Convex programming on spaces of measurable functions

By Shozo Koshi, Hang Chin Lai and Naoto Komuro
(Received June 20, 1984)

1. Introduction. In [3] and [4], J. Zowe has considered convex programming with values in ordered vector spaces. His hypotheses are so restrictive that his theory does not apply to the case of the function spaces L_{p} ($\infty>p>0$). For L_{∞} and $C(X)$ with X a Stonean space, his method is very useful. We shall consider in this note convex operators whose values are in much more general spaces than the usual function spaces such as L_{p}. Functions assuming the value $+\infty$ introduce certain complications, to which we must address ourselves.

For simplicity, we consider only convex operators defined on the real line \boldsymbol{R} with values in the space of measurable functions with values in $\boldsymbol{R} \cup$ $\{+\infty\}$. The general case will be treated in a later publication.

In this note, we present a generalization of the Fenchel-Moreau theorem and also of the Fenchel theorem. It is appropriate to consider the $P(\Omega)$ of measurable functions, whose definition will be found in Section 2.

2. Preliminary lemmas

Let F be an extended real-valued function on the real numbers \boldsymbol{R}, possibly assuming the value $+\infty$, but not the value $-\infty$. Let D be a (dense) countable subfield of $\boldsymbol{I R}$. Such an extended real-valued function F defined on D is said to be D-convex if

$$
F(\alpha x+\beta y) \leqq \alpha F(x)+\beta F(y)
$$

for $\alpha, \beta \in D$ with $\alpha+\beta=1, \alpha, \beta \geq 0$ and $x, y \in D$.
An \boldsymbol{R}-convex function will be called convex, as usual.
We first present a number of lemmas.
Lemma 1. Every finite-valued D-convex function defined on D is continuous in D : that is $x_{n} \rightarrow x\left(x_{n}, x \in D\right)$ implies that $F\left(x_{n}\right) \rightarrow F(x)$.

Proof. If the sequence $F\left(x_{n}\right)$ does not converge for $x_{n} \rightarrow x$, the convexity of F implies that either $F(y)=+\infty$ for all $y>x$ or $F(y)=+\infty$ for all $y<x$. Since F is finite-valued, F is continuous.

Curiously enough, a D-convex function F defined on all of $\boldsymbol{I R}$, i. e. a function satisfying $F(\alpha x+\beta y) \leqq \alpha F(x)+\beta F(y)$ for $\alpha, \beta \in D$ with $\alpha+\beta=1$, $\alpha, \beta \geq 0$ and $x, y \in \boldsymbol{R}$, is not necessarily continuous on \boldsymbol{R}. (For example, a
discontinuous real-valued solution of the functional equation $\phi(x+y)=$ $\phi(x)+\phi(y)$ will do.) Nevertheless we have the following lemma.

Lemma 2. Every finite-valued D-convex function can be extended in one and only one way to a (continuous) convex function on $\boldsymbol{I R}$.

We omit the proof.
We define convex functions on n-dimensional space $\boldsymbol{\boldsymbol { R } ^ { n }}$ in the same way; they assume values in $\boldsymbol{I R} \cup\{+\infty\}$.

Let F be a convex function on \boldsymbol{R}^{n} with values in $\boldsymbol{R} \cup\{+\infty\}$. The effective domain of F, defined as $\mathscr{D}_{F}=\{x ; F(x)<\infty\}$ is plainly a convex set.

Lemma 3. If \mathscr{D}_{F} contains at least 2 points, then \mathscr{D}_{F} has an interior point with respect to the affine hull A_{F} of \mathscr{D}_{F} and the restriction of F to A_{F} is continuous at every interior point of \mathscr{D}_{F} with respect to A_{F}. In particular, if F is always finite valued, then F is continuous at everywhere in \boldsymbol{R}^{n}.

Proof. See [1] Theorem 3 p. 188.
Lemma 4. A convex function F on \boldsymbol{I}^{n}, is lower semi-continuous at x_{0} in $\boldsymbol{I R}^{n}$ if and only if the restriction map F_{l} of F on each line l through x_{0} is lower semi-continuous at x_{0}.

Proof. If F is not lower semi-continuous at x_{0} and $F\left(x_{0}\right)<+\infty$, then there exists $\varepsilon>0$ and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathscr{D}_{F}(n=1,2, \cdots)$ with $x_{n} \rightarrow x_{0}$ such that $F\left(x_{n}\right)<F\left(x_{0}\right)-\varepsilon$. We can assume that there is at least one n such that x_{n} is an interior point of \mathscr{D}_{F} with respect to A_{F} (see Lemma 3). Let [x_{0}, x_{n}] be the interval from x_{0} to x_{n}. Then, for $w \in\left(x_{0}, x_{n}\right], F(w) \leqq F\left(x_{0}\right)-\varepsilon$ since (x_{0}, x_{n}] is contained in the closed convex hull of $\left\{x_{m}\right\}_{m=0}^{\infty}$ and F is continuous on $\left(x_{0}, x_{n}\right]$. But this means that F_{l} is not lower semi-continuous at x_{0} where l is the line containing the interval $\left[x_{0}, x_{n}\right]$. The converse is proved similarly.

