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1. Introduction

Let G be a locally compact group, and let m_{G} denote the left invariant

Haar measure on G. (By a locally compact group we shall mean a locally

compact Hausdorff group.) Let L^{\infty}(G) denote the Banach algebra of es-
sentially bounded Haar-measurable complex-valued functions on G with point-

wise operations and essential sup norm. For a locally compact abelian
(LCA) group G, J. E. Gilbert ([4]) characterized weak*-closed translation
invariant complemented subspaces of L^{\infty}(G) by their spectra. After that
the author ([13]) determined the form of weak*-closed left and right transla-
tion invariant complemented subalgebras of L^{\infty}(G) for a LCA group G and
a compact group G. (Unfortunately there exists a gap in [13]. For the
correction, see Zentralblatt f\"ur Math. 483. (1982), 43002.) But we don’t

know when closed (but not weak*-closed) left and right translation invariant
subspaces (or, in particular, subalgebras) of L^{\infty}(G) are complemented in
L^{\infty}(G) .

Let AP(G) and WAP(G) denote the closed subalgebras of L^{\infty}(G) con-
sisting of all continuous left almost periodic functions on G and all continuous
left weakly almost periodic functions on G, respectively. Our first purpose

in this paper is to examine whether AP(G) and WAP(G) are complemented

in L^{\infty}(G) or not.
Let L^{1}(G) denote the Banach space of all Haar-integrable complex-

valued functions on G, and let \mathscr{L}(L^{1}(G), L^{\infty}(G)) denote the Banach space

of all bounded linear operators from L^{1}(G) to L^{\infty}(G) . Our second purpose

in this paper is to define certain closed subspaces of \mathscr{L}(L^{1}(G), L^{\infty}(G)) for

a LCA group G and to consider when their closed subspaces are comple-

mented in \mathscr{L}(L^{1}(G), L^{\infty}(G)) . The result obtained here seems to contain

Gilbert Theorem as its special case.
The author wishs to thank Professors S. Koshi and J. Inoue for many

helpful conversations.
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2. Preliminaries

Throughout this paper, G denotes a locally compact group. (’In section
4, we shall consider only a LCA group G.)

Let X be a Banach space with its dual X^{*} . If F\in X^{*} and x\in X, then
the value of F at x is written as F(x) or (x, F) . (In particular, for f\in L^{1}(G)

and g\in L^{\infty}(G)=(L^{1}(G))^{*} , we always use (f, g)=\downarrow_{G}.f(x)g(x^{-1})dm_{G}(x).) If Y
is another Banach space, then \mathscr{L}(X, Y) denotes the Banach space of all
bounded linear operators from X to Y. (We also write \mathscr{L}(X)=\mathscr{L}(X, X) .)
When Z is a closed subspace of X, we shall say that Z is complemented
in X if there exists a bounded projection (i. e. , a bounded linear idempotent
operator) from X onto Z.

For a compact Hausdorff space S, C(S) denotes the Banach algebra
of all continuous complex-valued functions on S.

L^{\infty}(G) is a commutative B^{*} -algebra with the complex conjugation
operator as involution. Hence by Gelfand-Naimark Theorem the Gelfand
transform is an isometric isomorphism from L^{\infty}(G) onto C(\Delta(L^{\infty}(G)) satisfy-
ing \hat{\overline{f}}=\hat{f}-(f\in L^{\infty}(G)) , where \Delta(L^{\infty}(G)) is the maximal ideal space of L^{\infty}(G) ,
\wedge. is the Gelfand transform, and -. is the complex conjugation operator.
We shall often identify L^{\infty}(G) and C(\Delta(L^{\infty}(G)) through the Gelfand trans-
fo r

For s\in G, left and right translation of a function f on G by s are
denoted by (L_{s}f)(x)=f(sx) and (R_{s}f)(x)=f(xs) (x\in G) , respectively. A
subspace X of L^{\infty}(G) is said to be left [resp. right, left and right] translation
invariant if L_{s}f\in X [resp. R_{s}f\in X, L_{s}f\in X and R_{s}f\in X] for all s\in G and
f\in X. If G is abelian, then left (and hence left and right) translation invariant
subspaces of L^{\infty}(G) are simply said to be translation invariant.

