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\S 1. Introduction

The present paper is devoted to the study of Radonifying mappings on
Banach spaces. In particular we investigate the relation between Radonify-
ing mappings and kernels of probability measures.

Let E be a Banach space, E^{*} be its topological dual space and \mu be a
Borel probability measure on E. Denote by \tau_{\mu} the topology on E^{*} induced
by the convergence in probability on L^{0}(E, \mu) . then the kernel of \mu is
defined as the topological dual of (E^{*}. \tau_{\mu}) and denoted by K_{\mu} The notion
of kernel has been introduced by Borell [1]. Let F be another Banach space
and T be a continuous linear mapping from F into E. After Schwartz [10],
T:Farrow E is Radonifying provided that if \nu is a cylindrical measure on F of
type 0, then T(\nu) is a Radon measure on E of order 0.

The purpose of this paper is to prove the followings.
THEOREM 1. 1. Let E and F be Banach stnces, and T be a continuous

linear mapping from F into E. Suppose that E is isomorphic to a subspace of
L^{p}, 1<p<\infty . Then the following statements are equivalent.

(1) There exists a Borel probability measure \mu on E such that K_{\mu}\supset T

(F) .
(2) The adjoint map T^{*}: E^{*}arrow F^{*} is q-summing for some q, where q<

p if p<2 , and q=2 if p\geqq 2 .
(3) T^{*}: E^{*}arrow F^{*} is Radonifying.
THEOREM 1. 2. Let E and F be Banach space and T be a continuous

linear mapping from F into E. Suppose that E is separable and of type 2.
Then the following statements are equivalent.

(1) There exists a Borel probability measure on E which is qmsi-
invariant with respect to T(F) .

(2) There exists a Borel probability measure \mu on E such that K_{\mu}\supset T

(F) .
(3) T^{*}: E^{*}arrow F^{*} is 2-summing.
(4) T^{*}: E^{*}arrow F^{*} is Radonifying.
These two theorems generalize the results of Xia [15] and the author
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[13]. Furthermore, as an application to Theorem 1. 1, we shall study
Radonfying mappings on function spaces and give conditions to be Radonify-
ing for the multiplication by a function from L^{q} into L^{p} in terms of r-summing
mappings and kernels of probability measures.

Throughout this paper, we assume that all linear spaces are with real
coefficients.

\S 2. Preliminaries

Let E and F be Banach spaces, and T be a continuous linear mapping
from F into E.

DEFINITION 2. 1. For 0<p<\infty , T-. Farrow E is called p-summing if for
each weakly p-summable sequence \{x_{n}\} of F, \{ T(x_{n})\} is an absolutely
p-summable sequence of E. T is called completely summing if it is
p-summing for all p>0 . (For the details of p-summing mappings : see
Pietsch [6] and [7].)

DEFINITION 2. 2. For \circ\leqq p<\infty , T:Farrow E is called p Radonifying if for
each cylindrical measure \nu on F of type p, the image T(\nu) is a Radon
measure on E of order p. We shall call Radonifying instead of O-Radonify-
ing. (For the details of p Radon fying mappings ; see Schwartz [8], [9],
[10], [11] and [12].)

We shall now introduce a fundamental lemma.
LEMMA 2. 1. Let E and F be Banach spaces, T be a continuous linear

mapping from F into E, and let \mathfrak{F} be the smallest \sigma-algebra of E making
every x^{*}\in E^{*} measurable. Suppose that there exists a probability measure \mu on
(E, \mathfrak{F}) such that K_{\mu}\supset T(F) . Then the adjoint map T^{*}: E^{*}arrow F^{*} is
completely summing.