Let Ω be a finite measure space with measure μ.
Two measurable sets A and B are identified if
$\mu(A \oplus B)=\mu(A \backslash B)+\mu(B \backslash A)=0$.
The collection of measurable sets of Ω then constitutes a complete Boolean lattice.
Let $S(\Omega)$ be the set of all measurable functions on Ω which are finite-valued almost everywhere. We identify f and $g \in S(\Omega)$ if they differ only on a set of μ-measure zero.

Let $P(\Omega)$ be the totality of all measurable functions on Ω assuming values in $\boldsymbol{R} \cup\{+\infty\}$. Plainly $P(\Omega)$ is a convex set.

We identify f and $g \in P(\Omega)$ if they differ only on a set of μ-measure zero. We define $Q(\Omega)=\{f ;-f \in P(\Omega)\}$. Thus $f \in Q(\Omega)$ is a measurable function on Ω assuming values in $\boldsymbol{R} \cup\{-\infty\}$. Finally, let $U(\Omega)$ as the totality of all
measurable functions on Ω with values in $\boldsymbol{R} \cup\{+\infty\} \cup\{-\infty\}$. it is obvious that

$$
U(\Omega) \supset P(\Omega) \cup Q(\Omega)
$$

and

$$
L_{\infty}(\Omega) \subset L_{p}(\Omega) \subset L_{1}(\Omega) \subset S(\Omega) \subset{ }_{Q(\Omega)}^{P(\Omega)} \subset U(\Omega)
$$

for $p \geqq 1$.
With the usual ordering $S(\Omega)$ is a Dedekind complete vector lattice and if $S(\Omega) \ni f=\vee_{a} f_{a}$ for $f_{a} \in S(\Omega)$, there exists a countable subfamily $\left\{a_{n}\right\}$ of $\{a\}$ for which

$$
\underset{a}{\vee} f_{a}=\vee_{n} f_{a_{n}},
$$

$\vee_{a} f_{a}$ defines the supremum of $\left\{f_{a}\right\}$ in the complete vector lattice $S(\Omega)$.
The set $P(\Omega)$ is complete under the supremum operation i. e. if $f_{a} \in P(\Omega)$, the supremum $f=\vee_{a} f_{a}$ exists in $P(\Omega)$. Likewise, if $f_{a} \in Q(\Omega)$ the infimum $f=\wedge_{a} f_{a}$ (exists) in $Q(\Omega)$. Again, we can select a countable family $f_{a_{n}}$ with $f=\vee_{n} f_{a_{n}}$ or $f=\wedge_{n} f_{a_{n}}$.

Lemma 5. Let F be a convex operator from \boldsymbol{R} into $Y=S(\Omega)$. Then there exist a subset A of Ω of measure zero and a function $F(\alpha, t)$ defined on $\boldsymbol{R} \times \Omega$ such that for each fixed $t \in \Omega \backslash A, \boldsymbol{R} \ni \alpha \rightarrow F(\alpha, t)$ is a convex function on \boldsymbol{R} and for each fixed $\alpha \in \mathbb{R}, \Omega \ni t \rightarrow F(\boldsymbol{\alpha}, t)$ is a measurable function on Ω which is identified with $F(\alpha)$ as an element of $S(\Omega)$ and F is continuous which is to say
$\alpha_{n} \rightarrow \alpha$ implies $F\left(\alpha_{n}\right) \rightarrow F(\alpha)$ a. e.
Proof. Let $D=\left\{\frac{m}{2^{n}}(m\right.$ is an integer and n is a natural number $\left.)\right\}$. For each fixed $\alpha \in D$, we write $t \rightarrow F(\alpha, t)$ for the function $F(\boldsymbol{\alpha})$ in $S(\Omega)$. This function is by definition measurable and finite a. e.. We will write $F(\boldsymbol{\alpha})=\{F(\boldsymbol{\alpha}, t)\}$. Since

$$
F\left(\alpha \alpha_{1}+\beta \beta_{1}\right) \leqq \alpha F\left(\alpha_{1}\right)+\beta F\left(\beta_{1}\right)
$$

for each 4-tuple $\alpha, \beta, \alpha_{1}, \beta_{1} \in D$ for which $\alpha+\beta=1, \alpha, \beta \geqq 0$, we have $F\left(\alpha \alpha_{1}+\beta \beta_{1}, t\right) \leqq \alpha F\left(\alpha_{1}, t\right)+\beta F\left(\beta_{1}, t\right)$
except on a set $A\left(\alpha, \beta, \alpha_{1}, \beta_{1}\right)$ of measure zero. As the number of 4 -tuples ($\alpha, \beta, \alpha_{1}, \beta_{1}$) is countable, we see that $F(\alpha, t)$ is D-convex and finite except on the set $A_{0}=\cup A\left(\alpha, \beta, \alpha_{1}, \beta_{1}\right)$ which has measure zero. Lemma 2 and Lemma 3 show that we can extend F to a finite valued convex function $F_{1}(\alpha$, t) on all $\alpha \in \boldsymbol{R}$ for each $t \in \Omega \backslash A_{0}$. For each $t \in A_{0}$, we can define an arbitrary finite valued convex function $F_{1}(\alpha, t)$.

