# Automorphism groups of $\Sigma_{n+1}$-invariant trilinear forms 

By Yoshimi Egawa and Hiroshi Suzuki<br>(Received June 20, 1984)

## 1. Introduction

Let $\Sigma_{n+1}$ be the symmetric group on the set $\{0,1, \cdots, n\}$ of cardinality $n+1, n \geqq 2$. Let $V=\left\langle e_{1}, \cdots, e_{n}\right\rangle$ be a natural $n$-dimensional irreducible $\Sigma_{n+1}$-module over the complex number field $\mathbf{C}$. (That is, $\left\{e_{1}, \cdots, e_{n}\right\}$ is a basis of $V$ such that if we let $e_{0}=-\left(e_{1}+\cdots+e_{n}\right)$, then $\Sigma_{n+1}$ acts on $\left\{e_{0}, e_{1}, \cdots\right.$ , $\left.e_{n}\right\}$ in the standard way.) We regard $\Sigma_{n+1}$ as a subgroup of $G L(V)$. We define a $\Sigma_{n+1}$-invariant symmetric trilinear form $\theta_{n}$ on $V$ by
$\theta_{n}\left(e_{j}, e_{j}, e_{j}\right)=n(n-1), 1 \leqq j \leqq n ;$
$\theta_{n}\left(e_{j}, e_{j}, e_{k}\right)=-(n-1), 1 \leqq j, k \leqq n, j \neq k$;
$\theta_{n}\left(e_{j}, e_{k}, e_{h}\right)=2,1 \leqq j, k, h \leqq n, j \neq k \neq h \neq j$.
Now we can state our main results.
Theorem 1. Let $\Sigma_{n+1}, V, \theta_{n}$ be as above. Let $\theta$ be an arbitrary nonzero $\Sigma_{n+1}$-invariant symmetric trilinear form on $V$. Then
$\theta=\alpha \theta_{n}, \quad 0 \neq \alpha \in \mathbf{C}$
and so $A u t \theta=A u t \theta_{n}$, where we define the automorphism group of $\theta$ to be
Aut $\theta=\left\{\sigma \in G L(V): \theta\left(x^{\sigma}, y^{\sigma}, z^{\sigma}\right)=\theta(x, y, z)\right.$ for all $\left.x, y, z \in V\right\}$.
Theorem 2. If $n=2$ or $n \geqq 4$,
$A u t \theta_{n}=\langle\omega I\rangle \times \Sigma_{n+1}$,
where $I$ is the identity element of $G L(V)$ and $\omega=(-1+\sqrt{3} i) / 2$.
Remark. The structure of $A u t \theta_{3}$ is described in Lemma 2. 3.
If $n$ is odd, our proof of Theorem 2 is essentially an elementary analysis of the action of $A u t \theta_{n}$ on the set of " singular" elements of $V$. If $n$ is even, we first prove that there is no singular element, which implies that $A u t \theta_{n}$ is finite by [6, Theorem B]. We then apply a deep result of H. Bender [3] to complete the proof.

Symmetric bilinear and trilinear mappings

$$
V \times V \longrightarrow V, \quad V \times V \times V \longrightarrow V,
$$

which are $\Sigma_{n+1}$-invariant are studied by K. Harada [5] and by the second author [7], respectively. Our result here is analogous to that of the bilinear mapping case. This is natural, because

$$
V \times V \times V \longrightarrow \mathbf{C}
$$

can be viewed as
$V \times V \longrightarrow V^{*}$.
Symmetric multilinear mappings
$V \times V \times V \times V \longrightarrow V$
of degree 4, which are invariant under the standard actions of the Mathieu groups $\mathrm{M}_{11}$ and $\mathrm{M}_{23}$ with $\operatorname{dim} V=10$ and 22 respectively will be studied in a subsequent paper as an application of Theorem 2. Moreover $\Sigma_{n+1}-$ invariant multilinear mappings of degree 4 will also be studied in it.

For other examples of interesting trilinear forms, the reader is referred to A. Adier [1, 2], D. Frohardt [4], etc.