G^{a} denotes the almost periodic compactification of G, that is the closure
of \{L_{x} ; x\in G\} with respect to the strong operator topology in \mathscr{L}(AP(G)) .
Then G^{a} is a compact group under the composition of operators as product
and the strong operator topology. The map \rho defined by \rho(x)=L_{x} is a
continuous homomorphism from G to G^{a}, and \rho is one-t0-0ne if and only
if AP(G) separates points in G. Moreover the map \tilde{\rho} induced from \rho by
\tilde{\rho}(f)=f\circ\rho for f\in C(G^{a}) is an isometric isomorphism from C(G^{a}) onto AP(G) .
(The full exposition can be seen in [2] and [7].)

Finally, G is said to be a maximally almost periodic group if AP(G\rangle

separates points in G. Of course, maximally almost periodic groups include
LCA groups and compact groups.
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3. Subalgebras AP(G) and WAP(G)

In this section we shall prove two Theorems.

THEOREM 1. Let G be a maximally almost periodic group. Then
the following statements are equivalent.

(i) G is finite.
(ii) WAP(G) is complemented in L^{\infty}(G\grave{)} .
(iii) AP(G) is complemented in L^{\infty}(G) .
(iv) C(G^{a}) is complemented in L^{\infty}(G^{a}) .
In order to prove Theorem 1, we need two Lemmas.

Lemma 1. Let G be a infinite compact metrizable group. Then C(G)

is uncomplemented in L^{\infty}(G) .
PROOF. We know that the Gelfand transform is an isometric isomor-

phism from L^{\infty}(G) onto C(\Delta(L^{\infty}(G)) . Moreover, as is well known, \Delta(L^{\infty}(G))

is extremely disconnected, that is the closure of every open subset of \Delta(L^{\infty}

(G)) is also open. Since G is infinite and metrizable, C(G) has infinite dimen-
sion and is separable. By a result of Grothendieck ([6]. p. 169) we conclude
that C(G) is uncomplemented in L^{\infty}(G) . Q. E. D.

Lemma 2. Let G be a compact group, and let H be a closed normal
subgroup of G. If C(G) is complemer\ell ted in L^{\infty}(G) , then C(G/H) is com-
plemented in L^{\infty}(G/H) .

PROOF. Let \pi be the natural homomorphism from G onto G/H. We
now define two bounded linear operators I:L^{\infty}(G/H)arrow L^{\infty}(G) and J :
L^{\infty}(G)arrow L^{\infty}(G/H) , as follows :

(If) (x)=(f\circ\pi)(x) for x\in G and f\in L^{\infty}(G/H)

and (Jg) (xH)= \int_{H}g(x\xi)dm_{H}(\xi) for x\in G and g\in L^{\infty}(G) ,

where m_{H} is the normalized Haar measure on H. Since C(G) is comple-
ne ed in L^{\infty}(G) , there exists a bounded projection P from L^{\infty}(G) onto

C(G) . Now we define JPI. Then it is easy to verify that Q is a
bounded projection from L^{\infty}(G/H) onto C(G/H) . Q. E. D.

PROOF OF THEOREM 1. (i)\subset\gg(ii) : If G is finite, then L^{\infty}(G)=WAP(G)

and therefore clearly (i) implies (ii).

(ii)O(iii) : Let m be a (unique) tw0-sided invariant mean on WAP(G),

that is a bounded linear functional m on WAP(G) such that
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(a) m(1)=1,
(b) |m(f)|\leq||f||_{\infty} for every f\in WAP(G) ,
(c) m(L_{s}f)=m(R_{s}f)=m(f) for every s\in G and f\in WAP(G) .

(See [2] about the existence of such m.) If we define

W_{0}=\{f\in WAP(G) ; m(|f|)=0\} ,

then W_{0} is a closed subspace of WAP(G) and we have
WAP(G)=AP(G)\oplus W_{0} ([2])

Hence (ii) implies (Hi).
(iii)\subset\S(iv) : Since L^{\infty}(G) and L^{\infty}(G^{a}) have the 1-extension property, there

exist bounded linear operators I:L^{\infty}(G)arrow L^{\infty}(G^{a}) and J:L^{\infty}(G^{a})arrow L^{\infty}(G)

such that

I(f)=\tilde{\rho}^{-1}(f) for all f\in AP(G)

and J(g)=\tilde{\rho}(g) for all g\in C(G^{a})([8], \S 11.)
t

But we can prove directly that there exists such a bounded linear operator
J without referring to the 1-extension property. Let M(G) (resp. M(G^{a}) )
denote the Banach space of all bounded regular complex Borel measures on
G (resp. G^{a}). Let \tau:M(G)arrow M(G^{a}) be the bounded linear operator defined
by \downarrow_{G^{\alpha}}.gd(\tau(\mu))=\downarrow_{G}.\tilde{\rho}(g)d\mu for g\in C(G^{a}) and \mu\in M(G) . Let \delta_{e} be the
bounded linear functional on C(G^{a}) defined by \delta_{e}(g)=g(e) for g\in C(G^{a}) .
(e is the identity element of G^{a}.) Choose and fix one Hahn-Banach exten-
sion F of \delta_{e} to L^{\infty}(G^{a}) . For g\in L^{\infty}(G^{a}) , we define Jg\in L^{\infty}(G) as a bounded
linear functional on L^{1}(G) as follows:

(h, Jg)=F(\tau(h)^{*}g)j

where h\in L^{1}(G) and \tau(h)^{*}g(x)=\downarrow_{G^{l}}.g(y^{-1}x)d(\tau(h))(y) . Then it is clear that
J is a bounded linear operator from L^{\infty}(G^{a}) to L^{\infty}(G) . To see that J(g)=
\tilde{\rho}(g) for all g\in C(G^{a}) , let g\in C(G^{a}) and h\in L^{1}(G) . Then

(h, Jg)=F(\tau(h)^{*}g)

=(\tau(h)^{*}g)(e)

= \int_{G^{a}}g(y^{-1})d(\tau(h))(y)

= \int_{G}h(y)\tilde{\rho}(g)(y^{-1})dm_{G}(y)

=(h,\tilde{\rho}(g)) .
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Hence we have J(g)=\tilde{\rho}(g) for all g\in C(G^{a}) .
By our assumption, there exists a bounded projection P from L^{\infty}(G)

onto AP\{G ). Let Q : L^{\infty}(G^{a}) -arrow L^{\infty}(G^{a}) be the bounded linear operator

defined by Q=IPJ. Since Qg=IPJ(g)=\tilde{\rho}^{-1}(PJ(g)) for every g\in L^{\infty}(G^{a}) ,

we have Qg\in C(G^{a}) for every g\in L^{\infty}(G^{a}) . Moreover, for each f\in C(G^{a}) ,

we have Qf=IPJ(f)=IP(\tilde{\rho}(f))=I(\tilde{\rho}(f))=\tilde{\rho}^{-1}(\tilde{o}(f))=f. Hence Q is a
bounded projection from L^{\infty}(G^{a}) onto C(G^{a}) .

(iv)\epsilon\rangle(i) : Suppose that G is infinite. Since G is a maximally almost
periodic group, AP(G) separates points in G, and therefore the natural
homomorphism \rho from G to G^{a} is one-t0-0ne. Hence G^{a} is a infinite com-
pact group. After this we shall use the results and notation in [7], \S \S 27

and 28. Let \Sigma be the dual object of G^{a} . Since G^{a} is infinite, \Sigma is also
infinite by Lemma (28. 1). Hence there exists a countable subset P_{0} of \Sigma .
Then A(G^{a}, P_{0}) is a closed normal subgroup of G^{a} . (For the definition of
A(G^{a}, P_{0}) , see (28. 3).) Now we put G_{0}=A(G^{a}, P_{0}) . By Theorems (28. 5)

and (28.9), we have A(\Sigma, G_{0})=[P_{0}] . (For the definition of A(\Sigma, G_{0}) , see
(28. 7).) Since P_{0} is countable, it follows from the definition of the brackets
[\circ] ((27.35)) that [P_{0}] is countable. Hence A(\Sigma, G_{0}) is a countable subset
of \Sigma . Thus it follows from Corollary (28. 11) that G^{a}/G_{0} is metrizable.
Since by Corollary (28. 10) the dual object of G^{a}/G_{0} is infinite, G^{a}/G_{0} is

infinite ((27.57)) . Hence by our Lemmas 1 and 2, we conclude that C(G^{a})

is uncomplemented in L^{\infty}(G^{a}) . Q. E. D.

REMARK 1. (a) Theorem 1 isn’t necessarily true without the assump-

tion that G is a maximally almost periodic group. For example, take G=

SL(2, C)(= the special linear group of degree 2 over the complex number
field C). Then G admits no nontrivial, finite dimensional, unitary representa-

tions ([7], (28. 22)). Hence AP(G) consists of all constant functions on G

([7], (33. 26)) , and therefore AP(G) is complemented in L^{\infty}(G) . More
generally, every simple noncompact connected Lie group G has this property
([12]).