PROOF. Let 0<p<\infty . For a weakly p-summable sequence \{x_{n}^{*}\} of E^{*} ,

we define a \mu -measurable function f on E by f(x)= \sum|<x_{n}^{*} , x>|^{p}, and also
define a probability measure \nu on (E, \mathfrak{F}) by

\nu(A)=C\int_{A}\exp(-f(x))d\mu(x) for every A\in \mathfrak{F} ,

where C is a normalized constant. It is clear that the measures \mu and \nu are
mutually equivalent, so that K_{\nu}\supset T(F) holds. It follows from Theorem 4. 1
of [14] that there exists a positive constant C_{1} such that for every x^{*}\in E_{f}^{*}

the inequality

||T^{*}(x^{*})||^{p} \leqq C_{1}\int_{E}|<x^{*} . x>|^{p}d\nu(x)

holds. Hence in virtue of the choice of \nu , we have \sum||T^{*}(x_{n}^{*})||^{p}<\infty . This
completes the proof.

REMARK 2. 1. As is shown in this proof, Lemma 2. 1 also holds even in
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the case where \mu is a probability measure on E^{**} (bidual of E), that is, if
there exists a weak* Radon probability measure \mu on E^{**} such that K_{\mu}\supset T

(F) , then T^{*}: E^{*}arrow F^{*} is completely summing.
COROLLARY 2. 2. Let E and F be Banach spaces, and T be a continuous

linear mapping from F into E. Suppose that there exists a Borel probability
measure \mu on E such that K_{\mu}\supset T(F) . Then T^{*}: E^{*}arrow F^{*} is p-Radonifying

for all p>1 . Furthermore, if we assum that E{?} the metric approximation
property, then T^{*}: E^{*}arrow(F^{*}. \sigma(F^{*}, F)) is Radonifying.

PROOF. The assertion follows from Lemma 2. 1 and Schwartz [9,
Proposition III. 3. 1] and [10, Th\’eor\‘eme IX. 3. 26].

COROLLARY 2. 3. Let E and F be Banach stxlces, and T be a continuous
linear mapping from F into E. Then the following statements hold.

(1) Let 1\leqq p<q\leqq 2 . Suppose that F^{*} is isomorphic to a subspace of L^{q} .
Then T:Farrow E is p-summing implies that T^{*}: E^{*}arrow F^{*} is completely
summing.

(2) Suppose that F^{*} is isomorphic to a subspace of L^{0} and has the metric
approximation property. Then T:Farrow E is completely summing implies that
T^{*}: E^{*}arrow F^{*} is completely summing.

PROOF. First, we shall prove (1). If T:Farrow E is p-summing, then by
Schwartz [9, Proposition III. 3. 1], it is r -Radonifying, p<r<q . Since
there exists a cylindrical measure \nu on F of type r such that K_{\nu}\supset F, if we
put \mu=T(\nu) , then \mu is a Radon probability measure on E such that K_{\mu}\supset T

(F) . Thus the assertion follows from Lemma 2. 1. Next, we shall prove
(2). If T:Farrow E is completely summing, then by Schwartz [10, Th\’eor\‘eme
IX . 3. 26] , T : Farrow(E^{**}, \sigma(E^{**}, E^{*})) is Radonifying since F^{*} has the
metric approximation property. Since there exists a cylindrical measure \nu

on F of type 0 such that K_{\nu}\supset F, if we put \mu=T(\nu) , then \mu is a weak* Radon
probability measure on E^{**} such that K_{\mu}\supset T(F) . Thus the assertion
follows from Remark 2. 1. This completes the proof.

Finally we shall introduce the notion of type, cotype and p-Pietsch. Let
\{\epsilon_{n}\} be a sequence of random signs, i . e . independent identically distributed
random variables taking the values +1 , -1 with probability 1/2.