We can prove that $\left\{F_{1}(\boldsymbol{\alpha}, t)\right\}=F(\boldsymbol{\alpha})$ for all $\boldsymbol{\alpha} \in \boldsymbol{R}$. Suppose $F(\boldsymbol{\alpha})=$
$\{F(\boldsymbol{\alpha}, t)\}$ and $\{F(\boldsymbol{\alpha}, t)\} \neq\left\{F_{1}(\boldsymbol{\alpha}, t)\right\}$ for some $\boldsymbol{\alpha} \in \boldsymbol{R}$. Then the measurable set of $\Omega, A=\left\{t ; F(\alpha, t) \neq F_{1}(\alpha, t)\right\}$ has positive measure. Since $F(\boldsymbol{\alpha}$, $t)$ are finite a. e. on A there exists $\alpha_{1} \in D$ near α such that $F\left(\alpha_{1}, t\right)=+\infty$ for t in a set of positive measure. Since this is impossible, we have $\left\{F_{1}(\boldsymbol{\alpha}\right.$, $t)\}=\{F(\boldsymbol{\alpha}, t)\}$. That is, for each $\boldsymbol{\alpha} \in \boldsymbol{I} \boldsymbol{R}$ we have $F_{1}(\boldsymbol{\alpha}, t)=F(\boldsymbol{\alpha}, t)$ a. e. in $t \in \Omega$.

A convex function F on the real numbers is said to be right side finite (or left side infinite) if there exists α_{0} (or β_{0}) such that $F(\boldsymbol{\alpha})<+\infty$ for $\alpha \geqq$ α_{0} (or $F(\alpha)=+\infty$ for $\alpha \leqq \beta_{0}$). In the same way, we can define a left side finite and right side infinite convex function, and both sides infinite convex function.

Lemma 6. Let F be a convex operator from $\boldsymbol{I R}$ into $P(\Omega)$ such that $F\left(\alpha_{0}\right) \in S(\Omega)$ for some $\alpha_{0} \in \boldsymbol{R}$. There exist pairwise disjoint measurable sets $A_{i}(i=1,2,3,4)$ of Ω with $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}=\Omega$, such that for $t \in A_{1}, F(\alpha)$ is finite for all $\alpha \in \boldsymbol{R} ;$ for $t \in A_{2}, F(\boldsymbol{\alpha})$ is right side finite and left side infinite; for $t \in A_{3}, F(\boldsymbol{\alpha})$ is left side finite and right side infinite; for $t \in A_{4}, F(\boldsymbol{\alpha})$ is both sides infinite.

Proof. We consider the complete Boolean lattice of measurable subsets of Ω identifying sets whose symmetric difference has measure zero. We use the symbols \vee and \wedge to denote supremum and infimum respectively, in this complete Boolean lattice. We may suppose as above that $F(\boldsymbol{\alpha})$ is represented by a measurable function on $\Omega: t \rightarrow F(\alpha, t)$. For $\alpha \in \boldsymbol{I} \boldsymbol{R}$, write $A_{\alpha}=\{t ; F(\boldsymbol{\alpha}, t)=+\infty\}$ and

$$
A=\vee_{\alpha} A_{\alpha}
$$

We define $B=\underset{\alpha>\alpha_{0}}{\vee} A_{\alpha}$ and $C=\underset{\alpha<\alpha_{0}}{\vee} A_{\alpha}$. Plainly we have $B \cup C=A$. Finally let $A_{1}=\Omega \backslash A, A_{2}=A \backslash B, A_{3}=A \backslash C$ and $A_{4}=B \cap C$. Then A_{1}, A_{2}, A_{3} and A_{4} are as required.

Lemma 7. Let D be a countable subfield of $\boldsymbol{I R}$. Then every D-convex function F on D with values in $\boldsymbol{I R} \cup\{+\infty\}$ can be extended in exactly one way to a convex function which is continuous on \boldsymbol{I} except at most two points of $\boldsymbol{I R}$. Second, there exists a lower semi-continuous convex function on $\boldsymbol{I R}$ that coincides with F on D except at most two points of D.