We conclude this seotion with the proof of Theorem 1.
Proof of Theorem 1. Let
$\beta=\theta\left(e_{j}, e_{j}, e_{j}\right)$,
$\gamma=\theta\left(e_{j}, e_{j}, e_{k}\right), j \neq k$,
$\delta=\theta\left(e_{j}, e_{k}, e_{h}\right), j \neq k \neq h \neq j$.
Since $\theta$ is $\Sigma_{n+1}$-invariant, those numbers do not depend on the choice of $j, k$ and $h$. Since

$$
\gamma=\theta\left(e_{0}, e_{1}, e_{1}\right)=\theta\left(-\sum_{j=1}^{n} e_{j}, e_{1}, e_{1}\right)=-\beta-(n-1) \gamma,
$$

we have $\beta=-n \gamma$. Similarly, we get $(n-1) \delta=-2 \gamma$ by calculating $\theta\left(e_{0}\right.$, $e_{1}, e_{2}$ ).

## 2. Proof of Theorem $2 ; \mathbf{n}=$ odd.

Let $\Sigma_{n+1}, V, \theta_{n}$ be as in Section 1. Furthermore we use the following notation throughout the rest of this paper.

Notation 2. 1. For $X \subseteq\{0,1, \cdots, n\}$, we let
$\Sigma_{X}=\left\{\tau \in \Sigma_{n+1}: j^{\tau}=j\right.$ for all $\left.j \in\{0,1, \cdots, n\}-X\right\}$.
Thus $\sum_{x} \simeq \sum_{|x|}$.
We call a nonzero element $x$ of $V$ singular if $\theta_{n}(x, x, v)=0$ for all $v \in$
$V$. Now we prove a lemma which partly explains why we distinguish two cases: the cases $n$ is odd and $n$ is even.

Lemma 2.2.
(i) If $n$ is even, there is no singular element.
(ii) If $n$ is odd, the set of singular elements of $V$ is given by

$$
\left\{\alpha \sum_{j \in X} e_{j}: X \subseteq\{1, \cdots, n\},|X|=\frac{n+1}{2}, 0 \neq \alpha \in \mathbf{C}\right\} .
$$

Proof. An element of the form described in (ii) is clearly singular. Conversely, let

$$
x=\xi_{1} e_{1}+\cdots \cdots+\xi_{n} e_{n}
$$

be a singular element. Since $e_{0}$ is not singular, $x$ cannot be of the form $\xi e_{0}$.

Therefore the $\xi_{j}$ are not all equal. We may assume $\xi_{1} \neq \xi_{2}$. From $\theta_{n}(x, x$, $\left.e_{j}\right)=0$, we get
$(n+1)^{2} \xi_{j}^{2}-2(n+1) \beta \xi_{j}-(n+1) \gamma+2 \beta^{2}=0,1 \leqq j \leqq n$, where $\beta=\xi_{1}+\cdots+$ $\xi_{n}$ and $\gamma=\xi_{1}^{2}+\cdots+\zeta_{n}^{2}$. Thus each $\zeta_{j}$ may be regarded as a solution to the quadratic equation (1). Since $\xi_{1} \neq \xi_{2}$, each $\xi_{j}$ is equal to $\xi_{1}$ or $\xi_{2}$. For each $k=1,2$, let $a_{k}$ be the number of the indices $j$ for which $\xi_{j}=\xi_{k}$. Then subtracting (1) for $j=2$ from (1) for $j=1$. we get

$$
(n+1)\left(\xi_{1}+\xi_{2}\right)=2\left(a_{1} \xi_{1}^{2}+a_{2} \xi_{2}\right) .
$$

Substituting this in (1) yields

$$
(n+1)\left(\zeta_{1}^{2}+\zeta_{2}^{2}\right)=2\left(a_{1} \xi_{1}^{2}+a_{2} \xi_{2}^{2}\right) .
$$

Now a straightforward calculation shows that either

$$
\xi_{1}=0 \text { and } a_{2}=(n+1) / 2 \text { or } \xi_{2}=0 \text { and } a_{1}=(n+1) / 2 .
$$

We first settle the case $n=3$.
Lemma 2. 3. Aut⿻ $\theta_{3}$ is given by the semidirect product of $E=\left\langle\tau \in G L(V): f_{j}^{\tau}=\alpha_{j} f_{j}, j=1,2,3 ; \alpha_{1} \alpha_{2} \alpha_{3}=1\right\rangle$ by $\sum_{\{1,2,3\}}$ where $f_{1}=e_{2}+e_{3}, f_{2}=e_{1}+e_{3}, f_{3}=e_{1}+e_{2}$.
Proof. Since $\theta_{3}\left(f_{1}, f_{2}, f_{3}\right) \neq 0$, this follows immediately from
Lemma 2. 2. (ii).
Remark. If we define a subgroup $F$ of the above $E$ by $\sum_{(1,2,3)}$.
$F=\left\langle\tau \in E: f_{j}^{\tau}= \pm f_{j}, j=1,2,3\right\rangle \cong \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$.
then our original $\Sigma_{4}$ can be described as the semidirect product of $F$ by
$\sum_{\{1,2,3)}$.
In the remainder of this section, we assume $n=2 m-1$ is odd, $m \geqq 3$, and use the following notation.