DEFINITION 2. 3. Let E be a Banach space. For 0<p\leqq 2 , E is called of
type p if for each sequence \{x_{n}\} of E, \sum||x_{n}||^{p}<\infty implies \sum\epsilon_{n}x_{n} converges
a . s . For 2\leqq q<\infty , E is called of cotype q if for each sequence \{x_{n}\} of E,

\sum\epsilon_{n}x_{n} converges a . s . implies \sum||x_{n}||q<\infty .
DEFINITION 2. 4. Let E be a Banach space, and let 0<p<\infty . E is

called p-Pietsch if for every Banach space F, every p-summing mapping
from E into F is completely summing.
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EXAMPLE 2. 1. Consider infinite dimensional L^{r} spaces.
(1) If 1\leqq r\leqq 2 , L^{r} is of type r , and no better. (L^{r})^{*} is p-Pietsch for 0<

p<r, and no better.
(2) If 2\leqq r<\infty , L^{r} is of type 2.
(3) If a Banach space E is isomorphic to a subspace of L^{0} , E is of

cotype 2 and 2-Pietsch.
It is known that every Banach space is (1-\epsilon)- Pietsch, \epsilon>0 , and

every infinite dimensional Banach space is not (2+\epsilon)- Pietsch, \epsilon>0 . (For
the details of type, cotype and p-Pietsch; see Schwartz [12].)

\S 3. Main results

We shall first consider the following problem.
PROBLEM (A). Let E and F be Banach spaces, and T be a continuous

linear mapping from F into E. Then are the following four statements
equivalent when E and F belong to some suitable class of Banach spaces ?

(1) There exists a Borel probability measure on E which is quasi-
invariant with respect to T(F) .

(2) There exists a Borel probability measure \mu on E such that K_{\mu}\supset T

(F) .
(3) The adj oint map T^{*}: E^{*}arrow F^{*} is p-summing, \circ<p<\infty .
(4) T^{*}: E^{*}arrow F^{*} is Radonifying.
In [15], Xia raised the above problem and proved that if both E and F

are separable Hilbert spaces, then the above statements (1), (3) and (4)
are equivalent. We shall extend his result to more general Banach spaces.

REMARK 3. 1. It is easy to see that the followings hold.
(1) Let E be a reflexive Banach space, and let 0<p<\infty . If the

statements (2) and (3) in Problem (A) are equivalent for every Banach
space F, then E^{*} is p-Pietsch.

(2) Let E be an infinite dimensional reflexive Banach space, and let 2<
p<\infty . Then the statements (2) and (3) in Problem (A) are not equiva-
lent for some Banach space F and some continuous linear map T:Farrow E.

(3) If E is isomorphic to a subspace of L^{p}, and F is a Hilbert space,
then the four statements in Problem (A) are equivalent for every p, 1\leqq

p<\infty .
We shall now show the equivalence of (2), (3) and (4) in Problem

QA) for every Banach space F when E belongs to some suitable class of
Banach spaces. By Remark 3. 1 we must assume 0<p\leqq 2 .

THEOREM 3. 1. Let E and F be Banach spaces, T be a continuous linear
mapping from F into E, and let 1<p<\infty . Suppose that E is isomorphic to
a subspace of L^{p} . Then the following statements are equivalent.
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(1) There exists a Borel probability measure \mu on E such that K_{\mu}\supset T

(F) .
(2) T^{*}: E^{*}arrow F^{*} is q-summing for some q, where q<p if p<2 , and

q=2 if p\geqq 2 .
(3) T^{*}: E^{*}arrow F^{*} is Radonifying.
PROOF. (1)\Rightarrow(2) follows from Lemma 2. 1. On the other hand, (3)

\supset(2) follows from Schwartz [10, Theoreme IX. 3. 26]. Hence we may
show that the implications (2)\Rightarrow(1) and (2)\Rightarrow(3) hold. We shall first
consider the case of p<2 . Suppose that T^{*}: E^{*}arrow F^{*} is q-summing, q<p .
It follows from Pietsch factorization theorem [6] that T^{*}: E^{*}arrow F^{*} can be
factored as follows;