We omit the proof.
Lemma 8. Let F be a convex operator from $\boldsymbol{I R}$ to $P(\Omega)$ such that $F\left(\boldsymbol{\alpha}_{0}\right)$ $\in S(\Omega)$ for some $\alpha_{0} \in \boldsymbol{R}$. First, there exists a measurable function $f(t) \in$ $P(\Omega)$ such that if $f(t)<\alpha$ for all t in a set A, of positive measurable in Ω, then $F(\boldsymbol{\alpha})$ is $+\infty$ on A. Second, there exists a measurable function $g(t) \in$ $Q(\Omega)$ such that $\alpha<g(t)$ for every t in A implies $F(\alpha)$ is $+\infty$ on A.

Proof. We define $f_{\alpha}(t)$ with

$$
f_{\alpha}(t)= \begin{cases}\alpha & \text { if } t \in A_{\alpha} \\ +\infty & \text { if } t \notin A_{\alpha}\end{cases}
$$

where $A_{\alpha}=\{t ; F(\alpha)=F(\alpha, t)=+\infty\}$.
Then $f_{\alpha}(t) \geqq \alpha_{0}$ a. e. $t \in \Omega$ if $\alpha>\alpha_{0}$ and $f_{\alpha_{0}}(t)=+\infty$ for all $t \in \Omega$.
Now define

$$
f=\widehat{\alpha}_{\alpha>\alpha_{0}} f_{\alpha} .
$$

As is well known, there is a decreasing sequence of step functions $f_{n} \downarrow f(n=$ $1,2, \cdots$) where f_{n} is the infimum of some finite number of $f_{\alpha}^{\prime} s$ and it is easy to see that f satisfies the conditions of the lemma. The construction of $g(t)$ is similar. The following figure shows how f and g behave.

Remark concerning Lemma 8. It is easy to see that the set of numbers $\boldsymbol{\alpha} \in \boldsymbol{R}$ in which $\boldsymbol{\mu}\{t ; f(t)=\boldsymbol{\alpha}\}>0$ is countable, as is the set of numbers $\boldsymbol{\alpha} \in \boldsymbol{R}$ for which $\mu\{t ; g(t)=\alpha\}>0$.

Now, we have the following lemma which is a generalization of Lemma 5.

Lemma 9. Let F be a convex operator from \boldsymbol{R} into $P(\Omega)$ such that there exists α_{0} with $F\left(\alpha_{0}\right) \in S(\Omega)$. Then, there exist a subset A of Ω of measure zero and a function $F(\alpha, t)$ defined on $\boldsymbol{\pi} \times \Omega$ such that for each fixed $t \in \Omega \backslash A$, $\boldsymbol{R} \ni \alpha \rightarrow F(\alpha, t)$ is a convex function on \boldsymbol{R} and for each fixed $\alpha \in \mathbb{R}, \Omega \ni t \rightarrow F$ (α, t) is a measurable function on Ω which is identified with $F(\alpha)$ as an element of $P(\Omega)$.

Proof. For simplicity, we shall consider the case in which $\Omega=A_{3}$ (notation is in Lemma 8). The other cases are proved in the same way. By the Remark concerning Lemma 8, we find the countable set $\left\{\boldsymbol{\alpha}_{n}\right\} \subset \boldsymbol{R}$ for which $\boldsymbol{\mu}\left\{t ; f(t)=\alpha_{n}\right\}>0$. Let D be a countable subfield of \boldsymbol{R} that contains all $\alpha_{n}(n=1,2, \cdots)$. We first determine a countable number of measurable functions $F(\alpha, t)(\alpha \in D)$ such that $\{F(\alpha, t)\}=F(\alpha)$ for $\alpha \in D$. Then, by the method used in Lemma 5, there exists a subset A_{0} of measure zero in Ω such that $F(\alpha, t)$ is a D-convex function of $\alpha \in D$ for all $t \in \Omega \backslash A_{0}$ and $\alpha>$
$f(t)$ implies that $F(\alpha, t)=+\infty$ for $t \in \Omega \backslash A_{0}$.
If $\alpha \neq \beta_{n}(n=1,2, \cdots)$, then it is easy to see that $F(\alpha)=\lim _{n \rightarrow \infty} F\left(\beta_{n}, t\right)$ a. a. $t \in \Omega$ for each sequence $\beta_{n} \rightarrow \alpha$. We extend $F(\alpha, t)(\alpha \in D)$ to the whole field $\boldsymbol{I R}$ by Lemma 7 for $t \in \Omega \backslash A_{0}$. We denote this extension by $F(\boldsymbol{\alpha}, t)$ for all $\boldsymbol{\alpha} \in \boldsymbol{R}$. This function is equal to $F(\boldsymbol{\alpha})$ as an element of $P(\Omega)$, and the function $F(\alpha, t)$ is as required.

3. Duality theorems

Let $L(\boldsymbol{R}, S(\Omega))=L(\boldsymbol{R} ; \Omega)$ be the totality of all linear operator from \boldsymbol{R} to $S(\Omega)$. The following is a special case of Lemma 5.