Notation 2. 4.
(i) Let $\mathscr{F}$ denote the set of subsets of $\{1, \cdots, n\}$ of cardinality $m$.
(ii) If $\left(\Sigma_{j \in X} e_{j}\right)^{\tau}=\alpha\left(\Sigma_{j \in Y} e_{j}\right)$ for $X$
and $\tau \in A u t \theta_{n}$, we write
$Y=X^{(\tau)}$ and $\alpha=\lambda(X, \tau)$.
Note that if $\tau \in \Sigma_{n+1}-\sum_{\{1 \ldots, \ldots\}}$, then $X^{(\tau)}$ is not the same as the usual
$X^{\tau}=\left\{j^{\tau}: j \in X\right\}$.
(iii) For $\mathscr{H}$ and $\tau \in A u t \theta_{n}$, let
$\mathscr{H}^{(\tau)}=\left\{X^{(\tau)}: X \in \mathscr{H}\right\}$.
(iv) Let $M=\{1, \cdots, m\}, N=\{m, m+1, \cdots, n\}$.
(v) Let $\mathscr{Q}=\{X \in \mathscr{P}:|X \cap M|=m-1$.
(vi) For each $1 \leqq j \leqq m$, let
$\mathbb{Q}^{j}=\{X \in \mathbb{Q}:\{j\}=M-X\}$.
For each $m+1 \leqq j \leqq n$, let

$$
\mathscr{Q}_{j}=\{X \in \mathbb{Q}:\{j\}=X-M\} .
$$

We begin with the following lemma.
Lemma 2. 5. Let $X, Y \in \mathscr{P}$ with $X \neq Y$ and $\alpha \neq 0$.
(i) If $|X \cap Y| \neq 1$, then there exists a singular element $x$ such that $x \notin<\sum_{j \in X} e_{j}, \sum_{j \in Y} e_{j}>$
and such that

$$
\left(\alpha \sum_{j \in X} e_{j}\right)-\left(\alpha \sum_{j \in Y} e_{j}\right)+x
$$

is also singular.
(ii) If $|X \cap Y|=1$, there is no such $x$.

Proof. If $|X \cap Y| \neq 1$, we can choose $A \in \mathscr{O}$ so that $|A \cap Y|=m-1$, $A \nsubseteq X \cup Y$ and $A \nsupseteq X \cap Y$. Thus if we let $x=\alpha \Sigma_{j \in A} e_{j}$, this $x$ has the required properties. Now assume $|X \cap Y|=1$, and let $x=\beta \Sigma_{j \in B} e_{j}$ be a singular element for which

$$
\left(\alpha \sum_{j \in X} e_{j}\right)-\left(\alpha \sum_{j \in Y} e_{j}\right)+x
$$

is also of the form $\gamma \Sigma_{j \in C} e_{j}$, $\mathrm{C} \in \mathscr{P}, \gamma \neq 0$. Since $B \nsupseteq X \cup Y, \gamma$ must be equal to $\alpha$ or $-\alpha$. Hence $x$ is forced to be equal to $\alpha \Sigma_{j \in X} e_{j}$ or $-\alpha \Sigma_{j \in X} e_{j}$. Thus (ii) is proved.

A similar argument yields the following two lemmas.
Lemma 2. 6. Let $X, Y \in \mathscr{F}$ with $X \neq Y$ and $\alpha \neq 0$.
(i) If $|X \cap Y| \neq m-1$, then there exists a singular element $x$ such that

$$
x \notin\left\langle\sum_{j \in X} e_{j}, \sum_{j \in Y} e_{j}\right\rangle
$$

and such that

$$
\left(\alpha \sum_{j \in X} e_{j}\right)-\left(\alpha \sum_{j \in Y} e_{j}\right)+x
$$

is also singular.
(ii) If $|X \cap Y|=m-1$, there is no such $x$.

