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§ 1. Introduction

In the course of theoretical and experimental investigations for
confirming the Alder-Wainwright effect ([ 1], [2], and [23]), it has
become clear that Brownian motion with such an effect can be described by
an equation treated in G. Stokes and J. Boussinesq ([24], [3], and
[13]), whose equation with a random force—Stokes-Boussinesq-Langevin
equation—gives a precise description of the time evolution of Ornstein-
Uhlenbeck’s Brownian motion treated in A. Einstein and P. Langevin ([5],
and [25]).

In we have then introduced two kinds of random forces for Stokes-
Boussinesq-Langevin equation : one is a white noise and the other is a Kubo
noise (cf. (8.13) in [22]) (A precise definition will be given in § 6 of this
paper). And we have proved that the unique stationary solution for Stokes-
Boussinesq-Langevin equation with a white noise or a Kubo noise as a
random force has a qualitative nature of T-positivity and then satisfies an

Alder-Wainwright effect—a long-time behavior (o< t‘%) of velocity
autocorrelation function.  Next, as a generalization of Stokes-Boussinesq
-Langevin equation, we have derived two kinds of Langevin equations—a
first KMO-Langevin equation with a white noise as a random force and a
second KMO-Langevin equation with a Kubo noise as a random force—which
describe the time evolution of a real stationary Gaussian process with a
qualitative nature of T-positivity. Furthermore we have clarified a
mathematical stucture of the Kubo’s fluctuation-dissipation theorem in his
linear response theory in statistical physics ([8], [9], and [II]), by
proving a new type of fluctuation-dissipation theorem for the first KMO-
Langevin equation and the Kubo’s fluctuation-dissipation theorem for the
second KMO-Langevin equation.

- According to the so-called fluctuation-dissipation theorem in statistical
physics, we know ([6]) that, in a physical linear system taking a reciprocal
action with a microscopic and kinetic quantity which is itself doing a thermal
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motion, there exists a relation between the system function and the spectral
density of the physical system.

In performing a data-treatment through the experiment and measure-
ment for a physical system, a technological system, a statistical system, an
economical system, a biological system and so on, it seems to be true that
as its first step we can use only a correlation function or equivalently a
spectral measure which can be measured. At this step we do not know what
kind of equation describes the time evolution of the system concerned.
Therefore, it seems to be useful, important and moreover fundamental in
Kubo’s linear response theory that, for a stationary curve A with a measured
correlation function R as its covariance function, we construct such a linear
system that A flows out as an output and a function ye.. R becomes a
response function. Then we understand that the input in such a linear
system is a Kubo noise. That is, we have to define a Kubo noise as an input
in such a linear system and then derive an equation describing the time
evolution of A with the Kubo noise as a random force. The author thinks
that it is possible only after such a procedure that the Kubo’s fluctuation-
dissipation theorem in statistical physics has a physical meaning and a
mathematical embodyment.

According to the spirit stated above, we shall state a content of this
paper. Let R be any fixed correlation function. We define a holomorphic
function [R] on C* by

1.D [R](g):%f:e@mwdt.

In § 2 we shall recall Mori’s theory of generalized Brownian motion which is
applicable to a differentiable stationary curve A4 in a Hilbert space # with R
as its covariance function ([15]):

(A(s), A(t)),=R(s—1) (s, tER).
Under the following further conditions (1.2), (1.3)® and (1.4) :
1.2) R *0

(1.3 there exists a null set A, in R—{0} such that for any £ER—A,,

(1) Since the function [R] is holomorphic on C* with a positive real part, we can find from the

theory of Herglotz function that there exists li{r(l) [R] (&+1in) for almost all &€R.
i

Therefore, the essential part of condition (1.3) is that the li?}) [R] (i) exists. The
7

author would like to thank to the referee for pointing this fact to him.
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lifrol [R](E+im)=[R](&+10) exists

1.4 there exist positive constants ¢ and m such that
[[R](E)[=cA+]&I™ for any {&CT,

we shall in § 3 introduce a second KMO-Langevin data and then rewrite
Mori’s result in § 2 into such a form that we can prove Kubo’s fluctuation-
dissipation theorem for a non-differentiable stationary curve in a Hilbert
space with R as its covariance function (Theorem 3.1). We note that
Kubo’s first fluctuation-dissipation theorem, in particular, Einstein relation
does not hold for Mori’s memory kernel equation and moreover a random
force (called Mori noise) in Mori’s memory kernel equation does not satisfy
a condition of causality.

In § 4 we shall determine the function [R] under only conditions (1.2),
(1.3) and (1.4), by using Mori’s result in §2 through an approximation
procedure ((I'heorem 4.1 :

1

o«
(1.5 [R](@—m ﬁ_i§+leif101(—i§)Ke‘(§)

gel.

Here

1
K© =y g @

and >0, s&C— {0} and x is a Borel measure on R.

We call the triple(a, 8, x)the second KMO-Langevin data associated
with R which can be represented by the following formulae (Theorem 4. 2) :

RO
a= o
RO
R N VA ICET )
x(dl):];;(?Re{ ([R](A+i0))""}dA.

We will find that a kind of renormalization—an elimination of
occurrence of infinity minus infinity—is taken in the passing to the limit in the
proof of (1.5).

Through the relation (1.5), we shall in § 5 give a bijective correspond-
ence between the set % of correlation functions with conditions (1.2), (1.3)
and (1.4) and the set ¥ of second KMO-Langevin data (Theorem 5. 1).
Furthermore we shall characterize two subclasses &, (resp. &) of & such



166 Y. Okabe

that R has a spectral density (resp. R has a spectral density with finite
second moment) (Theorems and 5.3) We note that Theorem 5. 3 gives a
characterization of second KMO-Langevin data introduced in § 3.

From § 6 to § 8, we shall treat any correlation function R of &, and any
stationary curve A=(A(t); t&R) in a Hilbert space # with R as the
covariance function of A. By using a spectral representation of A :

A= [ e ™dE ) AW),

where (E(1); A€R) is a resolution of identity in %, we shall define a
Kubo noise /1=([(¢); ¢ =F(R)) as an # -valued stationary tempered
distribution by ’

A0 I =re qug(AX[R](A +i0) " dE (1) A(0).
/27

We shall show ((Theorem 6. 1) that if R belongs to L'(R), then
1.8 A= [RIOIGC+D)dt ($E 7R,

where (A(¢); =S (R)) is an g-valued stationary tempered distribution
defined by

(1.9 A(c;S)Eﬁz¢(t)A(t)dt:ﬂqu(/l)dE(A)A(O).

We understand that (1.8) gives such a linear system that A, I and xR
can be regarded as its output, input and response function, respectively.
Furthermore we shall represent a spectral density 4’; of the Kubo noise 7 in
terms of the second KMO-Langevin data («, 8, x) associated with R as
follows (Theorem 6. 3) :

110 47 = /= _Re(@—ig-+lim(— ) K.(§)
J2n 1 n

==, im J— A—&)2+7°

x(dL).

As a realization of the relation (1.5), we shall in § 7 derive an equation
describing the time evolution of A with the Kubo noise / as a random force
(Theorem 7.1) : as # -valued tempered distributions,

(1.1D A:—ﬂA—lifrol'ys*AJral.

Here y.(e >0) are tempered distributions defined by
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1 ~
YE_Z[KE'

We call equation (1.11) a second KMO-Langevin equation. We note
that it gives a generalization of the equation (8.27) in describing the
time evolution of stationary Gaussian process with T-positivity.

On the basis of the second KMO-Langevin equation (1.11) describing
the time evolution of a stationary curve A in a Hiblert space % with R as its
covariance function, we shall find that (1.5), (1.6) and (1.10) imply
Kubo’s fluctuation-dissipation theorem (Theorems 8.1, and 8.4). That
is, we can see that a complex mobility x of velocity A in a stationary state
described by the second KMO-Langevin equation (1.11) is given by

B 1
(1.12) u(@—ﬁ_ig“ifr&(—i;)lﬂ(é)

gel).

It then follows from (1.5), (1.6) and (1.10) that
(1) Kubo’s first fluctuation-dissipation theorem:

1 () :ﬁm [esrctrar (eeC

Einstein relation :

Di=lim [ e-mR () =KL
7100 /j’

i) Kubo’s second fluctuation-dissipation theorem :

1 /4 ,
Re<#<§+i0>>:R(O>A w (&) (a. e. §€ER),

where 4',, is a spectral density of W =al.

In the final section §9, we shall consider two typical examples:
Ornstein-Uhlenbeck’s Brownian motion and Mori’s generalized Brownian
motion. We shall find that the second KMO-Langevin equation (1.11)
describing the time evolution of Ornstein-Uhlenbeck’s Brownian motion is
equal to the usual Langevin equation and then obtain a relation between the
Mori noise and the Kubo noise appearing as random forces of Mori’s memory
kernel equation and the second KMO-Langevin equation describing the time
evolution of Mori’s generalized Brownian motion, respectively.

In a forthcoming paper, we shall give a representation theorem for the
matrix valued function [R] for the correlation matrix R of multi-
dimensional stationary process of general type.
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§ 2. Mori’s theory of generalized Brownian motion

Let & be a Hilbert space and L be a self-adjoint operator on # We
denote by (U (%) ; t&R) a one-parameter group of unitary operators whose
infinitesimal generator is equal to iL :

2.1) Ut)=e"

Furthermore we are given a vector A,&%#. Then we define a stationary
curve A=(A(t); teR) in # by

2.2) A=U) A,
and then a covariance function R, on R by
2.3) R,(t)=(A®), A0)),

where (s,*)# is an inner product in #
In this section we suppose the following conditions :

2.4 As+0

and

(2.5) Ae2(L).

Then we know that A(#) satisfies the following equation
2.6)  AD=iLA(t) (tR),

d
dt
We define a real number @ by

2.7 w=LLAW0), A0)x(AW), A0)F'=i" .A(O)RA(O)“I.

where /i(t)E A).