E^{*}GF^{*}\vec{f}\vec{K}

where G is a Banach space which is isomorphic to a subspace of L^{q}, J is
q-summing and K is a continuous linear mapping. Here we may assume q>
1 . Since E is isomorphic to a subspace of L^{p}, by Corollary 2. 3 J^{*}: G^{*}arrow E

is r -summing, 1<r<q, so that it is r -Radonifying (cf. Schwartz [9,
Proposition III. 3. 1]). Since there exists a cylindrical measure \nu on G^{*} of
type r such that K_{\nu}\supset G^{*} , if we put \mu=J^{*}(\nu) , then \mu is a Radon probability
measure on E such that K_{\mu}\supset T(F) since J^{*}(G^{*})\supset T(F) . Thus (1)

certainly holds. For (3), since T^{*}: E^{*}arrow F^{*} is q-Radonifying, 1<q<p,

the assertion follows from Maurey [4, Th\’eor\‘eme 3]. We shall next
consider the case of p\geqq 2 . Suppose that T^{*}: E^{*}arrow F^{*} is 2-summing. It
follows from Pietsch factorization theorem [6] that T^{*}: E^{*}arrow F^{*} can be
factored as follows ,\cdot

E^{*}{}_{\vec{J}}HF^{*}\vec{K}

where H is a Hilbert space, J is 2-summing and K is a continuous linear
mapping. Since E is isomorphic to a subspace of L^{p}, J^{*}: H^{*}arrow E is
p-summing, so that it is p-Radonifying (cf. Schwartz [9, Proposition III. 3.
1]). Let \gamma be the canonical Gaussian cylindrical measure on H_{r}^{*} Since \gamma

is of type p and K_{\gamma}\supset H^{*} , if we put \mu=J^{*}(\gamma) , then \mu is a Gaussian Radon
probability measure on E such that K_{\mu}\supset T(F) since J^{*}(H^{*})\supset T(F) .
Thus (1) certainly holds. On the other hand, (3) follows from Okazaki’s
theorem [5]. This completes the proof.

REMARK 3. 2. In Theorem 3. 1, the statement (2) can not be replaced
by the following.

(2’) T^{*}: E^{*}arrow F^{*} is p-summing.
We shall next show the equivalence of four statements in Problem (A)

for every Banach space F in the case where E is separable and of type 2.
THEOREM 3. 2. Let E and F be Banach spaces, and T be a continuous
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linear mapping from F into E. Suppose that E is separable and of type 2.
Then the following statements are equivalent.

(1) There exists a Borel probability measure on E which is qmsi-
invariant with respect to T(F) .

(2) There exists a Borel probability measure \mu on E such that K_{\mu}\supset T

(F) .
(3) T^{*}: E^{*}arrow F^{*} is 2-summing.
(4) T^{*}: E^{*}arrow F^{*} is Radonifying.
PROOF. (1)\Rightarrow(2) is clear, and (4)\Rightarrow(3) follows from Schwartz

[10, Theoreme IX . 3. 26]. On the other hand, (2)\Rightarrow(3) follows from
Lemma 2. 1. Hence it suffices to show that (3)\Rightarrow(1) and (3)\Rightarrow(4) hold.
Suppose that T^{*}: E^{*}arrow F^{*} is 2-summing. It follows from Pietsch factoriza-
tion thorem[6] that T^{*}: E^{*}arrow F^{*} can be factored as follows;

E^{*}GF^{*}\vec{f}\vec{K}

where G is a Hilbert space with the norm ||\cdot||G’ J is 2-summing and K is a
continuous linear mapping. We now put U=\{x^{*}\in E^{*} ; ||J(x^{*})||G\leqq 1\} and
denote by U^{O} the polar of U in E. Let H=\cup nU^{o} and let L:Harrow E be the
identity map. Then H is a Hilbert subspace of E and the adjoint map L^{*}:

E^{*}arrow H^{*} is 2-summing. Since E is separable and of type 2, if we denote by
\gamma the canonical Gaussian cylindrical measure on H, then the image L(\gamma) is
a Gaussian Radon probability measure on E which is quasi-invariant with
respect to H (cf. Chobanjan and Tarieladze [2, Corollary 3. 1]). Here the
continuity of K:Garrow F^{*} implies H\supset T(F) , and so (1) certainly holds.
On the other hand, by the closed graph theorem, T:Farrow H is continuous, so
that (4) follows from Okazaki’s theorem [5]. This completes the proof.