(b) In [13] it was proved that if G is a LCA group or a compact group,

and if A is a weak*-closed left and right translation invariant subalgebra

of L^{\infty}(G) , then A is complemented in L^{\infty}(G) if and only if A is self-adjoint,

that is f\in A implies \overline{f}\cdot\in A . But by Theorem 1 we can see that if G is a
infinite maximally almost periodic group, then there are always closed left
and right translation invariant subalgebras of L^{\infty}(G) which are self-adjoint
but uncomplemented in L^{\infty}(G) .

Let G be a LCA group. We define closed subspaces \mathscr{M}(L^{1}(G), L^{\infty}(G)) ,
\mathscr{C}\mathscr{M}(L^{1}(G), L^{\infty}(G)) , and \mathscr{V}\mathscr{C}\mathscr{M}(L^{1}(G), L^{\infty}(G)) of \mathscr{L}(L^{1}(G), L^{\infty}(G)) as follows:



Remarks on certain complemented subspaces on groups 265

\mathscr{M} ( L^{1}(G) , L^{\infty}(G))=\{T\in \mathscr{L}(L^{1}(G), L^{\infty}(G)) ; TL_{s}=L_{s}T for all s\in G\} .
\mathscr{C}\mathscr{M} ( L^{1}(G) , L^{\infty}(G))=\{T\in \mathscr{M}(L^{1}(G), L^{\infty}(G)) ; T is compact}
\mathscr{V}\mathscr{C}\mathscr{M} ( L^{1}(G) , L^{\infty}(G))=\{T\in \mathscr{M}(L^{1}(G), L^{\infty}(G));T is weakly compact}\uparrow

For two closed subspaces \mathscr{C}\mathscr{M}(L^{1}(G), L^{\infty}(G)) and Z\swarrow\nearrow \mathscr{C}\mathscr{M}(L^{1}(G), L^{\infty}(G))

of \mathscr{M}(L^{1}(G), L^{\infty}(G)) , we have the following Corollary.
COROLLARY. Let G be a infinite LCA group. Then \mathscr{C}\mathscr{M}(L^{1}(G), L^{\infty}(G))

and \mathscr{N}\mathscr{C}\mathscr{M}(L^{1}(G), L^{\infty}(G)) are uncomplemented in \mathscr{M}(L^{1}(G), L^{\infty}(G)) .
PROOF. As is well known, we can define an isometric linear isomorphism

from L^{\infty}(G) onto \mathscr{M}(L^{1}(G), L^{\infty}(G)) by the correspondence between f\in L^{\infty}(G)

and the convolution operator C_{f} defined by C_{f}g=f^{*}g for each g\in L^{1}(G)

([9]) . By this correspondence, AP(G) and WAP(G) are isometrically linear
isomorphic to \mathscr{C}\mathscr{M}(L^{1}(G), L^{\infty}(G)) and \circ \mathscr{T}\mathscr{C}\mathscr{M}(L^{1}(G), L^{\infty}(G)) , respectively
([3]). Hence this Corollary is clear by Theorem 1. Q. E. D.

In relation to the equivalence of (i) and (iii) in Theorem 1, we have the
following Theorem.

THEOREM 2. Let G be a locally compact group, and let B be a closed
left and right translation invariant subalgebra of AP(G) . If B is com-
plemented in L^{\infty}(G) , then B is finite dimensional.

PROOF. We may suppose that B\neq\{0\} . Let B_{1}=\tilde{\rho}^{-1}(B) , then B_{1}is^{J} a
closed subalgebra of C(G^{a}) . Since \rho(G) is dence in G^{a}, it is easy to see
that B_{1} is left and right translation invariant. Moreover with the same
argument as that in the implication (iii)\subset\geq(iv) in Theorem 1, we obtain that
B_{1} is complemented in L^{\infty}(G^{a}) . Let H= {x\in G^{a} ; f(x)=f(e) for all f\in B_{1} }.
(e is the identity element of G^{a} .) Then it is easy to see that H is a closed
normal subgroup of G^{a} . Let \pi be the natural homomorphism from G^{a}

onto G^{a}/H, and let \tilde{\pi} : L^{\infty}(G^{a}/H)-arrow L^{\infty}(G^{a}) be the map induced from \pi by
\tilde{\pi}(f)=f\circ\pi for f\in L^{\infty}(G^{a}/H) . Let B\cdot.=\tilde{r^{-1}.}(B_{1}) , then B_{2} is a closed left and
right translation invariant subalgebra of C(G^{a}/H) . Also we can verify easily
that B_{2} is complemented in L^{\infty}(G^{a}/H) . By Glicksberg Theorem ([5]) we
obtain that B_{2} is self-adjoint. From the definition of H, B_{2} separates points
in G^{a}/H. Moreover since B_{2} is left and right translation invariant and
B_{2}\neq\{0\} , B_{2} vanishes identically at no point in G^{a}/H. Therefore it follows
from one-Weierstrass Theorem that B_{2}=C(G^{a}/H) . Consequently C(G^{a}/H)

is complemented in L^{\infty}(G^{a}/H) . By Theorem 1 G^{a}/H is finite, and so B_{2}

(=C(G^{a}/H)) is finite dimensional. Hence we conclude that B is finite dimen-
sional. Q. E. D.
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4. Certain complemented subspaces of \mathscr{L}(L^{1}(G), L^{\infty}(G)) .

