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Spectral orders and differences
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1. Introduction

The purpose of this paper is to investigate the relationship between
differences of functions and majorization inequalities. More specifically, we
shall extend the following theorem of Lorentz-Shimogaki-Day (see [12, PropO-
sition 1, p. 34] and [5, Proposition (6. 1) (ii), p. 941] ) to the case when
(X, \Lambda, \mu) is any totally \sigma-finite measure space:

THEOREM L-S-D. Let (X, \Lambda, \mu) be a fifinite measure space. If f, g\in

L^{1}(X) , then f^{*}-g^{*}\prec f-g and |f^{*}-g^{*}|\prec\prec|f-g| .
In the above theorem, \prec and \prec\prec mean the Hardy, Littlewood and

P\’olya preorders (precisely defined in chapter 2).
Our Main Theorems are Theorems 1 and 2 in chapter 2. Proofs of

them are easy; but they have many important applications in analytical
fields. Theorems 1 and 2 extend recent results obtained by Chong [4, the
left hand side inequality of (3. 7), p. 148] and by Chiti [1, Theorem, p. 24],
and as a corollary to Theorem 2 (Corollary 8), we can show that, in any
Orlicz spaces, convergence of a sequence \{f_{n}\} to f implies convergences of
\{f_{n}^{*}\} to f^{*} , and \{|f_{n}|^{*}\} to |f|^{*} , where, in general, h^{*} means the decreasing
rearrangement of a measurable function h.

2. Preliminaries and statements of the Main Theorems

Let (X, \Lambda, \mu) be a measure space. Throughout the paper, we assume
that \infty\geqq a=\mu(X)>0 and m is Lebesgue measure on [0, a) . Denote by
\mathfrak{M}(X) the set of all extended-real valued measurable functions on X, and let
L^{1}(X) and L^{\infty}(X) stand for the set of all integrable functions and essentially
bounded functions on X respectively. Any \mu a . e . equal functions are iden-
tified. To each f in \mathfrak{M}(X) , assign its decreasing rearrangement f^{*} (see [13],
[2], [9] and [15]) : f^{*’} is a uniquely determined, non-increasing and right con-
tinuous function on [0, a) which is equidistributed with f, that is, d_{f}(s)\equiv

\mu([f>s])=m([f^{*}>s]) for all s\in R=(-\infty, \infty) . In fact, the function f^{*} is
defined by f^{*}(t)= \sup\{s: d_{f}(s)>t\} , provided that sup \emptyset=-\infty , where \emptyset

denotes the empty set.
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Define \mathfrak{P}(X)= { f\in \mathfrak{M}(X) : \lim_{sarrow-\infty}d_{f}(s)=\mu(X) or f^{+}\in L^{1}(X)+L^{\infty}(X)}, where

L^{1}(X)+L^{\infty}(X) means the algebraic sum of L^{1}(X) and L^{\infty}(X) in \mathfrak{M}(X) .
Further, let (X, \Lambda, \mu) and (X’, \Lambda’, \mu’) be two measure spaces with \mu(X)=

\mu’(X’)=a . Then Hardy-Littlewood-Polya weak spectral order\prec\prec for pairs
of functions f\in \mathfrak{P}(X) and g\in \mathfrak{P}(X’) is defined by the following (see [15,

Definition 2]): If f\in \mathfrak{P}(X) and g\in \mathfrak{P}(X’) , we write f\prec\prec g whenever

\int_{0}^{s}f^{*}(t)dt\leqq\int_{0}^{s}g^{*}(t)dt for all s\in(0, a) ;

we say that f is majorized by g whenever f\prec\prec g . Further, if f\prec\prec g and both

integrals \int_{0}^{a}f^{*}(t)dt and \int_{0}^{a}g^{*}(t)dt are definite and equal to each other, we

write f\prec g .
The preorders\prec<and\prec were originally introduced in L_{+}^{\infty}(0,1) by Hardy,