REMARK 3. 3. If E is of type 2, then E^{*} is of cotype 2, and so it is
2-Pietsch. Note that if E is a separable Banach space and E^{*} is of cotype
2, then in general, Theorem 3. 2 does not hold even in the case where F is a
Hilbert space. (For example, E=c^{0}. )

PROPOSITION 3. 3. Let E be a Banach space, H be a Hilbert space and T
be a continuous linear mapping from H into E. Suppose that E has an
unconditional basis and is of cotype q for some q, 2\leqq q<\infty . Then the
following statements are equivalent.

(1) There exists a Borel probability measure on E which is qmsi-
invariant with respect to T(H) .

(2) There exists a Borel probability measure \mu on E such that K_{\mu}\supset T

(H) .
(3) T^{*}: E^{*}arrow H^{*} is l-summing.
(4) T^{*}: E^{*}arrow H^{*} is Radonifying.
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PROOF. (1)\Rightarrow(2) is clear, (2)\Rightarrow(3) follows from Lemma 2. 1, and
(4)\Rightarrow(3) follows from Schwartz [10, Th\’eor\‘eme IX. 3. 26]. Hence it
suffices to show that (3)\Rightarrow(1) and (3)\Rightarrow(4) hold. Suppose that T^{*}:

E^{*}arrow H^{*} is 1-summing. It follows from Chobanjan and Tarieladze [2,
Corollary 2. 1] that if we denote by \gamma the canonical Gaussian cylindrical
measure on H, then the image T(\gamma) is a Gaussian Radon probability
measure on E which is quasi-invariant with respect to T(H) . Thus (1)

certainly holds. On the other hand, (4) follows from Okazaki’s theorem
[5]. This completes the proof.

PROPOSITION 3. 4. Let E and F be Banach spaces, and T be a continuous
linear mapping from F into E. Suppose that E is isomorphic to a subspace of
L^{p}, 0\leqq p<\infty , and F^{*} is isomorphic to a subspace of L^{0} . Also suppose that
both E and F^{*} have the metric approximation property. Then the following
statements are equivalent.

(1) There exists a weak* Radon probability measure \mu on E^{**} such that
K_{\mu}\supset T(F) .

(2) T^{*}: E^{*}arrow F^{*} is completely summing.
(3) T^{*}: E^{*}arrow(F^{*}. \sigma(F^{*}. F)) is Radonifying.
PROOF. (1)\supset(2) follows from Remark 2. 1. On the other hand, by

Schwartz [10, Th\’eor\‘eme IX . 3. 26], (2) and (3) are equivalent. Hence it
suffices to show that (3)\Rightarrow(1) holds. Suppose that T^{*}: E^{*}arrow(F^{*}, \sigma(F^{*} ,

F)) is Radonifying. If 1<p<\infty , then the assertion follows from Theorem
3. 1. If 0\leqq p\leqq 1 , then by Corollary 2. 3, T:Farrow E is completely summing, so
that T:Farrow(E^{**}. \sigma(E^{**}. E^{*})) is Radonifying since F^{*} has the metric
approximation property. Since F^{*} is isomorphic to a subspace of L^{0} , there
exists a cylindrical measure \nu on F of type 0 such that K_{\nu}\supset F. If we put \mu=

T(\nu) , then \mu is a weak* Radon probability measure on E^{**} such that K_{\mu}\supset

T(F) . Thus (1) holds. This completes the proof.

\S 4. Application

In [8], Schwartz studied Radonifying mappings on sequence spaces and
investigated conditions to be Radonifying for a diagonal mapping from l^{q}

into l^{p}. In this section, as an application to our results in Section 3, we shall
study Radonifying mappings on function spaces and investigate conditions to
be Radonifying for the multiplication by a function from L^{q} into L^{p}.