Lemma 10. Let $T \in L(\boldsymbol{I R} ; \Omega)$. Then there exists a measurable function $T(t)(t \in \Omega)$ on Ω such that $T(\alpha)=\{\alpha T(t)\}$.

Let F be a convex operator from \boldsymbol{R} to $P(\Omega)$, and suppose that there is at least a number $\alpha_{0} \in \boldsymbol{R}$ such that $F\left(\alpha_{0}\right) \in S(\Omega)$. For $\alpha \in R$ with $F(\boldsymbol{\alpha}) \in S(\Omega)$, we can define the subdifferential $\partial F(\alpha)$ of F at α as follows:
$\partial F(\boldsymbol{\alpha})=\{T \in L(R ; \Omega) ; F(\alpha)-T(\alpha) \leq F(\beta)-T(\beta)$ for all $\beta \in \boldsymbol{I R}\}$, where $L(\boldsymbol{R} ; \Omega)=L(\boldsymbol{R} ; S(\Omega)) \cong S(\Omega)$ (Lemma 10).

Theorem 1. Let $F(\boldsymbol{\alpha})=\{F(\boldsymbol{\alpha}, t)\}$ be a representation as in Lemma 9 such that for each $t \in \Omega$ except a subset of measure zero, $\alpha \rightarrow F(\alpha, t)$ is a convex function on \boldsymbol{I} and for each $\alpha \in \boldsymbol{R}, t \rightarrow F(\boldsymbol{\alpha}, t)$ is a measurable function on Ω which is identified with $F(\boldsymbol{\alpha})$ as an element of $P(\Omega)$. Then $\partial F(\boldsymbol{\alpha}) \neq \boldsymbol{\phi}$ iff $\partial F(\cdot, t)(\boldsymbol{\alpha}) \neq \boldsymbol{\phi}$ for a. a. $t \in \Omega$, where
$\partial F(\cdot, t)(\alpha)=\{\xi \in \boldsymbol{R} ; F(\alpha, t)-\xi \alpha \leqq F(\beta, t)-\xi \beta$ for all $\beta \in \boldsymbol{R}\}$
Proof. We define a sequence of measurable functions $\left\{\boldsymbol{\phi}_{n}\right\} \subset P(\Omega)$ as follows :

$$
\phi_{n}(t)= \begin{cases}n\left\{F\left(\alpha+\frac{1}{n}, t\right)-F(\alpha, t)\right\} & \text { if } f(t)>\alpha \\ n\left\{F(\alpha, t)-F\left(\alpha-\frac{1}{n}, t\right)\right\} & \text { if } f(t)=\alpha, g(t)<\alpha \\ 0 & \text { if } f(t)=g(t)=\alpha\end{cases}
$$

where f and g are as in Lemma 8. If $\partial F(\cdot, t)(a) \neq \phi$, then limit

$$
\phi(t)=\lim _{n \rightarrow \infty} \phi_{n}(t)
$$

exists as an element of $S(\Omega)$, and $\phi(t) \in \partial F(\bullet, t)(\alpha)$ for a. a. $t \in \Omega$. Hence the operator $T \in L(\boldsymbol{I R} ; \Omega)$ defined by the formula

$$
T x(t)=T(x)(t)=x \cdot \phi(t)
$$

is in $\partial F(\boldsymbol{\alpha})$.
If $\partial F(\alpha) \neq \boldsymbol{\phi}$, plainly we have $\partial F(\cdot, t)(\alpha) \neq 0$ for a. a. $t \in \Omega$.
Lemma 11. Let F be a convex operator from \boldsymbol{R} to $P(\Omega)$ such that $F\left(\alpha_{0}\right)$
$\in S(\Omega)$ for some $\alpha_{0} \in \boldsymbol{R}$. By Lemma 9, we can find a representation of F as functions $F(\alpha, t)$ with $F(\boldsymbol{\alpha})=\{F(\alpha, t)\}$ such that $F(\alpha, t)$ is a convex function of $\boldsymbol{\alpha} \in \boldsymbol{R}$ for a. a. $t \in \Omega$. The set $\left\{\boldsymbol{\alpha}_{n}\right\}$ such that
$\mu\left\{t \in \Omega ; F(\cdot, t)\right.$ is discontinuous at $\left.\alpha_{n}\right\}>0$
is countable.
This lemma follows easily from Lemma 8 .
Lemma 12. Let F be as in Lemma 11. For $T(t) \in S(\Omega)$, the composite function $F(T(t), t)$ of $t \in \Omega$ is an element of $P(\Omega)$.