Let #, be the closed subspace generated by A(0) and %, be the
orthogonal complementary subspace of #; in # We denote by P, the
projection operator on #;. Then we define a linear operator L, in #, by

Liu=(1-FP)Lu (uc2(L)).
The following is fundamental in Mori’s theory.
Lemma 2.1 ([15]) L, is self-adjoint in #,.
Then we can define a stationary curve I,,=(I,,(¢); tER) in #, by

(2.8)

2.9 L,(O)=eT(1—P)A0)
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and then a covariance function ¢,, on R by

(2.10) ¢ (H= Uy (D), [, 0)2(AW0), A0

Now we can state Mori’s theory of generalized Brownian motion.
Concerning the covariance function R,, we have

Tueorem 2.1 ([15])
(i) For any tER

(2.11) léAu):z'a)RA<t>—fOt¢M<t—s>RA<s>ds.

(ii) For any E&Ct

1
—iw—i€+ fowe"%M(wd{

212 [ FR(Ddt=R,(0)

Furthermore, the equation of motion which describes the time evolution
of (A(t); teR) is given in

THEOREM 2.2 ([15]) For any tER
2.13)  AWD=i0 AW~ [ ¢y (t—)ASds+1, (D).

DeriniTiION 2.1 (i) We call w, ¢, and I,, a frequency, memory
function and Mori noise, respectively.

The equation (2.13) is said to be Mori’s memory kernel equation.
For future use we note

LemMma 2.2 If R, is a real valued function, then
(1) w=0
(ii) ¢y, is a real valued function.

Proor Since R,(t)=R,(H)=R,(—t) in R, (i) follows from (2.7).
By substituting &=in (#>0) in (2.17), we see that for any »>0 »n+
j; we""qSM(t)dt is real and so by the uniqueness of Laplace transform ¢,,(#)
=¢, () in (0,00). Therefore, we have (ii) by noting that by (t)=dy

(—t) in R since ¢,, is a non-negative definite function. Q. E. D)

§3. A second KMO-Langevin data (1) (regular case)

In this section we consider the same situation as § 2 and call it a regular
case. Since R, and ¢,, are continuous and non-negative definite functions on
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R, there exist two bounded Borel measures 4 and » on R such that
G.D Ry(O=[ e acan)

and

3.2 $uO= [ e Mxlan).

We define two functions [R,] and [¢,,] on C* by

1

3.9 RO =g [[FR(Ddt= [i71z aa)
and
B[] © =g, [[FuDdt=5 [yrtantan)

Besides conditions (2.4) and (2.5), we suppose the following con-
ditions (3.5)® and (3.6):

(3.5)  there exists a null set /1, in R—{0} such that for any £€R—/1,
Li?g[RA](é;-Hn)z [R,](&+4i0) exists

(3.6) there exist positive constants ¢ and m such that
IR ()2 c(A+[&]™ for any E€C,

By condition (3.5), we can define a constant D by
3.7 DzZn[RA](0+z’0):limfwe"”RA(t)dt.
710 Jo

It then follows from (3.3) that

LEmma 3.1

(i) D-hm(f o M(dl)—zf“zi T ()

By (2.12), (3.5) and (3.6), we have
LEMMA 3.2

(1) For any E€R—A, lifr01[¢M](§+i77)E[¢M](£+z'O) exists.

(2) See footnote (1).
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For any ¢€C*
_R,0) 1
(R == = =T 224,100
(iii)  For any EER—-A,

R0 1
(R0 == = e 2§, [CEF10) -

Immediately from (3.7) and Lemma 3.2 (iii), we have

LEmma 3.3
—itw+2rx[¢,](0+i0)=R,(0)D".
Next we define for each € >0 a function y, on R by

3.8) % (D= —gom(® [ e by (s

A direct calculation gives

LEmmA 3.4
(i) For each e>0 y.eL'(R).
(ii) For any E€CTUR and any >0

(_Z§->J; eiCt,)/E(t)dt:-/; ei(§+i8)t¢M(lL>dt—’/(). e_EtcﬁM(t)dt.
(iii) For any E€C*UR and any ¢ >0

ooit — 1
[Teywar= [ e

Then we shall show

LEmMma 3.5
(i) For any E€C™

[¢M](§>—[¢M](0+i0):(—l'@leifr.}?e(é'—ié)-

For any E€R—-A,
[¢M](5+i0)—[¢M](0+i0):(“if)leiflg?e(tf)-

Proor By (3.4), Lemma 3.2 (i) and (3.8), for any £&C",

[ ]1CE)— [y ] (0O+20)
:(Zn)‘lleifrol{(z'é—ke)fow(fote“?“)sds)e”qSM(z‘)dt}

171
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— il e * e+eds
() lim(—ig—e) f Oy () ds,
which implies (i). Similarly, we have, for any £&R—-4,,
[Du](E+70)—[,](0+20)
. o t .
= @x) " lim{ (ig) [T [ esdsre g, (Dat)
= (=) 2 lim [y, ($)ds
el0JO

which gives (ii). Q. E. D)
Now we define a positive constant « and a non-zero complex number 3
by

3.9 a=2al
2n

and
(3.100 B=R,(0)DL.

By Lemmas 3.2 (ii), 3.2 [Gii), 3.3, 3.4, 3.5, (3.9), (3.10) and the fact
that » (R) is finite, we have

THEOREM 3.1
(i) For any E€C*

_ a

1
. g 1 '
B (IOl [ e ey (L)
(ii) For any E€ER—A,

1
1

[RA]<§+Z'0>:/‘§—” ,
pig+ (=ilm [ ey ey (V)

By taking account of Definition 3. 1land Theorem 8.5 in [22], we shall
give

DeriNiTION 3.1 We call a triple (a, 8, x) a second KMO-Langevin
data associated with the covariance function R,.

RemARrk 3.1  After the study under a general setting in § 4, we shall in
§ 5 investigate the properties of the second KMO-Langevin data (a, 3, x)

(Theorem 5. 3).
Concerning the regularity of the measure », we shall show
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Lemma 3.6  For any é€R—-/,
A(O)

iiff(}fw;ﬁk(dﬂ Re([R,](&+110)7D).

Proor By (3.4), for any £=R and any ¢ >0,

(3.1D Lm}f(dl)

=ReQ2xn[¢, ] (&+1ie)).
On the other hand, by Lemma 3.2 (ii), we have
(3.12) —iw—i(&+ie)+2n[p,](E+ie)= A<O)[R 1(&+1ie)™!

and so

(3.13) Re(2z[d,](&+ie))= ASD ((R,](E+ie) ) —e.

Therefore, we have Lemma 3.6 by (3.5), (3.6), (3.11) and (3.13).
Q. E. D)

By virtue of Lemma 3.6, we can define a function Px on R by

(3.14) (Po)(&)= lelf%n f‘(,l—g)'ﬁk(d/l) for sER— A,
0 for £€/,.

Then we shall shall show
LemMma 3.7
(i) 0=BP)(E)=—F——

(P (0) —Be—ﬁ

(i) »(dA)= (P;c)(/l)dxl.

Proor (i) follows from (3.5), (3.6), Lemma 3.6 and (3.14). (ii)
follows from (3.7), (3.10), Lemma 3.6 and (3.14). Take any f€C3(R).
Since » is a bounded Borel measure, we have

Bl it g1m

. 1 3
615 lim [ FO [ gy (@) ds
= [ FQxan.
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On the other hand, it follows from (3.6), (3.11) and (3.13) that for any e
e0,D

3.16) | Jy e O =T A L a5 L

Therefore, by (3.14) and (3.16), we can apply Lebesgue’s convergence
theorem to obtain

. 1 &
@A lim [ F@ [ g () ds
= [ £ &) (P (&)ds.

Thus, follows from (3.15) and (3.17). Q. E. D)

REMARK 3.2  Because of a relation in Lemma 3.7 (ii), we see that the
second KMO-Langevin data (a, 3, x) can not be given independently one
another.

The following pays an important role when we derive a

second KMO-Langevin equation describing the time evolution of A4 = (At ;
tER).

LemMA 3.8 There exist positive constants ¢, and wy such that for any ¢
eC'UR

: 1 m
Sup | (—i6) [ sy (A S a L+ €],

Proor By Lemmas 3.2 (ii), 3.4 (ii) and 3.4 [(Giii), for any ¢&C™,

(3.18) (—z'é')fR(A_g._igu_l.e)x(dl)

Rélio)«[&]@wen*—<[RA]<Z'£>>‘”~

— it +

Therefore, by virtue of our condition (3.6), Lemma 3.8 follows from
(3.18). Q. E. D)

§4. A second KMO-Langevin data (2) (general case)

In this section we shall consider a stationary curve A=(A(¢); t<
R) in (2.2) with covariance function R, in (2.3) satisfying conditions
(2.4), (3.5) and (3.6) only. The difference between § 3 and § 4 is that we

do not suppose condition (2.5) in §2. For that reason we define for each
n& N a vector A, in &# by
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4.1 A= nfowe‘”‘U(t)A(O)dt.