Littlewood and P\’olya [7], and have been studied by many authors (see, for
examples, [8], [10], [11], [6] [13], [2], [3], and recently published books [14]

and [16] ) . Among results for the preorder \prec\prec , the most improtant one is
the following (see [15, Theorem 2. 2] for the present general form):

THE0REM H-L-P. Let (X, \Lambda, \mu) and (X’, \Lambda’, \mu’) be two measure spaces
with \mu(X)=\mu’(X’) , and let f\in \mathfrak{P}(X) and g\in \mathfrak{P}(X’) . Then, f\prec\prec g if and only

if
\int_{X}(f-u)^{+}d\mu\leqq\int_{X},(g-u)^{+}d\mu

’ for all u\in R\iota

Now we state our Main Theorems.

THEOREM 1. Let (X, \Lambda, \mu) be a totally \sigma- fifinite measure space with
\mu(X)=a , and let f, g\in \mathfrak{M}(X) . If f-g\in \mathfrak{P}(X) and f^{*}-g*\in \mathfrak{P}([0, a)) , then
f^{*}-g^{*}\prec\prec f-g .

THEOREM 2. Let (X, \Lambda, \mu) be a totally \sigma- fifinite measure spece, and let

f, g\in \mathfrak{M}(X) . If f-g and f^{*}-g^{*} are well-defifined a. e. , then |f^{*}-g^{*}|\prec\prec

|f-g| .

3. Proof of Main Theorems

To prove main theorems, we need the following two lemmas. In the
sequel, for each \alpha, \beta\in R , \alpha\wedge\beta and \alpha\vee\beta mean min (\alpha, \beta) and max (\alpha, \beta)

respectively, while 1V stands for the set of natural numbers.

Lemma 3. Let (X, \Lambda, \mu) be a measure space, and let .f\in \mathfrak{M}(X) . If
f_{n}\in \mathfrak{M}(X) is defifined by f_{n}(x)=(f(x)\wedge n)\vee(-n) for each x\in X and each
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n\in N, then f^{*}= \lim_{narrow\infty}f_{n}^{*} .

PROOF. Suppose first that f^{*}(t)>s . If n>|s| , then d_{f_{n}}(s)=d_{f}(s)>t ; so
that f_{n}^{*}(t)>s . Hence lim inff_{n}^{*}\geqq f^{*} . Suppose next that lim supf_{n}^{*}(t)>s .
Then f_{n}^{*}(t)>s for infifinite1ynarrow\infty many n ; so that d_{J_{n}}(s)>t for infifinitelynarrow\infty many
n . Therefore d_{f}(s)>t , that is f^{*}(t)>s . Hence f^{*} \geqq\lim_{narrow}\sup_{\infty}f_{n}^{*} , and then

f^{*}= \lim_{narrow\infty}\sup f_{n}^{*}=\lim_{narrow}\inf_{\infty}f_{n}^{*}=\lim_{narrow\infty}f_{n}^{*} .

Lemma 4. Let (X, \Lambda, \mu) be a totally \sigma- fifinite measure space, and let

f, g\in \mathfrak{M}(X) . If f-g and f^{*}-g^{*} are well-defifined a . e. , then

(3. 1) \int_{t0,a)}(f^{*}-g^{*})^{+}dm\leqq\int_{X}(f-g)^{+}d\mu\iota

PROOF. We devide the proof in three steps.
Step 1^{o} : (3. 1) holds whenever 0\leqq f, g\in L^{\infty}(X) . Suppose that 0\leqq f,

g\in L^{\infty}(X) ; so that f^{*} , g^{*}\in L^{\infty}([0, a)) ; Hence f^{*}-g^{*} is well-defined. Since
(X, \Lambda, \mu) is totally \sigma-finite, there exists an increasing sequence \{E_{n}\} of elements
of \Lambda such that \bigcup_{n=1}E_{n}=X, with \mu(E_{n})<\infty for all n\in N Define f_{n}=f\chi_{E_{n}}