Lemma 2. 7. Let $X, Y \in \mathscr{P}$ with $X \neq Y$ and $0 \neq \alpha \neq \pm \beta \neq 0$. Then there is no singular element $x$ such that

$$
x \notin\left\langle\sum_{j \in X} e_{j}, \sum_{j \in Y} e_{j}\right\rangle
$$

and such that

$$
\left(\alpha \sum_{j \in X} e_{j}\right)-\left(\alpha \sum_{j \in Y} e_{j}\right)+x
$$

is also singular.
Combining Lemmas 2. 5, 2.6 and 2. 7, we get:
Lemma 2. 8. Let $X, Y \in \mathscr{P}$ with $|X \cap Y|=m-1$ and let $\tau \in A u t \theta_{n}$. Then one of the following holds:
(i) $\quad\left|X^{(\tau)} \cap Y^{(\tau)}\right|=m=1$ and $\lambda(X, \tau)=\lambda(Y, \tau)$; or
(ii) $\left|X^{(\tau)} \cap Y^{(\tau)}\right|=1$ and $\lambda(X, \tau)=-\lambda(Y, \tau)$.

Corollary 2. 9. Let $X, \quad Y . Z \in \mathscr{P}$ with $|X \cap Y|=|X \cap Z|=|Y \cap Z|=$ $m-1$ and let $\tau \in A u t \theta_{n}$. If $\left|X^{(\tau)} \cap Y^{(\tau)}\right|=1$, then either $\left|X^{(\tau)} \cap Z^{(\tau)}\right|=m-1$ and $\left|Y^{(\tau)} \cap Z^{(\tau)}\right|=1$ or $\left|X^{(\tau)} \cap Z^{(\tau)}\right|=1$ and $\left|X^{(\tau)} \cap Z^{(\tau)}\right|=m-1$.

Proof. The condition $\left|X^{(\tau)} \cap Y^{(\tau)}\right|=1$ implies $\lambda(X, \tau)=-\lambda(Y, \tau)$, and so $\lambda(Z, \tau)$ is equal to one of $\lambda(X, \tau)$ or $\lambda(Y, \tau)$.

Now let $\tau$ be an arbitrary element of $A u t \theta_{n}$. We want to show $\tau \in$ $H=\langle\omega I) \times \Sigma_{n+1}$. For this purpose, it suffices to show $H \tau H \cap H \neq \boldsymbol{\phi}$.

LEMMA 2. 10. There exist $\sigma, \sigma^{\prime} \in \Sigma_{n+1}$ such that $M^{(\sigma \tau \sigma)}=M$ and $\mathscr{Q}^{(\sigma \tau \sigma)}=$ $Q$

Proof. If $\left|A^{(\tau)} \cap B^{(\tau)}\right|=m-1$ for all $A, B \in \mathscr{P}$ with $|A \cap B|=m-1$, we simply let $\sigma=\sigma^{\prime}=I$. Thus assume there exist $A, B \in \mathscr{P}$ such that $\mid A \cap$ $B \mid=m-1$ and $\left|A^{(\tau)} \cap B^{(\tau)}\right|=1$. Choose $C \in \mathscr{P}$ so that $A \cap C=B \cap C=A \cap$ B. By Corollary 2. 9, $\left|A^{(\tau)} \cap C^{(\tau)}\right|=1$ or $\left|B^{(\tau)} \cap C^{(\tau)}\right|=1$. We may assume $\left|A^{(\tau)} \cap C^{(\tau)}\right|=1$. Now let $X$ be an arbitrary element of $\mathscr{P}$ such that $A \cap X=A \cap B$. We want to show $\left|A^{(\tau)} \cap X^{(\tau)}\right|=1$. Suppose $\left|A^{(\tau)} \cap X^{(\tau)}\right|$ $=m-1$. Then $\left|B^{(\tau)} \cap X^{(\tau)}\right|=\left|C^{(\tau)} \cap X^{(\tau)}\right|=1$ by Corollary 2. 9. But the element of $X^{(\tau)}-A^{(\tau)}$ is contained in both $B^{(\tau)}$ and $C^{(\tau)}$, and $A^{(\tau)} \cap X^{(\tau)}$ contains at least one of $A^{(\tau)} \cap B^{(\tau)}$ or $A^{(\tau)} \cap C^{(\tau)}$. This is absurd. Thus $\left|A^{(\tau)} \cap X^{(\tau)}\right|=1$. Now let $k$ be the unique element of $A^{(\tau)}$ that is not contained in any of $X^{(\tau)}$ with $A \cap X=A \cap B$. Choose $\sigma \in \Sigma_{\{1, \ldots, n\}}$ so that $M^{\sigma}=A$ and $\{1, \cdots, m-1\}^{\sigma}=A \cap B$. Choose $\sigma^{\prime \prime} \in \Sigma_{\{1, \cdots, n\}}$ so that $\left(A^{(\tau)}\right)^{\sigma^{\prime \prime}}$ $=N$ and $k^{\sigma^{\prime \prime}}=m$. Let $\tau^{\prime}=\sigma \tau \sigma^{\prime \prime}$. Then $M^{(\tau)}=N$, and $N-\bigcup_{X \in, m} X^{(\tau)}=$ $\{m\}$.
We separate the next point of the proof as a sublemma.
Sublemma 2. 11. If $D \in \mathscr{Q}-\mathbb{Q}^{m}$ and $\left|N \cap D^{(\tau)}\right|=m-1$, then $m \in D^{(\tau)}$
Proof. Suppose $m \notin D^{(\tau)}$. Then $N \cap D^{(\tau)}=\{m+1, m+2, \cdots, n\}$. Choose $X \in \mathscr{Q}^{m}$ so that $|X \cap D|=m-1$. By Corollary 3. 9, $\left|X^{(\tau)} \cap D^{(\tau)}\right|=$ 1. But the element of $D^{(\tau)}-N$ is contained in $X^{\left(\tau^{\prime}\right)}$, and the element of $X^{(\tau)} \cap N$ is contained in $D^{(\tau)}$. This is a contradiction.

