to inductively construct independent summands B_{1} , \cdots , B_{n} , \cdots

of fQ such that
(1) 3B_{n}\cong B_{n-1} (\forall n>1)

(2) l(B_{1}+\cdots+B_{n})\cap V_{n}=0

(3) fQ=(B_{1}\oplus\cdots\oplus B_{n})\oplus C_{n} for some C_{n}\cong(B_{1}\oplus\cdots\oplus B_{n})\oplus B_{n} .
To begin the induction, we write fQ=A_{1}\oplus A_{2}\oplus A_{3} where A_{1}\cong A_{2}\cong A_{3} .

3 3
Since \bigcap_{1}l(A_{i})\cap Qf=0 , we have \bigcap_{1}(l(A_{i})\cap V_{1})=0 . But each l(A_{i})\cap V_{1} is

a K-submodule of the uniform module V_{1} , so we can choose B_{1}\in {A_{1} , A_{2} , A3}
such that

l(B_{1})\cap V_{1}=0 .

For C_{1} we take the sum of the two A_{i} not equal to B_{1} . Clearly (2) and
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(3) hold.
Now suppose for some n\geq 1 we have constructed B_{1} , \cdots , B_{n} with the

desired properties (1), (2), (3). Noting that B_{i}\cong 3^{n-i}B_{n} for i=1 , \cdots , n by (1),
and that C_{n}\cong(B_{1}\oplus\cdots\oplus B_{n})\oplus B_{n} by (3), we can obtain a decomposition of
C_{n} as a direct sum of (3^{n-1}+3^{n-2}+\cdots+3+1)+1=(3^{n}+1)/2 copies of B_{n} .
Splitting each of these summands into a direct sum of 3 pairwise isomorphic
modules then produces a decomposition

C_{n}=D_{1}\oplus\cdots\oplus D_{k}

where k=3(3^{n}+1)/2 , D_{1}\cong D_{2}\cong\cdots\cong D_{k} , and 3D_{i}\cong B_{n} for each i. Let Y=
l(B_{1}+\cdots+B_{n})\cap V_{n+1} , and note that Y is a K-submodule of V. From (2)
we have

V_{n}\oplus Y\subseteq V_{n+1}

and so since V_{n} and V_{n+1} have uniform dimensions of n and n+1 respec-
tively, either Y=0 or Y is a uniform submodule of KV. From (3), B_{1}+\cdots+

B_{n}+D_{1}+\cdots+D_{k}=fQ implies \bigcap_{i=1}^{k}l(B_{1}+\cdots+B_{n}+D_{i})\cap Qf=0 . Hence

\bigcap_{i=1}^{k}(l(B_{1}+\cdots+B_{n}+D_{i})\cap V_{n+1})=01

But each l(B_{1}+\cdots+B_{n}+D_{i})\cap V_{n+1} is a K-submodule of Y, and Y=0 or is
uniform. Thus for some j

l(B_{1}+\cdots+B_{n}+D_{j})\cap V_{n+1}=0 .
Set B_{n+1}=D_{j} and C_{n+1}=the sum of all the k-1 other D_{i} .

From 3D_{j}\cong B_{n} we have 3B_{n+1}\cong B_{n} , giving (1). Clearly (2) holds for n+1 .
Also C_{n}=B_{n+1}\oplus C_{n+1} so

fQ=B_{1}\oplus\cdots\oplus B_{n}\oplus C_{n}=(B_{1}\oplus\cdots\oplus B_{n+1})\oplus C_{n+1}’

and
C_{n+1}\cong(k-1)B_{n+1} (since each D_{i}\cong B_{n+1} )

=((3^{n}+3^{n-1}+\cdots+3+1)+1)B_{n+1}

\cong(B_{1}\oplus\cdots\oplus B_{n}\oplus B_{n+1})\oplus B_{n+1}

(since B_{i}\cong 3^{n-i}B_{n}\equiv 3^{n+1-i}B_{n+1} )
which establishes (3). This completes the induction.

Let B=E(B_{1}\oplus B_{2}\oplus\cdots)\subseteq fQ . By property (2), l(B)\cap V=0 . In con-
sequence, l(B)\cap Qf=0 because V is a CDAB for Qf. Hence B=fQ. On
the other hand by property (3), 2 (B_{1}\oplus\cdots\oplus B_{n})\underline{\backslash _{-}^{\nearrow}}fQ for all n , whence 2B\leq
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fQ by [3, Proposition 9. 22] since fQ is directly finite. Thus 2 (fQ)\leq fQ .
The direct finiteness of fQ now forces fQ=0, as required.

The above proof is based on an outline given to us by K. R. Goodearl,
after he saw our original (much longer) proof.

THEOREM 2. Let R be a right nonsingular ring which which has a

nonzero left annihilator ideal with a countable-dimensional annihilator
base. Then either the Type I part of Q_{\max}(R) is nonzero or R is not a

right Utumi ring.

PROOF. Let Q=Q_{\max}(R) and suppose R is right Utumi. Let J be a
nonzero left annihilator ideal of R with a CDAB, say KV for some subring
K\subseteq R . Then J=Qf\cap R for some f=f^{2}\in Q . Now since R is right Utumi,

Q is left intrinsic over R by [7, Theorem 2. 2] and it follows that KV is also
a CDAB for Qf in the ring Q. By Theorem 1 we conclude that fQ is
of Type I_{f} and so Q has a nonzero Type I part.