Throughout this section G will be a LCA group. Let \hat{G} denote the
dual group of G. By the coset-ring \Omega(G) of \hat{G} , we mean the ring generated
by all the cosets of \hat{G} . Let X be a weak*-closed translation invariant subs-
pace of L^{\infty}(G) . Then the spectrum of X, written \sigma(X) , is the set of all
elements of G which belong to X. Let H be a subgroup of G, and let X
be a weak*-closed translation invariant subspace of L^{\infty}(G) . Then we define
\mathscr{M}_{H}(L^{1}(G), X) as the set of all T\in \mathscr{L}(L^{1}(G), L^{\infty}(G)) such that T(L^{1}(G))\subset X

and TL_{s}=L_{s}T for all s\in H. C1ear1y\swarrow \mathscr{M}_{H}(L^{1}(G), X) is a closed subspace of
\mathscr{L}(L^{1}(G), L^{\infty}(G)) .

The purpose of this section is to prove the following Theorem.

THEOREM 3. Let G be a LCA group, and let H be a subgroup of G.
Let X be a weak*-closed translation invariant subspace of L^{\infty}(G) . Then
\mathscr{M}_{H}(L^{1}(G), X) is complemented in \mathscr{L}(L^{1}(G), L^{\infty}(G)) if and only if \sigma(X)

belongs to \Omega(G) .
REMARK 2. J. E. Gilbert ([4]) proved that if X is a weak*-closed trans-

lation invariant subspace of L^{\infty}(G) , then X is complemented in L^{\infty}(G) if
and only if \sigma(X) belongs to \Omega(G) . (Indeed, the “only if” part is due to

H. P. Rosenthal ([10]).) As we noted in the proof of Corollary to Theorem
1, L^{\infty}(G) is isometrically linear isomorphic to \mathscr{M}(L^{1}(G), L^{\infty}(G)) . There-
fore we can view L^{\infty}(G) as a closed subspace of \mathscr{L}(L^{1}(G), L^{\infty}(G)) . Taking

H=G and X=L^{\infty}(G) in Theorem 3, we obtain that \mathscr{M}(L^{1}(G), L^{\infty}(G))

is complemented in \mathscr{L}(L^{1}(G), L^{\infty}(G)) . By this fact Gilbert Theorem can
be reformulated as the statement in \mathscr{L}(L^{1}(G), L^{\infty}(G)) as follows: If X
is a weak*-closed translation invariant subspace of L^{\infty}(G) , then X is comple-

n oted in \mathscr{L}(L^{1}(G), L^{\infty}(G)) if and only if \sigma(X) belongs to \Omega(G) . With
such reformulation and the identification between L^{\infty}(G) and \mathscr{M}(L^{1}(G) ,
L^{\infty}(G)) , we can see that Theorem 3 for H=G corresponds to Gilbert
Theorem.

In order to prove Theorem 3, we need a Lemma. Let L^{1}(G_{/}^{\backslash }\otimes_{p}L^{1}(G)

denote the projective tensor product of two L^{1}(G) ’s. Then (L^{1}(G)\otimes_{p}L^{1}(G))^{*}

is isometrically linear isomorphic to \mathscr{L}(L^{1}(G), L^{\infty}(G)) by the map \Phi defined
by

(g, \Phi(F)(f))=(f\otimes g, F)\prime r

where f and g\in L^{1}(G) and F\in(L^{1}(G)\otimes_{p}L^{1}(G))^{*} . Therefore through this \Phi

we can define the weak* topology in \mathscr{L}(L^{1}(G), L^{\infty}(G)1 . When \mathscr{X} is a subset
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of \mathscr{L}(L^{1}(G), L^{\infty}(G)) , we shall say that \mathscr{X} is weak*-closed if \Phi^{-1}(\mathscr{X}) is weak*-
closed in (L^{1}(G)\otimes_{p}L^{1}(G))^{*} . It is easy to see that \mathscr{M}\swarrow_{H}(L^{1}(G), X) defined
above are weak*-closed subspaces of \mathscr{L}(L^{1}(G), L^{\infty}(G)) .