It then follows from a general theory of semi-groups that

LEmma 4.1
(1) A.,+#0 (neN)
(i) A,€2(L) (nEN)

(i) lim A,=A(0) in 7

N—> 00

For each n& N we define a covariance function R, on R and a function
[R.] on C* by

(4.2)  R(O=(UDAn, A

and
43 (RO = [ FRDL

Immediately from Lemma 4.1 [(iii), we have

LEmMaA 4.2
(i) For any tER lim R,(t)=R,(t).
For any £<C* lim [R,](&)=[R4](&).

n—Cco

Now, by virtue of Lemmas 4.1 (i) and 4.1 (ii), we can apply
Theorem 2.1 [(ii )} to find that there exist real numbers w, (#EN) and
continuous and non-negative definite functions ¢, (#&N) such that for each
neN and any £C*

W [R]e=2D L

24 —iwn~i§'+fwe"¢‘qsn(t)dt
0

and so

4.5 —iwa—itt [TEg(Ddt="3 (R,

Concerning a relation between [R,] and [R,], we shall show
LemMA 4.3 For each nEN and any EC* with Im &+ n,
_ n_ L
[Ra)(©) =5y T Jp & " RaCdl
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Fut RO~ [emRy(dD) .
Proor By (2.3), (4.1) and (4.2), we see that for any tER
R =n fo Ce (Ut AW0), A)ads

and so for any £=C*

4.6)  [R](O :%j [rers [T [Tem R, (t4+s—vrderands

2

:%17_[ v/o‘e—nS( ’/()_e(i§—n)t(-£ en(t_T)RA(t—'_s_T)dT)dt)ds
n2
:'2—7Z(I+II),
where
I:’/;Ooe_ns<’/0.me(f§—n)t<[Oenr A<S+T>df>df>ds
and

0 oo t
II:rge—nS(ﬁ e(z’é‘—n)t(/(; Vo A<5+T)d7>df>ds.

Then we have

1
n—i€
1
n—i&

1 0 nr ® —nr
:m<f-f Ry(Ddr+ [ e ™R (r)dr)

1 —nlz
:m»/;e ! 'RA<T)dT.

On the other hand,

1 ® -ns ” it
4.8) M= [Teo( [ R, (s+ ) d)ds
1 © |— o= (ntio)e
_n—ié‘-/(;e Ry(0)—— 4,

n+1&
- 1 © e
~ G (e Er RO~ [Te R, (2 dm).

Therefore, it follows from (4.6), (4.7) and (4.8) that holds.
Q. E. D)

4.7 [=

/(;me’”s(f_ie“’ (s+1)dr)ds

_/Owe‘z”s( f_(;e”’ A(T)dz'+'£se"’ (D) du)ds
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In particular, we see from condition (3.5) and that

LemmA 4.4 For each nEN and any E€R— /1,
[Ra](§+i0)=1im [R](§+in)=
”

—_..___n__ _ i —n|t|
' [ e R (B dt +
n
n+1&
Furthermore we find from that
LemmA 4.5 For any E€ER-A,

lim [R.](£+i0)=[R,](&+i0).

n—>Cco

_+_

Qa[R,)(E+i0~ [ e ™R (DadD)).

On the other hand, we shall show

LemMA 4.6 For any T >0, there exists a positive number n, such that
for any neNN (ny, o)

[Rr](&E+10)+0 for any E€c(R—AON[—T, T].

Proor  We see from condition (3.6) and that for any &€
(R—A)N[—T, T] and any nEN

2nn
&l Tarzr| L
1 it n  —nt \
— —2—]/};8 HRAU)dt"FW’_/;e A
- n , 2nnc _ZRA<0> '
“2en+T) n+THA+T™ n

n

49 [RIG+i0| 25 R, (5+i0)]

Therefore, if we choose a positive number 7, such that for any nENN

n+T e
(ny, ), =< TF TR0y Ve see from (4.9) that holds.

Q. E. D)
By (3.5) and Lemma 4.4, we can define complex constants D and D,

(neEN) by
(4.10) D=2xz[R,](0+i0)

and
(411 Da=2z[Ra](0+i0).
It then follows from (3.5), (3.6) and that
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LEmMMmaA 4.7
(i) lim D,=D

n—>oo

Theve exists ny& N such that D,+0 for any n&NN[ny, ).

Similarly as (3.9) and (3.10), we define positive constants &, @, (nE
N) and 8, B, (RENN[ 1, 0)) by

_R,(0) _R.(0)
(4.12) a= o andan_/z_”
and

(4.13) B=R,(0O)D™ and 8,=R.(0)D,".
By Lemmas 4.2 (i) and 4.7, we have
LEMMmA 4.8

(i) lim an=a

n— o0

(ii) lim B,=p.

n—oo

Similarly as (3.4), we define functions [¢,] on C* (nE N) by

410 [61©=g [t

It then follows from (4.5), (4.11), Lemma 4.7 (ii) and (4.13) that
LEmMMA 4.9  For each nENN[no, 00)
(i) £1fr(} [fn] (in)=[n] (0+1:0) exists
(i) —fwat27x[ha] (0+10)=4,.

Furthermore we see from (4.5), Lemmas 4. 6,4.7 (i), (4.12), (4.13)
and that

LEmMmA 4.10
(i) For each nENN[ny, ) and any §&C*

B 18+ 2m ([ 0] (O — [ 8] 0+ 70D =7 ([R] (§)

(ii) For amy T >0, each nENN[n;, o) and any ESR—A,HN
[-T T]

(a) li?(} [bn] (E+in)=[dn] (&E+10) exists
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(b)  Bn— 16 +2n([$x] (§+i0)—[.] (0+10))
/—([R n] (§+i0))7%

Since ¢, (n€N) are continuous and non-negative definite functions on
R, there exist bounded Borel measures x, on R (€N) such that

4.15)  fu(t) = /;e’“xn(dll).

We define symmetric and bounded Borel measures »$ on R (nEN) by

(4.16) AV =x,(dAV) +x,(—dA).
Then we shall show

Lemma 4.11  For each nEN
(i) Re(gu(t) =y [, ™ (dr)

. 1 1 s _ an N1
G f, oo (d0) =—5-Re( ([R,] (D)) -

Proor  Since ¢.(t)=¢.(—1t) (t=R), we have (i).

&=1 into (4.5) and then noting (4.15), we have

. ® _ay N1
—iwut 1t [e (D dt == (R (D)

and so
© _an NN
@an [ ‘Re(n(D)dt =75 )]
On the other hand, we see from (i) that
418 [ eRe(u()dt=1 [ o ()
. 0 n R 1+ l

1 s

(teR)

By substituting

noting that »$ is a symmetric measure. Therefore, (ii) follows from

(4.17) and (4.18).
As a refinement of (4.18), we shall show

Lemma 4.12  For each n€ N and any ¢=C*

* et _1 §
fo e§R€<¢n(t>>dt_zi/I; A-oa+o*"

(S) (d/l)

Q. E. D)
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Proor By Lemma 4.11 (i), we have

Jy ¢ ReCgaCt))dt

_1 1
" 2iJrRA-E

____1_ 1 (s)
—42.(4 P (dA)+
1

1.1
44 -/1; <,1 —& 1+¢
which gives Lemma 4. 12. Q. E. D)

We define bounded Borel measures x . on [ —oo, ] by

xS (dA)

1
R /l—C

Dr Y (dL),

5 (—dd))

(4.19 &2 dV) =5 ((—c0, )N dL).
It then follows from (3.6), Lemmas 4.2 (ii), 4.8 (i) and 4. 11 that

(4.20) Su}\)r R ([—o0, 00]) <o

and so there exist a subsequence (#,; k€N) (lim n,=co) and a bounded
k—o00

Borel measure % on [ —o0, 0] such that

(4.2D) w—1lim x{’=#% on [—o0, 0].

k—oc0
We define a function g on RxC* by

w2 g =52 50T &

Then we note that

(4.23) g, eC((—m, ))

(4.20)  g(zo0, =5,

Therefore, by Lemma 4.12, (4.21), (4.23) and (4.24), we have
LemMma 4.13  For any E€C™

lim ['¢ Re(g,, (D)dt= [ g(d, ©2(d0).

We claim
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Lemma 4. 14

(i) #x({—00,00})=0

(i) #({0;)=0.

Proor By substituting é=1in (>0) into (4.5), we have, similarly
as (4.17),

(4.25) ﬁwe"’tRe(an(t))dt:‘/%Re{([Rn](in)'l}—

By Lemmas 4.2 (i), 4.8 (i), (4.22), (4.24), Lemma 4.13 and (4. 25),
we have ’

3] b si—o, 00}
f e{[R)(ip)~") —

and so

(4.26) lzj12x<da>+ #({—co, c0)

ZERe{(ﬂ[RA](iﬂ))_l}—
On the other hand, we note by (3.3) and (4.12) that
, lim 7[R,](in) =
(4.27) lim n[R4]Cin) Nz

Therefore, by letting 7 tend to infinity in (4.26), we have (i ).
Furthermore, it follows from (i) and (4.26) that for any >0

(4.28) ﬁ<{0}>sz7‘i‘;n Re{ ([R,](ip) 7).

By letting # tend to zero in (4.28), we see from (3.5) and (3.6) that (ii)
holds. Q. E. D)

Next we define two boundéd Bdrel measures " and %S on [0, ]
(neN) by

1
and
1
>(—) —
430 #B)= [ pre(—dD
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for any Borel set B of [0, x].
Then we note by (4.16) and (4.19) that

(43D &P {o)=x"({c0})=0
(4.32) “<n+>(B)+x,, >(B)S #(B) for any Borel set B of [0, ]
(4.33) xn({O}):—~<s)({ .

By (4.20), (4.32) and (4.33), we find that there exist a subsequence
(me; kEN) of (me; ke N) (lim m,=o) and two bounded Borel

k—00

measures x* and %~ on [0, o] such that

(4.34) ~1£1m =1 on [0, o]
(4.35) w-—lim £5;)=x" on [0, ]

k—c0

(4.36) ;imxmk({O}) exists.

We claim that

Lemma 4. 15

(i) lim %, ({0})=0

(i) :LT(’OO}):J?“’({OO} =
(i) %P0} =#2({0})=0.