We now return to the proof of the lemma. We want to show that $\mid N \cap$ $Y^{(\tau)} \mid=m-1$ for all $Y \in \mathscr{Q}-\mathscr{Q}^{m}$. By way of contradiction, suppose there exists $Y \in \mathbb{Q}-\mathscr{Q}^{m}$ such that $\left|N \cap Y^{(\tau)}\right|=1$. Choose $D \in \mathscr{Q}-\mathbb{Q}^{m}$ so that $M$ $\cap Y=M \cap D=Y \cap D$. Since $\{Z \in \mathscr{P}:|N \cap Z|=1\}=\left\{X^{(\tau)}: X \in \mathscr{Q}^{m}\right\} \cup\{M\}$, $Y^{(\tau)}$ is forced to coincide with $M$ and $\left|N \cap D^{(\tau)}\right|$ cannot be equal to 1 .

Therefore $\left|N \cap D^{(\tau)}\right|=m-1$, and so $m \in D^{(\tau)}$ by the above sublemma. Also $\left|Y^{(\tau)} \cap D^{(\tau)}\right|=1$ by Corollary 2. 9. But both $m$ and the element of $D^{(\tau)}-N$ is contained in $Y^{(\tau)} \cap D^{(\tau)}$, which is absurd. Thus it is shown that $\left|Y^{(\tau)} \cap N\right|=m-1$ and $m \in Y^{(\tau)}$ for all $Y \in \mathbb{Q}-\mathbb{Q}^{m}$ and that $\left|X^{(\tau)} \cap N\right|=1$ and $m \notin X^{(\tau)}$ for all $X \in \mathbb{Q}^{m}$. Hence if we let $\sigma^{\prime}=\sigma^{\prime \prime}(0 m)$, where ( $0 m$ ) denotes the transposition of $\Sigma_{n+1}$ that permutes 0 and $m$, then the conditions of the lemma are satisfied.

Now let $\tau^{\prime}=\sigma \tau \sigma^{\prime}$ with $\sigma$ and $\sigma^{\prime}$ as in the lemma. Let $\Pi$ be the set of those subsets of $\mathbb{Q}$ the intersection of any two distinct elements of which has cardinality $m-1$, and $\Pi^{*}$ be the set of maximal elements of $\Pi$ under inclusion. Then
$\Pi^{*}=\left\{\mathscr{Q}^{i}: 1 \leqq j \leqq m\right\} \cup\left\{\mathscr{Q}_{j}: m+1 \leqq j \leqq n\right\}$.
On the other hand, $\lambda(X, \tau)=\lambda(M, \tau)$ for all $X$ by Lemma 2. 8, whence $\left|X^{(\tau)} \cap Y^{(\tau)}\right|=m-1$ for all $X, \quad Y \in \mathbb{Q}$ with $|X \cap Y|=m-1$. Therefore $\mathscr{H}^{(\tau)} \in \Pi^{*}$ for all $\mathscr{H} \in \Pi^{*}$. Hence there exist
$\pi \in \Sigma_{M}$ and $\rho \in \Sigma_{\{m+1, m+2 \cdots, n\}}$
such that

$$
\left(\mathbb{Q}^{k}\right)^{\tau^{\prime}}=\mathbb{Q}^{k^{\pi}} \text { for all } 1 \leqq k \leqq m
$$

and

$$
\left(\mathbb{Q}_{k}\right)^{r^{\prime}}=\mathbb{Q}_{k^{p}} \text { for all } m+1 \leqq k \leqq n .
$$