Lemma 4. Let \mathscr{X} be a weak*-closed subspace of \mathscr{L}(L^{1}(G), L^{\infty}(G))

satisfying L_{-s}\mathscr{X}L_{s} (= \{L_{-s}TL_{s} ; T\frac{}{arrow}\mathscr{X}\})\subset \mathscr{X} for each s\in G . If \mathscr{X} is com-
plemented in \mathscr{L}(L^{1}(G), L^{\infty}(G)) , then \mathscr{X}\cap \mathscr{M}(L^{1}(G), L^{\infty}(G)) is complemented
in \mathscr{M}(L^{1}(G), L^{\infty}(G)) .

PROOF. We shall use the argument based on ideas due to K. Deleeuw.
(See [5]). Let m be a invariant mean on L^{\infty}(G_{d}) , where G_{a} denotes the
group G under the discrete topology. For x\in G we define 0\swarrow\swarrow x : \mathscr{L}(L^{1}(G) ,
L^{\infty}(G))arrow \mathscr{L}(L^{1}(G), L^{\infty}(G)) by 0\swarrow 4_{x}(T)=L_{-x}TL_{x}(T\in \mathscr{L}(L^{1}(G), L^{\infty}(G))) . Let
\mathscr{P} be a bounded projection from \mathscr{L}(L^{1}(G), L^{\infty}(G)) onto \mathscr{X} For each
T\in \mathscr{L}(L^{1}(G), L^{\infty}(G)) we define \mathscr{R}(T)\in \mathscr{L}(L^{1}(G), L^{\infty}(G)) as follows : First,
define \mathscr{Q}(T)\in(L^{1}(G)\otimes_{p}L^{1}(G))^{*} by the equation

( \phi , \mathscr{Q}(T))=m_{x}((\phi, \Phi^{-1}(po\chi_{-x}\mathscr{P}^{O}d_{x}(T))\backslash )) (\phi\in L^{1}(G)\otimes_{p}L^{1}(G))

(By m_{x}((\phi, \Phi^{-1}(^{o}\swarrow l_{-x}\mathscr{P}^{0}1l_{x}(T)))) we shall mean the value of the function
xarrow(\phi, \Phi^{-1}(^{O}\mathcal{X}_{-x}\mathscr{P}0_{\vee}\swarrow\nearrow_{x}(T))) on G by m.) Next, put \mathscr{R}(T)=\Phi(\mathscr{B}(T)) . Then
we note that for each f and g\in L^{1}(G) ,

(g, \mathscr{R}(T)f)=(g, \Phi(\mathscr{Q}(T))f)

=(f\otimes g, \mathscr{Q}(T))

=m_{x}((f\otimes g, \Phi^{-1}(pO\chi_{-x}\mathscr{P}0\swarrow\swarrow_{x}(T)))^{\backslash })

=m_{x}((g, Cj\iota_{-x}^{\acute{1}}\mathscr{P}^{o}d_{x}(T)(f)))

It is easy to see that \mathscr{R} is a bounded linear operator on \mathscr{L}(L^{1}(G), L^{\infty}(G))

with ||\mathscr{R}||\leq||\mathscr{P}|| . If T\in \mathscr{X} , then (g, \mathscr{R}(T)f)=m_{x}((g,\swarrow 01_{-x}\mathscr{P}^{r}J1l_{x}(T)(f)))=(g,

Tf) for each f and g\in L^{1}(G) , and therefore \mathscr{R}(T)=T If T\in \mathscr{L}(L^{1}(G) ,
L^{\infty}(G)) , then

( \phi, \Phi^{-1}(\mathscr{R}(T)))=(\phi, \Phi^{-1}(\Phi(\mathscr{Q}(T))))=(\phi, \mathscr{Q}(T))