and g_{n}=g\chi_{E_{n}} for each n\in 1\backslash ^{-}’. Then \{f_{n}\} and \{g_{n}\} are increasing sequences
of measurable functions; so that f_{n}^{*}\uparrow f^{*} and g_{n}^{*}\uparrow g* . Hence (f^{*}-g^{*})^{+}=

lim \chi_{\mathfrak{c}0,\mu^{(}E_{n}))}(f_{n}^{*}-g_{n}^{*})^{+} . Further, since f, g\in L^{\infty}(X) , f_{n} , g_{n}\in L^{1}(E_{n}) for all
narrow\infty

n\in 1\backslash ^{v}’. Then, Theorem L-S-D and Theorem H-L-P yield

\int_{I0,a)}(f^{*}-g^{*})^{+}dm\leqq\lim_{narrow}\inf_{\infty}\int_{I0,\mu^{(E_{n}))}}(f_{n}^{*}-g_{n}^{*})^{+}dm

\leqq\lim_{narrow}\inf_{\infty}\int_{E_{n}}(f_{n}-g_{n})^{+}d\mu\leqq\int_{X}(f-g)^{+}d\mu ,

on applying Fatou’s Lemma to the sequence \{(f_{n}^{*}-g_{n}^{*})^{+}\} .
Step 2^{O} : (3. 1) holds whenever f, g\in L^{\infty}(X) . Suppose that f, g\in L^{\infty}(X) .

Then the result of step 1^{o} implies (3. 1), on using a general identity

(3. 2) (h– v)*=h^{*}-v for any h\in \mathfrak{M}(X) and any v\in R .
Step 3^{o} : (3. 1) holds whenever f, g\in \mathfrak{M}(X) and both f–g and f^{*}-g*

are well-defined a . e . To prove this, we may suppose, without loss of gen-
erality, that f, g\in \mathfrak{M}(X) satisfy (f-g)^{+}\in L^{1}(X) and that f^{*}-g^{*} is well-
defined a. e. Here we note that

(3. 3) [(\alpha\wedge\gamma)\vee(-\gamma)-(\beta\wedge\gamma)\vee(-\gamma)]^{+}\leqq(\alpha-\beta)^{+}

for each \alpha, \beta , \gamma\in R : If \alpha<\beta , then the left hand side of (3. 3) is equal to
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0; if \alpha\geqq\beta , then a general identity

|\alpha\wedge\gamma-\beta\wedge\gamma|+|\alpha\vee\gamma-\beta\vee\gamma|=|\alpha-\beta|

for any \gamma\in R implies

[(\alpha\wedge\gamma)\vee(-\gamma)-(\beta\wedge\gamma)\vee(-\gamma)]^{+}

\leqq|(\alpha\wedge\gamma)(-\gamma)-(\beta\wedge\gamma)\vee(-\gamma)|

\leqq|\alpha-\beta|=(\alpha-\beta)^{+}

Now, putting \alpha=f(x) , \beta=g(x) for each x\in X and \gamma=n , we have

(3. 4) (f_{n}-g_{n})^{+}\leqq(f-g)^{+} a. e . for all n\in N ,

where f_{n}\equiv(f\wedge n)\vee(-n) and g_{n}\equiv(g\wedge n)\vee(-n) for each n\in 1\backslash ^{Y}’. Since f_{n} ,
g_{n}\in L^{\infty}(X) , the result of step 2^{o} , (3. 4) and Lemma 3 yield (3. 1), on applying
the Fatou Lemma to the sequence \{(f_{n}^{*}-g_{n}^{*})^{+}\} .

PROOF OF THEOREM 1.
As a special case of the preceeding lemma, using (3. 2), we have

(3. 5) \int_{I0,a)}(f^{*}-g^{*}-u)^{+}dm\leqq\int_{X}(f-g-u)^{+}d\mu for any u\in R ,

whenever f-g and f^{*}-g*are well-defined a . e . Then, by virtue of Theorem
H-L-P, f^{*}-g^{*}\prec\prec f-g whenever f, g\in \mathfrak{M}(X) satisfy both f-g\in \mathfrak{P}(X) and
f^{*}-g^{*}\in \mathfrak{P}([0, a)) .