Thus if we let $\tau^{\prime \prime}=\tau^{\prime}(\pi \rho)^{-1}$, then

$$
\left(\sum_{j \in X} e_{j}\right)^{\tau^{\prime \prime}}=\lambda\left(M, \tau^{\prime}\right) \sum_{j \in Y} e_{X}
$$

for all $X \in \mathbb{Q}$ and for $X=M$. Since

$$
V=\left\langle\sum_{j \in X} e_{j}: X \in\{M\} \cup \mathscr{Q}\right\rangle,
$$

$\tau^{\prime \prime}=\lambda\left(M, \tau^{\prime}\right) I$. This also implies $\lambda\left(M, \tau^{\prime}\right)^{3}=1$, whence $\tau^{\prime \prime}=\sigma \tau \sigma^{\prime}(\pi \rho)^{-1} \in H$.
As is remarked immediately before LEMMA 2. 10, this completes the proof of Theorem 2 for odd $n$.

## 2. Proof of Theorem 2; $\mathbf{n}=$ even.

Throughout this section, we assume $n$ is even.
As is proved in Lemma 2.2.(i), there is no singular element. Therefore $\mathrm{Autg}_{n}$ is finite by [6, Theorem B]. We prove Theorem 2 by induction on $n$. We first settle the case $n=2$.

Lemma 3. 1. Ant $_{2}=\langle\omega I\rangle \times \Sigma_{3}$.
Proof. Since

$$
\begin{aligned}
& \left\{x \in V:\left\langle v: \theta_{2}(x, v, v)=0\right\rangle \neq V\right\} \\
& =\left\{\alpha\left((1 \pm \sqrt{3} i) \mathrm{e}_{1}+2 \mathrm{e}_{2}\right): \alpha \neq 0\right\},
\end{aligned}
$$

${ } u t \theta_{2}$ is isomorphic to a semiderect product of $\mathbf{Z}_{3} \times \mathbf{Z}_{3}$ by $\mathbf{Z}_{2}$. This proves the lemma.

We now state for completeness a theorem due to H . Bender [3], which is essential to our proof.

Theorem. Let $H$ be a subgroup of even order of a finite group $G$, and let $S$ be a Sylow 2-subgroup of $H$. Let $O(G)$ denote the maximal normal odd order subgroup of $G$. Assume that $N_{G}(S) \leqq H$, and $C_{G}(\boldsymbol{\tau}) \leqq H$ for all elements $\tau$ of $S$ of order 2. Then one of the following holds:
(i) $G=H$;
(ii) $S$ is isomorphic to a cyclic group or a generalized quaternion group, and so $S$ possesses a unique element of order 2 ; or
(iii) There exists a normal subgroup $L$ of $G$ containing $O(G)$ such that $|G / L|$ is odd, and $L / O(G)$ is isomorphic to one of $\operatorname{PSL}\left(2,2^{m}\right), S z\left(2^{2 m-1}\right)$ or $\operatorname{PSU}\left(3,2^{2 m} / 2^{m}\right), m \geqq 2$. Furthermore $H=O(G) N_{G}(S)$, and so, in particular, $O(G) S$ is normal in $H$.

Now let $G=A u t \theta_{n}$ and $H=\langle\omega I\rangle \times \Sigma_{n+1}$ with $n \geqq 4$. Assuming that Theorem 2 is proved for $n-2$, we shall show that $G$ and $H$ satisfy the assumptions of the above theorem.