=m_{x} (( \phi, \Phi^{-1}(\mathscr{U}_{-x}\mathscr{P}01l_{x}(T))\backslash ))=0

for each \phi\in(\Phi^{-1}(\mathscr{X}))^{\perp} , where (\Phi^{-1}(\mathscr{X}))^{\perp}=\{\phi\in L^{1}(G)\otimes_{p}L^{1}(G);(\phi, F)=0 for
all F\in\Phi^{-1}(\mathscr{X})\} . Since \Phi^{-1}(\mathscr{X}) is weak*-closed, \Phi^{-1}(\mathscr{R}(T))\in\Phi^{-1}(\mathscr{X}) and there-
fore \mathscr{R}(T)\in \mathscr{X} Thus we conclude that \mathscr{R} is a bounded projection from
\mathscr{L}(L^{1}(G), L^{\infty}(G)) onto \mathscr{X} Moreover, we have \mathscr{R}^{o_{\vee}}\swarrow J_{a}=^{o}\swarrow\swarrow_{a}\mathscr{R} for all a\in G.
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Indeed, for a\in G, f and g\in L^{1}(G) , and T\in \mathscr{L}(L^{1}(G), L^{\infty}(G)) ,

(g, \mathscr{R}_{p}^{o}\chi_{a}(T)(f))=m_{x}((g, \mathscr{U}_{-x}\mathscr{P}O1l_{x}(01l_{a}(T))(f)))

=m_{x((g,1^{o_{\sqrt}}}o_{l_{a}\swarrow J_{-x}\mathscr{P}\mathscr{U}_{x}(T)(f)))}

=m_{x}((g, L_{-a}(^{0}d_{-x}\mathscr{P}^{O}1l_{x}(T))L_{a}(f)))

=m_{x}((L_{-a}g, (^{0}d_{-x}\mathscr{P}O\swarrow l_{x},(T))L_{a}(f)))

=(L_{-a}g, \mathscr{R}(T)L_{a}(f))

=(g, L_{-a}\mathscr{R}(T)L_{a}(f))

=(g, \mathscr{U}_{a}\mathscr{R}(T)(f) )
\backslash

Now if T\in \mathscr{M}(L^{1}(G), L^{\infty}(G)) , then L_{a}T=TL_{a} for all a\in G, and therefore
for each f\in L^{1}(G) ,

L_{a}\mathscr{R}(T)(f)=L_{a}\mathscr{R}(T)L_{-a}(L_{a}f)

={?}_{-a}0\mathscr{R}(T)(L_{a}f)\backslash

=\mathscr{R}^{0}\parallel_{J-a}(T)(L_{a}f)

=\mathscr{R}(L_{a}TL_{-a})(L_{a}f)

=\mathscr{R}(T)(L_{a}f)=\mathscr{R}(T)L_{a}(f)

Hence \mathscr{R}(\mathscr{M}(L^{1}(G), L^{\infty}(G)))\subset \mathscr{M}(L^{1}(G), L^{\infty}(G)) . Consequently we conclude
that the restriction of \mathscr{R} to \mathscr{M}(L^{1}(G), L^{\infty}(G)) is a bounded projection from
\mathscr{M}(L^{1}(G), L^{\infty}(G)) onto \mathscr{X}\cap \mathscr{M}(L^{1}(G), L^{\infty}(G)) . Q. E. D.

REMARK 3. (a) In the course of the proof of Lemma 4, we established
the following: If \mathscr{X} is a weak*-closed complemented subspace of \mathscr{L}(L^{1}(G) ,
L^{\infty}(G)) satisfying L_{-a}\mathscr{X}L_{a}\subset \mathscr{X} for each a\in G , then we can find a bounded
projection from \mathscr{L}(L^{1}(G), L^{\infty}(G)) onto \mathscr{X} which carries \mathscr{M}(L^{1}(G), L^{\infty}(G))

into \mathscr{M}(L^{1}(G), L^{\infty}(G)) .
(b) For 1\leq s\leq\infty , let L^{s}(G) denote the usual Lebesgue spaces with

respect to the Haar measure m_{G} . For 1\leq s\leq\infty and 1<t\leq\infty , we can
define the weak* topology in \mathscr{L}(L^{s}(G), L^{t}(G)) through the natural identi-
fication between \mathscr{L}(L^{s}(G), L^{t}(G)) and (L^{s}(G)\otimes_{p}L^{l’}(G))^{*} . (t’ denotes the ”

conjugate exponent of t) Then Lemma 4 holds with \mathscr{L}(L^{s}(G), L^{t}(G)) in
place of \mathscr{L}(L^{1}(G), L^{\infty}(G)) .