Proof. Suppose first that $F(\boldsymbol{\xi}, t)$ be a countinuous function of $\boldsymbol{\xi} \in \boldsymbol{\pi}$ for a. e. $t \in \Omega$, i. e. $F(\alpha) \in S(\Omega)$ for all $\alpha \in \boldsymbol{R}$. For $T(t) \in S(\Omega)$, there exists a sequence of simple functions $T_{n}(t)$ with

$$
\lim _{n \rightarrow \infty} T_{n}(t)=T(t) \text { a. a. } t \in \Omega
$$

and

$$
T_{n}(t)=\sum_{m=1}^{k(n)} \alpha_{m}^{n} \chi_{\Omega_{m, n}}(t)
$$

where $\left\{\Omega_{m, n}\right\}$ is a partition of Ω and for each n,
$F\left(T_{n}(t), t\right)=\sum_{m=1}^{k(n)} \chi_{\Omega m, n}(t) \cdot F\left(\boldsymbol{\alpha}_{m}^{n}, t\right)$
is measurable. By the continuity of F, we have
$\lim _{n \rightarrow \infty} F\left(T_{n}(t), t\right)=F(T(t), t)$
and so $F(T(t), t)$ is a measurable function of $t \in \Omega$.
For the general case, let $\left\{\alpha_{n}\right\}$ be as in Lemma 11.
Let $A_{n}=\left\{t \in \Omega ; T(t)=\alpha_{n}\right\}, \Omega_{1}=\bigcup_{n=1}^{\infty} A_{n}$ and $\Omega_{2}=\Omega \backslash \Omega_{1}$.
Then we have

$$
=\sum_{1}^{\infty} \chi_{A_{n}}(t) \cdot F\left(\alpha_{n}, t\right)+\chi_{\Omega_{2}}(t) \lim _{n} F\left(T_{n}(t), t\right) \text { a.a. } t \in \Omega .
$$

The Lemma follows.
Let us consider the conjugate operator $F *$ of F. By Lemma 9, there is a family of convex functions $F(\boldsymbol{\alpha}, t)$ with $F(\boldsymbol{\alpha})=\{F(\boldsymbol{\alpha}, t)\}$. Let T be an element of $L(\boldsymbol{I R} ; S(\Omega)$). By Lemma 10, T can be regarded as an element of $S(\Omega)$; and will be denoted by $T(t)$.
For $T \in L(\boldsymbol{I R} ; S(\Omega))$, we shall define

$$
F^{*}(T)=\vee_{\xi \in \mathbb{R}}^{\vee}(\xi \cdot T(\cdot)-F(\xi))
$$

Since there exists a dense countable set D of \boldsymbol{R} which contains the set $\left\{a_{n}\right\}$ of Lemma 11, and $F^{*}(T)=\sup _{\xi \in D}\{\boldsymbol{\xi} T(t)-F(x, t)\}$, hence we have

$$
\begin{aligned}
F^{*}(T) & =\sup _{\substack{\epsilon \in \leq}}\{\boldsymbol{\xi} \cdot T(t)-F(\xi, t)\}(\text { a. e. }) \\
& =\sup _{\epsilon \in \mathbb{R}}\{x T(t)-T(x, t)\} \\
& =F^{*}(T(t), t)
\end{aligned}
$$

where $F^{*}(\cdot, t)$ is the conjugate function of $F(x, t)$ with $F(x)=\{F(x, t)\}$ as in Lemma 9. We note that $\underset{\xi \in \mathbb{R}}{\vee}(\xi T(\cdot)-F(x))=\sup _{\xi \in D}\{\boldsymbol{\xi} T(t)-F(\xi, t)\}$ a. e. whenever $\{\boldsymbol{\alpha} \in \boldsymbol{R}: \boldsymbol{\mu}\{t \in \Omega ; F(\cdot, t)$ is discontinuous at $\boldsymbol{\alpha}\}>0\}$ is countable. For $\xi \in \boldsymbol{I R}$, considering ξ as a constant function,

$$
F^{*}(\xi)=\vee_{\xi \in \mathbb{R}}(\xi \xi-F(\xi))
$$

Although it may happen that $F^{*}(\xi)=+\infty$ a. a. $t \in \Omega$ for $\xi \in \boldsymbol{R}$, we know that there exists $T_{0} \in S(\Omega)$ with $F^{*}\left(T_{0}\right) \in S(\Omega)$. For every $T_{0} \in \partial F\left(\alpha_{0}\right)$, $F^{*}\left(T_{0}\right)$ belongs to $S(\Omega)$. We now define $F^{* *}$. The function
$F^{* *}$ carries $L(L(\boldsymbol{R}, S(\Omega)), S(\Omega)) \cong L(S(\Omega), S(\Omega))$ into $P(\Omega)$. We consider $F^{* *}$ only on $\boldsymbol{I R}$, and define

$$
F^{* *}(\xi)=\underset{T \in S(\Omega)}{\vee}\left(\xi \cdot T-F^{*}(T)\right)
$$