LEMMA 3. 2. The subgroup
$C_{G}\left(e_{0}\right)=\left\{\sigma \in G: e_{0}{ }^{\sigma}=e_{0}\right\}$
is contained in $H$.
Proof. Let
$W=\left\langle x: \theta_{n}\left(e_{0}, e_{0}, x\right)=0\right\rangle=\left\langle e_{j}-e_{k}: 1 \leqq j, k \leqq n\right\rangle$. Since $C_{G}\left(e_{0}\right)$ stabilizes $W$, the restriction of $\theta$ to $W$ is $C_{G}\left(e_{0}\right)$-invariant, and so, in particular, is " isomorphic" to $\theta_{n-1}$ by Theorem 1, for $C_{G}\left(e_{0}\right) \geqq \sum_{\{1, \ldots, n\}}$ and the action of $\sum_{\{1, \ldots, n\}}$ on $W$ is natural. Since $C_{c_{G}\left(e_{0}\right)}(W)=C_{G}(V)=\langle I\rangle$, this means that $C_{G}\left(e_{0}\right)$ is isomorphic to a subgroup of $\operatorname{Aut\theta _{n-1}}$. Also note that an element $\sigma \in G$ such that $x^{\sigma}=\omega x$ for all $x \in W$ cannot belong to $C_{G}\left(e_{0}\right)$ - Hence if $n \geqq 6$, we conclude from the result of Section 2 that $C_{G}\left(e_{0}\right)$ is isomorphic to a subgroup of $\Sigma_{n}$. If $n=4$, let $f_{1}, f_{2}, f_{3}$ be elements of $W$ which correspond to the $f_{j}$ in Lemma 2. 2. Since $\theta_{4}\left(f_{j}, f_{j}, e_{0}\right) \neq 0$, each of the $\alpha_{j}$ in the description of $E$ in LEMMA 2. 2 must be equal to 1 or -1 . Hence by the remark following Lemma 2. 2, $C_{G}\left(e_{0}\right)$ is isomorphic to a subgroup of $\Sigma_{4}$ in this case as well. Thus $C_{G}\left(e_{0}\right)=C_{H}\left(e_{0}\right) \leqq H$ as desired.

Lemma 3. 3. $C_{G}((12)) \leqq H$, where (12) denotes the transposition which permutes 1 and 2.

Proof. Let

$$
U=\left\langle x \in V: x^{(12)}=x\right\rangle=\left\langle e_{1}+e_{2}, e_{0}-e_{j}: j \geqq 3\right\rangle .
$$

Let

$$
\begin{aligned}
& W=\left\langle x \in U: \theta_{n}\left(e_{1}-e_{2}, \quad e_{1}-e_{2}, x\right)=0\right\rangle \\
& \quad=\left\langle e_{0}-e_{j}: j \geqq 3\right\rangle .
\end{aligned}
$$

Since $\left\langle e_{1}-e_{2}\right\rangle=\left\langle x \in V: x^{(12)}=-x\right\rangle, C_{G}((12))$ stabilizes $W$. Hence an argument similar to the one used in Lemma 3. 2 with the induction hypothesis in place of the result of Section 2 shows that $C_{G}((12)) / C_{C_{G(12))}}(W)$ is isomorphic to a subgroup of $\mathbf{Z}_{3} \times \Sigma_{n+1}$. Thus it suffices to prove $C_{\left.C_{G}(12)\right)}(W)$ $=\langle(12)\rangle$.

Let $\sigma$ be an arbitrary element of $C_{C_{G(12))}}(W)$. Since $\sigma$ stabilizes $U$, we can write

$$
\left(e_{1}+e_{2}\right)^{\sigma}-\left(e_{1}+e_{2}\right)=\alpha\left(e_{1}+e_{2}\right)+\sum_{j \geq 3} \beta_{j}\left(e_{0}-e_{j}\right) .
$$

From

$$
\theta\left(\left(e_{1}+e_{2}\right)^{\sigma}-\left(e_{1}+e_{2}\right), e_{0}-e_{k}, e_{0}-e_{k}\right)=0
$$

we get

$$
\begin{equation*}
\sum_{\substack{j \neq 3 \\ j \neq k}} \beta_{j}=\frac{4 \alpha}{n+1}, \quad k \geqq 3 . \tag{2}
\end{equation*}
$$