4. Corollaries

Although Corollaries 1, 3 and 4 (below) are stated in a form which
relies on Theorems 1 and 2 only in the case where a CDAB is a countable
dimensional vector space over some division ring K\underline{\subset}R (this case seems the
most interesting), these corollaries remain valid when the ideals in question
have countable uniform dimension over an arbitrary subring K of R.

COROLLARY 1. Suppose R is a right Utumi ring with a nonzero left
ideal of countable dimension as a left vector space over some division ring
K\subseteq R . Then Q_{\max}(R) has a nonzero Type I part.

REMARK. For R meet-irreducible (tw0-sided ideals intersect nontrivially),

this means R has uniform right ideals.

PROOF. Let V=Ra\neq 0 be a principal left ideal of R with dim KV

countable. Let J=l(r(V)) .
Claim: KV is a CDAB for the left annihilator ideal J of R.

For let 0\neq J’\subseteq J be a left annihilator ideal of R. We wish to show
J’\cap V\neq 0 . Let Q=Q_{\max}(R) and write Qa=Qf, aQ=eQ, where e, f are
idempotents in Q. Observe that J=l_{R}(r_{R}(Qf))=l_{R}((1-f)Q\cap R)=Qf\cap R .
If we let r_{Q}(J’)=(1-g)Q for g=g^{2}\in Q , then J’=l_{R}(r_{R}(J’))=l_{R}((1-g)Q\cap R)

=Qg\cap R . Also 0\neq Qg\cap R=J’\subseteq J\subseteq Qf=Qa , so 0\neq ya\in Qg for some y\in Q .
write Qy=(Q(1-e)\cap Qy)\oplus Qh for some h\in Q . Then ya\neq 0 implies ye\neq 0

and so h\neq 0 . As R right Utumi implies Q is left intrinsic over R, there
exists q\in Q with 0\neq qy\in Qh\cap R . Now qya\neq 0 and so 0\neq^{-}(qy)a\in Qg\cap Ra\subseteq
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J’\cap V. Thus J’\cap V\neq 0 as desired.
The corollary now follows from Theorem 2.

COROLLARY 2. Suppose R is a right Utumi ring and J is a left anni-
hilator ideal with a countable-dimensional annihilator base. Then the
injective hull of any complement of r(J) is of Type I_{f} .

PROOF. This follows from the proof of Theorem 2. For in the notation
there, J=Qf\cap R , fQ\cap R is a complement of r_{R}(J)=(1-f)Q\cap R , and fQ is
the injective hull of fQ\cap R . As the proof shows, fQ is of Type I_{f} .

COROLLARY 3. If a right Utumi ring R has a faithful right ideal U
which is countable dimensional as a left vector space over some division
ring K\subseteq R , then Q_{\max}(R) is of Type I_{f}.

PROOF. Let J=R, V=U. Since U is faithful, for any nonzero left
ideal J’\subseteq J,

0\neq UJ’\subseteq V\cap J’

Hence J is a left annihilator ideal with KV as a CDAB. From 0=r(J) , we
infer R is a complement of r(J) and that Q_{\max}(R) is of Type I_{f} by Corollary 2.

COROLLARY 4. Let R be a prime, right Utumi ring with a nonzero
right ideal U which is countable dimensional as a left vector space over
some division ring K\subseteq R . Then R is right Goldie.

PROOF. Immediate from Corollary 3, since U is faithful in a prime
ring and prime, regular, right self-injective rings Q of Type I_{f} are simple
Artinian.

REMARKS.
(1) With some hesitation we point out that Corollary 4 provides an-

other characterization of simple Artinian rings, viz . rings which are prime,
regular, right Utumi, and contain a countable-dimensional right ideal \neq 0 .
On the other hand, the ring of linear transformations of an infinite-dimen-
sional right vector space is prime, regular, right Utumi and can contain
nonzero countable-dimensional left ideals but of course is neither simple or
Artinian. (It is of Type I, in accordance with Corollary 1.)

(2) In particular, for a right Utumi ring R possessing a left ideal \neq 0

with a CDAB, Q_{\max}(R) can have zero Type I_{f} part (as well as zero Types
II and III parts). Simple examples (such as a direct product of a simple
Artinian ring and a Type II regular right self-injective ring) show that
Q_{\max}(R) need not be Type I.

(3) It is not true that if a right Utumi ring R contains only countable
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direct sums of nonzero left or right ideals, then Q_{\max}(R) has a nonzero
Type I part, e . g . R a simple self-injective ring of Type II_{f} (see [3, Proposi-
tion 5. 9]). By Corollary 1, taking V=R and K=R in this situation will
not give a CDAB KV for R. Thus the countability requirement for a CDAB
KV involves more than simply having only countable direct sums of K-
submodules of V.

A left ideal with a CDAB over some division ring need not itself be
countable dimensional (over any division ring K):

EXAMPLE.
There exists a commutative, regular, self-injective ring Q with no counta-

ble-dimensional ideals (\neq 0) but each of its annihilator ideals J has a CDAB
over a field. Simply let Q=Q_{\max}\acute{(}R) where R is a countable Boolean ring
without minimal ideals. Let J=Qf\neq 0 where f=f^{2}\in Q . Because soc (Q)

=0, \bigoplus_{1}^{\infty}f_{i}Q\leq_{e}fQ for some nonzero orthogonal idempotents f_{i} and hence by

injectivity of Q_{Q}

Qf \supseteq\prod_{1}^{\infty}Qf_{i}

Consequently for any division ring K\subseteq Q, dim KQf must be uncountable.
However, letting

V=J\cap R and K=\{0, 1\}

we observe that KV is a CDAB for J.
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