for $\xi \in \boldsymbol{R}$, since $L(S(\Omega), S(\Omega))$ contains \boldsymbol{I}, considering every element $\xi \in \boldsymbol{R}$ as follows : $S(\Omega) \ni \phi(t) \rightarrow \xi \cdot \phi(t) \in S(\Omega)$. Thus, since $\underset{\xi \in R}{\vee}(\xi T(\cdot)-$ $F(\xi))=\sup _{\xi \in D}\{\zeta T(t)-F(\xi, t)\}$ a. e., we have

$$
\begin{aligned}
F^{* *}(\xi) & \geqq \vee_{\xi \in \mathbb{R}}\left(\xi \cdot \xi \cdot 1-F^{*}(\xi, \cdot)\right) \\
& =\sup _{\xi \in \mathbb{R}}\left(\xi \cdot \xi-F^{*}(\xi, t)\right) \\
& =F^{* *}(\xi, t) \text { for a. a. } t \in \Omega,
\end{aligned}
$$

where $F^{* *}(\cdot, t)$ is the conjugate function of the convex function $F^{*}(\xi, t)$ for a. a. $t \in \Omega$.

On the other hand, we have

$$
\begin{aligned}
F^{* *}(\xi) & \leq \underset{T \in S(\Omega)}{\vee}\left(\xi \cdot T(t)-F^{*}(T(t), t)\right) \\
& =\sup _{\xi \in \mathbb{R}}\left(\xi \cdot \xi-F^{*}(\xi, t)\right) \\
& =F^{* *}(\xi, t)
\end{aligned}
$$

for a. a. $t \in \Omega$.
Hence, we have $F^{* *}(\xi)=F^{* *}(\zeta, t)$ for a. a. $t \in \Omega$. It is easy to see that

$$
F^{* *}(\xi) \leqq F(\xi) \text { for } \xi \in \mathbb{R}
$$

Similarly, we can define $F^{* *}(S)$ for $S \in S(\Omega)$ by

$$
F^{* *}(S)=\underset{T \in S(\Omega)}{\bigvee}\left(S \cdot T-F^{*}(T)\right)
$$

We now prove the following theorem, which generalizes the Fenchel-Moreau theorem:

Theorem 2. The equality $F^{* *}(\xi)=F(\xi)$ hold iff the family of convex functions $F(\cdot, t)$ of Lemma 9 is lower semi-continuous at ξ for a. e. $t \in \Omega$.

This theorem follows from the following and the original FenchelMoreau theorem. We shall also give a generalization of the Fenchel-Moreau theorem for $T \in S(\Omega)$. We need the following. Let F be a convex operator from $\boldsymbol{I} \boldsymbol{R}$ to $P(\Omega)$ such that $F\left(\boldsymbol{\alpha}_{0}\right) \in S(\Omega)$ for some $\alpha_{0} \in \boldsymbol{R}$. By Lemma 9,
there exists a family of convex functions $F(\alpha, t)$ for each $t \in \Omega$ with $F(\boldsymbol{\alpha})=$ $\{F(\boldsymbol{\alpha}, t)\}$. For such F, by Lemma 11 the set $\left\{\boldsymbol{\alpha}_{n}\right\} \subset \boldsymbol{R}$ with $\mu\left\{t \in \Omega ; F(x, t)\right.$ is discontinuous at $\left.x=\alpha_{n}\right\}>0$
is countable. Hence, there exists a family of convex functions \tilde{F} for each $t \in \Omega$ with

$$
\tilde{F}(\alpha, t)=F(\alpha, t) \quad \text { a. e. })
$$

such that $\tilde{F}(\alpha, t)$ is lower semi-continuous for $\alpha \notin\left\{a_{n}\right\}$ for almost all $t \in \Omega$. Such $\{\tilde{F}(\alpha, t)\}$ is uniquely determined a. e. in Ω. We call $\{\tilde{F}(\alpha, t)\}$ the standard representation of $F(\boldsymbol{\alpha})$. Then, we have the following FenchelMoreau theorem for $T \in S(\Omega)$.

Theorem 3. Let F be a convex operator from \boldsymbol{R} to $P(\Omega)$ such that $F\left(\boldsymbol{\alpha}_{0}\right) \in S(\Omega)$ for some $\alpha_{0} \in \boldsymbol{I R}$ For

$$
T(t) \in S(\Omega), \text { we have } F^{* *}(T)=F(T)
$$

iff the standard representation $\{\tilde{F}(\boldsymbol{\alpha}, t)\}$ of $F(\boldsymbol{\alpha})$ is lower semi-continuous at $T(t)$ for a. a. $t \in \Omega$.