Proor By (4.21), Lemma 4.14 (ii) and (4.33),

0

lim s, ({0)) < Tm #3(10))<—+x((0}) =0,

k—c0 k—oco - 2

which gives (i ). Take any bounded and non-negative continuous function

Jf on [—oo,c0]. It then follows from (4.21), (4.32), (4.34) and (4.35)
that

(4.37) _[_ ] fdr=lim fd“(5>> lim FAE

k—»oo [_ k-;oo [0 °°]

> lim¢( Jdie + f fdr,

k00 [0,00]

— A o+ A a0,

By taking a sequence of functions f, of C([ —o0,0]) such that 0<£,<1 and
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lim f,=x .}, We see from Lemma 4.14 and (4.37) that (ii) and (iii)

n—0

holds. Q. E. D)
Next we define bounded Borel measures %, (& N) and x on [ —o0, 0]
by

1
438 mB= [ padd)

and
(4.39) x(B)=#"([0,00]NB)+#2([0,0]N(—B))

for any Borel set B of [ —o0,c0].
Then we shall show

LEmMaA 4.16
w—1lim %, =% on [—oo, o],

k—o0

Proor Take any f&€C([—oo,c0]). We see from (4.29), (4.30) and
(4.38) that

oo fdz,,
= [ FOE A [ —f (0%, (10)
[0,00] [0,00]
and so by (4.34), (4.35), Lemma 4.15 and (4.39)

lim fdx,,

k=00 J[—c0,00]

= J F=0R@O+ [ fORED)
[0,00] [0,00]
= [ F@szan),

which gives Lemma 4. 16. Q. E. D)

Now we define a Borel measure » on R by
(4.40)  x(dA)=(1+2ADF(dL).
It then follows from Lemma 4.15 [Gii), (4.39) and (4. 40) that
(4.4D  x({10,)=0

and

(4.42) [ ppe(dl) <oo.
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We define functions C, , on C*UR (nEN, e <(0,0)) by

_ (=& 1
@4 G (D)= fR(A_C_Z.EXA_Z.e)xn(dA).

By virtue of (a) in Lemma 4.10 (ii), we have, similarly as Lemmas 3.4
(iii) and 3.5 (ii),

LEmMMA 4.17  For any T >0 and each n&NN[n,, ),
(i) [¢nJ(é‘)—[¢n](O+z’0)=1£ilrr01 G (O
for any E&C*
(i) [¢n](6+10)—[¢a] (0+i0)=lim C, (&)
for any EER-AHN[-T, T].
Next we shall show

LEmMa 4.18
(i) For any e<(0,1) and any EcC*UR

(— ZCJ 1
lim G, (&)= f(/l S Te e LACUDE

For any ¢C*U (R—/,)
hm(llm C,. .(§))=I1lim (hm C..(E).

el 0 nooo n—co |

Proor By Lemma 4.15 (ii), (4.39), Lemma 4.16 and (4.40), we
have (1). Since by (4.15) and (4. 44)

Co. e (&) =[n] (E+ie)—[n] (ie),
we find from Lemma 4. 100 (i ) that

(4.45) 22, (O == ([R] G+ie)) " = ([Ra] GGe)) ™ +iC.
By applying Lemmas 4.2 (ii) and 4.8 (i) to (4.45), we have

(4.46) 2z lim Cne(C)—T—IC[R 16 +ie) "= ([R,] (i)™t + €

n—oo

and then by our conditions (3.5) and (3.6)

(4.47) 2ﬂ11m(1Lr£10 CM(C))——?;[ ([R4](E+100) "= ([R,](0+:0))7",
+ €.
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On the other hand, by applying Lemmas and to (4.45) atfirst, we see
that

(4.48) 2z lim C, (&) 27%{([Rn](C+i0))‘1—([Rn](OJrz'O))‘l.
+ie
and then by using Lemmas 4.2 (ii), 4.5 and 4.8 (i), we have

(4.49) 2=x hm(hm C. e(C)):%r{([RA](C-i—iO))“—([RA] (0+20))7,

n—o0 &

+ €.
Therefore, (ii) follows from (4.47) and (4.49). (Q. E. D)
After the above investigation, we shall show the following important
LEMma 4.19

(i) For any £€C

1
[R,](O)=—5 .
pis+ (IOl fy g yr =iy (@)
(ii) For any E€R—A,

[R)E+i0)=—5 1 1
Ip—ig s (—iplm [ G
Proor (i) followsfrom Lemmas4.2 (ii), 4.8, 4.10 (i), 4.17 (i)
and 4.18. (ii) follows from Lemmas K5, 4.8, (i), 4.17 (ii) and
4.18. Q. E. D)
Next we shall investigate the regularity of the measure x. For that
purpose we define functions K, (e >0) on C*UR by

x(dL)

W K=, (A—@—ii)(l—ia"(d”

We note that for any £=&+ip<C*UR and any ¢ >0

W5D  (—OK© = [ G — o) (@D

1 A
f<(/1 Z;')+(e+77)2 e (dl)

E+7n B
+ ./;e<(,l—g)2+<£_|_77>2 1124—52)%(6”)‘

By our condition (3.6), Lemma 4.18 (i) and (4.46), we have
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LEMMA 4.20  There exist positive constants ¢, and m, such that for any
EeC*UR

Ogggll (—iOK (O <ad+|E]™

In particular we can see from (4.50) and Lemma 4. 20 that

LemMma 4.21
(i) K, is holomorphic in C* and continuous on C*UR.
For each € >0 therve exists a positive constant ¢, such that

K& | <c.A+|E|™) for any E€CTUR.

Furthermore it follows from Lemma 4. 18 and (4. 47) that

LEmMa 4. 22
(i) For any E€C*

lim(—i€) K, (&) ="%
(ii) For any & ER— AA

<[RA] (ENT=([RO0+20))7" + 4.

N‘Q

. . _ o | . 1 1
lelf%< ZE)KEG‘E)———WEI([RA](€+20)) ([R]O0+70)" + 4.
Next we shall show the following Lemma 4.23 carefully, which
corresponds to Lemma 3. 6, because x is not always bounded in our case.

- LEMMA 4. 23
. . & _a , N1
(i) llmﬁmx(dl)———\/ﬂRel([RA](0+10)) J

el

(ii) For any E€R— A,

limex(dl) —=Rel ([R,](§+i0)7"

el0

Proor By (4.15), Lemma 4.15 (ii), (4.39), Lemma 4.16 and
(4.40), we have for any ¢ >0

&€ RT &€

k—»OO

=lim [ e *'Re(¢,, (1))dt.

k—o0 Jo

Therefore, by Lemmas 4.2 (ii), 4.8 (i), (4.25) and (4.52), we have
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(4.53) _/;A—Zi—ezx(dl):%ﬁRe{([RA](z'e))“}—

By letting ¢ tend to zero in (4.53), we have (i). On the other hand, we

see from Lemma 4.22 (ii) that for any §€R—/,

(4.54) lim Re{(—#&)K,.(&))

¢TR€{<[ 4] (§+i00)7 = ([R,] (0+20))71).

By (4.51),
(4.55)  Re{(=#) K. (&)

= [ @ — [ b,
Therefore, (ii) follows from (i), (4.54) and (4.55).

Q. E. D)

In particular, we see from Lemmas 4. 20, 4.23 (i) and (4.55) that

LEmMma 4.24  There exists a positive constant c, such that for any & ER

1 P
- < l n,
g A e 1A-¢ 2‘*’82%(0%)_62(1 £

Concerning the continuity of », we shall show

LemMa 4.25  For any E€ER—-1,

A=6  d))=0.

lmdim [ e
Proor By Lemma 4.19 and (4.50), we have
(4.56) Li{r(}Cleifr(}(—i(§+i77)>Ke<£+i77))=1£iflg(—i€)Ke(§>
for any £€R—/,. Furthermore, by (4.51),
4.50) (—i(§+in)K.(E+in)=1+1+1IL,

where

1 & -

L= 'f<<a TG a—r g
A

/12—1-62)”(011)

-7, = §)2+77

and
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_ nt+e &
= [ G=prerer Tre (@

Since

A= A& A—g
A= FGgrer A-errp =t ig—prryy!

it follows from (4. 43) that

(4.58) lim [ =0.

elo0

By (4.43) and Lemma 4. 23, we see that

NN 7
lim III__/IQ<A_g>2+ﬂ2x(dA) llmfl e (dD)

and so

(4.59) lim(lim 111)—11mf(<l S x (L.

7l0 €10

On the other hand, by (4.51), we have

W60 (K& =7 [t r @)

&€
+./;e <<l—§)2+52_12+£2)"(d’1>'

Therefore, by (4.56), (4.57), (4.58), (4.59) and (4.60), we have

4. 25. Q. E. D)
By virtue of Lemma 4. 23, we can define a function Px on R by

(4.61) (Po)(&)= {151?01 nf(/l—@?x(dl) for EeR—/,
0 for £€/,.

Similarly as Lemma 3. 7, we shall show

LEmmA 4. 26

(1) 02Po)AM)<ceA+|A|™ (A ER)
(i) (Po@=RE

(i) »x(dA)=Px)(1)dA.

For that purpose we prepare
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LemMma 4.27  Let m be any Borvel measure on R such that

1
Jorrgm ) <eo.

Then for any f€C(R)
. 1 & _

Proor  We may assume that />0 and f€G(|1|<T) with some T &
(0,0). We divide

.6 [ IO [ G rram @)
—I,+1L,,

where

1
L= o rn oy gy @A m(dg)

and
=[x e O dmdg).

Since m((—=T—1, T+1))<co, we have

4.6 linL=[  F&mde.

On the other hand, we see that for any §eR—(—T—1, T+1) and any A €
(=T, T) |E§-A[=|&|—[2[=]|&|—T and so
1 £ £ 1
fow G ORI, SO e
) 1 ,
Since /I«,; . T+1Wm<d€: )< oo, we can apply Lebesgue’s convergence

theorem to get

(.60 limIl= [, F&mdg).

Therefore Lemma 4. 27 follows from (4.62), (4.63) and (4.64).
Q. E. D)
Proor orF LEmma 4.26 (1) follows from [Lemma 4.24 and (4.61).
follows from (4.10), (4.12), (4.13), Lemma 4.23 (i) and (4.61).
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Take any f€CG(R). By Lemma 4.24 and (4.61),

. 1 £
(4.65) 11{%/;f(l>(47u_—— (@§)dr= [ Q) (Pe)(@)dr.