Let (\Omega, \Sigma, \mu) and (\Omega, \Sigma, \nu) be \sigma-finite measure spaces. Suppose that \mu

and \nu are mutually equivalent. For 1\leqq p<\infty and 1\leqq q<\infty , we denote by L^{p}

(\mu) and L^{q}(\nu) usual Banach spaces. Let g(\omega) be a real valued measurable
function defined on \Omega . Then T_{g} denotes a mapping from L^{0}(\nu) into L^{0}(\mu)
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defined by T_{g} : f(\omega)-arrow f(\omega)g(\omega) ( T_{g} will be called the multiplication by \#. )

We now suppose that T_{g} operates from L^{q}(\nu) into L^{p}(\mu) , that is, T_{g}(L^{q}

(\nu))\subset L^{p}(\mu) . In this case, by the closed graph theorem, T_{g} : L^{q}(\nu)-arrow L^{p}(\mu)

is continuous.
Under the above situation, we have the following.
THEOREM 4. 1. Let 1\leqq p<\infty , 1\leqq q<\infty , and let T_{g} : L^{q}(\nu)arrow L^{p}(\mu) be

the multiplication by a function g . Then the following statements are
equivalent.

(1) There exists a Borel probability measure \gamma on L^{p}(\mu) such that K_{\gamma}\supset

T_{g}(L^{q}(\nu)) .
(2) ( T_{g})^{*}: (L^{p}(\mu))^{*}arrow(L^{q}(\nu))^{*} is r-summing for some r<p.
(3) ( T_{g})^{*}: (L^{p}(\mu))^{*}arrow(L^{q}(\nu))^{*} is Radonifying
PROOF. (1)\Rightarrow(2) follows from Lemma 2. 1, and (3)\Rightarrow(2) follows

from Schwartz [10, Theoreme IX. 3. 26]. Hence it suffices to show that (2)
\supset(1) and (2)\Rightarrow(3) hold. Suppose that (T_{g})^{*}: (L^{p}(\mu))^{*}arrow(L^{q}(\nu))^{*} is
r -summing, r<p. Let \Omega_{g}=\{\omega\in\Omega:|g(\omega)|>0\} . We denote by \tilde{\mu} and \tilde{\nu} the
restriction of \mu and \nu on \Omega_{g} , respectively. Without loss of generality, we
may assume \tilde{\mu}(\Omega_{g})>0 (equivalently, \tilde{\nu}(\Omega_{g})>0. ) If we denote by \tilde{T}_{g} the
restriction of T_{g} on L^{q}(\tilde{\nu}) , then \tilde{T}_{g} is a continuous linear mapping from L^{q}

(\tilde{\nu}) into L^{p}(\tilde{\mu}) , and ( T_{g})^{*}: (L^{p}(\tilde{\mu}))^{*}arrow(L^{q}(\tilde{\nu}))^{*} is r -summing. Let \overline{\mu} be a
\sigma-finite measure on \Omega_{g} defined by \overline{\mu}(A)=\int_{A}|g(\omega)|^{p}d\tilde{\mu}(\omega) , and let S_{g} be a
linear isometry from L^{p}(\tilde{\mu}) onto L^{p}(\overline{\mu}) defined by S_{g} : f(\omega)arrow f(\omega)/g(\omega) .
Since \overline{\mu} is equivalent to \tilde{\mu} , it is also equivalent to \tilde{\nu}. If we put T=S_{g}\cdot\tilde{T}_{g} ,

then T is the natural injection from L^{q}(\tilde{\nu}) into L^{p}(\overline{\mu}) , and T^{*}: (L^{p}(\overline{\mu}))^{*}arrow