Let G be an operator from $\boldsymbol{I R}$ to $Q(\Omega)$. If $-G(a)$ is a convex operator from \boldsymbol{R} to $P(\Omega)$, we call G a concave operator. We define the conjugate operator G^{*} of G as follows:

$$
\begin{aligned}
G^{*}(T) & =-(-G(-T))^{*}=-\underset{\xi \in \mathbb{R}}{ }(\xi \cdot T+G(-\xi)) \\
& =\vee_{T \in S(\Omega)}(\xi T-G(\xi)) .
\end{aligned}
$$

We next consider the following programs $P(I)$ and $P(I I)$.

$$
P(I): \underset{\xi \in \in \mathbb{R}}{\wedge}\{F(T(t), t)-G(T(t), t)\}
$$

where $F(x, t)$ and $G(x, t)$ are the standard representations and satisfy $F^{* *}=F, G^{* *}=G$.

$$
P(I I): \underset{T \in S(\Omega)}{\vee}\left\{G^{*}(T(t), t)-F^{*}(T(t), t)\right\} .
$$

Theorem 4. Suppose that F is a convex operator. There exists a solution T_{1} in $P(I)$ with $T_{1} \in S(\Omega)$ if and only if there exists a solution T_{0} in $P(I I)$ with $T_{0} \in S(\Omega)$. In this case, we have

$$
F\left(T_{1}(t), t\right)-G\left(T_{1}(t), t\right)=G^{*}\left(T_{0}(t), t\right)-F^{*}\left(T_{0}(t), t\right)
$$

for a. a. $t \in \Omega$.
Proof. Suppose that we have $T_{0} \in S(\Omega)$ with

$$
\underset{T \in S(\Omega)}{\vee}\left\{G^{*}(T(t), t)-F^{*}(T(t), t)\right\}=G^{*}\left(T_{0}(t), t\right)-F^{*}\left(T_{0}(t), t\right) \in S(\Omega)
$$

The theorem of Moreau-Rockafellar, shows that

$$
\partial(f+g)(x)=\partial f(x)+\partial g(x),
$$

and $\partial\left(G^{*}(\cdot, t)-F^{*}(\cdot, t)\right)\left(T_{0}(t)\right) \ni 0$. Hence, there exists $\boldsymbol{\xi}(t) \in \boldsymbol{R}$ with $\xi(t) \in \partial F^{*}(\cdot, t)\left(T_{0}(t)\right) \cap \partial G^{*}(\cdot, t)\left(T_{0}(t)\right)$ for a. a. $t \in \Omega$.
We can choose $\boldsymbol{\xi}(t)$ such that $\boldsymbol{\xi}(t)$ is an element of $S(\Omega)$, considering $\boldsymbol{\xi}(t)$ as a function defined on Ω. For each $t \in \Omega$, there exists $\boldsymbol{\xi} \in \boldsymbol{R}$ with

$$
\xi\left(\alpha-T_{0}(t)\right) \leq F^{*}(\alpha, t)-F^{*}\left(T_{0}(t), t\right)
$$

and

$$
\xi\left(\alpha^{\prime}-T_{0}(t)\right) \geq G^{*}\left(\alpha^{\prime}, t\right)-G^{*}\left(T_{0}(t), t\right)
$$

for all α and $\alpha^{\prime} \in \boldsymbol{I R}$.
Putting

$$
\begin{aligned}
& f(\alpha, t)=\frac{F^{*}(\alpha, t)-F^{*}\left(T_{0}(t), t\right)}{\alpha-T_{0}(t)} \\
& g(\alpha, t)=\frac{G^{*}(\alpha, t)-G^{*}\left(T_{0}(t), t\right)}{\alpha-T_{0}(t)}
\end{aligned}
$$

we see easily that $f(\alpha, t)$ is increasing and $g(\alpha, t)$ is decreasing with respect to α.
Hence, putting

$$
\xi(t)=\lim _{\alpha-T_{0}(t) \rightarrow-0} f(\alpha, t) \vee \lim _{\alpha-T_{0}(t) \rightarrow+0} g(\alpha, t)
$$

we get a solution $\boldsymbol{\xi}(t)$ of $P(I)$ that is in $S(\Omega)$. The rest of the proof is similar. Thus we complete the proof.

The authors express their hearty thanks to Prof. Ichinose for his valuable comments.

Reference

[1] A. D. Ioffe and V. M. Tihomirov: Theory of Extremal Problems, North-Holland Pub. Company, (1978).
[2] S. Koshi and N. Komuro: A generalization of the Fenchel-Moreau theorem, Proceedings of Japan Acad., 59 (1983) 178-181.
[3] J. ZOWE: Subdifferentiability of convex functions with values in an ordered vector space, Math. Scand., 34 (1974) 69-83.
[4] J. ZOWE: A duality theorem for a convex programming problem in order complete vector lattices, J. Math. Anth. Anal. Appl., 50 (1975) 273-287.
[5] J. Zowe: The saddle point theorem of Kuhn and Tucker in ordered vector spaces, J. Math. Anal. Appl. 57 (1977) 41-55.