§>2+82x
On the other hand, we find from Lemma 4.26 that the left-hand side of
(4.65) 1is equal to/ fA)x(dr), which gives [Giii). Q. E. D)

Next let 4 be a spectral measure of R,, that is, 4 is a bounded Borel
measure on R such that

(4.66) RA(t):fR e 4(dE).

A direct calculation gives

LEmma 4.28  For any >0 and £ <R,

1 7 _ ;
— a2 4 (@O =2 Re([R,] (& +im)).

Then we shall show

LEmMMA 4.29

+f —~’7—2x(d/1>
sup( R (A—§) tn 1 dé) <o,

n>0 2
it e B HIm =6 G e R (@)

Proor By Lemma 4. 28, we have

(4.67  sup [ |Re([R,](£+in))|dg<oo.
7>0 YR
On the other hand, we see from Lemma 4.19 (i) thatfor any ¢=&+ineC”

. Re(ﬁ—zC—Hlm(—zC}K <9
(4.68)  Re([Ra](62)= /2 |B— 2C+hm(—l§)K(§)|2

and moreover by (4.55), (4.61) and Lemma 4. 26 (ii),

(4.69)  Re(f—it+Hm(—i)K, () =n+ [ oy (@D

and



KMO-Langevin Equation and Fluctuation-Dissipation Theovem (1) 191

(4.70) Im(ﬁ—i§+lifr01(—ié)(Ke(C))ZImﬁ—E
A-& A
ﬁj;e<(/l—§)2+772 /12+772>K<d'1>'
Therefore Lemma 4. 29 follows from (4.67), (4.68), (4.69) and (4.70).
Q. E. D)

Finally, by collecting the results which we have investigated, we shall
show the following main

THeOREM 4.1  Let R, be any covariance function of the form (2.3)

satisfying conditions (2.4), (3.5) and (3.6). Then there exists a unique
triple (a, B, x) such that for any E€C*U (R—A))

. ]
(4.71)  [R](E+i0)=—%
J2r ) . 1
Bt (—iOlm [ s ey (A
Heve
(i) a>0
(ii) peC—{0)

(iii) x s a Bovel measure on R satisfying the following conditions (a),
(b), (c), (d), Ce), (f), (8) and (h):
(a) »x({0j)=0

(b) Lﬁx(dl)<oo

. 1 5 1
(C) lel{l;)l R;mk(d/{)—;Reﬁ

(d) there exist positive constants ¢, and m, such that for any E€C*U
(R—1p

Ogggll (=K |<aQ+ &™),

where

B 1
K©= [ a—e—ma—i

(e) for any E€CU (R—AN))

x(dA)

li?g( — 1)K, (&) exists

(f) for any E€R—,
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A—& A—¢& _
1,1?3(13?3 <(,1 LT (A_‘E)zﬂz)x(d/l))—o

(&) for any E€R—-,
A5 +lim(— ) K. (£)+0

(h)

7+ —’G——zxm)

7n>0 d£><OO
’77+f</1—§+—§)(<d/1>| +|Im,8 (‘;" »/‘((/1 .{;-')2-+— 5— E: 7 2>K<d/1>|

Proor  The existence of a triple (a, 8, ¥) satisfying relation (4.71)
with conditions (i), (ii) and follows from Lemma 4.19, (4.12),
(4.13), (4.42), (4.43), (4.61), Lemma 4.259 (ii), (4.50), Lemmas H4. 20,
4. 22, and 4. 28, Next we shall prove the uniqueness of such a triple
(@, B,x). By noting that 06/, and then substituting £=0 into (4.71) we
have

(4.72)  [R, ]<0+20>_¢Tﬁ

On the other hand, by substituting £=iz (>0) into (4.71) and then using
(M), (¢) and (e), we have

\/—2_

(4.73)  Rel([R,](in)7' ) =-— Re(ﬁ+77+11m77K (i)

fr
Lt f, o (@),

Dividing (4.73) by » and then letting # to infinity, we see that

_R,0)
- Viz

and so (4.72) and (4.74) determine a pair (a, ) uniquely. Finally, by
substituting §=&&R—/1, into (4.71) and then using (c) and (e), we find
that

(4.74)

W75 Jy gy () == Rel (R (5 +i0)) ' -

and so by (3.6), Lemma 4. 27 and (4.75)
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R, (0

.76 x(d5) =2V Re(([R,](5+i0))) ds,

which determines the measure » uniquely. Q. E. D)
By taking account of Definition 3. 1, we shall give

DeriNiTION 4.1  We call a triple (@, 8, x) determined uniquely
through relation (4.71) a second KMO-Langevin data associated with the
covariance function R,.

In particular, it follows from (4.72), (4.74) and (4.76) that

THEOREM 4.2 The second KMO-Langevin data (a, B8, x) associated
with the covariance function R, is given by the following formulae :

) g Ra®
) a="=

. R,(0)

Gi) A= R 100

i) (d5) =" Re( ([R,](§+i0)7 | de.

§5. A second KMO-Langevin data(3)

In the previous sections § 3 and § 4, we have considered a stationary
curve A=(A(¢); teR) in a Hilbert space and then introduced a second
KMO-Langevin data (a, 8, ») associated with its covariance function R,.
In this section, apart from stationary curves in Hilbert spaces, we shall give
a bijective correspondence between non-negative definite functions and
second KMO-Langevin data.

We define # and & by

(5.1) #={R: R-C,;
(i) RWO=*0
continuous and non-negative definite
(iii)® there exists a null set A=/ in R—{0} such that for any £R— A
li?g[R](E-f-ie) exists
(iv) there exist positive constants ¢ and m such that for any ¢€C*

I[RI(O)|=cd+ €™,
where [R](©)=o- [ &'R(Ddt)

(3) See footnote (1).
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and

(5.2) v={(a,B,x);
(i) a>0
e C—{0]
x 1s a Borel measure on R such that

(a) x({0})=0

(b) Jyyrpe(d)<eo

(e) lim [ 35— (d)=Re
(d) there exist positive constants ¢ and » such that

Ogggll (=K. (O |<cA+[§|™ for any {&C,

where

5.3 K©= [ gy @) €ECUR)

(e) there exists a null set A=A, 5 ,,in R—{0] such that

lifr(}(— 1)K, (&) exists for any £C*U (R—A)
(f) for any é€R—-A
A—¢ A-& _
i G e ¥ (@)=0
(g) forany E€ER—A

ﬁ“i£+1ifr01(—iE>Ke(§>¢0

(h) sup [ M, (§)dg <o,

where

5.4

U
o= T e |
7+ f e @ 1 m g6 [ A el

THEOREM 5. 1 There exists a bijective mapping @ from # and & such
that for any Re#®, @ (R)=(a, B, x) and £€C*U R—AN)
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a 1

V2T it lim(— i)

(5.5 [R](E= 1

RA—C—1e)(A—ie)

REMARK 5.1 Let RE# and (a, B8, x) €% such that O(R)=(a, 8, x).
Then we can choose null sets A, and A, g . such that Ax=Ac, 5 .-

x(dd)

Proor oF THEOREM 5.1

Let R be any element of #. We take a complex-valued stationary
process X =(X(t); t€R) on a probability space (Q, %, P) such that
EX())=0 and E(X(HX()=R(t—s) (¢ s€R). Then we define a
Hilbert space # and a one-parameter group of unitary operators {U(?¢); t
&R} by

(5.6)  #=the closed linear hull of {X (¢); t€R} in L*(Q, %, P)
and
(5.7 U)X (s)=X(s+1).

Since R satisfies conditions (2.4), (3.5) and (3.6) in the situation of § 4,
we can apply [Theorem 4. 1 to obtain a mapping @ from # into & satisfying
relation (5.5). By Lemmas and 4.7, we see that @ is injective. Next,
let (a,f,x) be any element of & We define a function % on C* by

(5.8) Z)(é'):ﬁ—ié’ﬂifr(}(—iC)Ke(C).

By conditions (b) and (c) in &, we see that for any {=&+ip<C*

(5.9 Re(ZE+in)=n+ [, = ghap @)

and

C oo e A-& A
In particular, by (5.9),
(511D 485 +0 for any ¢eC+.

Furthermore, it follows from conditions (b), (d) and (e) that
(5.12)  Z, is holomorphic on C*.

By (5.9), (5.11) and (5.12), we can get a holomorphic function %, on
C* such that
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_ 1
(513 h(O =

and
(5.14) Re(hy(&))>0.

Since Re(%,) is non-negative and harmonic on C*, there exists a Borel
measure 4(dA) on R such that for any ¢=¢&+ipeC

(5.15)  Relho(§+in) =5 [, o 4 (dL.

Furthermore we see from condition (h) in &, (5. 9, (5.10) and (5.15)
that for any >0

(5.16) 4B = [ Re(ho(&+in))dg<co.

Therefore, we can define a continuous and non-negative definite function R
on R by

(.17 R(H)= fR e 4(dE).

We shall show that Re.# and @(R)=(a, 8, x). By (4.60), conditions
(c) and (e) in & we note that for any E€R—/

(5.18) lim f mx(aﬂ) exists

el0 /R
and

. A .
(5.19) mecu 57 +£ —rp ) (L) exists.

It is clear that

(5,200 lim 7[R]Cin) _RS?)

We claim
. . a
(5.2 ILm 7 %(Zﬂ):/—z—ﬂ.

By (4.57) and (5.18), we see that for any >0

(5.22) lifrol(—i(in))Ke(z'n)
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1 A A 7
o lelfrol R</12+772 /12+82>x(dl>+f1?mx<dl>

—lim [ S —x(dl).

el0

By considering the following decomposition
A A
fR(AZ+ ey s S ACAY

(A A2
- fn<12+nz T (@O [, Gy e L),

we see from condition (b) in ¥ and (5.22) that

(5.23) lifrol(—i(iﬂ))Ke(iﬂ)

A A
= /1;(12+772_/12+1>k<d'1>+0(’7> as z7—oco.