PROOF OF THEOREM 2.
On changing the role of f and g in Lemma 4, and again using (3. 2),

we have

(3. 6) \int_{\mathfrak{c}0,a)}(f^{*}-g*+u)^{-}dm\leqq\int_{X}(f-g+u)^{-}d\mu for any u\in Rj

whenever f-g and f^{*}-g* are well-defined a . e . Besides,

(|h|-v)^{+}=(h-v)^{+}+(h+v)^{-} for any fi\in \mathfrak{M}(X) and v\in R_{+}=[0, \infty)(

Then (3. 5) and (3. 6) yield

\int_{t0,a)}(|f^{*}-g^{*}|-u)^{+}dm\leqq\int_{X}(|f-g|-u)^{+}d\mu

for any u\in R_{+} whenever f-g and f^{*}-g* are well-defined a . e . ; hence
|f^{*}-g^{*}|\prec\prec|f-g| , on using Theorem H-L-P.

REMARK. If (X, \Lambda, \mu) and (X’, \Lambda’, \mu’) are finite measure spaces with
\mu(X)=\mu’(X’) , and if f\cdot\in L^{1}(X) and g\in L^{1}(X’) satisfy that f<g , then |f|\prec\prec|g| ,
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by a Theorem of Luxemburg [13, Theorem 9. 5, p. 107]. Therefore TheO-
rem 2 is an immediate consequence of Theorem 1 when f, q \in L^{1}(X) and \mu(X)

<\infty . But the theorem of Luxemburg is not true when \mu(X)=\mu’(X’)=\infty .

4. Some Consequences

As an immediate corollary to Theorem 1, we obtain the following TheO-
rem, which is apart of Theorem 3. 8 of Chong [4, p. 148] (for the another
part of the theorem, see [15, Theorem 3. 5] ) :

THEOREM 5. Let (X, \Lambda, \mu) be a finite measure space. I.ff^{+} , g^{-}\in L^{1}(X)

or f^{-} g^{+}\in L^{1}(X) , then f^{*}-q^{*}’\prec f-g .
Theorems 1 and 2, combined with a result of the preceding paper [15,

Theorem 3. 1], yield the following:

THEOREM 6. Let (X, \Lambda, \mu) be a totally \sigma- fifinite measure space with
\mu(X)=a , and let f, g\in \mathfrak{M}(X) . Further, let \Phi : \overline{R}arrow\overline{R}=[-\infty, \infty] be an
increasing, left continuous and convex function.

(i) If f-g, \Phi(f-g)\in \mathfrak{B}(X) and f^{*}-g* , \Phi(f^{*}-g^{*})\in \mathfrak{B}([0, a)) , then
\Phi(f^{*}-g^{*})\prec\prec\Phi(f-g) .

(ii) If f-g and f^{*}-g’* are well-defifined a . e. , then \Phi(|f^{*}-g^{*}|)\prec\prec

\Phi(|f-g|) , provided that \Phi(|f-g|)\in \mathfrak{P}(X) and \Phi(|f^{*}-g^{*}|)\in\psi([0, a)) .
The following corollary of Theorem 6 extends the Main Theorem of

Chiti [1, Theorem, p. 24].

COROLLARY 7. Let (X, \Lambda, \mu) be a totally \sigma- fifinite measure space with
\mu(X)=a , and let \Phi : R_{+}arrow R_{+} be a convex and increasing function. If f,
g:Xarrow R are measurable and f^{*}-g^{*} is well-defifined a. e. , then

\int_{0}^{a}\Phi(|f^{*}(t)-g^{*}(t)|)dt\leqq\int_{X}\Phi(|f-g|)d\mu .

REMARK. The notation f^{*} used by Chiti in [1] means |f|^{*} .
COROLLARY 8. In any Orlicz spaces, convergence of a sequence \{f_{n}\}

to f implies convergences of \{f_{n}^{*}\} to f^{*} , and \{|f_{n}|^{*}\} to |f|^{*} .
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