If we regard (2) as a simultaneous equation in $\beta_{j}$, the determinant of the coefficients is $(n-3)(-1)^{n-3} \neq 0$. Thus $\beta_{3}=\beta_{4}=\cdots=\beta_{n}$. Since

$$
\Sigma_{j \geq 3}\left(e_{0}-e_{j}\right)=(n-1) e_{0}+\left(e_{1}+e_{2}\right)
$$

we have

$$
\left(e_{1}+e_{2}\right)^{\sigma}-\left(e_{1}+e_{2}\right)=\delta \gamma\left(e_{1}+e_{2}\right)+\gamma e_{0},
$$

where

$$
\left.\gamma=(n-1) \beta_{n}, \delta=(1+((n+1)(n-3) / 4))\right) / n-1
$$

Calculating in a similar manner with the roles of $e_{0}$ and $e_{3}$ exchanged, we get

$$
\left(e_{1}+e_{2}\right)^{\sigma}-\left(e_{1}+e_{2}\right)=\delta \gamma\left(e_{1}+e_{2}\right)+\gamma e_{3} .
$$

Therefore $\gamma=0$, whence $\left(e_{1}+e_{2}\right)^{\sigma}=e_{1}+e_{2}$. Since $\sigma$ stabilizes $\left\langle e_{1}-e_{2}\right\rangle$, we also get $\left(e_{1}-e_{2}\right)^{\sigma}= \pm\left(e_{1}-e_{2}\right)$ by calculating

$$
\theta_{n}\left(\left(e_{1}+e_{2}\right)^{\sigma},\left(e_{1}-e_{2}\right)^{\sigma},\left(e_{1}-e_{2}\right)^{\sigma}\right)
$$

Hence $\sigma \in\langle(12)\rangle$, proving the lemma.
LEMMA 3. 4. If $\tau$ is an element of order 2 of $H, C_{G}(\tau) \leqq H$.
Proof. By taking a suitable conjugate in $H$, we may assume $\tau=(12)(34) \cdots(2 k-1,2 k), k \leqq n / 2$.
Since $C_{G}(\boldsymbol{\tau})$ stabilizes
$W=\left\langle x \in V: x^{\tau}=x\right\rangle$,
$C_{G}(\tau)$ normalizes $P=C_{c_{G}(\tau)}(W) . \quad$ Since $e_{0} \in W, P \leqq H$ by Lemma 3. 2, and so

$$
P=\langle(2 j-1,2 j): 1 \leqq j \leqq k\rangle
$$

We observe that each of the elements of $P$ conjugate to (12) in $G L(V)$ is of
the form $(2 j-1,2 j)$, and hence is conjugate to (12) in $N_{H}(P)$. Consequently

$$
\left|N_{G}(P): C_{N_{G}(P)}((12))\right|=\left|N_{H}(P): C_{N_{H}(P)}((12))\right| .
$$

Since $C_{N(P)}((12)) \leqq H$ by LEMMA 3. 3, this means $N_{G}(P) \leqq H$. Thus $C_{G}(\tau) \leqq N_{G}(P) \leqq H$ as desired.

Now let $S$ be a Sylow 2 -subgroup of $H$. Let $k$ be the greatest integer satisfying $2^{k} \leqq n$. A routine calculation shows that $D_{k-1}(S)$, the $k$-th term of the derived series of $S$, is a cyclic subgroup of order 2 generated by an element $\sigma$ conjugate to
(12) (34) $\cdots\left(2^{k}-1,2^{k}\right)$.

Hence $N_{G}(S) \leqq C_{G}(\sigma) \leqq H$. This together with Lemma 3. 4 shows that $G$ and $H$ satisfy the assumptions of Bender's theorem. The cases (ii) and (iii) of Bender's theorem are ruled out because of the structure of $H$. Hence $G=H$. This completes the proof of Theorem 2 .

## References

[1] A. AdLER, On the automorphism group of a certain cubic threefold, Amer. J. Math. 100 (1978), 1275-1280.
[2] A. ADLER, On the automorphism groups of certain hypersurfaces, J. Algebra 72 (1981), 146-165.
[ 3 ] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involutionen genau einen Punkt festlasst, J. Algebra 17 (1971), 527-554.
[ 4 ] D. Frohart, A trilinear form for the third Janko group, J. Algebra 83 (1983), 349 -379.
[5] K. HARADA, On a commutative nonassociative algebra associated with a multiply transitive group, J. Fac. Sci. Univ. Tokyo, Sec 1A, 28-3 (1982), 843-849.
[6] H. SUZUKI, Automorphism groups of multilinear maps, Osaka J. Math. 20 (1983), 659-673.
[7] H. SUZUKI, Automorphism groups of $\boldsymbol{\Sigma}_{n+1}$-invariant trilinear mappings, to appear.
Yoshimi Egawa
Department of Applied Math.
Faculty of Science
Science University of Tokyo
Hiroshi Suzuki
Department of Math.
Osaka Kyoiku University