Since

Il_l':‘rln 1I<ll
A+7% A%4+1 A2+72 A%+1'7 2 A%+T

we find from (5.23) that

(5.24) Hfr(}(-i(i”))KE(iﬂ):0<”> as 77—,

Therefore, (5.21) follows from (5.8), (5.13) and (5.24).
Next, by Lemma 4.28, (5.15) and (5.17), we have

(5.25) Re[R](&)=Re(h(&)) for any £€C".
In particular, it follows from (5.20), (5.21) and (5.25) that
(5.26) RO)=/27 a,

which implies that R satisfies condition (i) in #. Furthermore we can see
from (5.20), (5.21), (5.25) and (5.26) that

(5.27)  [R1(&)=h(&) for any §€CT,
which gives by condition (d) in % (5.8) and (5.13) that R satisfies
condition in 2.

By taking the same consideration as Lemma 4. 25, we note that it follows
from conditions (b), (e) and (f) that for any E€R—A

(5.28) lifrg(lifrg(—i(§+iﬂ)>K£(<§+ify)) zlifr(}.(—ié)Ke(éf).
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Therefore, by condition (g) in &, (5.8), (5.13), (5.27) and (5. 28), we
find that for any £€R— A

L« 1
](5+l77)—m ﬂ_ig+1£ifxg(—i§)Ke(§)’

(5.29) lim[R
710

which with (5.27) implies that R satisfies condition in & and relation
(5.5). Thus we have completed the proof of Theorem 5.1. (Q. E. D.)

REMARK 5.2 By (5.16), we note that condition (h) in & can be
replaced by

(h)’fRM,,(g)a’é is independent of 7>0.
Remark 5.3 By (56.9), (5.10), (5.13) and (5.27), we note

(5.30) Re([R](c‘3+i77))=7%M,,(5> for any §=&+ iy C.

ReEMARKk 5.4 The element of # can not always have its spectral
density. Such an example is given as follows. We consider the non-
negative definite function R defined by

(5.31) R(t)=01e "' +0,e 7 (teR),

where 0,>0, 0,>0, >0 and ,,&R—{0}. It can be seen that the spectral
measure 4 of R is given by

1 ho
x pi+&

Furthermore we see that for any {=&+ipC*

(5.32) 4(dé) =— 575348 + 020 ,,,(d&).

o 02 y
27: 1'7 +n— l";" n—1(&—p)
Therefore we find that R belongs to the set % by choosing a null set A,={p.].

Then it can be seen from [Theorem 4. 2 that the second KMO-Langevin data
(a, B, x) associated with R is given by

(56.33) [R](©)=

_ 0110
a -
(5.3 |8 —<61+<fz><—— Gﬁl
_ 10'1<0‘1+0'2> (&—p)*
x(dé)= - {(61+o-2)§—pgo‘1}2+(P;O‘z)zdg'
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By taking account of Remark 5.4, we define a subclass %, of %
(5.36) #=={R&.%#; R has a spectral density;.
Then we shall show |

THEOREM 5.2 O(R,) = Z,,
where

(5.3D  Z={la, B 1EZL;
(i) [ M, &)de= [ lim M.(§)d5 for any 7>0}.

Proor Let R be any element of %, and 4’ be the spectral density of R.
We put @(R)=(a, B, x). By [Lemma 4.28,

1 7 , _ )
(5.37) —;flm_azﬂza (1)dA =2 Re([R](E+in)).

By letting # tend to zero, we have
(5.38) 4'(&)=2Re([R](&+10)) : a. e. EER-A,.
Therefore, we see from (5.37) and (5.38) that for any >0

5.3) [ Re([R](£+in))dg= [ Re([R1(5+i0))d,

which with (5.30) implies that (i) holds and so the triple («, 8, x)
belongs to %,.

Conversely, let (a, 8, x) be any element of &,. We put @~ (a, 8, x)=
R and denote by 4 the spectral measure of R. We define a bounded Borel
measure m on R by

(5.40) m(d&)=2 Re([R](&+10))dé.
By (5.30) and condition (i) in &,, we see that for any >0

(5.41) fRRe([R](c‘erin))d«E:/;leim Re([R](&+ie))dE.

Since Re([R](&+in))=0 for any {=&+ineC”, we can apply Lebesgue’s
convergence theorem to obtain that for any bounded measurable function f
on R

5.4 lim [ F@Re(RIE+ie)ds= [ f(©Re([RI(E+i0)dE:
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In particular, we see from (5.40) and (5.42) that for any €=&+ imeC*

1 n o1 7
(5.43) 7];(1_‘5)24_”27”(51/1)—2 lelfr(}—/l;(l—g)z“}'?]z

Furthermore, we can see from Lemma 4. 29 that for any ¢=&+ipeC*

Re([R](A +ie))dA.

(5.44) 211mf(A e + Re([R](A +ie))dA

&€

= lim [ & =gyt 4@

— ha= g,

Therefore, by Lemma 4. 27, (5.43) and (5. 44), we see that 4 (dA)=m(dA),
which with (5.40) implies that R €.%,. (Q.E.D)
Finally, we shall give a characterization of the second KMO-Langevin

data in a regular case introduced in §3. For that purpose we define a
subclass .#, of .#Z, by

(5.45) #.,={R&.%; R has a spectral density with finite second moment | .

Then we shall show

THEOREM 5.3 @ (2)=9,,

where
(5.46) glz{(a” ﬁ’ x);
(i) a>0
G seC-
(ii1) x is a Borel measure on R such that
(a) »x({0})=0
(b)) x(R)<oo
. & .
(c) il?g’/;zmk(dll)—Reﬁ

(d) there exist positive constants ¢ and m such that
Oiugll(—iCKe(C)lSCU‘HC!"’) Jor any §EC*

(€)' there exists a null set A=A, , ., in R—{0}such that
for any EER—-AN

D 11m—f a—agﬁx(dw (Hx)(&) exists

e|l0

® 11n1—f</1——5T—2x(d/l) (Px)(&) exists

e|l0TT
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(g8) for any EER—A
x(Px)(&)+i(ImB—&—n((Hx)(&)— (Hr)(0)))+0

() f M@ de= [ limM,&)dg for any 7>0

(i) f () (&) 2+ | (Hx) () [ (Pre) (&)
r |2 (P) (&) *+ | ImB—&—n ((Hx) (&) — (Hx) (0))[?

dé<oo},

Proor Let R be any element of %#,. Similarly as in the proof of
Theorem 5.1, we take a stationary curve X =(X (¢); t&ER) in a Hilbert
space &# and a one-parameter group of unitary operators (U(t); tER)
such that (X(s), X(t)»=R(t—s) and U)X (s)=X(s+1t) (s, tER).
We can see from the condition . #€ %, that X (0) belongs to2 (L), where iL
is an infinitesimal generator of (U(t); tER). Therefore we are in the
same situation as §2 and §3. We put ®(R)=(a, 8, x). It then follows
from Theorems and 5.1 that the triple (a, 8, x¥) is equal to the second
KMO-Langevin data in Definition 3.1. In particular, we find from (3.2)
that » (R) <oo, that is, (b)” holds.

Next we shall show (e)’. Since x (R) <co, we note from (4.51) that
for any £C*

1
l_kxﬂﬂ)

. . 1 :
(5.4 (K (H)=—1 _/I;mk(dl>+l'/l;
By (3.4) and Lemma 3.2 (i), we see that

. A .
(5.48)  lim [ oo (dh)exists.

Therefore, it folows from condition (e) in &, (5.47) and (5.48) that
condition (e)’ in & holds. We note that (f) holds automatically under
condition (b)’. Furthermore, we can see from (c), (e)” and (5.44) that
(g)’ in ¥, is equivalent to (g) in &. Since it follows from [Lemma 4. 28 that

/77

a

(5.49)  lim M,()="""Re([R)(§+iD)EL/(Rp),

we note that (h) in & is automatically included in (i) in & Finally, by
Theorem 4.2 ((iii) and (5. 38), we have

R0
(2x)?

(5.50) x(dA)= Iﬁ—il-Hi{rOl(—iA)Ke(l)IZA'(A)dA.

Since » (R) <o and j;e [A|24(d1) <o, we find from (5.50) that
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5.5 [ [lim(—)K,)|*4’ (A)dh<o.
RelO

Therefore, by using (5.38) again, we can see from (5.47), (¢) and (e)’
that (5.51) is equivalent to (j). Thus we have proved that @(R)=
(a, B, x) belongs to #,.

Conversely, let (a,f8,x) be any element of &% and put R=0!
((a, B, x)). From the consideration above, Theorems 5.1 andb. 2 yield that
R belongs to .#,. Furhtermore, since () implies (5.51), we can see from

(b)” and (5.50) that fR [A|?4" (A)dA <co, which gives that R belongs to
R (Q.E.D)
§ 6. A Kubo noise

Let R be any fixed element of #,. In the sequel, we shall consider any
stationary curve A=(A(t); tER) in a Hilbert space # such that

6.1) (ACs), A(t)),=R(s—1) (s, tER)
and
(6.2) U()A(s)=A(t+s) (s, teR),

where (U (t); t&R) is a one-parameter group of unitary operators on #.
By Stone’s theorem, we have a resolution of identity (E(1); 1 €R)
such that

6.3 U= [emdEQ) (t€R).
Then it follows from (6.2) and (6.3) that
6.4) A= fRe*"t‘*dEmA(m (tER).

Therefore, by defining a bounded Borel measure 4, on R by
(6.5) 4,(dA)=d(EA)A0), A0)),,

we see that 4, is a spectral measure of R, that is,

6.6) R(t)= fRe—f“AAwA) (teR).