(L^{q}(\tilde{\nu}))^{*} is r -summing. Now we shall prove that there exists a Borel
probability measure \tilde{\gamma} on L^{p}(\overline{\mu}) such that K_{\overline{\gamma}}\supset T(L^{q}(\tilde{\nu})) . For the case of
1<p<\infty and 2\leqq q<\infty , by Theorem 3. 1 such a measure certainly exists
since every r-summing mapping from a Banach space into a Banach space of
cotype 2 is 2-summing (cf. Maurey [3, Corollary 2]). For the case of 1\leqq

p<\infty and 1\leqq q\leqq 2 , the assertion follows from Theorem 3. 1 of [13]. Hence
it suffices to show only the case of p=1 and 2<q<\infty . It follows from
Corollary 2. 3 that T:L^{q}(\tilde{\nu})arrow L^{p}(\overline{\mu}) is completely summing, and so it is
s -Radonifying for all s>1 (cf. Schwartz [9, Proposition III. 3. 2]). Let 1<
s<q^{*} , where 1/q+1/q^{*}=1 . Since there exists a cylindrical measure \sigma on L^{q}

(\tilde{\nu}) of type s such that K_{\sigma}\supset L^{q}(\tilde{\nu}) , if we put \tilde{\gamma}=T(\sigma) , then \tilde{\gamma} is a Radon
probability measure on L^{p}(\overline{\mu}) such that K_{\overline{\gamma}}\supset T(L^{q}(\tilde{\nu})) . Thus in any case,
such a measure certainly exists. Since L^{q}(\tilde{\nu}) is separable (cf. [13,
Theorem 3. 1]), by Corollary 2. 2, T^{*}: (L^{p}(\overline{\mu}))^{*}arrow(L^{q}(\tilde{\nu}))^{*} is Radonifying,
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so that ( T_{g})^{*}: (L^{p}(\mu))^{*}arrow(L^{q}(\nu))^{*} is also Radonifying. Thus (3) holds.
Finally, we shall show that (1) holds. Let U be the canonical linear
isometry from L^{p}(\tilde{\mu}) into L^{p}(\mu) , and put W=U\cdot S_{g}^{-1} . Then W is a linear
isometry from L^{p}(\overline{\mu}) into L^{p}(\mu) . If we denote by \gamma the image of \tilde{\gamma} under
W. \gamma is a Borel probability measure on L^{p}(\mu) such that K_{\gamma}\supset T_{g}(L^{q}(\nu)) .
This completes the proof.

REMARK 4. 1. A \mu -measurable set A of positive measure is called a
\mu -atom if for any \mu -measurable subset B of A, we have either \mu(B)=0 or \mu

(A\cap B^{c})=0 . In the above theorem, it is shown that if ( T_{g})^{*}: (L^{p}(\mu))^{*}arrow

(L^{q}(\nu))^{*} is p-summing, then the set \Omega_{g}=\{\omega\in\Omega;|g(\omega)|>0\} is a union of
an at most countable number of \mu -atoms (cf. [13, Theorem 3. 1]). Under
the same assumptions as in Theorem 4. 1, if we also assume that \mu has no
atoms, then ( T_{g})^{*}: (L^{p}(\mu))^{*}arrow(L^{q}(\nu))^{*} is Radonifying if and only if g
(\omega)=0a . s .

Let \alpha=(\alpha_{n}) be a sequence of real numbers. Then the multiplication
(\xi_{n})arrow(\alpha_{n}\xi_{n}) operates from l^{q} into l^{p} under suitable conditions on the
sequence \alpha . Such a linear mapping will be called diagonal and denoted by

T_{\alpha}

COROLLARY 4. 2. Let 1\leqq p<\infty , 1\leqq q<\infty , and T_{a} : l^{q}arrow l^{p} be the
diagonal. Then the following statements are equivalent.

(1) There exists a Borel probability measure \mu on l^{p} such that K_{\mu}\supset T_{a}

(l^{q}) .
(2) ( T_{a})^{*}: (l^{p})^{*}arrow(l^{q})^{*} is r-summing for some r<p .
(3) (T_{\alpha})^{*}: (l^{p})^{*}arrow(l^{q})^{*} is Radonifying.
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