PROOF OF THEOREM 3. Suppose that \mathscr{M}_{H}(L^{1}(G), X) is complemented
in \mathscr{L}(L^{1}(G), L^{\infty}(G)) . Since \mathscr{M}_{H}(L^{1}(G), X) is a weak*-closed subspace of
\mathscr{L}(L^{1}(G), L^{\infty}(G)) and clearly L_{-a}\mathscr{M}_{H}(L^{1}(G), X)L_{a}\subset \mathscr{M}_{H}(L^{1}(G), X) for each
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a\in G , it follows from Lemma 4 that \sqrt\parallel l_{H}(L^{1}(G), X)\cap \mathscr{M}\swarrow(L^{1}(G), L^{\infty}(G))is

complemented in \mathscr{M}_{c}’(L^{1}(G), L^{\infty}(G)) . Under the correspondence identifying
between L^{\infty}(G) and \sqrt l\parallel(L^{1}(G), L^{\infty}(G)) , \mathscr{M}\swarrow_{H}(L^{1}(G), X)\cap \mathscr{M}(L^{1}(G), L^{\infty}(G))

corresponds to X. Indeed, if f\in L^{\infty}(G) and C_{f}\in \mathscr{M}\swarrow_{H}(L^{1}(G), X)\cap \mathscr{M}(L^{1}(G) ,
L^{\infty}(G)) , then f^{*}L^{1}(G)\subset X. Since f belongs to the closure of f^{*}L^{1}(G) with
respect to the weak^{*}, topology in L^{\infty}(G)([11], 7.8.4) and X is weak*-closed,
we have f\in X. Conversely, if f\in X then f^{\prime*}L^{1}(G)\subset X([11]. 7.8.4) and
therefore C_{f} belongs to \mathscr{M}_{H}(L^{1}(G), X)\cap\vee\parallel\swarrow(L^{1}(G), L^{\infty}(G)) . Consequently we
can conclude that X is complemented in L^{\infty}(G) . By Gilbert Theorem
\sigma(X) belongs to f2 (\hat{G}) .

Conversely, suppose that \sigma(X) belongs to \Omega(\hat{G}) . By Gilbert Theorem
there exists a bounded projection P from L^{\infty}(G) onto X. We define \mathscr{Q} :
\mathscr{L}(L^{1}(G), L^{\infty}(G))– \mathscr{L}(L^{1}(G), L^{\infty}(G)) as follows :

(g, \mathscr{O}(T)(f))=m_{x}((g, L_{-h}PTL_{h}(f))) .

where f and g\in L^{1}(G) , T\in \mathscr{L}(L^{1}(G), L^{\infty}(G)) , and m is a invariant mean on
L^{\infty}(H_{d}) . Then clearly \mathscr{Q} is a bounded linear operator on \mathscr{L}(L^{1}(G), L^{\infty}(G)) .
For f\in L^{1}(G) and T\in \mathscr{L}(L^{1}(G), L^{\infty}(G)) ,

(g, \mathscr{Q}(T)(f))=m_{h}((g, L_{-h}PTL_{h}(f)))=0

for each g\in X^{\perp} ( =\{g\in L^{1}(G) ; (g, \phi)=0 for all \phi\in X\} ). Since X is weak*-
closed, \mathscr{B}^{-}(T)(f)\in X. Hence we have \mathscr{Q}(T)(L^{1}(G))\subset X. For a\in H, f and
g\in L^{1}(G) , and T\in \mathscr{L}(L^{1}(G), L^{\infty}(G)) ,

(g, L_{a}\mathscr{Q}(T)(f))=(L_{a}g, \mathscr{Q}(T)(f))

=m_{h}((L_{a}g, L_{-h}PTL_{h}(f)))

=m_{h}((g, L_{-(h-a)}PTL_{(h-a)}(L_{a}f)))

=m_{h}((g, L_{-h}PTL_{h}(L_{a}f)))

=(g, \mathscr{Q}(T)L_{a}f),J

Hence L_{a}\mathscr{Q}(T)=\mathscr{Q}(T)L_{a} for each a\in H, and we have \mathscr{Q}(T)\in \mathscr{M}_{H}(L^{1}(G), X) .
If T\in \mathscr{M}_{H}(L^{1}(G), X) , then L_{h}T=TL_{h} for each h\in H and Tf\in X for each
f\in L^{1}(G) , and therefore

(g, \mathscr{Q}(T)(f))=m_{h}((g, L_{-h}PTL_{h}(f))^{\backslash },)

=m_{h}((g, L_{-h}TL_{h}(f)))
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=m_{h}(.((jL’ Tf))=(g, Tf)

for each f and g\in L^{1}(G) . Hence we have \mathscr{P}_{J}(T)=T Consequently we
conclude that \mathscr{Q} is a bounded projection from \mathscr{L}--(L^{1}(G), L^{\infty}(G)) onto
\mathscr{M}\swarrow_{H}(L^{1}(G), X) . Q. E. D.
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