Since |[A()| »</R() (t&R), we can define for each ¢ € (R) an
element A(¢) of # by

6.7 A(qb)szcﬁ(t)/l(t)dt.
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By (6.4), we note that

6.8  Ap= [ FAOEQAW0) es®).

It is easy to see that
ProprosiTION 6. 1

(i) There exists a positive constant cs such that
IA()].<cssup| gD| ($ €7(R)).

For any ¢; e7R) and e, C (j=1,2)
A(aldh+Clz¢2>:a1A<¢1>+azA<¢2>-
For any ¢, y€7(R)

(A), A, = [ BTN 4,430,
By virtue of conditions and in %, we can define for each
element ¢ € (R) an element I(¢) of # by

6.9 1$)=—p [ FOUARIA+i0))" dEQAU).

Since RE€.%,, we find that 4 ,(A,)=0and so (6.9) is well-defined. It then
is easy to see that

PROPOSITION 6. 2
(i) There exist positive constants ¢, and my such that

()= csup {A+[2[™) S|} ($ €7 R)).

For any ¢; e (R) and a; €C(G=1,2),
[<al¢1+dz¢2> :all(¢1>+6121<¢2>-
For any ¢, v €7 (R),

I($), 1) ,= [ FAOFN) 4,(a).

Herve A; is a Borel measure on R such that
(6.10)  4,(dA) =5 |[RIA+i0)|* 4,(d0).

Following [7], by Propositions 6.1 and 6.2, we can give

DerFINITION 6.1 (i) We call (A(¢); ¢ 7(R)) an # -valued sta-
tionary tempered distribution corresponding to the stationary curve A=
(A(t); teR).
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Wecall I=(I(¢); ¢ =Z(R)) an # -valued stationary tempered
distribution associated with the stationary curve A=(A(¢) ; tER) and then
4, its spectral measure.

Concerning a relation between two stationary tempered distributions
above, we shall show

THEOREM 6.1 (i) We suppose that there exist positive comstants cs
and m, such that

6.1 [[R](OI<eA+[E]™ &ech.
Then we have

]' 1 ® —et
6.12)  A($)="5 E?Jﬁe R(OI($(o+D)dt (7R

(ii) If ReL'(R), then
1
6.13) A =5 [ROIGC+D)dt ($EF®R).

Proor Since
(6.14) [R]<.+Z.E>:<X(O,oo)e_5|.’R)~ (8>0>,

it follows from (6.9) and (6.14) that for any ¢ >0

[R](A+1ie)
[R](A+1:0)

By condition (iv) in .# and further assumption (6.11), there exist positive
constants ¢; and s such that for any € >0

[R](A +1ie)
[R](A+10)
Therefore, (6.12) holds from (6.15) and (6.16). Next we suppose that R
eL'. Then, since

6.1  [R]C+i0)=(x 0 R,

we see that (6.15) holds for ¢ =0, that is, (6.13) holds. (Q.E.D.)

REMARK 6.1 If R€L!, then we find that the spectral measure 4 of R
is given by 2 Re([R](1 +:0))dA and so R belongs to the set.%,.

By [Theorem 6. 1, we find that there exists a linear black box such that
stationary tempered distributions (I(¢); ¢ €FR)), (A(P); dEFR))
and a function x ., R can be regarded as an input, an output and a
response function, respectively. In Kubo’s linear response theory ([8],[9],

1 (e . e
(6.15) Efoe R(OI($( +t))dt—fR¢(A) dE (L) A0).

6.16) | [<c (1+]A2]™) (LER).
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and [I1]), it seems to the author that it is fundamental to construct
such a linear black box. For that reason, we shall give

DerINITION 6.2  The stationary tempered distribution /=(/ () ; ¢ E
F(R)) is said to be a Kubo noise associated with the stationary curve A=
(A(t) ; teR).

Next we shall represent the spectral measure 4; of the Kubo noise 7 in
terms of the second KMO-Langevin data (a, 8, x)(=@®(R)). By Theorem
5.1 and Proposition 6.2 ((iii)], we have

THEOREM 6. 2
6.18)  4,(dE)= |- (F—iE+lim(—i§)K.(§))]7 4,(d8).

Here

619 KG&)= [ a—s—mso—m @ (£€R).

€

Furthermore we shall show

THEOREM 6. 3

() 4:0d) =2 LRe(g—ig+1lim(— i) K, (&) dg
T o el0
4:(d5) =27 Py ().
Here
1 1 7
(6.20) (P (§)=lim [ — = Fr o (dh) (6 €R-1,).

Proor By (5.38) and (6.10), we see that

62D 4,(df)=—Re(([RI(§+i0)d§

andso (i) followsfrom Theorem5.1and (6.21). By noting (5.8) and
(5.9), we find that (ii) follows from (). (Q.E.D)
§7. A second KMO-Langevin equation

Under the same situation as § 6, we shall derive an equation describing
the time evolution of A=(A(t) ; tER).
As a refinement of Lemma 4. 21, we shall show
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LemMma 7.1  For each € >0
(i) K, EC“’(R)

Iang l=c,, . A+1&)) (mEN*=NU{0}, £ER),
where c,, .= m! (e:,;}l) Aziezx(dll).

Proor Since

1 . A—ie 1
(7.D I(lng_z'e>(,1_ie)l—‘A—g—iellz-l-ezs
A—&—ie|+|&] 1 lfi 1
= [A—&—we| A’+e = e Aitet’

the estimate (ii) for m=0 holds. Let m be any element of M.

note that

8"’< 1 - m!
OE™ (A —&—ie)(A—ie) (A—&—ie)™ (A —1e)

and so similarly as (7.1)

om 1 I‘EI\ 1

laé-m (/‘{ é- ZS)(A >>{—m'< m+1//12_+_€2‘

Then we

Therefore, we can exchange the order of integration and differentiation to

obtain Lemma 7. 1.

(Q.E.D.)

By virtue of Lemma 7.1, we can define for each ¢>0 an #-valued

AN
tempered distribution K. A by

/\~ ™~ A -~ A,
(7.2) K.A(P)=(KA($)=A(K.$).

By (6.8) and (7.2), we have
LEmMMA 7.2  For each € >0 and any ¢ €« (R)

/\~ PS
KA = [ K.(&)(—iE)$&)dE () A,

On the other hand, by using Lemma 7.1 again, we can define for each

e >0 a tempered distribution y, €9’ (R) by

1 =
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We note that for each ¢ >0, any ¢ «¥(R) and any t<R
AT NGEIACIED)

P

—ZZ(KEQS) ().

Since we see from Lemma 7.1 that KJEY(R), it follows from (7.4) that
for each £ >0 and any ¢ € ¥ (R)

(7.5  y.rpes®R.

Therefore we can define for each € >0 an #-valued tempered distribution
AxYe by

(7.6) (A ($)=(Ar (72O
=Ay.*$) ).

By (6.8), (7.4) and (7.6), we have
LEmMA 7.3  For each € >0 and any ¢ €7 (R)
(Awv) (@)= [ K& (—i8)F(E)AE AN =(A7.)($).

By taking account of Lemma 7.2, (7.3) and[Lemma 7. 3| it is reasonable
to give
DerFINITION 7.1  We define for each >0 a stationary tempered

distribution 7.*A by
. N . .
(77) ’Ve*AEKeA:A*'ye:A*’ye

Now we shall show

THEOREM 7.1  As & -valued tempered distributions,
(7.8) A= —~pA~lim YerA+al.
Proor Let ¢ be any fixed element of #(R). By (6.8), we have
1.9 A= [ (~i)(EAEEAWD
:fR (—i&)[R)(E+i0) (&) ([R](&+10)"'dE (&) AD).

Furthermore it follows from (5.5) in Theorem 5.1 that for any £ €R— /A,
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(7100 (—i)[R](§+i0) =75 — B[R] (§ +i0)

—leifl(}((—iE)Ke (ED[R](&+1i0).

By substituting (7.10) into (7.9) and then noting (6.8) and (6.9), we
have

(71D AB)=—T= I ($)~BA)— [ lim(— i) K. (£ S dE (§)AW).

On the other hand, by condition (d) in &, we can apply Lebesgue’s
convergence theorem to obtain

712 [ lm(—i§) K.(§)FEAEE) AW
=s—lim [ (—i&) K.(£)$&dE$ A).

Therefore, we see from Lemma 7.2, (7.7), (7.11) and (7.12) that Theorem
7. 11 holds. Q.E.D)
We call equation (7.8) a second KMO-Langevin equation.

§ 8. Fluctuation-Dissipation Theorem

According to the so-called fluctuation-dissipation theorem in statistical
physics, we know ([6]) that in a physical linear system taking a reciprocal
action with a microscopic and kinetic quantity which is itself doing a thermal
motion, there exists a relation between the system function and the spectral
density of the physical system.

Let R be any given element of %, and then A=(A(t); tR) be any
stationary curve in a Hilbert space # such that

@®.1 (A, AD),=R(s—1) (s, tER).

We regard the stationary curve A as a physical system stated above.
Let I=(I(¢);pE2(R)) be the Kubo noise associated with A defined
by (6.9). We have proved in [Theorem 6. 1 that if R<L'(R), then

8.2) A= [RIDIG -+ D) (beF®)).

Therefore we find that this linear relation (8.2) gives a physical linear
system where / and A can be regarded as an input and an output of the
system with a function xR as its response function, respectively. We
note that the term xo . in the response function x .,R comes from a
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causality.
Furthermore we have proved in Theorem 7.1 that the time evolution of
A is governed by the following second KMO-Langevin equation :

(8.3) A:—ﬁA—li{%&e*Awl.

Here the triple (a, 8, x) is the second KMO-Langevin data associated with
R and then yE:%zK(e_{/(R)’) and Ke(g):L(l_g_ii)<l_i£>x(dl).
When we regard a first term with a second term and then a third term in the
right-hand side of the second KMO-Langevin equation (8.3) as a systematic
part and a fluctuating part, respectively, we see that a complex mobility
(resp. a complex admittance in general) u of velocity (resp. current in
general) in a stationary state described by the second KMO-Langevin
equation (8.3) is given by

B 1
u(é‘)—ﬁ_l-é-ﬂi{r;(—i@l(e(é')

8.4 Geln.

It then follows from (3.3), Theorems 4.1 (i) and 5.1 that

THEOREM 8.1
(8.5) )75¢9) :%0) A 'R (H)dt (EeCH).

This is the first fluctuation-dissipation theorem in Kubo’s linear

response theory ([8],[9],[10] and [11]). Furthermore it follows from
(3.7) and [Theorem 4.1 (ii) that

THEOREM 8. 2
R0

(8 . 6) D :—ﬁ—,

where
8.D  D=lim OZ—vaa)dt.

This is the Einstein relation which implies that the fluctuation power D
of A is in a reciprocal proportion to the first complex friction coefficient g
in the second KMO-Langevin equation (8. 3).

ReEMARK 8.1 The Einstein relation (8.6) follows immediately from the
first fluctuation-dissipation theorem (8.5), since
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(8.8) ﬁzlifr(}u(iﬂ).

REMARK 8.2 We note that such an Einstein relation as (8.6) does not
hold for Mori’s memory kernel equation (2.13).

Furthermore, as a relation between the complex mobility x# and the
spectral density 4’, of R, we see from (8.5)(c.f. (5.40)) that

THEOREM 8.3

(8.9 ReGu(§+i0) =570 4'4(8) (a.c. £€R).

This is equivalent to the first fluctuation-dissipation theorem (8.5) as
‘was proved in Theorem 5. 1.
Next we define a stationary tempered distribution W by

(8.10) W =al,

which is regarded as a fluctuation part in the second KMO-Langevin equation
(8.3). Corresponding to formula (8.9), we see from Theorems .1 (i),
6.3 (i), (8.4) and (8.10) that

THEOREM 8. 4

8.1)  Re(— 2
y7;

(§+z’0)> R(()) 4’y (&) (a.e. E€R),

wheve 4, 1s the spectral density of W.

ReEMARK 8.3 It follows from Theorem 6.3 (ii) that

1 _
8.12)  Rel gy lefa——g)—“x(du

This formula (8.11) is the second fluctuation-dissipation theorem in
Kubo’s linear response theory ([8],[9], and [I1I].

§9. Examples

In this final section, we shall consider two examples: one is Ornstein-
Uhlenbeck’s Brownian motion and the other is Mori’s generalized Brownian
motion.

ExampLE 9.1 Let X=(X({); t&R) be an Ornstein-Uhlenbeck’s
Brownian motion governed by the following [a,, 5, 0]-Langevin equation

9.D dX (t)=—pX (t)dt+aydB (1) (teR).

Here a,>0, B,>0and (B(t); tER) is a one-dimensional Brownian motion.
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Then we find that the covariance function R=R, 4, is given by
as gt

9.2) R(t)=55¢" (teR).
230

In particular we have

2

9.3 RO=22

2By
Furthermore we see from (9.2) and (9.3) that
RO 1

9.0 [R]©= (el

27 ﬁo—ig
and so R belongs to .%,.

Let (a, B, x) be the second KMO-Langevin data associated with R.
Then it follows from [Theorem 4.2, (9.2) and (9.3) that

I A 2()
(9.6) B =P
and

9.7 x<d§>:§9dg.

By a residue theorem and (9.7), we see that for any ¢ >0 and any &
C* with 0<Im &<e

1 1 1

(9.8) Ke(@:ZﬁOZZnifR z—C—ie z—1ie dz
1 1

(C+ie)—ie+<i£)—§_i5>

:2ﬁoi(
=0

and so

9.9 K. (&)=0 for any & >0 and any £<R.
In particular, by (7.3) and (9.9), we have
(9.10) v.=0 for any & >0.

Next we shall calculate the Kubo noise I. By (6.8), (6.9), (9.4) and
(9.5), we see that for any ¢ € ¥(R)
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(9.1D 1(¢)
=2 (8 [ BOAES A0~ [ (&) iE)AEEAD)

_ V2=

2z
“R(0)

and so by (9.5)

9.12)  al($)=aB(d).

Therefore, we find that the second KMO-Langevin equation (8.3) for X is
equal to [a, B, 0]-Langevin equation (9.1).

a’oB(QS)

ExampLE 9.2 Let us consider a stationary curve A=(A(¢); tER) in
a Hilbert space % treated in §2 and §3. Here we suppose that the
covariance function R of A belongs to .%#,. Then, by Theorems and
7.1, we have two kinds of equations describing the time evolution of A:
Mori’s memory kernel equation

9.13)  AD=iwAD—[ ¢y (t—DA®ds+1,() (tER)

and
A second KMO-Langevin equation

9.14) Alp)= —ﬂA(qb)—lei{lg(;’e*z‘l)(qs)-l-alx((ﬁ) (peFR).

Here w, ¢, and I, are the frequency, memory kernel and Mori noise,

respectively, and then (a, B, x) is the second KMO-Langevin data associ-
ated with R and I is the Kubo noise.

ProrosiTiON 9. 1
(1) wo=—Um g+=(Hx)(0))

u(D)= [ e~ x(a) (teR)
Ko (D) "¢y (Hds=—y.() (tER)
(iv) x(dA)=(Px)(1)dA.
Proor By and (3.10), we have
(9.15) —iw+2n[¢,]0+10)=24.
On the other hand, it follows from (3.4), (¢) and (e)’ in &, that
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(9.16)  27[ ¢, ]1(0+i0)=n((Px)(0)—i(Hx)(0))
=Re B—in (Hx)(0).

Therefore, (i) follows from (9.15) and (9.16) (ii) and are the

very (3.2) and (3.8), respectively. (iv) follows from [Lemma 4.26 and

(e)"in &. (Q.E.D)
Next we shall show

ProposiTiON 9. 2
(i) 4;,dA)=R0)x(dr)

41, (@) =2 (dL),

where 4;, and A4, are spectral measures of the Mori noise I, and the
Kubo wnoise I, respectively.

Proor (i) follows from (2.10) and Proposition 9.1 (ii). (ii)
follows from Theorems (i) and 6.2 (ii) (Q.E.D)

Finally we shall give a relation between the Mori noise /,, and the Kubo
noise I,. For that purpose, we regard the Mori noise IM as an % -valued
stationary tempered distribution ([,,(¢); ¢ EZL(R)):

(9.17) IM(qS):j;qs(t)IM(t)dt.

Then we shall show

ProposiTiON 9.3  For any ¢ €S (R)
(9.18) aly(¢)—1,(¢)

—lim | z<f/1 "““ 2 () dE (&) A (D)

elo0

1/ f¢< ¢<5> x(d1))dE (&) A(0)

t+x <<Px><g>—<Hx><§>>$<§>dE<£>A<o>,

where (E(&); EER) is the spectral resolution of A n (6.4).
Proor By (6.4), (9.13) and Lemma 9.1 (ii), we see that

ez(é—

919 L= [((—ig—iwe ot [

x(dl)}dE(‘E)A(O)

and so

9.200  Iy(¢$)
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:f(—ig—icu)$($)dE(£)A(0)+

— it 1 QZ(g Pt
AYK sy g (@A (DADE AD).

On the other hand, by (7.7) and (9.14), we have

9.2 alg(@)= [ 1B+~ K. (&) dEE AW,

As we have seen in the proof of Theorem 5. 3, we note that

(9.22) leifrol( — &) K, (&) =7 ((Pr) (&)—(Px)(0))— in ((Hx )(&)—(Hx )(0))
=7 ((Px)(&)—1(Hr)(&))—Re B+ ix (Hx)(0)
and so by Lemma 9.1 (i)

(9.23) ﬁ—i€+1if13(—i£)Ke(§)
—i&—tw+x((Pe)(&)—i(Hr)(&)).
Therefore, it follows from (9.20), (9.21) and (9.23) that

(9.24) al, (¢)—1,,(d)
= [z (B (&) —i(H) ()&

1— ez(.s At
= S e Sy * @) (DdD dE () A,

By noting (b)” and (e)’ in #,, we see that for almost all £R and any
teR

1__ei(§*/1>t B 1— & — /l)t

1 ez(& At
IJE}fA E- w“‘??fro‘ r1—g— e (V)

1 Z(c‘i At
—7z<<Px><es>—z<Hx><‘s>>——hm]l —x(dD).

(9.25)

Substituting (9.25) into (9.24), we have
9.26)  al($)—I,($)
1 o . ei(f—/l)t
=7 Jo e eim [ S k() $ (D AE ) AD).

z(é At
By noting that | f 1T T L (dV)|< |t x(R), we see from (d) in &, and
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(9.25) that there exist positive constants ¢, and 72 such that for any & >0

and any §€R
1({;‘——/1)1‘
(9.27) | Rx—g——if(dl)’<€7(1+lt|+|§|m°)

Therefore, by Lebesgue’s convergence theorem, we see that for any £€R

0.28 [ e im [T e (A (D

el0

. A
—lim Re‘”‘g(fkmx(dl))¢(t)dt

elo
i $A)
—lelfl'(} Rm%(dl)

Furthermore, we divide

q?u)
RA— & — i

By using (9.27) for t=0 and (e)’ in &#;, we find that

(9.29)

= [,ER D a1 o) [ b wav,

030 | [ (@) <1l B+ 1+ 1511 )

ga0  tm [P0 = [EAEED, () a0+

el0

i(Px)(«E))rﬁ(éf).
Thus, by (9.30) and (9.31), we can apply Lebesgue’s convergence theorem
to (9.26) and (9.28) to obtain (9.18). (Q.E.D)
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